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Abstract
Graph prompt tuning has achieved significant success for its ability

to effectively adapt pre-trained graph neural networks to various

downstream tasks. However, the pre-trained models may learn

discriminatory representation due to the inherent prejudice in

graph-structured data. Existing graph prompt tuning overlooks

such unfairness, leading to biased outputs towards certain demo-

graphic groups determined by sensitive attributes such as gender,

age, and political ideology. To overcome this limitation, we pro-

pose a fairness-aware graph prompt tuning method to promote

fairness while enhancing the generality of any pre-trained GNNs

(named FPrompt). FPrompt introduces hybrid graph prompts to

augment counterfactual data while aligning the pre-training and

downstream tasks. It also applies edge modification to increase

sensitivity heterophily. We provide a two-fold theoretical analysis:

first, we demonstrate that FPrompt possesses universal capabilities

in handling pre-trained GNN models across various pre-training

strategies, ensuring its adaptability in different scenarios. Second,

we show that FPrompt effectively reduces the upper bound of gen-

eralized statistical parity, thereby mitigating the bias of pre-trained

models. Extensive experiments demonstrate that FPrompt outper-

forms baseline models in both accuracy and fairness (~33%) on

benchmark datasets. Additionally, we introduce a new benchmark

for transferable evaluation, showing that FPrompt achieves state-

of-the-art generalization performance.

1 Introduction
Graph Neural Networks (GNNs) have been successfully applied

across a wide range of domains, including social network anal-

ysis [5], anomaly detection [11, 12], and recommendation sys-

tems [16]. However, traditional GNNs often rely on large amounts

of labeled data, which can be scarce in real-world applications [43].

Furthermore, thesemodels frequently struggle with poor generaliza-

tion when faced with out-of-distribution data [34]. To address these

limitations, researchers have increasingly explored pre-training and

fine-tuning strategies for GNNs [22], inspired by the success of simi-

lar approaches in natural language processing [24]. In this paradigm,

a GNN is pre-trained on a massive corpus of graph datasets, then

fine-tuned for specific downstream tasks, leveraging the knowledge

acquired during pre-training.

While pre-training and fine-tuning on graphs have shown promis-

ing results, there are still several challenges. One significant issue

is the gap between pre-training objectives, such as edge prediction

in self-supervised tasks [14] and the goals of downstream tasks like

node or graph classification [22]. This misalignment often leads to

sub-optimal performance during fine-tuning [19]. Additionally, pre-

trainedmodels are prone to catastrophic forgetting when adapted to

new tasks, where the model forgets previously learned knowledge

during the fine-tuning process [42].

In response to these challenges, prompt tuning has recently

emerged as a compelling alternative for tuning pre-trained GNNs [9,

20, 27, 38]. Rather than fine-tuning model parameters, prompt tun-

ing modifies the input data to better align with the downstream

task, leaving the parameters of the pre-trained GNNs unchanged.

For instance, GraphPrompt [20] pre-trains GNNs on link prediction

tasks and adapts downstream node or graph classification tasks to

this pre-training task format by introducing prompt-specific param-

eters such as class prototypes. This approach allows for efficient

adaptation while preserving the integrity of the pre-trained model.

Despite its success, current graph prompt tuning techniques ne-

glect the issue of bias present in pre-trained models. Bias can arise

from the graph-structured data used during pre-training, as numer-

ous studies have demonstrated that historical data often contains

patterns of discrimination related to sensitive attributes like age,

gender, race, and region [6, 23, 33]. Additionally, commonly used

pre-trained GNN models such as GCN [17] and GAT [31] do not

inherently address fairness, and their message-passing mechanisms

may even amplify existing biases [26]. Our experiments in Table 2

further indicate that existing graph prompt tuning tends to exacer-

bate biases in pre-trained models. This largely limits the real-world

applicability of graph prompt tuning in fairness-aware domains.

Therefore, a natural question is raised: can we develop fairness-
aware graph prompt tuning that retains the benefits of efficient adap-
tation while ensuring fairness? Nevertheless, answering the above
question is technically challenging: (i) Existing fairness approaches
are often tailored to specific datasets, while in practice, the same

pre-trained GNNs are expected to be adapted to various datasets

without the need for further parameter tuning. Therefore, it is

highly non-trivial to directly apply existing fairness methods to

eliminate bias in pre-trained GNNs; and (ii) most existing fairness

methods lack theoretical analysis [29], meaning they do not pro-

vide a practical guarantee, i.e., provable upper bounds on common

fairness metrics such as statistical parity.

To address these issues, in this paper, we propose a fairness-

aware graph prompt tuning method named FPrompt, that could

alleviate bias in any pre-trained GNNs and enhance their adaptabil-

ity at the same time. Specifically, FPrompt introduces hybrid graph

prompts, which include both fixed and learnable prompts. The fixed

prompts are designed to represent sensitive group embeddings, and

their interaction with the original graph can be viewed as coun-

terfactual data augmentation to mitigate bias. The learnable graph

prompts, which adopt the token as graph prompt, effectively adapt

the pre-trained model to different datasets. Additionally, FPrompt

predicts the sensitive attributes of nodes and applies heterophily-

enhanced edge modification based on the assignments. This process

enhances information flow between nodes in different sensitive

groups, thereby reducing the representational disparity across these

groups. We provide a two-part theoretical analysis: (i) we establish

that FPrompt exhibits a high degree of versatility in handling pre-

trained GNNmodels, regardless of the specific pre-training strategy

employed. This flexibility ensures that FPrompt can be seamlessly
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integrated into a wide range of applications and use cases, adapt-

ing to different scenarios with ease; and (ii) we demonstrate that

FPrompt can reduce the upper bound of generalized statistical par-

ity, effectively addressing andmitigating the inherent biases present

in pre-trained models. To validate the cross-dataset fairness per-

formance of different fine-tuning strategies, we construct a new

benchmark consisting of four real-world datasets. These datasets

share the same feature dimensions, which eliminates the potential

fairness impact caused by traditional cross-dataset generalization

experiments involving singular value decomposition operations. In

summary, our main contributions are as follows:

• To the best of our knowledge, we are the first to propose a

fairness-aware graph prompt tuning method that can mitigate

bias in any pre-trained models and enhance their generalization

ability at the same time;

• We provide theoretical analysis of standard fairness metrics for

the pre-training and fine-tuning paradigm, establishing a solid

theoretical foundation for FPrompt’s performance; and

• We construct a new benchmark to evaluate the cross-dataset

fairness performance of fine-tuning strategies. Extensive experi-

ments on different scenarios demonstrate that FPrompt achieves

state-of-the-art performance in both accuracy and fairness.

2 Related Work
2.1 Graph Neural Networks
Graph Neural Networks (GNNs) have become the predominant

framework for learning on graph-structured data. They can be

broadly categorized as spectral- and spatial-based GNNs. Spectral-

based GNNs rely on the graph Fourier transform, which operates

in the spectral domain of the graph Laplacian. The pioneering

work by Bruna et al. [2] introduced the concept of using graph

convolution in the spectral domain. This was later simplified in

GCN [17], which approximates the spectral convolution opera-

tion using 1-order Chebyshev polynomials to improve computa-

tional efficiency. However, spectral methods typically depend on the

eigen-decomposition of the graph Laplacian, making them less scal-

able and limited to transductive learning. In contrast, spatial-based

GNNs define convolutions in the graph’s spatial domain by aggre-

gating features from a node’s local neighborhood [8, 14, 31, 37].

These models support inductive learning and offer better scalability

to large-scale graphs.

