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ABSTRACT

Transfer learning is a useful technique for achieving improved performance and
reducing training costs by leveraging the knowledge gained from source tasks and
applying it to target tasks. Assessing the effectiveness of transfer learning relies
on understanding the similarity between the ground truth of the source and target
tasks. In real-world applications, tasks often exhibit partial similarity, where cer-
tain aspects are similar while others are different or irrelevant. To investigate the
impact of partial similarity on transfer learning performance, we focus on a linear
regression model with two distinct sets of features: a common part shared across
tasks and a task-specific part. Our study explores various types of transfer learn-
ing, encompassing two options for parameter transfer. By establishing a theoreti-
cal characterization on the error of the learned model, we compare these transfer
learning options, particularly examining how generalization performance changes
with the number of features/parameters in both underparameterized and overpa-
rameterized regimes. Furthermore, we provide practical guidelines for determin-
ing the number of features in the common and task-specific parts for improved
generalization performance. For example, when the total number of features in
the source task’s learning model is fixed, we show that it is more advantageous
to allocate a greater number of redundant features to the task-specific part rather
than the common part. Moreover, in specific scenarios, particularly those char-
acterized by high noise levels and small true parameters, sacrificing certain true
features in the common part in favor of employing more redundant features in the
task-specific part can yield notable benefits.

1 INTRODUCTION

Transfer learning is a powerful technique that enhances the learning performance of a target task
by leveraging knowledge from a related source task (Pan & Yang, 2010). There are two main cate-
gories of transfer learning: parameter transfer and sample transfer. In parameter transfer, the learned
parameters from the source task are directly copied to the target task’s learning model. In sample
transfer, training samples from the source task are integrated into the target task’s dataset and con-
tribute to its training process. Comparing these two methods, sample transfer can provide additional
valuable information and allow for preprocessing of the transferred samples to better align them
with the target task, while parameter transfer offers significant savings in training costs and thus is
very helpful for models with a large number of parameters such as deep neural networks (DNNs).

Despite the proven effectiveness of transfer learning with DNNs in various real-world applications,
a comprehensive theoretical understanding of its performance remains under-explored. DNNs are
typically overparameterized, allowing them to fit all training samples while maintaining relatively
good generalization performance. This behavior challenges our understanding of the classical bias-
variance trade-off. Recent studies have explored the phenomenon of “double-descent” or “benign
overfitting” in certain linear regression setups, where the test error descends again in the overparam-
eterized region, shedding light on this mystery. However, most of the existing literature focuses on
single-task learning. The existence of a similar phenomenon in transfer learning, even in the simple
linear regression setting, remains insufficiently explored. The additional transfer process in trans-
fer learning makes the analysis of the generalization performance in the underparameterized and
overparameterized regimes considerably more complex. Furthermore, quantifying task similarity
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necessitates the development of appropriate analytical methods to establish a connection with the
generalization performance of transfer learning.

The contribution of this paper is as follows. In this paper, we investigate the generalization per-
formance of transfer learning in linear regression models under both the underparameterized and
overparameterized regimes. Compared to the existing literature that considers a general noisy linear
relation between the true parameters of the source and target tasks, we delve into the separation
between common and task-specific features in greater detail. Specifically, we partition the feature
space into a common part and a task-specific part. This setup enables us to analyze how the num-
ber of parameters in different parts influences the generalization performance of the target task. By
characterizing the generalization performance, we offer insightful findings on transfer learning. For
instance, when the total number of features in the source task’s learning model is fixed, our analysis
reveals the advantage of allocating more redundant features to the task-specific part rather than
the common part. Additionally, in specific scenarios characterized by high noise levels and small
true parameters, sacrificing certain true features in the common part in favor of employing more
redundant features in the task-specific part can yield notable benefits.

1.1 RELATED WORK

“Benign overfitting” and “double-descent” have been discovered and studied for overfitted solu-
tions in single-task linear regression. Some works have explored double-descent with minimum
ℓ2-norm overfitted solutions (Belkin et al., 2018; 2019; Bartlett et al., 2020; Hastie et al., 2019;
Muthukumar et al., 2019) or minimum ℓ1-norm overfitted solutions (Mitra, 2019; Ju et al., 2020),
while employing simple features such as Gaussian or Fourier features. In recent years, other
studies have investigated overfitted generalization performance by utilizing features that approxi-
mate shallow neural networks. For example, researchers have explored random feature (RF) mod-
els (Mei & Montanari, 2019), two-layer neural tangent kernel (NTK) models (Arora et al., 2019;
Satpathi & Srikant, 2021; Ju et al., 2021), and three-layer NTK models (Ju et al., 2022). Note that
all of these studies have focused solely on a single task.

There are only a limited number of studies on the theoretical analysis of transfer learning.
Lampinen & Ganguli (2019) investigate the generalization dynamics in transfer learning by mul-
tilayer linear networks using a student-teacher scenario where the teacher network generates data
for the student network, which is different from our setup where the data of the source task and the
target task are independently generated by their own ground truth. Dhifallah & Lu (2021) focus on
the problem of when transfer learning is beneficial using the model of the single-layer perceptron.
Gerace et al. (2022) study a binary classification problem by transfer learning of the first layer in a
two-layer neural network. However, both Dhifallah & Lu (2021) and Gerace et al. (2022) include
an explicit regularization term in their models, which prevents overfitting. There are also some re-
cent studies of transfer learning on linear models (Bastani, 2021; Li et al., 2022; Tian & Feng, 2022;
Li et al., 2023; Tripuraneni et al., 2020; Zhang et al., 2022; Lin & Reimherr, 2022). For example,
Bastani (2021) and Li et al. (2022) investigate estimation and prediction in high-dimensional lin-
ear models. Tian & Feng (2022) and Li et al. (2023) further extend the setup to high-dimensional
generalized linear models. Tripuraneni et al. (2020) consider the case where source and target tasks
share a common and low-dimensional linear representation. Lin & Reimherr (2022) study transfer
learning in a functional linear regression where the similarity between source and target tasks is
measured using the Reproducing Kernel Hilbert Spaces norm. Zhang et al. (2022) provide minimax
bounds on the generalization performance but do not overfit the training data. In particular, none of
these studies have considered the task similarity structure of interest in this paper, nor investigated
the generalization performance in both overparameterized and underparameterized regimes.

The most related work to ours is Dar & Baraniuk (2022). Specifically, Dar & Baraniuk (2022) stud-
ies the double descent phenomenon in transfer learning, which is also our focus in this paper. How-
ever, Dar & Baraniuk (2022) does not consider an explicit separation of the feature space by the
common part and the task-specific part like we do in this paper. As we will show, such a separation
in the system model enables us to analyze the double descent phenomenon under different options
for transfer learning, including two options for parameter transfer and two options for data transfer.
In contrast, Dar & Baraniuk (2022) only studies one option of parameter transfer. Therefore, our
analysis is quite different from that of Dar & Baraniuk (2022).
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2 SYSTEM MODEL

2.1 LINEAR GROUND TRUTH INVOLVING MULTIPLE TASKS

In a classical single-task linear regression, ground truth parameters are treated as one vector, and
all corresponding features (each feature is a scalar) are also treated as one vector. However, when
involving multiple tasks, due to the partial similarity among different tasks, using only one vector
to represent the ground truth parameters and features is no longer enough. A finer linear model
should consider the common part and the task-specific part separately. Here we consider one training
(source) task and one test (target) task, respectively referred to as the first and second task from now
on. We consider a linear model for each task; i.e., for the i-th task with i ∈ {1 (source), 2 (target)},
samples are generated by

y(i) = x̂T ŵ(i) + ẑT
(i)q̂(i) + ǫ(i), (1)

where x̂ ∈ Rs denotes the value of the features that correspond to the similar/common parameters
ŵ(i) ∈ Rs, ẑ(i) ∈ Rs(i) denotes the value of the features that correspond to the task-specific parts
q̂(i) ∈ Rs(i) , and ǫ(i) ∈ R denotes the noise. Here, s denotes the number of common features

and s(i) denotes the number of i-th task-specific features. Let Ŝ(i) denote the set of features corre-

sponding to ẑ(i) and Ŝco the set of features corresponding to x̂ (so their cardinality

∣
∣
∣Ŝ(i)

∣
∣
∣ = si and

∣
∣
∣Ŝco

∣
∣
∣ = s).

Representative motivating example: In real-world applications, many tasks actually have such a
partial similarity structure. For example, for image recognition tasks, some low-level features are
common (e.g., skin texture of animals, surface of a machine) among different tasks even if the objec-
tives of those tasks are completely different (e.g., classifying cat and airplane, or classifying dog and
automobile). These low-level features are usually captured by convolutional layers in DNNs, while
the remaining parts of the DNNs (e.g., full-connected layers) are used to extract task-specific fea-
tures. Even for a simple linear regression model, a theoretical explanation of the effect of common
features and task-specific features on the generalization performance of transfer learning may pro-
vide useful insights on designing more suitable real-world transfer learning model structures (e.g.,
how many neurons to use in convolutional layers of DNNs to extract common low-level features to
transfer).

2.2 FEATURE SELECTION FOR LEARNING

From the learner’s point of view, the true feature sets Ŝco and Ŝ(i) are usually unknown for many real-
world applications. In the overparameterized regime, redundant parameters (along with redundant
features) are used/selected more than necessary, which is characterized by the following assumption.
Choosing redundant features also means that the learner does not need to be very precise in distin-
guishing the common and task-specific features, since the learner can include “suspicious” features
in the common feature set.

Definition 1. Ŝco ⊆ Sco and Ŝ(i) ⊆ S(i) for all i ∈ {1, 2}, where Sco denotes the set of selected
features for the common part, and S(i) denotes the set of selected task-specific features.

Define p := |Sco| and p(i) :=
∣
∣S(i)

∣
∣. Let w̃ ∈ Rp denote the parameters to learn the common part

and q̃(i) ∈ Rp(i) the parameters to learn the i-th task’s specific part.

With Definition 1, we construct w(i) ∈ Rp (corresponding to Sco) from ŵ(i) (corresponding to Ŝco)

by filling zeros in the positions of the redundant features (corresponding to Sco \ Ŝco). We similarly
construct q(i) ∈ Rp(i) from q̂(i). Thus, Eq. (1) can be alternatively expressed as

y(i) = xTw(i) + zT
(i)q(i) + ǫ(i), (2)

where x ∈ Rp are the features of Ŝco and z(i) ∈ Rp(i) are the features of S(i). Notice that the
ground truth (i.e., input and output) does not change with p or p(i) (since it only changes how many
additional zeros are added).

For analytical tractability, we adopt Gaussian features and noise, which is formally stated by the
following assumption.
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Assumption 1. All features follow i.i.d.1 standard Gaussian N (0, 1). The noise also follows the

Gaussian distribution. Specifically, ǫ(1) ∼ N
(

0, σ2
(1)

)

and ǫ(2) ∼ N
(

0, σ2
(2)

)

.

Remark 1. If there exist some missing features2 in Sco and S(i) (i.e., Definition 1 is not satisfied),
then the effect of these missing features is the same as the noise since we adopt i.i.d. Gaussian
features. Thus, our methods and results still hold by redefining σ2

(1) and σ2
(2) as the total power of

the noise and the missing features, i.e., σ2
(i) ← σ2

(i) +
∥
∥
∥ŵ

missing

(i)

∥
∥
∥

2

+
∥
∥
∥q̂

missing

(i)

∥
∥
∥

2

where ŵ
missing

(i) and

q̂
missing

(i) denote the sub-vectors for the missing features of ŵ(i) and q̂(i), respectively.

2.3 TRAINING SAMPLES AND TRAINING LOSSES

Let n(i) denote the number of training samples for task i ∈ {1, 2}. We stack these n(i) samples as

matrices/vectors X(i) ∈ Rp×n(i) , Z(i) ∈ Rp(i)×n(i) , y(i) ∈ Rn(i) , where the j-th column of X(i),

the j-th column of Z(i), and the j-th element of y(i) correspond to (x, z(i), y(i)) in Eq. (2) of the
j-th training sample. Now Eq. (2) can be written into a matrix equation for training samples:

y(i) = XT
(i)w(i) + ZT

(i)q(i) + ǫ(i), (3)

where ǫ(i) ∈ Rn(i) is the stacked vector that consists of the noise in the output of each training
sample (i.e., ǫ(i) in Eq. (2)).

We use mean squared error (MSE) as the training loss for the i-th task with the learner’s parameters

w̄, q̄ as: Ltrain
(i) (w̄, q̄) := 1

n(i)

∥
∥
∥y(i) −XT

(i)w̄ − ZT
(i)q̄

∥
∥
∥

2

.

2.4 OPTIONS OF PARAMETER TRANSFER

The process of transfer learning by transferring parameters consists of three steps: step 1) train
for the source task using samples (X(1),Z(1);y(1)); step 2) select the parameters for the common
features Sco from the learned result of the source task and then send them to the target task model;
and step 3) determine/train the parameters for the target task using its own samples (X(2),Z(2);y(2))
based on the transferred parameters in step 2.

Step 1 is similar to a classical single-task linear regression. The training process will converge to a
solution w̃(1), q̃(1) that minimizes this training loss, i.e., (w̃(1), q̃(1)) := argminw̄,q̄ Ltrain

(1) (w̄, q̄).

When p + p(1) > n(1) (overparameterized), there exist multiple solutions that can make the
training loss zero (with probability 1). In this situation, we will choose the one with the small-
est ℓ2-norm (w̃(1), q̃(1)) which is defined as the solution of the following optimization problem:

minw̄,q̄ ‖w̄‖2 + ‖q̄‖2 subject to XT
(1)w̄ + ZT

(1)q̄ = y(1). We are interested in this minimum

ℓ2-norm solution among all overfitted solutions because it corresponds to the convergence point of
stochastic gradient descent (SGD) or gradient descent (GD) training with zero initial point (see proof
in Lemma 5).

Steps 2 and 3 jointly determine the learned result for the target task w̃(2) and q̃(2). In this paper, we
analyze two possible options differentiated by the usage of the transferred common part w̃(1).

Option A (Transfer and Fix): We directly copy the learned result, i.e., w̃(2) := w̃(1). For the
training of the target task, only the task-specific parameters are trained. In other words, q̃(2) :=

argminq̄ Ltrain
(2) (w̄, q̄) when underparameterized. When p(i) > n(2) (overparameterized), there exist

multiple solutions that can make the training loss zero. We then define q̃(2) as the minimum ℓ2-
norm overfitted solution, i.e., q̃(2) is defined as the solution of the following optimization problem:

minq̄ ‖q̄‖2 subject to XT
(2)w̃(1) + ZT

(2)q̃(2) = y(2).

Option B (Transfer and Train): We only use the learned common part as an initial training point
of w̃(2). In this option, both w̃(2) and q̃(2) are determined by the training of the source task. Specif-

ically, (w̃(2), q̃(2)) := argminw̄,q̄ Ltrain
(2) (w̄, q̄) when underparameterized. When p + p(2) > n(2),

1In Appendix F, we numerically check our results and insights in the situation of non-i.i.d. settings.
2A missing feature means that a true feature is not included in the data.
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there are multiple solutions that can make L(2)(w̄, q̄) = 0. We then define (w̃(2), q̃(2)) as the con-

vergence point of SGD/GD starting from (w̄ = w̃(1), q̄ = 0). Indeed, (w̃(2), q̃(2)) corresponds to
the smallest ℓ2-norm of the difference between the result and the initial point (see proof in Lemma 5):

minw̄,q̄

∥
∥w̄ − w̃(1)

∥
∥
2
+ ‖q̄‖2 subject to XT

(2)w̄ + ZT
(2)q̄ = y(2).

2.5 PERFORMANCE EVALUATION

We define the model error for the target task as

L :=
∥
∥w̃(2) −w(2)

∥
∥
2
+
∥
∥q̃(2) − q(2)

∥
∥
2
. (4)

It can be proven that the model error L is the expected test loss on noiseless test samples. To make
our results in the following sections concise, we define

Lco := E
X(1),Z(1),ǫ(1)

∥
∥w(2) − w̃(1)

∥
∥
2

(transferring error), (5)

Lnoiseless
co := Lco

∣
∣
σ(1)=0

(transferring error when σ(1) = 0), (6)

δ :=
∥
∥w(2) −w(1)

∥
∥ (similarity on common features), (7)

r := 1− n(1)

p+ p(1)
(overparameterized ratio in step 1).

Intuitively, Lco describes how well the common part learned from the source task estimates the
target task’s common part, δ reflects the similarity between the common parts of the source task
and the target task, and r can be regarded as the overparameterization ratio in step 1 introduced in
Section 2.4.

3 MAIN RESULTS FOR PARAMETER TRANSFER

For the scheme of transferring parameters (Section 2.4), we will establish three theorems corre-
sponding to the performance of the transferring error3, the model error of Option A, and the model
error of Option B, respectively.

Theorem 1 (transferring error). The transferring error (defined in Eq. (5)) is given by

Lco =







Lnoiseless
co + bnoise, for p+ p(1) > n(1) + 1,

δ2 +
pσ2

(1)

n(1) −
(
p+ p(1)

)
− 1

︸ ︷︷ ︸

Term O1

, for n(1) > p+ p(1) + 1,

(8)

(9)

where 0 ≤ Lnoiseless
co ≤ min

i=1,2,3
b
2

i , and

b1 := δ +

√

r
(∥
∥w(1)

∥
∥
2
+
∥
∥q(1)

∥
∥
2
)

, (10)

b2 :=
∥
∥w(2)

∥
∥+
√
1− r

∥
∥w(1)

∥
∥+

√

min{r, 1− r}
∥
∥q(1)

∥
∥ , (11)

b3 :=
√
r
∥
∥w(1)

∥
∥+ δ +

√

min{r, 1− r}
∥
∥q(1)

∥
∥ , (12)

bnoise :=
p

p+ p(1)
·

n(1)σ
2
(1)

p+ p(1) − n(1) − 1
. (13)

Theorem 2 (Option A). For Option A, we must have

E[L] =







Lco +
n(2)

(

Lco + σ2
(2)

)

p(2) − n(2) − 1
︸ ︷︷ ︸

Term A1

+

(

1− n(2)

p(2)

)
∥
∥q(2)

∥
∥
2

︸ ︷︷ ︸

Term A2

, for p(2) > n(2) + 1,

Lco +
p(2)

(

Lco + σ2
(2)

)

n(2) − p(2) − 1
, for n(2) > p(2) + 1.

(14)

(15)

3The error caused by the transferred parameters. The precise definition is given in Eq. (5).
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Figure 1: Generalization performance of transfer learning under different setups, where s = s1 =
s2 = 5, n(1) = 100, n(2) = 50, w(1) = w(2). Each point is the average of 100 random runs. Other

settings for each subfigure: (a)
∥
∥q(2)

∥
∥ =

∥
∥w(1)

∥
∥ = 1; (b)

∥
∥w(1)

∥
∥ =

∥
∥q(1)

∥
∥ = 1; (c)

∥
∥σ(1)

∥
∥ = 1,

∥
∥σ(2)

∥
∥ = 0.2,

∥
∥q(1)

∥
∥ =

∥
∥q(2)

∥
∥ =

∥
∥w(1)

∥
∥ = 0.1.

Theorem 3 (Option B). For Option B, we must have

E[L] =







(

1− n(2)

p+p(2)

)(

Lco +
∥
∥q(2)

∥
∥
2
)

︸ ︷︷ ︸

Term B1

+
n(2)σ

2
(2)

p+p(2)−n(2)−1
︸ ︷︷ ︸

Term B2

, for p+ p(2) > n(2) + 1,

(p+ p(2))σ
2
(2)

n(2) − (p+ p(2))− 1
, for n(2) > p+ p(2) + 1.

(16)

(17)

The proofs of Theorems 1 to 3 are given in Appendices B to D, respectively. Theorems 1 to 3
provide some interesting insights, which we now discuss in Sections 3.1 to 3.3.

3.1 COMMON INSIGHTS FOR OPTIONS A AND B

(1) Benign overfitting4 w.r.t. p(1) needs large σ(1). For the overparameterized regime result in
Eq. (8) of Theorem 1, when σ(1) is large, the term bnoise (defined in Eq. (13)) dominates Lco and
is monotone decreasing w.r.t. p(1). When p(1) → ∞, we have bnoise → 0. In contrast, for the

underparameterized regime result in Eq. (9), Term O1 (noise effect) is always larger than
pσ2

(1)

n(1)
,

which can be worse than that of the overparameterized regime when p(1) is sufficiently large. By
Theorems 2 and 3, we know that L decreases when Lco decreases. Therefore, in the situation of
large σ(1), increasing p(1) in the overparameterized regime (of step 1) w.r.t. p(1) can reduce the
generalization error, which implies the existence of benign overfitting.

We also numerically verify the impact of σ(1) on the benign overfitting in Fig. 1(a), where we plot
the empirical average of L w.r.t. p(1). The two curves of σ(1) = 3 with markers “×” descend in the

4i.e., the test error of the overparameterized regime is lower than that of the underparameterized regime.
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overparameterized regime (p(1) > 80) and can be lower than their values in the underparameterized
regime. In contrast, the two curves of σ(1) = 0.1 with markers “+” increase in most parts of
the overparameterized regime and are higher than the underparameterized regime. Such a contrast
indicates the benign overfitting w.r.t. p(1) needs large σ(1).

(2) Benign overfitting w.r.t. p(2) needs large σ(2). For Eq. (15) (underparameterized regime of

Option A), E[L] is always larger than Lco(1 + 1
n(2)

). In contrast, for Eq. (14) (overparameterized

regime of Option A), when σ(2) is much larger than
∥
∥q(2)

∥
∥
2
, then Term A2 is negligible and Term A1

dominates. In this situation, E[L] is monotone decreasing w.r.t. p(2) and will approach Lco when
p(2) → ∞. In other words, benign overfitting exists. Similarly, by Theorem 3, benign overfitting

exists when σ2
(2) is much larger than Lco +

∥
∥q(2)

∥
∥
2
.

In Fig. 1(b), the two curves with markers “▽” denote the model error of Option A and Option B
when σ(2) is large (σ(2) = 2). They have a descending trend in the entire overparameterized regime.
In contrast, the two curves with markers “+”, which denote the model error for the situation of small
σ(2) (σ(2) = 0.2), only decrease w.r.t. p(2) at the beginning of the overparameterized regime, while
increasing thereafter.