Traditional GNNs are typically trained in a supervised manner,

requiring a substantial amount of labeled data. However, this re-

liance on labeled data presents challenges in real-world applications,

where labels may be sparse or costly to obtain, and models often

face poor transferability to new domains. Recently, unsupervised

graph representation learning has gained a lot of attraction. Early

attempts like DeepWalk [25] and node2vec [13], employ random

walks to transform graph learning into a sequence learning prob-

lem. While these methods are scalable, they largely focus on local

neighborhoods, overlooking broader graph structures. To overcome

these limitations, more recent approaches [32, 36, 39, 40] apply

contrastive learning techniques to maximize mutual information

between local and global node representations. This allows the mod-

els to generate more meaningful, transferable embeddings without

labeled data, achieving competitive performance on tasks such as

node classification and graph classification [3]. For example, GCL

designs four types of graph augmentations to incorporate various

priors [40]. GRACE takes the original graph as input and GNN

model with its perturbed version as two encoders to obtain two

correlated views for contrast [35].

2.2 Graph Prompt Tuning
Graph prompt tuning has gained significant attention due to its

effectiveness in bridging the gap between pre-training and down-

stream objectives. Due to its parameter-efficient nature, graph

prompt tuning has quickly become popular as an alternative to fine-

tuning large pre-trained models, particularly in scenarios with lim-

ited downstream task labels [38]. For instance, GraphPrompt [20]

presents a unified framework that relies on subgraph similarity and

link prediction, utilizing a learnable prompt to guide downstream

tasks by incorporating task-specific aggregation in the readout

function. Additionally, it computes class prototype vectors through

supervised prototypical contrastive learning. GPF [9] extends node

embeddings by integrating task-specific prompt parameters, mak-

ing it adaptable to any pre-trained GNN model, regardless of the

pre-training strategy. All-in-one [28] reformulates node-level and

edge-level tasks into graph-level tasks and introducesmeta-learning

techniques into graph prompt tuning. For a more comprehensive

summary of graph prompt tuning methods, we refer readers to [29].

However, these approaches largely overlook the inherent bias in

pre-trained models, which significantly limits the real-world appli-

cability of graph prompt tuning in fairness-sensitive domains.

2.3 Fairness in Graph Representation Learning
Recently, with the rapid advancements and widespread adoption

of Graph Neural Networks (GNNs), concerns about fairness within

these models are attracting increasing attention. Algorithmic fair-

ness in GNNs can be broadly categorized into two main types: indi-

vidual fairness and group fairness. On the one hand, individual fair-

ness requires that similar individuals (or nodes) in the graph receive

similar treatment or outcomes. On the other hand, group fairness

focuses on ensuring that specific disadvantaged or protected groups

are not unfairly treated in comparison to other groups, addressing

concerns like bias against minorities or marginalized communities.

For example, FairGNN [4] enhances fairness by reducing the iden-

tifiability of sensitive attributes within node embeddings through

adversarial training. FairVGNN [33] introduces a feature masking

strategy to prevent sensitive information leakage during the fea-

ture propagation process in GNNs. NIFTY [1] aims to maximize the

agreement between the original graph and its counterfactual aug-

mented views to promote fairness. However, these fairness-aware

models require optimizing a fair GNN for each specific dataset and

cannot be directly applied to mitigate bias in pre-trained models,

where a single pre-trained model is expected to be adapted across

different downstream datasets.

3 Preliminaries
3.1 Pre-training, Prompt, and Fine-tuning
We use G = (A,X) to denote a graph, where V and E denotes the

node and edge sets, respectively.A ∈ R𝑁×𝑁
is the adjacencymatrix,

where 𝑁 is the number of nodes. X ∈ R𝑁×𝐹
is the node feature

2
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matrix, where each node 𝑣𝑖 is associated with a 𝐹 -dimensional

attribute vector x𝑖 ∈ R𝐹
. Furthermore, each node 𝑣𝑖 has a binary

sensitive attribute 𝑠𝑖 ∈ {0, 1}. The sensitive group is defined as

S𝑘 = {𝑣𝑖 |𝑠𝑖 = 𝑘}, 𝑘 = {0, 1}.
In general, the pre-training, prompting and fine-tuning paradigm

of a graph model consists of three main components: a GNN back-

bone 𝚿 : (X,A) → H ∈ R𝑁×𝑃
, a prompting function 𝚽 : (X,A) →

(X′,A′), and an adapter 𝚵 : H → Z ∈ R𝑁×𝐶
. In the pre-training

phase, the goal is to optimize the parameters of the GNN backbone

𝚿 through self-supervised learning, enabling it to capture useful in-

formation from the graph structure [35, 40]. In the prompting phase,

the original graph is transformed into a prompted graph via the

prompting function 𝚽. Commonly used graph transformations in-

clude generating the new feature matrix, adding or removing edges,

and adding or removing sub-graphs [9, 28]. In the fine-tuning phase,

the parameters of the GNN backbone are frozen, and only the pa-

rameters in the prompting function 𝚽 and the adapter 𝚵 need to be

optimized for different downstream tasks. In this paper, we consider

the node classification task where each node 𝑣𝑖 belongs to only one

class 𝑦𝑖 . After pre-training, prompting, and fine-tuning, the output

can be written as Z = 𝚵◦𝚿◦𝚽(X,A) ∈ R𝑁×𝐶
, where𝐶 is the class

number. The predicted label 𝑦𝑖 of node 𝑣𝑖 can be obtained from the

𝑖-th row z𝑖 of Z.

3.2 Fairness Measurement
Fairness ensures that no individual or group faces unjust treat-

ment based on sensitive attributes such as race and gender. Our

paper focuses on group fairness [4, 33], which asserts that a model’s

outcomes should treat groups with differing sensitive attributes

equitably. Nonetheless, in many instances, models may exhibit a

bias that disproportionately benefits one group over another, lead-

ing to unfair outcomes [6]. Various fairness metrics have been

proposed to evaluate how models perform across different demo-

graphic groups. These metrics are commonly formulated within

the context of binary classification, where 𝑦𝑖 ∈ {0, 1}.

Definition 3.1 (Statistical Parity [7]). Statistical parity requires

the predictions to be independent with the sensitive attribute 𝑠 , i.e.,

P(𝑦𝑖 | 𝑠𝑖 = 0) = P(𝑦𝑖 | 𝑠𝑖 = 1) . (1)

Definition 3.2 (Equal Opportunity [15]). Equal opportunity re-

quires the probability of an instance in a positive class being as-

signed to a positive outcome should be equal for both subgroup

members. The property of equal opportunity is defined as:

P(𝑦𝑖 = 1 | 𝑦𝑖 = 1, 𝑠𝑖 = 0) = P(𝑦𝑖 = 1 | 𝑦𝑖 = 1, 𝑠𝑖 = 1) . (2)

Following [4], we apply the following metrics to quantitatively

evaluate statistical parity and equal opportunity:

Δ𝑆𝑃 = |P(𝑦𝑖 = 1 | 𝑠𝑖 = 0) − P(𝑦𝑖 = 1 | 𝑠𝑖 = 1) |,
Δ𝐸𝑂 = |P(𝑦𝑖 = 1 | 𝑦𝑖 = 1, 𝑠𝑖 = 0) − P(𝑦𝑖 = 1 | 𝑦𝑖 = 1, 𝑠𝑖 = 1) |, (3)

where the probabilities are evaluated on the test set. For both met-

rics, smaller values indicate better fairness. Finally, we define the

node-level fairness homophily.

Definition 3.3 (Fairness Homophily [33]). For node 𝑣𝑖 in a graph

G, we define its fairness homophily ratio ℎ𝑖 as:

ℎ𝑖 =
|
{(
𝑣𝑖 , 𝑣 𝑗

)
: 𝑣 𝑗 ∈ N𝑖 ∧ 𝑠𝑖 = 𝑠 𝑗

)}
|

|N𝑖 |
. (4)

The fairness homophily of the graph is defined as ℎG =
∑𝑁
𝑖=1 ℎ𝑖/𝑁 .