(3) A descent floor5 w.r.t. p(2) sometimes exists. For Eq. (14) of Option A, Term A1 is monotone
decreasing w.r.t. p(2), while Term A2 is monotone increasing w.r.t. p(2). When p(2) is a little larger
than n(2), the denominator p(2)−n(2)− 1 in Term A1 is close to zero, and thus Term A1 dominates

and causes E[L] to be decreasing w.r.t. p(2). When p(2) gradually increases to infinity, E[L] will

approach Lco+
∥
∥q(2)

∥
∥
2
. By calculating ∂ E[L]/∂p(2), we can tell that ifLco+σ2

(2) <
∥
∥q(2)

∥
∥
2
, in the

overparameterized regime, E[L] will first decrease and then increase, which implies a descent floor
(by Lemma 9 in Appendix A.1). Similarly, by calculating ∂ E[L]/∂p(2) for Eq. (16) of Option B,

if σ2
(2) < Lco +

∥
∥q(2)

∥
∥
2
, in the overparameterized regime, E[L] will have a descent floor w.r.t. p(2)

(by Lemma 10 in Appendix A.1). An interesting observation related to the descent floor is that the
condition of the existence of the descent floor is different for Option A and Option B, where Option A
needs small Lco but Option B needs large Lco.

In Fig. 1(b), we see that both curves with markers “+” have a descent floor in the overparameterized
regime. In contrast, for the two curves with markers “×” where σ(1) is large, only Option B has a
descent floor while Option A does not. Since large σ(1) implies large Lco, such a difference confirms
that the descent floor of Option A needs small Lco while the one of Option B needs large Lco.

(4) The effect of q(1) is negligible when heavily or slightly overparameterized in step 1. The

effect of q(1) on L is through Lnoiseless
co . By Eqs. (8) and (10) to (12), the coefficient of

∥
∥q(2)

∥
∥ is

min{r, 1 − r}. When heavily overparameterized in step 1, we have p + p(1) ≫ n(1) and thus
r ≈ 0. When slightly overparameterized in step 1, we have p + p(1) ≈ n(1) and thus r ≈ 1. In

both situations, we have the coefficient min{r, 1 − r} ≈ 0, which implies that the effect of q(1) is
negligible when heavily or slightly overparameterized in step 1.

In Fig. 1(a), we compare two curves with markers “△” (for large q(1) that
∥
∥q(1)

∥
∥ = 5) against

two curves with markers “+” (for small q(1) that
∥
∥q(1)

∥
∥ = 1). We observe for both Option A and

Option B that the curves with markers “△” overlap the curves with markers “+” at the beginning
and the latter part of the overparameterized regime. This phenomenon validates the implication (4)
which is inferred from the factor min{r, 1− r} in Eqs. (11) and (12).

3.2 INSIGHTS FOR OPTION A

(A1) Benign overfitting w.r.t. p(2) is easier to observe with small knowledge transfer. In the

underparameterized regime, by Eq. (15), E[L] is at least Lco +
Lco+σ2

(2)

n(2)
. In contrast, for the overpa-

rameterized regime, when Lco is large, Term A1 of Eq. (14) dominates E[L]. When p(2) increases to
∞, Term A1 will decrease to Lco. Notice that large Lco implies small knowledge transfer from the
source task to the target task. Thus, benign overfitting w.r.t. p(2) appears when knowledge transfer
is small.

5i.e., the descent of the test error stops at a certain point (which is like a floor)

7
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In Fig. 1(b), we let the ground-truth parameters be very small compared with the noise level, so the
error L in Fig. 1 is mainly from noise. The blue curve with markers “×” has larger σ(1) (with σ(1) =
3) compared with the blue curve with markers “▽” (with σ(1) = 0.1), and consequently, larger
Lco and smaller knowledge transfer. We observe from Fig. 1(b) that the blue curve with markers
“×” descends w.r.t. p(2) in the entire overparameterized regime, while the blue curve with markers
“▽” descends at the beginning of the overparameterized regime and ascends in the remainder of the
overparameterized regime. Such a phenomenon validates the insight (A1).

(A2) Larger p is not always good to reduce the noise effect when overparameterized. By The-
orems 1 and 2, we know that the direct effect of p on noise in the overparameterized regime is only

through the term bnoise in Lco. By checking the sign of ∂bnoise

∂p , we can prove that bnoise increases w.r.t.

p when p2 < p(1)(p(1) − n(1) − 1), and decreases when p2 > p(1)(p(1) − n(1) − 1) (see calculation
details in Lemma 11 in Appendix A.1).

In Fig. 1(c), the blue curve with markers “⊲” depicts how the model error L of Option A changes
w.r.t. p in the overparameterized regime (p + p(1) > n(1)). This curve first increases and then
decreases, which validates the insight (A2).

3.3 INSIGHTS FOR OPTION B

(B1) Benign overfitting w.r.t. p(2) is easier to observe with large knowledge transfer and small

target task-specific parameters. In Eq. (16), small Lco +
∥
∥q(2)

∥
∥
2

implies that Term B2 dominates

the value of E[L]. As we explained previously in (2) of Section 3.1, benign overfitting exists in

this situation. Meanwhile, small Lco and
∥
∥q(2)

∥
∥ imply large knowledge transfer and small target

task-specific parameters, respectively.

In Fig. 1(b), the orange curve with markers “⊳” denotes the model error L of Option B w.r.t. p(2)
when σ(1) and q(2) are small, i.e., large knowledge transfer and small target task-specific parameters.
Compared with the orange curve with markers “×”, this curve descends in the entire overparame-
terized regime and can achieve a lower value than that of the underparameterized regime. This
phenomenon validates the insight (B1).

(B2) Multiple descents of noise effect when increasing p in the overparameterized regime.
Different from Option A where p only affects the consequence of the noise in the source task (since
no p appears in Eq. (14) except Lco), for Eq. (16) of Option B, we see that p not only affects Lco

but also Term B2, which implies that p relates to the noise effect in both the source task and the
target task. Specifically, the trend of E[L] w.r.t. p is determined by (1 − n(2)

p+p(2)
)bnoise and Term B2

in Eq. (16). In (A2) of Section 3.2, we show that bnoise sometimes first increases and then decreases.
The factor 1− n(2)

p+p(2)
is monotone increasing w.r.t. p. Term B2 in Eq. (16) is monotone decreasing

w.r.t. p. Thus, the overall noise effect may have multiple descents w.r.t. p.

In Fig. 1(c), the orange curve with markers “⊲” provides an example of how the model error L of
Option B behaves in the overparameterized regime. We see that this curve has multiple descents,
which validates the insight (B2). We also run additional simulations in Appendix F with a neural
network, and we can observe the descent w.r.t. the number of parameters of the transferred part.

4 FURTHER DISCUSSION

4.1 WHICH OPTION PERFORMS BETTER IN THE OVERPARAMETERIZED REGIME?

(C1) First, by comparing the coefficients of Lco in Eq. (14) and Eq. (16), we know that the effect
of the error in step one deteriorates in the model error L of Option A (since the coefficient of Lco

in Eq. (14) is larger than 1), whereas this is mitigated in the model error of Option B (since the
coefficient of Lco in Eq. (16) is smaller than 1). (C2) Second, by comparing the coefficients of
∥
∥q(2)

∥
∥
2

and σ2
(2) in Eqs. (14) and (16) under the same p and p(2), we know that Option B is worse to

learn q(2) but is better to reduce the noise effect of σ(2) than Option A (since 1− n(2)

p(2)
< 1− n(2)

p+p(2)

8
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and
n(2)

p(2)−n(2)−1 >
n(2)

p+p(2)−n(2)−1 ). (C3) Third, by letting p(2) → ∞ in Eqs. (14) and (16), the

model error L of both Option A and Option B approaches the same value Lco +
∥
∥q(2)

∥
∥
2
.

Intuitive Comparison of Options A and B: An intuitive explanation of the reason for these dif-
ferences is that Option B does train the common part learned by the source task but Option A does
not. Thus, Option B should do better to learn the common part. At the same time, since Option B
uses more parameters (p+ p(2)) than Option A (p) to learn the target task’s samples, the noise effect
is spread among more parameters in Option B than in Option A, and thus Option B can mitigate
the noise better than Option A. However, those additional p parameters interfere with the learning

of q(2) since those p parameters correspond to the features of the common part Ŝco, not the target

task-specific features Ŝ(2), which implies that Option B is worse in learning q(2) than Option A.

In Fig. 1(b), when overparameterized (i.e., p(2) > 50 for Option A, and p(2) > 30 for Option B),
Option A is slightly better than Option B around p(2) = 70 under the situation “σ(1) = 0.1, σ(2) =

0.2,
∥
∥q(2)

∥
∥ = 1” (i.e., the two curves with markers “+”). Notice that this situation has the smallest

σ(1), σ(2) and the largest
∥
∥q(2)

∥
∥. Thus, insights (C1),(C2) are verified. Besides, in Fig. 1(b), in every

situation, the curves of Option A and Option B overlap when p(2) is very large, which validates
insight (C3).

4.2 THE COMMON PART OR THE TASK-SPECIFIC PART?

When the total number of parameters is fixed, it is better to use more parameters on the task-
specific parts. Specifically, we have the following proposition.

Proposition 4. When p+p(1) = C is fixed, Lco is monotone increasing with respect to p. Therefore,
in order to minimize Lco when Definition 1 is assured, the best choice is p = s, p(1) = C − s.

Sometimes it is even better to sacrifice certain true features in the common part in favor of
employing more redundant features in the task-specific part. We still consider the case of fixed
p+p(1) = C. In certain situations (especially when the noise level is large and some true parameters
are very small), it is better to make p even smaller than s, i.e., it is better to violate Definition 1 de-
liberately (in contrast to Remark 1 where Definition 1 is violated unconsciously). We now construct

an example of this situation. Let
∥
∥q(1)

∥
∥
2
= 0,

∥
∥w(2)

∥
∥ +

∥
∥w(1)

∥
∥ = 1 (so b

2

2 ≤ 1 by Eq. (11)).
Suppose there are only 2 true common features (i.e., s = 2) and C > n(1) + 1. If we do not violate
Definition 1, then by Proposition 4, the best choice is to let p = 2. By Theorem 1 we know thatLco is

at leastQ1 := 2
C ·

n(1)σ
2
(1)

C−n(1)−1 (since Lnoiseless
co ≥ 0). In contrast, if we violate Definition 1 deliberately

by sacrificing one true common feature with parameter value 0.1 for the source task and value 0 for
the target task, then the only effect is enlarging the source task’s noise level by σ2

(1) ← σ2
(1) + 0.12.

Thus, by Theorem 1, we know that Lco is at most Q2 := 1 + 1
C ·

n(1)(σ
2
(1)+0.12)

C−n(1)−1 (since b
2

2 ≤ 1). We

can easily find a large enough σ2
(1) to make Q1 > Q2, which leads to our conclusion.

5 CONCLUSION

Our study on transfer learning in linear regression models provides valuable insights into the gen-
eralization performance of the target task. We propose a comprehensive framework that considers
task similarity in terms of both parameter distance and feature sets. Our analysis characterizes the
double descent of transfer learning for two different options of parameter transfer. Further investiga-
tion reveals that allocating more redundant features to the task-specific part, rather than the common
part, can enhance performance when the total number of features is fixed. Moreover, sometimes
sacrificing true features in the common part in favor of employing more redundant features in the
task-specific part can yield notable benefits, especially in scenarios with high noise levels and small
numbers of true parameters. These findings contribute to a better understanding of transfer learning
and offer practical guidance for designing effective transfer learning approaches.