It is important to note that, unlike the traditional definition of

homophily [3], where homophily is typically defined based on node

labels 𝑦𝑖 , in this context, ℎ𝑖 depends on the sensitive attribute 𝑠𝑖 .

This means that instead of measuring how nodes with the same

labels tend to connect, we focus on how nodes with similar sensitive

attributes (such as gender) tend to interact with each other.

3.3 Problem Formulation
Following existing models [4, 6], we focus on the binary class and

binary sensitive attribute setting, i.e., both 𝑦𝑖 and 𝑠𝑖 can either be

0 or 1 for each node 𝑣𝑖 . Given a subset of nodes with labels V𝐿

and sensitive attributes S𝐿
, our goal is to design a tuning method

that can be applied to any pre-trained GNNs without modifying

the pre-trained model’s parameters. The output of the pre-trained

and fine-tuning graph model should maintain high accuracy while

satisfying the fairness criteria such as statistical parity.

4 Methodology
In this section, we propose a fairness-aware prompt tuning method

for GNNs named FPrompt. The key ingredient of FPrompt is a novel

prompting function that applies graph transformation to both the

features and adjacency matrix:

𝚽
(𝐹𝑃𝑟𝑜𝑚𝑝𝑡 )

: (X,A) →
(
X(𝐹𝑃𝑟𝑜𝑚𝑝𝑡 ) ,A(𝐹𝑃𝑟𝑜𝑚𝑝𝑡 )

)
. (5)

where X(𝐹𝑃𝑟𝑜𝑚𝑝𝑡 ) ∈ R𝑁×𝐹 ,A(𝐹𝑃𝑟𝑜𝑚𝑝𝑡 ) ∈ R𝑁×𝑁
represent the

transformed graph features and adjacency matrix, respectively. To

this end, the prompting function consists of two essential com-

ponents: (i) hybrid graph prompts that promote fairness through

generating counterfactual features X(𝐹𝑃𝑟𝑜𝑚𝑝𝑡 )
, while narrowing

the gap between pre-training and downstream tasks via learnable

tokens (Section 4.1); (ii) heterophily-enhanced edge modification that
mitigates bias by modifying the graph structure to A(𝐹𝑃𝑟𝑜𝑚𝑝𝑡 )

to increasing message passing between different sensitive groups

(Section 4.2). Through these designs, FPrompt can alleviate bias in

any pre-trained GNNs by merely fine-tuning the parameters in the

prompt function and the adapter without altering the parameters

of the pre-trained models. We introduce the detailed fine-tuning

strategy of FPrompt in Section 4.3. We summarize the framework

of FPrompt in 1.

4.1 Hybrid Graph Prompts
Graph prompts are designed to bridge the gap between the pre-

training task and the downstream task. They allow for efficient

learning by adapting the model through learnable prompts rather

than full-scale retraining, achieving high-quality outcomes while

keeping computational costs low. However, existing graph prompts

overlook potential biases in pre-trained graphmodels, leading to un-

fair outputs. To address this issue, we propose hybrid graph prompts

that consist of fixed graph prompts and learnable graph prompts.

3
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Figure 1: The framework of FPrompt.

Both types of graph prompts are added to the original features to

generate new features X(𝐹𝑃𝑟𝑜𝑚𝑝𝑡 )
. The fixed graph prompts are

designed to enhance fair representation learning through counter-

factual data augmentation. Meanwhile, the learnable graph prompts

aim to narrow the gap between pre-training and downstream tasks

(e.g. node classification).

4.1.1 Fixed graph prompts. The purpose of fixed graph prompts

is to create counterfactual features. Specifically, the fixed graph

prompts contain two sensitivity-group-aware prompt tokens P =

{𝑝0, 𝑝1}, where each token 𝑝𝑠 ∈ P can be represented by a token

vector p𝑠 ∈ R𝐹
. We obtain p𝑠 by calculating the average feature of

the nodes with sensitive attribute 𝑠 as

p𝑠 = mean(x𝑖 | 𝑣𝑖 ∈ S𝐿
𝑘
) (6)

The token p𝑠 captures the general feature patterns of nodes within
the sensitive group S𝑠 , serving as a proxy of the group’s charac-

teristics. By incorporating these tokens, we can infuse information

from different sensitive groups, allowing for the generation of coun-

terfactual representations that promote fairness. Next, we obtain

the generated prompted feature X(P) ∈ R𝑁×𝐹
as

xP𝑖 = x𝑖 +
∑︁

𝑠∈{0,1}
𝛼1,𝑠p𝑠 , , 𝑖 = 1, . . . , 𝑁 , (7)

where the coefficients are defined as

𝛼𝑖,𝑠 =
exp𝛼𝑖,𝑠

exp𝛼𝑖,0 + exp𝛼𝑖,1
, 𝛼𝑖,𝑠 = −Tanh

(
Sim

(
x𝑗 , p𝑘

) )
. (8)

That is to say, node 𝑣𝑖 is more inclined to aggregate feature from

different sensitive group while simultaneously disperse the feature

of the same sensitive group.

To better understand our design, consider an example where

the sensitive attribute of the central node 𝑣𝑖 is 0. According to the

proposed generation mechanism, after message passing between 𝑣𝑖
and the fixed tokens, 𝑣𝑖 will exhibit sensitive characteristic of nodes

with the different sensitive attribute. In other words, we obtain a

new feature x′ from x, where x′
𝑖
carries sensitive information from

the opposite sensitive group S1. This process is similar to counter-

factual data augmentation (CAD), which involves generating new

data by making changes to the sensitive attributes of existing data.

However, our approach has a key difference from traditional CAD.

In practice, it is unrealistic to perform CAD for all nodes, as we of-

ten only have access to the sensitive attribute for a limited number

of them. To overcome this, we take an alternative approach: instead

of changing the node’s sensitive attribute directly, we adjust its

sensitive representation to align with the opposite sensitive group.

This allows us to generate counterfactual data without needing to

know each node’s sensitive attribute.

4.1.2 Learnable Graph Prompts. Inspired by the recently proposed

graph prompt literature [9], we introduce learnable graph prompts

Q = {𝑞1, . . . , 𝑞𝑇 } to bridge the gap between the pre-training task

and the downstream task. Specifically, each prompt 𝑞𝑘 is assigned

with a learnable vector q𝑘 and the generated prompted features

X(Q) ∈ R𝑁×𝐹
as

x(Q)
𝑖

= x𝑖 +
𝑇∑︁
𝑡=1

𝛽1,𝑡q𝑡 , 𝑖 = 1, . . . , 𝑁 (9)

where the coefficients are calculated as

𝛽𝑖,𝑡 =
exp 𝛽𝑖,𝑡∑𝑇
𝑗=1 exp 𝛽𝑖, 𝑗

, 𝛽𝑖,𝑡 = exp

(
x⊤𝑖 𝜂𝑡

)
. (10)

Here 𝜂𝑡 ∈ R𝐹
is learnable. This design can be effectively adapted

to graphs with varying scales (i.e., different node numbers), and it

optimizes storage efficiency for large-scale input graphs, having

𝑂 (𝑇 ) learnable parameters [9].

4.2 Heterophily-Enhanced Edge Modification
Recent research has shown that GNNs tend to performworse on fair-

ness homophilic graphs (with high ℎG ) and better on heterophilic

graphs (with low ℎG ), both in terms of accuracy and fairness met-

rics [21]. The reason is that, in graphs with high fairness homophily,

nodes primarily exchange information with others from the same

sensitivity group. This can widen the feature gap between different

sensitivity groups, ultimately increasing bias. Therefore, reducing

fairness homophily may lead to more equitable representations and

better accuracy.

However, a potential issue with the hybrid graph prompts is

that we only modify the features without altering the sensitive

attributes. This means that the feature generation does not influence

whether connected node pairs belong to the same sensitive group,

thus not changing fairness homophily. This differs from traditional

counterfactual data augmentation, where the sensitive attribute of

each node is known and can be directly flipped (e.g., from 0 to 1) to

create counterfactual samples. In such cases, if two nodes belong to

the same group, changing their sensitive attributes can make them

belong to different groups, thus reducing the fairness homophily.

However, this approach often requires knowledge of each node’s

sensitive attribute, which is impractical due to privacy concerns.

To address this challenge, we propose a heterophily-enhanced

edge modification strategy that transforms the original graph struc-

ture into one with higher heterophily. Specifically, we compute the

probability of a node 𝑣𝑖 belonging to either of the two sensitive

groups S0 or S1 by calculating the distance between the node and

each sensitive group. This allows us to infer the likely sensitive

group of each node. We then modify the graph structure to obtain

A(𝐹𝑃𝑟𝑜𝑚𝑝𝑡 )
, increasing heterophily (i.e., reducing homophily) by

modifying edges according to the identified sensitive groups. We

provide theoretical analysis of heterophily-enhanced edge modifi-

cation in Section 5.
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4.2.1 Sensitive Group Assignment. Following [10], we define X𝑘 =

[x𝑠 ] ∈ R |S𝐿
𝑘
|×𝐹 , 𝑠 ∈ |S𝐿

𝑘
| as the representation matrix for sensitive

groupS𝐿
𝑘
, whereS𝐿

𝑘
denotes the training set with sensitive attribute

𝑘 . In this way, the distance between node 𝑣𝑖 andS𝑘 can be calculated

as

DIS(𝑣𝑖 ,S𝑘 ) = x𝑖 − PROG(𝑣𝑖 ,S𝑘 ) (11)

where PROG(𝑣𝑖 ,S𝑘 ) denotes the projection of 𝑣𝑖 to Span(X𝑘 ) and
Span(X𝑘 ) denotes the space spanned by the row vectors of X𝑘 . We

estimate the projection via ridge regression as

PROG(𝑣𝑖 , S𝑘 ) ≈ PROG(𝑣𝑖 , S𝐿
𝑘
) = x𝑖 − 𝛾X⊤

𝑘

(
𝑰 + 𝛾X𝑘X⊤

𝑘

)−1 X𝑘x𝑖 . (12)

The probability that node 𝑣𝑖 belongs to S𝑘 can be obtained by

feeding DIS(𝑣𝑖 ,S𝑘 ) into a softmax function. We assign 𝑣𝑖 to the

sensitive group with the higher probability, and denote its sensitive

attribute as 𝑠𝑖 accordingly.

4.2.2 Fair Edge Mask. With estimated sensitive attributes, we pro-

pose to modify the subgraph G via a mask matrix as A(𝐹𝑃𝑟𝑜𝑚𝑝𝑡 ) =
A ◦ E where recall that A is the adjacency matrix of G. Specifi-
cally, each entry E𝑖 𝑗 of the mask matrix is sampled from a binomial

distribution B(𝜖) when 𝑠𝑖 ≠ 𝑠 𝑗 , and from B(1 − 𝜖) when 𝑠𝑖 = 𝑠 𝑗 .

Here 𝜖 is the probability of success. If 𝜖 = 0, the matrix E retains all

connections between nodes from the same sensitive group while

removing all connections between nodes from different sensitive

groups. Conversely, if 𝜖 = 1, the opposite occurs. In other words,

𝜖 controls the retention of homophilic connections. To enhance

information exchange between nodes of different sensitive groups,

we set 𝜖 > 0.5.

4.3 Prompt-Based Fine-Tunining
Given a pre-trained GNN model 𝚿 and graph G = (A,X), we
apply the proposed prompting function𝚽

(𝐹𝑃𝑟𝑜𝑚𝑝𝑡 )
to obtained the

generated features and adjacency matrix. Specifically, the generated

features X(𝐹𝑃𝑟𝑜𝑚𝑝𝑡 )
is calculated according to Section 4.1 as

x(𝐹𝑃𝑟𝑜𝑚𝑝𝑡 )
𝑖

= x𝑖 +
∑︁

𝑠∈{0,1}
𝛼1,𝑠p𝑠 +

𝑇∑︁
𝑡=1

𝛽1,𝑡q𝑡 , , 𝑖 = 1, . . . , 𝑁 . (13)

The generated adjacency matrix A(𝐹𝑃𝑟𝑜𝑚𝑝𝑡 )
is obtained according

to Section 4.2.2.With the prompted graph

(
X(𝐹𝑃𝑟𝑜𝑚𝑝𝑡 ) ,A(𝐹𝑃𝑟𝑜𝑚𝑝𝑡 )

)
,

we obtain the output embedding as

Z = 𝚵 ◦ 𝚿
(
X(𝐹𝑃𝑟𝑜𝑚𝑝𝑡 ) ,A(𝐹𝑃𝑟𝑜𝑚𝑝𝑡 )

)
, (14)

where recall that𝚵 denotes the adapter.We choose a two layermulti-

layer perceptron (MLP) as the adapter, and the output dimension

equals to the class number. The total loss function is defined as

L =
∑︁

𝑣𝑖 ∈V𝐿

ℓ𝐶𝐸 (̃z𝑖 , 𝑦𝑖 ) + 𝜆1ℓ𝐶𝐸 (z𝑖 , 𝑦𝑖 ) + 𝜆2∥z̃𝑖 − z𝑖 ∥22 . (15)

where ℓ𝐶𝐸 represents the cross-entropy loss for node classification

and z̃𝑖 denotes the features without counterfactual data augmenta-

tion, i.e.,

Z̃ = 𝚵 ◦ 𝚿
(
X(Q) ,A(𝐹𝑃𝑟𝑜𝑚𝑝𝑡 )

)
, (16)

where X(Q)
is defined in Section 4.1.2. In the loss function (15), the

first and the second terms restrict the outputs to be aligned with

the downstream task. The third term aims to minimize the discrep-

ancy between the representation z̃𝑖 and its augmented version z𝑖 ,
ensuring that the fine-tuning process ignores differences caused by

varying sensitive attributes, thus promoting fairness. We freeze the

parameters in the pre-trained GNN and only fine-tune the adapter

and the learnable graph prompts defined in Section 4.1.2.

5 Theoretical Analysis
In this section, we theoretically analyze the effectiveness of FPrompt.

Specifically, we show the adaptation ability in Section 5.1 and fair-

ness guarantees in Section 5.2.

5.1 Adaptation Ability
Note that the prompting function of FPrompt is 𝚽

(𝐹𝑃𝑟𝑜𝑚𝑝𝑡 ) (G) =
(A(𝐹𝑃𝑟𝑜𝑚𝑝𝑡 ) ,X(𝐹𝑃𝑟𝑜𝑚𝑝𝑡 ) ). Assume that there exists another prompt-

ing function 𝜃 , generating a graph template G∗ = (A∗,X∗) = 𝜃 (G)
for a given downstream task. The candidate space for A∗

and X∗

is denoted as A and X, respectively. Then we have the following

theorem.

Theorem 1. Given a pre-trained GNN model 𝚿, for any prompted
graph Ĝ = (Â ∈ A, X̂ ∈ X) in the candidate space of the graph
template G∗ = 𝜃 (G), there exists a learnable graph prompt Q̂ in
Section 4.1.2 satisfying

𝚿

(
𝚽
(𝐹𝑃𝑟𝑜𝑚𝑝𝑡 ) (G)

)
= 𝚿

(
Ĝ
)
. (17)

Theorem 1 is a direct extension of [Theorem 1, [9]] and we omit

the proof here. Theorem 1 suggests that for any prompting function,

FPrompt can attain the theoretical upper bound of performance.