There are some interesting directions for future work. First, we can use our current framework of
partial similarity to analyze the performance of sample transfer. Second, going beyond the linear
models of Gaussian features, we can use models that are closer to actual DNNs (such as neural
tangent kernel models) to study the generalization performance of overfitted transfer learning.
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Supplemental Material

A SOME USEFUL LEMMAS

We first introduce some useful lemmas that will be used in the proofs of our main results.

Lemma 5. Consider n training samples and p features. The stacked training input is X ∈ Rp×n

and the corresponding output is y ∈ Rn. If GD/SGD on linear regression with mean-square-error
converges to zero (i.e., overfitted), then the convergence point is the solution that has the minimum
ℓ2-norm of the change of parameters from the initial point.

Proof. Let a denote the parameters to train and a0 the initial point. Since GD/SGD is used in a
linear model, then in each iteration, the change of the parameters must be in the column space of X.
To realize this, we can simply calculate the gradient for the i-th training sample as

∂(yi − xT
i a)

2

∂a
= −2(yi − xT

i a)xi,

where xi is the i-th column of X and yi is the i-th element of y. As we can see, the gradient is
always parallel to one column of X, which implies that the overall change of the parameters is still
in the column space of X. Thus, we can always find b ∈ Rp such that

a− a0 = Xb. (18)

For the convergence point that makes the training loss become zero, we have

XTa = y. (19)

Substituting Eq. (18) into Eq. (19), we have

XT (a0 +Xb) = y

=⇒ b = (XTX)−1
(
y −XTa0

)

=⇒ a = a0 +X(XTX)−1
(
y −XTa0

)
,

which is exactly the minimum ℓ2-norm solution of the following linear problem:

min
a

‖a− a0‖

subject to XT (a− a0) = y −XTa0.

The constraint is also equivalent to XT
(1)a = y. The result of this lemma thus follows.

Lemma 6 (Cauchy-Schwarz inequality on random vectors). Consider any two random vectors
a, b ∈ Rd. We must have

∣
∣
E[a

T b]
∣
∣ ≤

√

E[‖a‖2] · E[‖b‖2]. (20)

Consequently, we have

E[‖a+ b‖2] ≤
(√

E[‖a‖2] +
√

E[‖b‖2]
)2

, (21)

and

E[‖a+ b‖2] ≥
(√

E[‖a‖2]−
√

E[‖b‖2]
)2

. (22)

Proof. Eq. (20) directly follows by Cauchy-Schwarz inequality after defining the inner product on
the set of random vectors using the expectation of their inner product:

〈a, b〉µ :=

∫

aT b dµ = E[a
T b],

12
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where µ(·) denotes the probability measure. We can easily verify the following properties of 〈·, ·〉µ:

〈a, b〉µ = 〈b, a〉µ, (conjugate symmetry);

〈λ1a+ λ2b, c〉µ = λ1〈a, c〉µ + λ2〈b, c〉µ, (linearity);

〈a, a〉µ > 0 for all a 6= 0. (positive-definiteness).

Thus, 〈·, ·〉µ defines a valid inner product space. It remains to prove Eq. (21) and Eq. (22). To that
end, we have

E[‖a+ b‖2] =E[‖a‖2] + E[a
T b] + 2E[‖b‖2]

≤E[‖a‖2] + 2
∣
∣
E[a

T b]
∣
∣+ E[‖b‖2]

≤E[‖a‖2] + 2

√

E[‖a‖2] · E[‖b‖2] + E[‖b‖2] (by Eq. (20))

=

(√

E[‖a‖2] +
√

E[‖b‖2]
)2

.

Similarly, we have

E[‖a+ b‖2] =E[‖a‖2] + E[a
T b] + 2E[‖b‖2]

≥E[‖a‖2]− 2
∣
∣
E[a

T b]
∣
∣+ E[‖b‖2]

≥E[‖a‖2]− 2

√

E[‖a‖2] · E[‖b‖2] + E[‖b‖2] (by Eq. (20))

=

(√

E[‖a‖2]−
√

E[‖b‖2]
)2

.

The result of this lemma therefore follows.

The result of the following lemma can be found in the literature (e.g., (Belkin et al., 2020)).

Lemma 7. Consider a random matrix K ∈ Rp×n where p and n are two positive integers and
p > n + 1. Each element of K is i.i.d. according to standard Gaussian distribution. For any fixed
vector a ∈ Rp, we must have

E

∥
∥
∥

(

Ip −K
(
KTK

)−1
KT
)

a

∥
∥
∥

2

=

(

1− n

p

)

‖a‖2 ,

E

∥
∥
∥K

(
KTK

)−1
KTa

∥
∥
∥

2

=
n

p
‖a‖2 .

Further, when p ≥ 16, we have

Pr

{
∥
∥
∥

(

Ip −K
(
KTK

)−1
KT
)

a

∥
∥
∥

2

≤ p− n+ 2
√

(p− n) ln p+ 2 ln p

p− 2
√
p ln p

‖a‖2
}

≥ 1− 2

p
.

Pr

{
∥
∥
∥K

(
KTK

)−1
KTa

∥
∥
∥

2

≤ n+ 2
√
n lnn+ 2 lnn

p− 2
√
p ln p

‖a‖2
}

≥ 1− 1

p
− 1

n
.

Proof. Define P0 := K
(
KTK

)−1
KT . By the definition of P0, we have P0P0 = P0. Thus,

P0 is a projection that projects a p-dim vector to a n-dim subspace (i.e., the column space of K).
Since each element of K is i.i.d. following standard Gaussian distribution, we can conclude that P0

has rotational symmetry. The rest of the calculation and proof is similar to that of Proposition 3 of

(Ju et al., 2023). Here we give an intuitive explanation of why E ‖(Ip −P0)a‖2 =
(

1− n
p

)

‖a‖2.

The rotational symmetry implies that the projection on a makes the change of the squared norm

proportional to the dimension of the original space and the subspace, i.e., E ‖P0a‖2 = n
p ‖a‖

2
and

consequently, E ‖a−P0a‖2 =
(

1− n
p

)

‖a‖2.
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Lemma 8. Consider a random matrix K ∈ Ra×b where a > b + 1. Each element of K is
i.i.d. following standard Gaussian distribution N (0, 1). Consider three Gaussian random vec-
tors α,γ ∈ Ra and β ∈ Rb such that α ∼ N (0, σ2

αIa), γ ∼ N (0, diag(d21, d
2
2, · · · , d2a)), and

β ∼ N (0, σ2
βIb). Here K, α, γ, and β are independent of each other. We then must have

E

[
(KTK)−1

]
=

Ib

a− b− 1
, (23)

E

∥
∥K(KTK)−1β

∥
∥
2
=

bσ2
β

a− b− 1
, (24)

E

∥
∥(KTK)−1KTα

∥
∥
2
=

bσ2
α

a− b− 1
, (25)

E

∥
∥(KTK)−1KTγ

∥
∥
2
=

b
∑a

i=1 d
2
i

a(a− b− 1)
. (26)

Proof. By the definition of K, we know that (KTK)−1 follows inverse-Wishart distribution, and
thus Eq. (23) follows. (The expression and derivation of the mean of any inverse-Wishart matrix can
be found in the literature, e.g., (Mardia, 1979).) It remains to prove Eq. (24) and Eq. (25). To that
end, we obtain

E

∥
∥K(KTK)−1β

∥
∥
2
=E

[(
K(KTK)−1β

)T (
K(KTK)−1β

)]

=E

[
βT (KTK)−1β

]

=E
β

[

βT
E
K

[(KTK)−1]β

]

(since K and β are independent)

=
1

a− b− 1
E

[
βTβ

]
(by Eq. (23))

=
bσ2

β

a− b− 1
(since E

β
[βTβ] = bσ2

β because β ∼ N (0, σ2
βIb)),

and

E

∥
∥(KTK)−1KTα

∥
∥
2

=E

[(
(KTK)−1KTα

)T (
(KTK)−1KTα

)]

=E

[
αTK(KTK)−1(KTK)−1KTα

]

=E

[
Tr
(
αTK(KTK)−1(KTK)−1KTα

)]

=E

[
Tr
(
K(KTK)−1(KTK)−1KTααT

)]
(by trace trick that Tr(AB) = Tr(BA))

=E
K

[

Tr

(

K(KTK)−1(KTK)−1KT
E
α
[ααT ]

)]

(since K and α are independent) (27)

=σ2
α E

[
Tr
(
K(KTK)−1(KTK)−1KT

)]
(since E

α
[ααT ] = σ2

αIa because α ∼ N (0, σ2
αIa))

=σ2
α E

[
Tr
(
(KTK)−1(KTK)−1KTK

)]
(by trace trick that Tr(AB) = Tr(BA)))

=σ2
α Tr

(

E[(K
TK)−1]

)

=
bσ2

α

a− b− 1
(by Eq. (23)).

Thus, we have proven Eq. (24) and Eq. (25). It remains to prove Eq. (26). To that end, we define
ei as the i-th standard basis. Define Mj ∈ Ra×a as the permutation matrix that switches the first
element with the j-th element for j = 2, 3, · · · , a. Since Mj is a permutation matrix, we have

MT
j Mj = Ia. Thus, for all j = 2, 3, · · · , a, we obtain

(KTK)−1KTej = (KTMT
j MjK)−1KTMT

j Mjej = (K̂T K̂)−1K̂Te1,

where K̂ := MjK. By definition of K, we know that K̂ and K have the same distribution. Thus,
we have

E

∥
∥(KTK)−1KTej

∥
∥
2
= E

∥
∥(KTK)−1KTe1

∥
∥
2

for all j = 2, 3, · · · , b. (28)
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We then derive

E

∥
∥(KTK)−1KTγ

∥
∥
2

=E
K

[

Tr

(

K(KTK)−1(KTK)−1KT
E
γ
[γγT ]

)]

(similar to Eq. (27))

=E

[
Tr
(
K(KTK)−1(KTK)−1K diag(d21, · · · , d2a)

)]
(by the definition of γ)

=

a∑

i=1

E



Tr



K(KTK)−1(KTK)−1K diag(0, · · · , 0, d2i
︸︷︷︸

i-th element

, 0, · · · , 0)









=
a∑

i=1

d2i E
∥
∥(KTK)−1KTei

∥
∥
2

(similar to Eq. (27))

=

∑a
j=1 d

2
j

a

a∑

i=1

E

∥
∥(KTK)−1KTei

∥
∥
2

(by Eq. (28))

=

∑a
j=1 d

2
j

a

a∑

i=1

E

[

Tr

(

K(KTK)−1(KTK)−1K diag(0, · · · , 0, 1
︸︷︷︸

i-th element

, 0, · · · , 0)
)]

(similar to Eq. (27))

=

∑a
j=1 d

2
j

a
E

[
Tr
(
K(KTK)−1(KTK)−1K

)]

=

∑a
j=1 d

2
j

a
E

[
Tr
(
(KTK)−1(KTK)−1KTK

)]
(by trace trick that Tr(AB) = Tr(BA))

=

∑a
j=1 d

2
j

a
Tr
(

E[(K
TK)−1]

)

=
b
∑a

j=1 d
2
j

a(a− b− 1)
(by Eq. (23)).

We have therefore proven Eq. (26), and the result of this lemma follows.