This also holdswhen some prompting function generates an optimal

graph template according to the downstream loss, which means

that FPrompt can also achieve the same performance theoretically.

As a result, FPrompt provides universal adaptability for handling

pre-trained GNN models across various pre-training strategies.

5.2 Fairness Guarantee
For binary node classification task, we use the sigmoid function

in the adapter to generate the prediction z = 𝚵 ◦ 𝚿(X,A) ∈ R𝑁
,

where 𝑧𝑖 indicates the probability that 𝑣𝑖 is classified as 1. We then

introduce a quantitative criterion of fairness:

ΔGSP (z) = ∥E [𝑧𝑖 | 𝑖 ∈ S0] − E [𝑧𝑖 | 𝑖 ∈ S1] ∥ . (18)

It can be viewed as a generalization of the commonly used metric

statistical parity (Definition 3.1) [18], considering that

E [𝑧𝑖 | 𝑖 ∈ S0] =
∫

𝑧𝑖P(𝑠𝑖 = 0)𝑑𝑧𝑖

=

∫
P(𝑦𝑖 = 1 | 𝑧𝑖 )P(𝑧𝑖 | 𝑠𝑖 = 0)𝑑𝑧𝑖 ,

(19)

where the last term is exactly P(𝑦𝑖 | 𝑠𝑖 = 0). Note that ΔGSP mea-

sures the disparity between the predictions for different sensitive

groups, and a smaller ΔGSP indicates less bias in the predictions.

Our goal is to provide an upper bound of ΔGSP. Before that, we

make the following assumption:

Assumption 1. The activation functions in both the GNN backbone

and the adapter exhibit Lipschitz continuity.
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Table 1: Detailed statistics of the datasets.

Statistic |V| |E | 𝐹 Label Sensitivity

Credit 30,000 1,436,858 13 Future default Age

Pokec_z 67,797 882,765 277 Working field Region

Pokec_n 66,569 729,129 266 Working field Region

Pokec_TR 11,294 44,884 241 Working field Region

Pokec_BA 7,949 32,008 241 Working field Region

Pokec_KO 13,280 55,568 241 Working field Region

Pokec_PR 41,203 499,304 241 Working field Region

Assumption 2. The aggregation function in GNN backbone assigns

equal weight to each node in the neighbor set.

Assumption 1 is easily satisfied, for instance, by activation func-

tions such as ReLU, LeakyReLU, and Tanh. Assumption 2 encom-

passes a wide range of GNN models, including GraphSAGE, GIN,

and GCN. We consider the adapter to be a MLP, which is widely

used in many pre-training and fine-tuning graph model. For sim-

plicity, we assume the both GNN backbone and the adapter have

one layer, and our theoretical analysis can be easily extended to

multi-layer cases (see Appendix C).

With the conditions established, we are now ready to present

the main theorem in the following:

Theorem 2. For a pre-training and fine-tuning model 𝚵 ◦ 𝚿 :

(X,A) → z ∈ R𝑁 , if Assumptions 1 and 2 hold, then we have

ΔGSP (z) ≤ ∥WΞ∥ ∥WΨ∥
(
(𝜇

0
+ 𝜇

1
− 1)ΔGSP (X) + 2

√
𝑁𝛿

)
, (20)

where WΞ and WΨ are the parameters of the adapter and GNN
backbone, respectively. 𝜇𝑘 is the average homophily ratio of sensitive
group S𝑘 as 𝜇𝑘 =

∑
𝑖∈S𝑘

𝜇𝑖/|S𝑘 |, and

|𝛿 | ≤ max (𝛿0, 𝛿1) , 𝛿 (𝑙+1)𝑘
= max

𝑖∈S1−𝑘

x(𝑙+1)𝑖
− c(𝑙+1)

𝑘

 , (21)

where c(𝑙+1)
𝑘

=
∑
𝑖∈S𝑘

x(𝑙 )
𝑖

/|S𝑘 |, 𝑘 = 0, 1.

Proof. The proof is left to Appendix C. □

From Theorem 2, we observe that the upper bound of ΔGSP (z)
is determined by the following key parts.

Average homophily ratio. A smaller𝜇𝑘 plays a critical role in

reducing the upper bound of ΔGSP (z), thereby contributing signif-

icantly to the model fairness. In Section 4.2, we present an edge

modification strategy specifically designed to address this by alter-

ing the structure of the graph. The core idea behind this strategy is

to promote connections between nodes belonging to different sen-

sitive groups while simultaneously reducing the number of edges

between nodes within the same sensitive group. By increasing

cross-group connections and limiting within-group interactions,

the modification lowers the expected value of ℎ𝑖 for individual

nodes. Since ℎ𝑖 directly impacts 𝜇𝑘 , decreasing ℎ𝑖 leads to a reduc-

tion in 𝜇𝑘 . Consequently, this effectively restructures the graph

such that mitigates the effects of fairness homophily.

Representation discrepancy between two sensitive groups.
Both ΔGSP (X) and 𝛿 are key measures related to the representation

discrepancy between two sensitive groups. As highlighted in Sec-

tion 4.1.1, the introduction of a fixed graph prompt in conjunction

with the original graph can be likened to the generation of coun-

terfactual data. As discussed in Section 4.1.1, the introduction of a

fixed graph prompt in connection with the original graph is akin to

generating counterfactual data, which reduces group discrepancy.

Therefore, this approach helps align the representations of different

sensitive groups, ultimately shrinking the distance between them

and promoting fairness. By introducing this fixed graph prompt, the

model essentially reshapes the data space, creating a more balanced

representation of the two groups. This alignment process mini-

mizes differences between their respective learned representations.

As a result, the distance between the representations of different

sensitive groups is significantly diminished, which directly con-

tributes to improved fairness in the model. This approach ensures

that both groups are treated more equally by the model, and the

overall impact of sensitive attributes on the learned representations

is minimized, fostering a more equitable predictive process.

6 Experiments
6.1 Experimental Settings
6.1.1 Datasets. We compare our methods with other approaches

on three public datasets as follows: 1) Credit [1]: the nodes in

the dataset are clients and two nodes are connected if they have

a high similarity of the credit accounts. The task is to classify the

credit risk level as high or low with the sensitive attribute gender;

2) Pokec_z and Pokec_n [4]: both datasets are sampled from an

anonymized version of the Pokec network of 2012 (a social network

from Slovakia), where nodes correspond to users who live in two

major regions and the region information is utilized as the sensitive

attribute. The working field of the users is binarized and utilized as

the labels in node classification. We summarize these datasets in

Table 1 and the training/validation/testing split in Appendix A.1.

Furthermore, existing prompt fine-tuning methods often utilize

singular value decomposition (SVD) to align the feature dimensions

when validating the performance of the same pre-trained model

across different datasets [28]. However, applying SVD may distort

the sensitive attributes to features that lack actual semantic mean-

ing, potentially influencing fairness research. To better evaluate

the cross-dataset performance and fairness of pre-trained models,

we construct a new benchmark. The benchmark consists of four

datasets, all created by sampling from the Pokec social network

data based on geographic regions [30]. We select the regions of

Trenciansky, Banskobystricky, Presovsky, and Kosicky, which we

refer to as Pokec_TR, Pokec_BA, Pokec_PR, and Pokec_KO, respec-

tively. For more details we refer to Appendix A.2. In all datasets,

the sensitive attribute is region, and the label is working field.

6.1.2 Baselines. Compared approaches are from five categories:

1) Vanilla GNNs: GCN [17] is a widely used spectral GNN; 2)
Fairness-aware GNNs: FairGNN [4] uses adversarial training to

achieve fairness on graphs; NIFTY [1] flips the sensitive attributes

to get counterfactual data; FairVGNN [33] introduces a feature

6
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Table 2: Performance comparison of graph representation learning methods with respect to prediction and fairness. The
backbone is GCN and pre-training strategy is Infomax. The best results are bold and the second best results are underlined.