A.1 CALCULATION OF DERIVATIVE

Lemma 9. Consider the expression of E[L] in Eq. (14) (overparameterized regime of Option A).

When Lco + σ2
(2) ≥

∥
∥q(2)

∥
∥
2
, E[L] is monotone decreasing w.r.t. p(2). When Lco + σ2

(2) <
∥
∥q(2)

∥
∥
2
,

we have

∂ E[L]
∂p(2)







≤ 0, if p(2) ∈




n(2) + 1,

n(2)+1

1−

√
Lco+σ2

(2)

‖q(2)‖




 ,

> 0, if p(2) ∈






n(2)+1

1−

√
Lco+σ2

(2)

‖q(2)‖
, ∞




 .

Proof. We obtain

∂ E[L]
∂p(2)

=−
n(2)

(

Lco + σ2
(2)

)

(p(2) − n(2) − 1)2
+

n(2)

p2(2)

∥
∥q(2)

∥
∥
2

=
n(2)

∥
∥q(2)

∥
∥
2

(p(2) − n(2) − 1)2

(

−
Lco + σ2

(2)
∥
∥q(2)

∥
∥
2 +

(

1− n(2) + 1

p(2)

)2
)

.

The result of this lemma thus follows by checking the sign of the above expression.
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Lemma 10. Define

t :=
n(2) + 1

1− σ(2)
√

Lco+‖q(2)‖2
.

Consider the expression of E[L] in Eq. (16). When σ2
(2) ≥ Lco+

∥
∥q(2)

∥
∥
2

or p ≥ t, E[L] is monotone

decreasing w.r.t. p(2) in the overparameterized regime. When σ2
(2) < Lco +

∥
∥q(2)

∥
∥
2

and p < t, we

have

∂ E[L]
∂p(2)

{≤ 0, if p(2) ∈
(
n(2) + 1, t− p

]
,

> 0, if p(2) ∈ (t− p, ∞) .

Proof. We obtain

∂ E[L]
∂p(2)

=
n(2)

(p+ p(2))2

(

Lco +
∥
∥q(2)

∥
∥
2
)

−
n(2)σ

2
(2)

(p+ p(2) − n(2) − 1)2
,

=
n(2)

(

Lco +
∥
∥q(2)

∥
∥
2
)

(p+ p(2) − n(2) − 1)2

((

1− n(2) + 1

p+ p(2)

)2

−
σ2
(2)

Lco +
∥
∥q(2)

∥
∥
2

)

.

The result of this lemma thus follows by checking the sign of the above expression.

Lemma 11. When p+ p(1) > n(1) + 1, we have

∂ bnoise

∂ p

{
< 0, when p2 > p(1)

(
p(1) − n(1) − 1

)
,

≥ 0, otherwise.

Proof. By Eq. (13), we obtain

n(1)σ
2
(1)

bnoise

=

(

1 +
p(1)

p

)
(
p+ p(1) − n(1) − 1

)
.

In order to determine the sign of ∂ bnoise

∂ p , it is equivalent to check the sign of −∂(n(1)σ
2
(1)/bnoise)

∂p . To

that end, we have

−
∂(n(1)σ

2
(1)/bnoise)

∂p
=
p(1)

p2
(
p+ p(1) − n(1) − 1

)
− 1− p(1)

p

=
p(1)

(
p(1) − n(1) − 1

)
− p2

p2
.

The result of this lemma therefore follows.

Let λmin(·) and λmin(·) denote the minimum and maximum singular value of a matrix.

Lemma 12 (Corollary 5.35 of (Vershynin, 2010)). Let A be an N1 ×N2 matrix (N1 > N2) whose
entries are independent standard normal random variables. Then for every t ≥ 0, with probability
at least 1− 2 exp(−t2/2), one has

√

N1 −
√

N2 − t ≤ λmin(A) ≤ λmax(A) ≤
√

N1 +
√

N2 + t.

Lemma 13 (stated on pp. 1325 of (Laurent & Massart, 2000)). Let U follow χ2 distribution with D
degrees of freedom. For any positive x, we have

Pr
{

U −D ≥ 2
√
Dx+ 2x

}

≤ e−x,

Pr
{

D − U ≥ 2
√
Dx
}

≤ e−x.

By the union bound, we thus obtain

Pr
{

U ∈
[

D − 2
√
Dx, D + 2

√
Dx+ 2x

]}

≥ 1− 2e−x.

16
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Lemma 14. Let K ∈ Rp×n where n > p. We have

∥
∥(KKT )−1Ka

∥
∥
2 ≤ ‖a‖2

minEig(KKT )
=
‖a‖2

λ2
min(K)

.

Proof. Apply the singular value decomposition on K as K = UDQT , where U ∈ Rp×p and
Q ∈ Rn×n are the orthonormal matrices, and D ∈ Rp×n is a rectangular diagonal matrix whose
diagonal elements are d1, d2, · · · , dp. Then, we obtain

KKT = UDQTQDTUT = UDDTUT = U diag(d21, d
2
2, · · · , d2p)UT ,

(KKT )−1 = U diag(d−2
1 , d−2

2 , · · · , d−2
p )UT ,

and
∥
∥(KKT )−1Ka

∥
∥
2
=aTKT (KKT )−1(KKT )−1Ka

=aTQDT diag(d−4
1 , d−4

2 , · · · , d−4
p )DQTa

=aTQ diag(d−2
1 , d−2

2 , · · · , d−2
p , 0, · · · , 0)QTa.

Notice that
∥
∥QTa

∥
∥ = ‖a‖. Therefore, we have

∥
∥(KKT )−1Ka

∥
∥
2 ≤max

{
d−2
1 , d−2

2 , · · · , d−2
p , 0, · · · , 0

}
·
∥
∥QTa

∥
∥
2

=min{d1, d2, · · · , dp}−2 · ‖a‖2

=
‖a‖2

λ2
min(K)

.

B PROOF OF THEOREM 1

Define

U(1) :=
[
X(1)

Z(1)

]

∈ R(p+p(1))×n(1) , (29)

D :=
[
Ip 0

0 0

]
∈ R(p+p(1))×(p1+p2), (30)

G := Ip1+p2
−D =

[
0 0

0 Ip

]
∈ R(p1+p2)×(p1+p2). (31)

When p1 + p2 > n(1) (overparameterized), we have (with probability 1)

w̃(1),e = DU(1)

(

UT
(1)U(1)

)−1 (

XT
(1)w(1) + ZT

(1)q(1) + ǫ(1)

)

. (32)

THE OVERPARAMETERIZED SITUATION

We define

P := U(1)(U
T
(1)U(1))

−1UT
(1). (33)

Notice that

PP = P, and PT = P, (34)

i.e., P is a projection to the column space of U(1).

Define the extended vector of w(1), w(2), and w̃(1) as

w(1),e :=
[w(1)

0

]
∈ Rp+p(1) , w(2),e :=

[w(2)

0

]
∈ Rp+p(1) , w̃(1),e :=

[
w̃(1)

0

]

∈ Rp+p(1) , (35)

respectively. Similarly, define the extended vector of q(1) as

q(1),e :=
[

0
q(1)

]
∈ Rp+p(1) . (36)

17
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By Eq. (32) and Eq. (35), we have

∥
∥w(2) − w̃(1)

∥
∥
2
=

∥
∥
∥
∥
w(2),e −DU(1)

(

UT
(1)U(1)

)−1 (

XT
(1)w(1) + ZT

(1)q(1) + ǫ(1)

)
∥
∥
∥
∥

2

=

∥
∥
∥
∥
w(2),e −DU(1)

(

UT
(1)U(1)

)−1 (

UT
(1)

[w(1)
q(1)

]
+ ǫ(1)

)
∥
∥
∥
∥

2

(by Eq. (29)).

By Assumption 1 (noise has zero mean), we obtain

E
ǫ(1)

〈

w(2),e −DU(1)(U
T
(1)U(1))

−1UT
(1)

[w(1)
q(1)

]
, DU(1)(U

T
(1)U(1))

−1ǫ(1)

〉

= 0,

and therefore conclude

E
ǫ(1)

∥
∥w(2) − w̃(1)

∥
∥
2
=
∥
∥
∥w(2),e −DU(1)(U

T
(1)U(1))

−1UT
(1)

[w(1)
q(1)

]
∥
∥
∥

2

︸ ︷︷ ︸

Term 1

+
∥
∥
∥DU(1)(U

T
(1)U(1))

−1ǫ(1)

∥
∥
∥

2

︸ ︷︷ ︸

Term 2

.

(37)

The following lemma shows the expected value of Term 2 of Eq. (37).

Lemma 15. We have

E
U(1),ǫ

[Term 2 of Eq. (37)] =
p

p+ p(1)
·

n(1)σ
2
(1)

p+ p(1) − n(1) − 1
.

Proof. See Appendix B.2.

It remains to estimate Term 1 of Eq. (37). The following lemma aims to achieve a relatively precise

estimation when r
(∥
∥w(1)

∥
∥
2
+
∥
∥q(1)

∥
∥
2
)

is relatively small with respect to δ.

Lemma 16. We have
[

δ −
√

r
(∥
∥w(1)

∥
∥
2
+
∥
∥q(1)

∥
∥
2
)
]2

+

≤ E[Term 1 in Eq. (37)] ≤ b
2

1.

Proof. See Appendix B.3.

However, Lemma 16 may be loose in some other cases, which requires some finer estimation on
Term 1 of Eq. (37) for those cases. Define

A := w(2),e −w(1),e, (38)

B := w(1),e −DU(1)(U
T
(1)U(1))

−1XT
(1)w(1), (39)

C := DU(1)(U
T
(1)U(1))

−1ZT
(1)q(1). (40)

We then obtain

Term 1 in Eq. (37) = ‖A+B + C‖2 (41)

The following lemmas concern the estimation of A, B, and C.

Lemma 17. We have

[∥
∥w(2)

∥
∥−
√
1− r

∥
∥w(1)

∥
∥
]2

+
≤ E

[

‖A+B‖2
]

≤
(∥
∥w(2)

∥
∥+
√
1− r

∥
∥w(1)

∥
∥
)2

.

Proof. See Appendix B.4

Lemma 18. We have
[

1− 2n(1)

p+ p(1)

]

+

·
∥
∥w(1)

∥
∥
2 ≤ E

[

‖B‖2
]

≤ r
∥
∥w(1)

∥
∥
2
.

18
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Proof. See Appendix B.5.

Lemma 19. We have

E

[

‖C‖2
]

≤ min {r, 1− r}
∥
∥q(1)

∥
∥
2
.

Proof. See Appendix B.6.

We therefore obtain

E[Term 1 of Eq. (37)]

=E[‖A+B + C‖2] (by Eq. (41))

≤
(√

E[‖A+B‖2] +
√

E[‖C‖2]
)2

(by Lemma 6) (42)

≤
(∥
∥w(2)

∥
∥+
√
1− r

∥
∥w(1)

∥
∥+

√

min{r, 1− r}
∥
∥q(1)

∥
∥

)2

(by Lemma 17 and Lemma 19)

=b
2

2, (43)

and

E[Term 1 of Eq. (37)]

=E[‖A+B + C‖2] (by Eq. (41))

≥
[√

E[‖A+B‖2]−
√

E[‖C‖2]
]2

+

(by Lemma 6) (44)

≥
[∥
∥w(2)

∥
∥−
√
1− r

∥
∥w(1)

∥
∥−

√

min{r, 1− r}
∥
∥q(1)

∥
∥

]2

+
(by Lemma 17 and Lemma 19).

We also have

E[Term 1 of Eq. (37)]

≤
(√

E[‖A+B‖2] +
√

E[‖C‖2]
)2

(by Eq. (42))

≤
(√

E[‖A‖2] +
√

E[‖B‖2] +
√

E[‖C‖2]
)2

(by Lemma 6)

≤
(

δ +
√
r
∥
∥w(1)

∥
∥+

√

min{r, 1− r}
∥
∥q(1)

∥
∥

)2

(by Eq. (7), Lemma 18, and Lemma 19)

=b
2

3, (45)

and

E[Term 1 of Eq. (37)]

≥
[√

E[‖A+B‖2]−
√

E[‖C‖2]
]2

+

(by Eq. (44))

≥
[√

E[‖B‖2]−
√

E[‖A‖2]−
√

E[‖C‖2]
]2

+

(by Lemma 6)

≥
[√

r
∥
∥w(1)

∥
∥− δ −

√

min{r, 1− r}
∥
∥q(1)

∥
∥

]2

+
(by Eq. (7), Lemma 18, and Lemma 19).

By Lemma 16, Eq. (43), and Eq. (45), we therefore conclude

E[Term 1 of Eq. (37)] ≤ min
i=1,2,3

b
2

i . (46)

By Eq. (46), Lemma 15, and Eq. (37), we thus have Eq. (8).
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THE UNDERPARAMETERIZED SITUATION

When p+ p(1) < n(1), the solution that minimizes the training error is given by

w̃(1),e =D
(

U(1)U
T
(1)

)−1

U(1)y(1)

=D
(

U(1)U
T
(1)

)−1

U(1)

(

XT
(1)w(1) + ZT

(1)q(1) + ǫ(1)

)

=D
(

U(1)U
T
(1)

)−1

U(1)

(

UT
(1)

[w(1)
q(1)

]
+ ǫ(1)

)

=w(1),e +D
(

U(1)U
T
(1)

)−1

U(1)ǫ(1) (by Eq. (35) and Eq. (30)).

Thus, we have

∥
∥w(2) − w̃(1)

∥
∥
2
=

∥
∥
∥
∥
(w(2),e −w(1),e)−D

(

U(1)U
T
(1)

)−1

U(1)ǫ(1)

∥
∥
∥
∥

2

. (47)

By Assumption 1, we know that ǫ(1) is independent of U(1) and has zero mean. We therefore obtain

E
ǫ(1)

〈

w(2),e − w̃(1),e, D
(

U(1)U
T
(1)

)−1

U(1)ǫ(1)

〉

= 0. (48)

Recalling the definition of δ in Eq. (7), by Eq. (47) and Eq. (48), we thus have

E

∥
∥w(2) − w̃(1)

∥
∥
2
= δ2 + E

∥
∥
∥
∥
D
(

U(1)U
T
(1)

)−1

U(1)ǫ(1)

∥
∥
∥
∥

2

. (49)

It remains to estimate E

∥
∥
∥
∥
D
(

U(1)U
T
(1)

)−1

U(1)ǫ(1)

∥
∥
∥
∥

2

. To that end, we derive

E

∥
∥
∥
∥
D
(

U(1)U
T
(1)

)−1

U(1)ǫ(1)

∥
∥
∥
∥

2

=E

[(

D
(

U(1)U
T
(1)

)−1

U(1)ǫ(1)

)T

D
(

U(1)U
T
(1)

)−1

U(1)ǫ(1)

]

=ETr

((

D
(

U(1)U
T
(1)

)−1

U(1)ǫ(1)

)T

D
(

U(1)U
T
(1)

)−1

U(1)ǫ(1)

)

=ETr

(

D
(

U(1)U
T
(1)

)−1

U(1)ǫ(1)ǫ
T
(1)U

T
(1)(U(1)U

T
(1))

−1D

)

(by trace trick that Tr(AB) = Tr(BA))

= E
U(1)

Tr

(

D
(

U(1)U
T
(1)

)−1

U(1) E
ǫ(1)

[ǫ(1)ǫ
T
(1)]U

T
(1)(U(1)U

T
(1))

−1D

)

=σ2
(1) ETr

(

D(U(1)U
T
(1))

−1D
)

(E[ǫ(1)ǫ
T
(1)] = σ2

(1)In(1)
by Assumption 1)

=Tr
(

DE[(U(1)U
T
(1))

−1]D
)

=
p

p+ p(1)
·

(p+ p(1))σ
2
(1)

n(1) − (p+ p(1))− 1
(by Lemma 8)

=
pσ2

(1)

n(1) − (p+ p(1))− 1
. (50)

Substituting Eq. (50) into Eq. (49), we therefore obtain

E

∥
∥w(2) − w̃(1)

∥
∥
2
= δ2 +

pσ2
(1)

n(1) − (p+ p(1))− 1
,

i.e., we have Eq. (9).

Combining our proof for the overparameterized situation and the underparameterized situation, The-
orem 1 thus follows.
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Figure 2: Geometric illustration of some vectors and projections used in the proof.

Notation in Fig. 2 Meaning

plane α column space of U(1)

plane β subspace spanned by e1, · · · , ep
vector

−→
OA w(1),e

vector
−→
OB Pw(1),e

vector
−→
OD DPw(1),e

vector
−→
DA w(1),e −DPw(1),e

vector
−→
OE 〈w(1),e, DPw(1),e〉 ·w(1),e/

∥
∥w(1),e

∥
∥
2

vector
−→
EA w(1),e − 〈w(1),e, DPw(1),e〉 ·w(1),e/

∥
∥w(1),e

∥
∥
2

Table 1: Interpretation of notations in Fig. 2 for Lemma 18.

B.1 TIGHTNESS OF EQ. (8)

All our estimations except Lnoiseless
co are precise. It remains to check the tightness of Eq. (8), i.e.,

mini=1,2,3 b
2

i . Here b1, b2, and b3 are for different situations.

First, when r and δ are small, b1 is the smallest. In this case, b1 ≤ b3 because√

r
(∥
∥w(1)

∥
∥
2
+
∥
∥q(1)

∥
∥
2
)

≤ √r
∥
∥w(1)

∥
∥+
√
r
∥
∥q(1)

∥
∥; and b1 ≤ b2 because r =

∥
∥w(2) −w(1)

∥
∥ ≤

∥
∥w(2)

∥
∥ +

∥
∥w(1)

∥
∥ ≈

∥
∥w(2)

∥
∥ +

∥
∥w(1)

∥
∥ when r is small. In Fig. 3(a)(c) (where δ = 0), the curves

of b
2

1 (blue dashed curves) are the closest ones to the empirical value of Lnoiseless
co (black curves with

markers “+”) in the near overparameterized regime.

Second, if only δ is small but r is large, then b3 is the smallest. In this case, b3 ≤ b1 because the

coefficient of
∥
∥q(1)

∥
∥ in b3 approaches 0 when r → 1 while that in b1 approaches 1. For this reason,

the difference between b3 and b1 can be observed more easily when
∥
∥q(1)

∥
∥ is large. In Fig. 3(a)(c),

we can see that the curves of b
2

3 are the closest ones to the actual value of Lnoiseless
co when p is large

(i.e., r is large). As expected, the difference between b3 and b1 in Fig. 3(b) is larger and easier to
observe compared to that in Fig. 3(a).

Third, when δ is large, b2 can sometimes be the smallest since w(2) and w(1) are treated separately

in the expression of b2 to get a more precise estimation. In Fig. 3(b)(d) (where δ is very large), the

curves of b
2

2 (red dashed ones) are the closest ones to the curve of Lnoiseless
co (black curves with the

markers “+”).
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Notation in Fig. 2 Meaning

plane α column space of U(1)

plane β subspace spanned by ep+1, · · · , ep+p(1)

vector
−→
OA q(1),e

vector
−→
OB Pq(1),e

vector
−→
OD GPq(1),e

vector
−→
DB DPq(1),e

Table 2: Interpretation of notations in Fig. 2 for Lemma 19.
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(d) δ 6= 0, large ‖q(1)‖

theory Lnoiseless
co

simu. Lnoiseless
co

b
2
1

b
2
2

b
2
3

Figure 3: The curves of Lnoiseless
co with respect to p in the overparameterized region, where n(1) =

100,
∥
∥w(1)

∥
∥ = 1, and p(1) = 20. Each data point is the average of 20 runs with different random

seeds (randomness is on input features). Some other settings for each subfigure: (a) w(1) = w(2)

and
∥
∥q(1)

∥
∥ = 1; (b) w(1) = −w(2), and

∥
∥q(1)

∥
∥ = 1; (c) w(1) = w(2) and

∥
∥q(1)

∥
∥ = 5; (d)

w(1) = −w(2), and
∥
∥q(1)

∥
∥ = 5.

B.2 PROOF OF LEMMA 15

Proof. We first prove that U(1)(U
T
(1)U(1))

−1ǫ(1) has rotation symmetry. Consider any rotation

S ∈ SO(p + p(1)) where SO(p + p(1)) ∈ R(p+p(1))×(p+p(1)) denotes all rotations in (p + p(1))-
dimensional space. We have

SU(1)(U
T
(1)U(1))

−1ǫ(1) =SU(1)(U
T
(1)S

−1SU(1))
−1ǫ(1)

=SU(1)(U
T
(1)S

TSU(1))
−1ǫ(1) (S−1 = ST since S is a rotation)

=(SU(1))((SU(1))
TSU(1))

−1ǫ(1).

By Assumption 1, we know that SU(1) has the same distribution as U(1). Thus, the rotated vector

SU(1)(U
T
(1)U(1))

−1ǫ(1) has the same distribution as the original vector U(1)(U
T
(1)U(1))

−1ǫ(1).

This implies that

E([U(1)(U
T
(1)U(1))

−1ǫ(1)]1)
2 = E([U(1)(U

T
(1)U(1))

−1ǫ(1)]2)
2 = · · · = E([U(1)(U

T
(1)U(1))

−1ǫ(1)]p+p(1)
)2,
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where [·]i denotes the i-th element of the vector. We therefore obtain

E

∥
∥
∥DU(1)(U

T
(1)U(1))

−1ǫ(1)

∥
∥
∥

2

=

p
∑

i=1

E([U(1)(U
T
(1)U(1))

−1ǫ(1)]i)
2

=
p

p+ p(1)
E

∥
∥
∥U(1)(U

T
(1)U(1))

−1ǫ(1)

∥
∥
∥

2

=
p

p+ p(1)
·

n(1)σ
2
(1)

p+ p(1) − n(1) − 1
(by Lemma 8).

The result of this lemma thus follows.