Method

Credit Pokec_z Pokec_n

ACC (↑) AUC (↑) DP (↓) EO (↓) ACC (↑) AUC (↑) DP (↓) EO (↓) ACC (↑) AUC (↑) DP (↓) EO (↓)

GCN 70.920.44 67.580.54 14.454.13 14.144.89 68.791.11 69.091.21 6.381.63 5.301.35 67.910.71 68.610.57 1.831.15 2.282.11

FairGNN 72.850.12 67.780.76 9.441.29 7.987.79 67.890.27 69.180.40 2.201.50 1.421.14 68.700.25 68.360.25 1.330.59 1.570.76

NIFTY 71.943.16 67.470.77 10.322.71 8.432.58 66.720.44 66.870.48 5.481.75 2.900.59 68.320.45 68.070.44 1.601.16 1.591.17

FairVGNN 77.190.45 67.610.62 10.281.39 6.872.53 68.860.17 74.170.38 2.991.50 2.771.02 66.860.76 68.760.67 5.621.83 4.591.62

Infomax 70.772.06 67.542.97 12.443.30 10.943.00 68.050.61 70.621.16 6.442.57 4.612.67 68.220.42 68.120.60 6.322.22 4.772.43

GPF 74.113.52 67.101.32 13.923.52 13.342.64 70.500.23 76.660.40 11.300.96 10.922.14 68.830.91 67.620.77 9.291.34 6.202.25

GraphPrompt 73.191.34 68.370.80 15.953.09 14.133.20 68.810.24 65.551.14 9.310.11 8.691.05 67.650.64 67.540.14 8.181.25 7.780.25

GraphPAR 74.832.32 69.460.43 7.532.62 6.033.13 66.691.41 73.400.53 1.840.65 1.360.56 69.010.88 74.791.01 1.610.31 1.521.05

FPrompt 77.422.07 70.260.85 4.342.04 3.052.30 68.940.57 76.701.28 1.561.04 0.860.54 69.540.47 74.631.05 0.780.24 1.281.11

masking strategy to prevent sensitive information leakage dur-

ing the feature propagation; 3) Pre-training with fine-tuning:
Infomax [32] maximizes the mutual information between node

and graph representations; GRACE [35] perturbs the graph model

parameter spaces and narrow down the gap between different per-

turbations for the same graph; 4) Pre-training with prompt fine-
tuning: GPF [9] adds soft prompts to all node features of the input

graph; GraphPrompt [20] inserts the prompt vector into the graph

pooling by element-wise multiplication;; 5) Fairness-aware pre-
training with fine-tuning: GraphPAR [41] introduces a sensitive

semantic augmenter that incorporates varying sensitive attribute se-

mantics for each node. For all pre-training with and without prompt

fine-tuning models, we choose the same adapter as FPrompt, which

is a 2-layer MLP with output dimension equal to the class number.

6.1.3 Implements. We use the library PygDebias
1
to implement

GCN, FairGNN, NIFTY, and FairVGNN. We apply the library ProG
2

for pre-training with (prompt) fine-tuning models including Info-

max, GRACE, GPF, and GraphPrompt. For GraphPAR, we use the

source code at Github
3
. For our model FPrompt, we search hyper-

parameters by the grid search method and we refer to Appendix A.3

for detailed explanation.

6.2 Prediction Performance and Fairness
We present the results across different datasets in Fig. 2. Our obser-

vations reveal that while vanilla GNNs, as well as those utilizing

pre-training with fine-tuning and pre-training with prompt fine-

tuning, achieve commendable accuracy performance, they exhibit

significant shortcomings when it comes to fairness metrics. This in-

dicates that although these models can classify or predict outcomes

accurately, they often do so at the expense of equitable treatment

across different demographic groups. In contrast, fairness-aware

GNNs demonstrate strong fairness performance. However, a notable

drawback of these fairness-focused models is their requirement for

separate training of GNNs on each dataset. This separation can

lead to inefficiencies in practical applications. FPrompt achieves

1
https://github.com/yushundong/PyGDebias

2
https://github.com/sheldonresearch/ProG

3
https://github.com/BUPT-GAMMA/GraphPAR

Table 3: Performance comparison with respect to prediction
and fairness. The backbone is GCN and pre-training strategy
is GRACE. The best results are bold and the second best re-
sults are underlined.

Method

Credit

ACC (↑) AUC (↑) DP (↓) EO (↓)

GRACE 71.572.50 68.123.58 9.032.21 7.612.49

GPF 74.252.71 67.963.32 11.724.26 9.353.24

GraphPrompt 74.702.68 67.892.98 9.913.17 9.042.58

GraphPAR 75.522.15 68.232.44 5.621.64 4.251.58

FPrompt 76.352.68 69.353.68 5.012.68 4.551.56

Table 4: Performance comparison with respect to prediction
and fairness. The pre-training strategy is Infomax. The best
results are bold and the second best results are underlined.

Method

Credit

ACC (↑) AUC (↑) DP (↓) EO (↓)

GAT

Infomax 70.553.81 67.451.24 12.064.21 11.424.35

GPF 75.262.95 68.891.85 12.814.53 12.203.56

GraphPAR 75.212.18 69.540.24 7.751.86 6.352.39

FPrompt 76.181.74 69.531.49 5.943.02 4.772.50

GIN

Infomax 70.293.66 65.923.20 10.662.27 10.883.40

GPF 74.712.99 69.813.24 11.573.62 8.812.71

GraphPAR 74.945.19 68.862.87 6.072.33 4.422.12

FPrompt 76.061.15 69.713.35 4.901.80 3.781.31

both strong accuracy and fairness performance simultaneously. For

example, FPrompt significantly enhances fairness performance on

the Credit, Pokec_z, and Pokec_n datasets, with improvements of

42%, 15%, and 41%, respectively, in terms of demographic parity.
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Table 5: Performance comparison of graph representation learning methods with respect to prediction and fairness. The
backbone is GCN and pre-training strategy is Infomax. The best results are bold and the second best results are underlined.

Method

Pokec_TR→ Pokec_BA Pokec_TR→ Pokec_KO Pokec_TR→ Pokec_PR

ACC (↑) AUC (↑) DP (↓) EO (↓) ACC (↑) AUC (↑) DP (↓) EO (↓) ACC (↑) AUC (↑) DP (↓) EO (↓)

Infomax 71.990.63 75.110.22 7.603.63 5.291.81 65.271.49 66.702.36 3.462.47 5.582.22 66.340.24 68.940.58 24.972.08 25.892.38

GPF 72.630.71 76.700.44 9.093.62 10.462.75 67.361.52 68.341.32 4.561.62 6.641.83 66.170.18 67.930.92 28.734.87 27.565.28

GraphPrompt 72.121.67 76.981.56 8.824.58 8.562.91 65.991.29 66.142.58 4.981.18 6.542.15 65.620.51 67.791.18 25.322.53 25.782.57

GraphPAR 71.002.54 76.451.21 4.972.85 4.651.87 65.301.71 66.261.54 3.452.12 2.552.06 66.540.51 69.060.79 15.703.94 14.103.86

FPrompt 72.810.86 76.911.68 4.572.90 3.242.46 66.482.81 69.031.87 1.700.62 2.101.50 66.625.58 67.950.55 8.933.67 6.523.36

To further demonstrate FPrompt’s ability to enhance different

pre-trained strategies, we experiment with the pre-training method

GRACE.The results, as outlined in Table 3, clearly illustrate that

FPrompt effectively reduces bias in the pre-trained model, leading

to more balanced outcomes across different demographic groups.

Moreover, we extend our evaluation to include different GNN archi-

tectures, as presented in Table 4. The results indicate that FPrompt

adapts well to various GNN architectures, including GIN (which

satisfies Assumption 2) and GAT (which does not). This adaptabil-

ity underscores the versatility of FPrompt. For more experimental

results, please refer to Appendix B.