B.3 PROOF OF LEMMA 16

Proof. By Eq. (30) and Eq. (35), we have

w(2),e = D
[w(2)

q(1)

]
= D

[
w(2)−w(1)

0

]
+D

[w(1)
q(1)

]
=
[w(2)

q(1)

]
= D

[
w(2)−w(1)

0

]
+D

[w(1)
q(1)

]
. (51)

Thus, we obtain

E[Term 1 of Eq. (37)]

=E

∥
∥
∥D

([
w(2)−w(1)

0

]
+
[w(1)
q(1)

]
−U(1)(U

T
(1)U(1))

−1UT
(1)

[w(1)
q(1)

])
∥
∥
∥

2

(by Eq. (51))

≤E

∥
∥
∥

[
w(2)−w(1)

0

]
+
[w(1)

q(1)

]
−U(1)(U

T
(1)U(1))

−1UT
(1)

[w(1)
q(1)

]
∥
∥
∥

2

(since ‖Da‖ ≤ ‖a‖ for all a ∈ Rp+p(1) )

≤
(

δ +

√

E

∥
∥
∥

([w(1)
q(1)

]
−U(1)(U

T
(1)U(1))−1UT

(1)

[w(1)
q(1)

])
∥
∥
∥

2
)2

(by Lemma 6 and Eq. (7))

=

(

δ +

√

r
(∥
∥w(1)

∥
∥
2
+
∥
∥q(1)

∥
∥
2
)
)2

(by Lemma 7)

=b
2

1. (52)

We also have

E[Term 1 of Eq. (37)]

=E

∥
∥
∥

[
w(2)−w(1)

0

]
+D

([w(1)
q(1)

]
−U(1)(U

T
(1)U(1))

−1UT
(1)

[w(1)
q(1)

])
∥
∥
∥

2

(by Eq. (51))

≥
(

δ −
√

E

∥
∥
∥D

([w(1)
q(1)

]
−U(1)(U

T
(1)U(1))−1UT

(1)

[w(1)
q(1)

])
∥
∥
∥

2
)2

(by Lemma 6 and Eq. (7))

≥





[

δ −
√

E

∥
∥
∥D

([w(1)
q(1)

]
−U(1)(U

T
(1)U(1))−1UT

(1)

[w(1)
q(1)

])
∥
∥
∥

2
]+




2

≥
[

δ −
√

E

∥
∥
∥

[w(1)
q(1)

]
−U(1)(U

T
(1)U(1))−1UT

(1)

[w(1)
q(1)

]
∥
∥
∥

2
]2

+

(since ‖Da‖ ≤ ‖a‖ for all a ∈ Rp+p(1) )

=

[

δ −
√

r
(∥
∥w(1)

∥
∥
2
+
∥
∥q(1)

∥
∥
2
)
]2

+

(by Lemma 7). (53)

By Eq. (52) and Eq. (53), the result of this lemma thus follows.

B.4 PROOF OF LEMMA 17

Proof. We have

‖A+B‖2 =
∥
∥
∥w(2),e −DU(1)(U

T
(1)U(1))

−1XT
(1)w(1)

∥
∥
∥

2

(by Eq. (38) and Eq. (39))

=
∥
∥
∥w(2),e −DU(1)(U

T
(1)U(1))

−1UT
(1)w(1),e

∥
∥
∥

2

(by Eq. (35) and Eq. (29)). (54)
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Thus, we obtain

E ‖A+B‖2 ≤
(

∥
∥w(2)

∥
∥+

√

E

∥
∥
∥DU(1)(U

T
(1)U(1))−1UT

(1)w(1),e

∥
∥
∥

2
)2

(by Eq. (54) and Lemma 6)

≤
(

∥
∥w(2)

∥
∥+

√

E

∥
∥
∥U(1)(U

T
(1)U(1))−1UT

(1)w(1),e

∥
∥
∥

2
)2

(since ‖Da‖ ≤ ‖a‖ for all a ∈ Rp+p(1))

=
(∥
∥w(2)

∥
∥+
√
1− r

∥
∥w(1)

∥
∥
)2

(by Lemma 7).

We also have

E ‖A+B‖2 ≥
(

∥
∥w(2)

∥
∥−

√

E

∥
∥
∥DU(1)(U

T
(1)U(1))−1UT

(1)w(1),e

∥
∥
∥

2
)2

(by Eq. (54) and Lemma 6)

≥
[

∥
∥w(2)

∥
∥−

√

E

∥
∥
∥U(1)(U

T
(1)U(1))−1UT

(1)w(1),e

∥
∥
∥

2
]2

+

(since ‖Da‖ ≤ ‖a‖ for all a ∈ Rp+p(1))

=
[∥
∥w(2)

∥
∥−
√
1− r

∥
∥w(1)

∥
∥
]2

+
(by Lemma 7).

The result of this lemma thus follows.

B.5 PROOF OF LEMMA 18

Proof. We first prove the upper bound in this lemma. By the definition of w(1),e in Eq. (35), we
obtain

XT
(1)w(1) = UT

(1)w(1),e, Dw(1),e = w(1),e. (55)

Notice that for any vector a ∈ Rp+p(1) , we have ‖Da‖ ≤ ‖a‖. Thus, we conclude
∥
∥w(1),e −Pw(1),e

∥
∥ ≥

∥
∥D

(
w(1),e −Pw(1),e

)∥
∥ . (56)

By Eq. (55), we have

D
(
w(1),e −Pw(1),e

)
= w(1),e −DU(1)(U

T
(1)U(1))

−1XT
(1)w(1). (57)

By Eq. (56) and Eq. (57), we thus obtain
∥
∥
∥w(1),e −DU(1)(U

T
(1)U(1))

−1XT
(1)w(1)

∥
∥
∥ ≤

∥
∥w(1),e −Pw(1),e

∥
∥ . (58)

We further have

E

∥
∥
∥w(1),e −DU(1)(U

T
(1)U(1))

−1XT
(1)w(1)

∥
∥
∥

2

≤E

∥
∥w(1),e −Pw(1),e

∥
∥
2

(by Eq. (58))

=

(

1− n(1)

p+ p(1)

)
∥
∥w(1),e

∥
∥
2

(by Lemma 7)

=

(

1− n(1)

p+ p(1)

)
∥
∥w(1)

∥
∥
2

(since
∥
∥w(1)

∥
∥ =

∥
∥w(1),e

∥
∥ by Eq. (35)).

The upper bound in this lemma thus holds. It remains to prove the lower bound. To that end, we
define

a := w(1),e −
〈DPw(1),e, w(1),e〉

∥
∥w(1),e

∥
∥
2 w(1),e (corresponds to

−→
OE in Fig. 2), (59)

b :=
〈DPw(1),e, w(1),e〉

∥
∥w(1),e

∥
∥
2 w(1),e −DPw(1),e (corresponds to

−→
BE in Fig. 2). (60)
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Notice that

aT b = 〈DPw(1),e, w(1),e〉 − 〈DPw(1),e, w(1),e〉 −
〈DPw(1),e, w(1),e〉2

∥
∥w(1),e

∥
∥
2 +

〈DPw(1),e, w(1),e〉2
∥
∥w(1),e

∥
∥
2 = 0.

(61)

Thus, we obtain
∥
∥w(1),e −DPw(1),e

∥
∥
2

= ‖a+ b‖2 (by Eq. (59) and Eq. (60))

= ‖a‖2 + ‖b‖2 (by Eq. (61))

≥‖a‖2

=
∥
∥w(1),e

∥
∥
2
+
〈DPw(1),e, w(1),e〉2

∥
∥w(1),e

∥
∥
2 − 2〈DPw(1),e, w(1),e〉

≥
∥
∥w(1),e

∥
∥
2 − 2〈DPw(1),e, w(1),e〉. (62)

We also have

〈DPw(1),e, w(1),e〉 =wT
(1),eDPw(1),e

=wT
(1),ePw(1),e (since wT

(1),eD = wT
(1),e by Eq. (55))

=w(1),eP
TPw(1),e (by Eq. (34))

=
∥
∥Pw(1),e

∥
∥
2
. (63)

By Eq. (62) and Eq. (63), we further obtain

E

∥
∥w(1),e −DPw(1),e

∥
∥
2 ≥

∥
∥w(1),e

∥
∥
2 − 2E

∥
∥Pw(1),e

∥
∥
2

=

(

1− 2n(1)

p+ p(1)

)
∥
∥w(1),e

∥
∥
2

(by Lemma 7)

=

(

1− 2n(1)

p+ p(1)

)
∥
∥w(1)

∥
∥
2

(by Eq. (35)).

Therefore, we have proven the lower bound in this lemma. In summary, the result of this lemma
thus holds.

B.6 PROOF OF LEMMA 19

Proof. By Eq. (31) and Eq. (36), we have

ZT
(1)q(1) = UT

(1)q(1),e. (64)

By Eq. (31), we conclude

GTG = G, Gq(1),e = GTq(1),e = q(1),e. (65)

By Eq. (65) and Eq. (34), we obtain

qT
(1),eP

TGTGPq(1),e = qT
(1),eP

TGPTq(1),e, qT
(1),eGPq(1),e = qT

(1),ePq(1),e. (66)

By Eq. (34), we have

qT
(1),eP

TPq(1),e = qT
(1),ePq(1),e. (67)

Define

a := Pq(1),e −
〈Pq(1),e, q(1),e〉
∥
∥q(1),e

∥
∥
2 q(1),e, (corresponds to

−→
EB in Fig. 2) (68)

b := Pq(1),e −GPq(1),e (corresponds to
−→
DB in Fig. 2). (69)
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Notice that

(a− b)T b

=qT
(1),eP

TPq(1),e − qT
(1),eP

TGPq(1),e −
〈Pq(1),e, q(1),e〉
∥
∥q(1),e

∥
∥
2 qT

(1),ePq(1),e

+
〈Pq(1),e, q(1),e〉
∥
∥q(1),e

∥
∥
2 qT

(1),eGPq(1),e

+ qT
(1),eP

TPq(1),e − 2qT
(1),eGPq(1),e + qT

(1),eP
TGTGPq(1),e (by Eq. (68) and Eq. (69))

=0 (by Eq. (66) and Eq. (67)). (70)

Thus, we obtain

‖C‖2

=
∥
∥DPq(1),e

∥
∥
2

(by Eq. (33) and Eq. (64))

=
∥
∥Pq(1),e −GPq(1),e

∥
∥
2

(since G = Ip+p(1)
−D by Eq. (31))

= ‖b‖2 (by Eq. (69))

≤‖a− b‖2 + ‖b‖2

= ‖a− b‖2 + ‖b‖2 + 2(a− b)T b (by Eq. (70))

= ‖a− b+ b‖2

= ‖a‖2 . (71)

It remains to estimate the norm of a. To that end, we have

‖a‖2 =

∥
∥
∥
∥
∥
Pq(1),e −

qT
(1),ePq(1),e
∥
∥q(1),e

∥
∥
2 q(1),e

∥
∥
∥
∥
∥

2

(by Eq. (68))

=
∥
∥Pq(1),e

∥
∥
2 −

(

qT
(1),ePq(1),e

)2

∥
∥q(1),e

∥
∥
2 (expand and merge like terms)

=
∥
∥Pq(1),e

∥
∥
2 −

∥
∥Pq(1),e

∥
∥
4

∥
∥q(1),e

∥
∥
2 (by Eq. (67))

=
∥
∥q(1),e

∥
∥
2 ·
∥
∥Pq(1),e

∥
∥
2

∥
∥q(1),e

∥
∥
2 ·

(

1−
∥
∥Pq(1),e

∥
∥
2

∥
∥q(1),e

∥
∥
2

)

. (72)

Since P is a projection by Eq. (34), we know
∥
∥q(1),e

∥
∥ ≥

∥
∥Pq(1),e

∥
∥. Then, we obtain

∥
∥Pq(1),e

∥
∥
2

∥
∥q(1),e

∥
∥
2 ≤ 1,

(

1−
∥
∥Pq(1),e

∥
∥
2

∥
∥q(1),e

∥
∥
2

)

≤ 1. (73)

We thus conclude

‖a‖2 ≤min

{∥
∥Pq(1),e

∥
∥
2

∥
∥q(1),e

∥
∥
2 , 1−

∥
∥Pq(1),e

∥
∥
2

∥
∥q(1),e

∥
∥
2

}

∥
∥q(1),e

∥
∥
2

(by Eq. (72) and Eq. (73)).