6.3 Transferability Analysis
To assess the transferability of our model, we compare it against

both the fine-tuning method Infomax and various prompt-based

fine-tuningmethods.We intentionally exclude fairness-aware GNNs

from this comparison, as these models require retraining the GNN

on each new dataset, which limits their adaptability in transfer

learning scenarios. Our evaluation is conducted using our newly

proposed benchmark, where we pre-train the GNN model on the

Pokec_TR dataset and subsequently fine-tune it on different down-

stream datasets, applying different fine-tuning strategies. The re-

sults of this comparison are summarized in Table 5. We observe

that while prompt-based fine-tuning methods tend to achieve high

accuracy, they generally perform poorly in terms of fairness met-

rics. In contrast, FPrompt not only maintains competitive accuracy

but also significantly improves fairness outcomes across datasets,

demonstrating its ability to in transfer learning tasks.

6.4 Model Analysis
To further verify the theoretical effectiveness of our method as

discussed in Section 5.2, we present a detailed comparison of the

representation discrepancies between two sensitive groups (i.e.,

ΔGSP (X) and 𝛿). These discrepancies are evaluated both for the

raw features and after applying our proposed FPrompt method.

In particular, we observe in Figure 2 that the use of a fixed graph

prompt within FPrompt significantly reduces both ΔGSP (X) and
𝛿 . This reduction in discrepancies between sensitive groups indi-

cates that the representations of individuals from different sensitive

categories become more aligned, thereby reducing bias. This re-

sult aligns closely with our theoretical analysis, which suggests

that FPrompt’s ability to reduce the discrepancy between sensitive

groups can directly contribute to enhancing fairness in graph-based

0 1 2 3 4
ΔGSP(X)

Pokec_n

Pokec_z

Credit

3.18

1.91

1.15

1.72

1.14

0.91
Original
FPrompt

(a)

0.0 0.5 1.0 1.5
δ

Pokec_n

Pokec_z

Credit

1.00

0.99

0.72

0.93

0.92

0.70
Original
FPrompt

(b)

Figure 2: The representation discrepancy between the two
sensitive groups. (a): The generalized SP; (b): The maximum
feature distance of the raw features (denoted as Original) and
prompted features XP (denoted as FPrompt). We unify the
scale for better presentation.

predictions. By narrowing the gap between group representations

of different sensitive groups, FPrompt ensures that individuals are

treated more equitably in downstream tasks.

7 Conclusion
In this work, we proposed FPrompt, a fairness-aware graph prompt

tuning method designed to mitigate the inherent bias present in

pre-trained graph neural networks (GNNs) while retaining their

generalization capabilities. By introducing hybrid graph prompts

for counterfactual data augmentation and applying edge modifica-

tion to increase sensitivity heterophily, FPrompt successfully aligns

pre-training and downstream tasks, addressing bias introduced

by sensitive attributes. Theoretical analysis demonstrate two key

aspects of FPrompt: (1) it has universal capabilities to effectively

adapt to various pre-training strategies, and (2) it reduces the upper

bound of generalized statistical parity, significantly mitigating bias

in pre-trained models. Extensive experiments confirm that FPrompt

outperforms existing methods in both fairness and accuracy on

standard benchmarks.

The present work also opens up promising future directions. One

notable opportunity arises from the success of prompt tuning in

adapting pre-trained GNN models to tasks beyond node classifica-

tion (e.g., link prediction). However, bias can arise in link prediction

due to factors such as imbalanced data, where certain types of links

(e.g., between nodes from different sensitive groups) are underrep-

resented. Therefore, a potential next step would be to explore the

application of FPrompt to reduce bias of pre-trained models in link

prediction tasks.
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A Experimental Details
A.1 Datasets Split
In our experiments, we adhere to standard dataset splits and employ

random seeds for re-producibility. Note that for all datasets, the

node labels are binary (i.e., 0 and 1). Denote the node set with label 0

and 1 asV0 andV1, respectively. Then we randomly split the nodes

into validation/testing sets with ratio 0.25|V0 |+0.25|V1 |/0.25|V0 |+
0.25|V1 |. The training ratio is set to

min(𝑇, 0.25 |V0 | ) +min(𝑇, 0.25 |V1 | ), (22)

where we choose 𝑇 = 3000 for all datasets. We also summarize

other statistical details in Table 6.

A.2 Benchmark Construction
We introduce the construction details of Pokec_PR as an example,

and the remaining datasets follow the same process. We first filter

out nodes where the region starts with “presovsky kraj” and select

the following columns: user_id, public, completion_percentage, gen-
der, region, AGE, I_am_working_in_field, spoken_languages, hobbies,
I_most_enjoy_good_food, body_type, eye_color, hair_color, hair_type,
completed_level_of_education, favourite_color, relation_to_smoking,
relation_to_alcohol, on_pokec_i_am_looking_for, love_is_for_me, rel
ation_to_casual_sex, my_partner_should_be, marital_status, relatio
n_to_children, I_like_movies, I_like_watching_movie, I_like_music,
I_mostly_like_listening_to_music, the_idea_of_good_evening, I_like_
specialties_from_kitchen, I_am_going_to_concerts, my_active_sports,
my_passive_sports, and I_like_books. For the features from spoken_l
anguages onwards, we generate columns where the column names

correspond to the values of those features. If an element has that

value for the feature, the corresponding element is 1; otherwise, it is

0. Note that a feature can have multiple values for a single element.

Then, following the existing data, we map I_am_working_in_field

to 0, 1, and -1 (where -1 indicates missing data). Next, we select the

two most frequent regions and filter the corresponding data as the

final dataset (presovsky kraj, poprad and presovsky kraj, bardejov).
Finally, we extract the connection relationships based on user_id.

The source data can be found from [30].

A.3 Implements
We conduct all the experiments on a machine with an NVIDIA A100

80GB PCIe, Intel Xeon CPU (2.20 GHz) with 6 cores, and 150 GB of

RAM. Our code is built on pytorch==2.1.1, pyg==2.4.0, cuda==12.1,

and dgl==2.1.0.We choose learning_rate=0.001, weight_decay=1e-5,

and num_layer=2 for all datasets. For Credit, we set hidden_dim=16

and for the remaining datasets, we let hidden_dim=24. The optimal

hyperparameters such as regularization term 𝜆1, 𝜆2, edge modific-

taion ratio 𝜖 , and learnable token number 𝑇 are tuned for each

dataset separately. We will release the source code after the review

process.

B Additional Experimental Results
B.1 Results of GNN Backbones
We conduct experiments on Pokec_z with different GNN backbones

in Table 7. It can be observed that FPrompt outperforms baseline

models in terms of classification performance and fairness.

B.2 Results on Pokec_TR
We provide the results where we first pre-train a GNN model on

Pokec_TR and fine-tune the model on the same dataset. Results in

Table. 8 demonstrate the state-of-the-art performance of FPrompt.

C Proof of Theorem 2
To prove Theorem 2, we first derive the upper bound of ΔGSP for

both the GNN backbone (Theorem 3) and the adapter (Theorem 4)

separately. Afterward, the overall upper bound for the pre-training

and fine-tuning graph model can be directly derived by combining

these results.

C.1 ΔGSP for the GNN Backbone
For a GNN model that outputs a feature matrix rather than a pre-

diction vector as Eq. (18), the fairness criterion is defined as

ΔGSP (H) = ∥E [h𝑖 | 𝑖 ∈ S0] − E [h𝑖 | 𝑖 ∈ S1] ∥ , (23)

where h𝑖 is the 𝑖-th row of H. We have the following result.