Therefore, we have

E

[

‖C‖2
]

≤E ‖a‖2 (by Eq. (71))

≤min

{

E

∥
∥Pq(1),e

∥
∥
2

∥
∥q(1),e

∥
∥
2 , 1− E

∥
∥Pq(1),e

∥
∥
2

∥
∥q(1),e

∥
∥
2

}

∥
∥q(1),e

∥
∥
2

≤min

{(

1− n(1)

p+ p(1)

)

,
n(1)

p+ p(1)

}
∥
∥q(1),e

∥
∥
2

(by Lemma 7)

=min

{(

1− n(1)

p+ p(1)

)

,
n(1)

p+ p(1)

}
∥
∥q(1)

∥
∥
2

(by Eq. (36)).
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The result of this lemma thus follows.

C PROOF OF THEOREM 2

Proof. When p(2) > n(2) + 1, we have

q̃(2) =Z(2)(Z
T
(2)Z(2))

−1
(

y(2) −XT
(2)w̃(1)

)

=Z(2)(Z
T
(2)Z(2))

−1
(

XT
(2)

(
w(2) − w̃(1)

)
+ ZT

(2)q(2) + ǫ(2)

)

.

Define

a :=
(

Ip(2)
− Z(2)(Z

T
(2)Z(2))

−1ZT
(2)

)

q(2) ∈ Rp(2) , (74)

b :=
(

Z(2)(Z
T
(2)Z(2))

−1
(

XT
(2)

(
w(2) − w̃(1)

)
+ ǫ(2)

))

∈ Rp(2) . (75)

Thus, we obtain

q(2) − q̃(2) = a+ b. (76)

By Assumption 1, we conclude

XT
(2)(w(2) − w̃(1)) + ǫ(2) ∼ N

(

0,
(∥
∥w(2) − w̃(1)

∥
∥
2
+ σ2

(2)

)

In(2)

)

. (77)

Thus, we have

E
X(2),ǫ(2)

[b] = E
X(2),ǫ(2)

[(

Z(2)(Z
T
(2)Z(2))

−1
(

XT
(2)

(
w(2) − w̃(1)

)
+ ǫ(2)

))]

(by Eq. 75)

=Z(2)(Z
T
(2)Z(2))

−1
E

X(2),ǫ(2)

[((

XT
(2)

(
w(2) − w̃(1)

)
+ ǫ(2)

))]

(since X(2), Z(2), and ǫ(2) are independent by Assumption 1)

=0 (by Eq. (77)).

We therefore obtain

E
Z(2),X(2),ǫ(2)

[aT b] = E
Z(2)

[

aT
E

X(2),ǫ(2)
[b]

]

= 0. (78)

By Eq. (76) and Eq. (78), we have

E

∥
∥q(2) − q̃(2)

∥
∥
2

=E ‖a‖2 + E ‖b‖2

=

(

1− n(2)

p(2)

)
∥
∥q(2)

∥
∥
2
+ E ‖b‖2 (by Eq. (74) and Lemma 7)

=

(

1− n(2)

p(2)

)
∥
∥q(2)

∥
∥
2
+

n(2)

(∥
∥w(2) − w̃(1)

∥
∥
2
+ σ2

(2)

)

p(2) − n(2) − 1
(by Eq. (77) and Lemma 8) (79)

When p(2) + 1 < n(2), we obtain

q̃(2) =
(

Z(2)Z
T
(2)

)−1

Z(2)

(

y(2) −XT
(2)w̃(1)

)

=
(

Z(2)Z
T
(2)

)−1

Z(2)

(

XT
(2)

(
w(2) − w̃(1)

)
+ ZT

(2)q(2) + ǫ(2)

)

=q(2) +
(

Z(2)Z
T
(2)

)−1

Z(2)

(

XT
(2)

(
w(2) − w̃(1)

)
+ ǫ(2)

)

,

and therefore we have

E

∥
∥q(2) − q̃(2)

∥
∥
2
=E

∥
∥
∥
∥

(

Z(2)Z
T
(2)

)−1

Z(2)

(

XT
(2)

(
w(2) − w̃(1)

)
+ ǫ(2)

)
∥
∥
∥
∥

2

=
p(2)

(∥
∥w(2) − w̃(1)

∥
∥
2
+ σ2

(2)

)

n(2) − p(2) − 1
(by Eq. (77) and Lemma 8). (80)

By Eq. (79) and Eq. (80), the result of this proposition thus follows.
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D PROOF OF THEOREM 3

Define

U(2) :=
[
X(2)

Z(2)

]

∈ R(p+p(2))×n(2) .

D.1 OVERFITTED SITUATION

We first consider the overfitted solution, i.e., p+p(2) > n(2). The overfitted solution that corresponds
to the convergence of GD/SGD is given by

min
ŵ(2),q̂(2)

∥
∥ŵ(2) − w̃(1)

∥
∥
2
+
∥
∥q̂(2)

∥
∥
2

(81)

subject to y(2) = XT
(2)ŵ(2) + ZT

(2)q̂(2).

The solution of (81) is as follows:
[
w̃(2)−w̃(1)

q̃(2)

]

=U(2)(U
T
(2)U(2))

−1
(

y(2) −XT
(2)w̃(1)

)

=U(2)(U
T
(2)U(2))

−1
(

XT
(2)(w(2) − w̃(1)) + ZT

(2)q(2) + ǫ(2)

)

(by Eq. (3))

=U(2)(U
T
(2)U(2))

−1ǫ(2) +U(2)(U
T
(2)U(2))

−1UT
(2)

[
w(2)−w̃(1)

q̃(2)

]

. (82)

By Assumption 1, we know that ǫ(2) has zero mean and is independent of U(2). Thus, we have

〈(

Ip+p(2)
−U(2)(U

T
(2)U(2))

−1UT
(2)

) [
w(2)−w̃(1)

q(2)

]

, U(2)(U
T
(2)U(2))

−1ǫ(2)

〉

= 0. (83)

We therefore obtain

E

[∥
∥w(2) − w̃(2)

∥
∥
2
+
∥
∥q(2) − q̃(2)

∥
∥
2
]

=E

∥
∥
∥

[
w(2)−w̃(1)

q(2)

]

−
[
w̃(2)−w̃(1)

q̃(2)

]∥
∥
∥

2

=E

∥
∥
∥

(

Ip+p(2)
−U(2)(U

T
(2)U(2))

−1UT
(2)

) [
w(2)−w̃(1)

q(2)

]

+U(2)(U
T
(2)U(2))

−1ǫ(2)

∥
∥
∥

2

(by Eq. (82))

=E

∥
∥
∥

(

Ip+p(2)
−U(2)(U

T
(2)U(2))

−1UT
(2)

) [
w(2)−w̃(1)

q(2)

]∥
∥
∥

2

+ E

∥
∥
∥U(2)(U

T
(2)U(2))

−1ǫ(2)

∥
∥
∥

2

(by Eq. (83))

=

(

1− n(2)

p+ p(2)

)∥
∥
∥

w(2)−w̃(1)
q(2)

∥
∥
∥

2

+
n(2)σ

2
(2)

p+ p(2) − n(2) − 1
(by Lemma 7 and Lemma 8)

=

(

1− n(2)

p+ p(2)

)(∥
∥w(2) − w̃(1)

∥
∥
2
+
∥
∥q(2)

∥
∥
2
)

+
n(2)σ

2
(2)

p+ p(2) − n(2) − 1
.

D.2 UNDERPARAMETERIZED SITUATION

The solution that minimizes the training loss is given by
[
w̃(2)

q̃(2)

]

=(U(2)U
T
(2))

−1U(2)y(2)

=(U(2)U
T
(2))

−1U(2)

(

UT
(2)

[w(2)
q(2)

]
+ ǫ(2)

)

(by Eq. (3))

=
[w(2)

q(2)

]
+ (U(2)U

T
(2))

−1U(2)ǫ(2).

Thus, we have

E

[∥
∥w(2) − w̃(2)

∥
∥
2
+
∥
∥q(2) − q̃(2)

∥
∥
2
]

=
∥
∥
∥(U(2)U

T
(2))

−1U(2)ǫ(2)

∥
∥
∥

2

=
(p+ p(2))σ

2
(2)

n(2) − (p+ p(2))− 1
(by Lemma 8).
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E PROOF OF PROPOSITION 4

Proof. We use [·]i to denote the i-th element of a vector. Then we have

∥
∥w(2) − w̃(1)

∥
∥
2

=

p
∑

i=1

(
[w(2)]i − [w̃(1)]i

)2
(since w(2), w̃(1) ∈ Rp)

=
∑

i∈Ŝco

(
[w(2)]i − [w̃(1)]i

)2
+

∑

i∈Sco\Ŝco

[w̃(1)]
2
i (by the definition of w(2)). (84)

We thus obtain

Lco =E

∥
∥w(2) − w̃(1)

∥
∥
2

(by Eq. (5))

=E

∑

i∈Ŝco

(
[w(2)]i − [w̃(1)]i

)2
+ E

∑

i∈Sco\Ŝco

[w̃(1)]
2
i (by Eq. (84)).

Since p + p(1) = C is fixed and all features are i.i.d. Gaussian (Assumption 1), the distribu-

tion of

[

w̃(1)

q̃(1)

]

∈ R
C is the same for different p. Notice that since Definition 1 is assured,

the term E
∑

i∈Ŝco

(
[w(2)]i − [w̃(1)]i

)2
does not change with respect to p. In contrast, the term

E
∑

i∈Sco\Ŝco

[w̃(1)]
2
i is monotone increasing with respect to p (since Sco \ Ŝcoincludes more fake fea-

tures when p is larger). The result of Proposition 4 thus follows.

F ADDITIONAL SIMULATION RESULTS

Fig. 4 shows the results under correlated (instead of i.i.d.) Gaussian features where the covariance
between any two different standard Gaussian features of a task is 0.5. We find that the shapes of
those curves are very similar to the ones in Fig. 1, which implies that most of the insights still hold
in the moderate non-i.i.d. setup.

In Fig. 5, we conduct experiments using a 5-layer CNN to do transfer learning on CIFAR-10. By
increasing the width of the transferred layers (corresponding to p in our linear setup), we can observe
the descent in the overfitted regime. We can also observe that Option B performs better than Option
A, which is consistent with our discussion in Section 4.1.
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Figure 4: Generalization performance of transfer learning with correlated Gaussian features where
the covariance between any two different standard Gaussian features of a task is 0.5. Other settings
are the same as those of Fig. 1.
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Figure 5: Benign overfitting w.r.t. the width of the transferred layers in a 5-layer CNN. Specifically,
a custom CNN (2 convolutional layers followed by 3 fully connected layers) is designed to perform
transfer learning on two tasks using the CIFAR-10 dataset. Task 1 classifies images of airplanes and
automobiles, while Task 2 classifies ships and trucks. The model’s bottom layers (2 convolutional
layers) are transferred from Task 1 to Task 2. Option A freezes these transferred layers, while Option
B continues to train them. The loss function used in this experiment is the Cross-Entropy Loss. Each
point in the figure is the average of 10 random runs.
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