Theorem 3. For a GNN model 𝚿 : (X,A) → H, if Assumptions 1
and 2 hold, then we have

ΔGSP
(
H(𝑙+1)

)
≤

(
(𝜇

0
+ 𝜇

1
− 1)ΔGSP

(
H(𝑙 )

)
+ 2

√
𝑁𝛿 (𝑙+1)

) W(𝑙 )
Ψ

 , (24)
whereW(𝑙 )

Ψ is the parameter at the 𝑙-th layer of GNN, 𝜇𝑘 is the average
homophily ratio of sensitive group S𝑘 as 𝜇𝑘 =

∑
𝑖∈S𝑘

𝜇𝑖/|S𝑘 |, and

|𝛿 (𝑙+1) | ≤ max

(
𝛿
(𝑙+1)
0

, 𝛿
(𝑙+1)
1

)
, 𝛿

(𝑙+1)
𝑘

= max

𝑖∈S1−𝑘

c(𝑙+1)𝑖
− c(𝑙+1)

𝑘

 ,
(25)

where c(𝑙+1)
𝑘

=
∑
𝑖∈S𝑘

h(𝑙 )
𝑖

/|S𝑘 |, 𝑘 = 0, 1.

Proof of Theorem 3. Estimating the expected distributionwith

empirical distribution, we have

ΔGSP (H(𝑙+1) ) =
E [

h(𝑙+1)
𝑖

| 𝑖 ∈ S0

]
− E

[
h(𝑙+1)
𝑖

| 𝑖 ∈ S1

]
=

 1

|S0 |
∑︁
𝑖∈S0

h(𝑙+1)
𝑖

− 1

|S1 |
∑︁
𝑖∈S1

h(𝑙+1)
𝑖


=

 1

|S0 |
∑︁
𝑖∈S0

𝜎

(
r(𝑙+1)
𝑖

)
− 1

|S1 |
∑︁
𝑖∈S1

𝜎

(
r(𝑙+1)
𝑖

)
(𝑎)
≤

 1

|S0 |
∑︁
𝑖∈S0

r(𝑙+1)
𝑖

− 1

|S1 |
∑︁
𝑖∈S1

r(𝑙+1)
𝑖

 ,
(26)

where (𝑎) is due to the Lipschitz continuity of the activation func-

tions (Assumption 1). Here, 𝜎 (·) denotes the activation function

and r(𝑙+1)
𝑖

is the representation of node 𝑣𝑖 after aggregation. The

first term can be rewritten as

1

|S0 |
∑︁
𝑖∈S

0

r(𝑙+1)
𝑖

=
1

|S0 |
∑︁
𝑖∈S

0

1

|N𝑖 |
©«

∑︁
𝑗 ∈N𝑖∩S0

c(𝑙+1)
𝑗

+
∑︁

𝑗 ∈N𝑖∩S1

c(𝑙+1)
𝑗

ª®¬
=

1

|S0 |
∑︁
𝑖∈S

0

1

|N𝑖 |
©«

∑︁
𝑗 ∈N𝑖∩S0

c(𝑙+1)
1

+
∑︁

𝑗 ∈N𝑖∩S1

c(𝑙+1)
0

ª®¬ + 𝛿 (𝑙+1)

=
1

|S0 |
∑︁
𝑖∈S

0

(
𝜇𝑖c

(𝑙+1)
1

+ (1 − 𝜇𝑖 )c(𝑙+1)
0

)
+ 𝛿 (𝑙+1)

=𝜇
0
c(𝑙+1)
1

+ (1 − 𝜇
0
)c(𝑙+1)

0
+ 𝛿 ′(𝑙+1) ,

(27)
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Table 6: Experimental detail of the datasets.

Statistic Training Size Label Ratio Label Distribution (|V0 |/|V1 |) Sensitivity Distribution (|S0 |/|S1 |)

Credit 6,000 1.00 0.28 10.17

Pokec_z 5,131 0.15 0.86 1.84

Pokec_n 4,398 0.13 1.05 2.46

Pokec_TR 3,746 0.66 0.97 1.08

Pokec_BA 2,314 0.58 1.41 1.00

Pokec_KO 4,002 0.60 1.67 1.41

Pokec_PR 3,780 0.18 1.15 1.68

Table 7: Performance comparison of graph representation
learning methods with respect to prediction and fairness.
The pre-training strategy is Infomax. The best results are
bold and the second best results are underlined.

Method

Pokec_z

ACC (↑) AUC (↑) DP (↓) EO (↓)

GAT

Infomax 66.390.52 70.871.20 6.512.22 5.272.30

GPF 67.430.36 72.100.74 10.361.52 8.282.66

GraphPAR 67.200.69 73.380.95 1.550.90 1.501.14

FPrompt 67.970.73 73.910.54 1.421.17 1.290.74

GIN

Infomax 64.900.65 71.230.94 4.223.15 4.062.23

GPF 66.721.28 73.250.98 10.252.34 9.283.51

GraphPAR 65.491.77 73.031.32 3.742.06 3.041.52

FPrompt 68.430.72 74.590.72 2.521.14 1.130.92

Table 8: Performance comparison of graph representation
learning methods with respect to prediction and fairness.
The backbone is GCN and pre-training strategy is Infomax.
The best results are bold and the second best results are un-
derlined.

Method

Pokec_TR

ACC (↑) AUC (↑) DP (↓) EO (↓)

Infomax 76.230.76 80.960.44 3.682.61 4.702.20

GraphPAR 74.260.56 79.130.42 2.891.39 2.641.38

FPrompt 75.822.29 79.880.45 1.451.40 2.000.92

where c(𝑙+1)
𝑖

= W(𝑙 )
Ψ h(𝑙 )

𝑖
, 𝜇

0
is the average homophily ratio of

sensitive group S0. c
(𝑙+1)
1

denotes the average representation of

sensitive group S𝑘 at the 𝑙-th layer as

c(𝑙+1)
𝑘

=
1

|S𝑘 |
∑︁
𝑖∈S𝑘

h(𝑙 )
𝑖

, 𝑘 = 0, 1. (28)

The error term 𝛿 ′(𝑙+1) is upper-bounded by

|𝛿 ′(𝑙+1) | ≤ max

(
𝛿
(𝑙+1)
0

, 𝛿
(𝑙+1)
1

)
, (29)

with 𝛿
(𝑙+1)
𝑘

= max𝑖∈S1−𝑘

c(𝑙+1)𝑖
− c(𝑙+1)

𝑘

 denoting the maximum

feature distance between node 𝑣𝑖 and the average representation

of the opposite sensitive class. Similarly, the second term can be

rewritten as

1

|S1 |
∑︁
𝑖∈S1

r(𝑙+1)
𝑖

=
1

|S1 |
∑︁
𝑖∈S1

1

|N𝑖 |
©«

∑︁
𝑗 ∈N𝑖∩S0

c(𝑙+1)
𝑗

+
∑︁

𝑗 ∈N𝑖∩S1

c(𝑙+1)
𝑗

ª®¬
=(1 − 𝜇

1
)c(𝑙+1)

1
+ 𝜇

1
c(𝑙+1)
0

+ 𝛿 ′′(𝑙+1) ,

(30)

where 𝛿 ′′(𝑙+1) has the same upper bound with 𝛿 ′(𝑙+1) . As a result,
we have  1

|S0 |
∑︁
𝑖∈S0

r(𝑙+1)
𝑖

− 1

|S1 |
∑︁
𝑖∈S1

r(𝑙+1)
𝑖


=(𝜇

0
+ 𝜇

1
− 1)

c(𝑙+1)
0

− c(𝑙+1)
1

 + 2

√
𝑁𝛿

′′′ (𝑙+1) ,

(31)

where 𝛿
′′′ (𝑙+1)

is also upper-bounded as in Eq. (29). Notice thatc(𝑙+1)
0

− c(𝑙+1)
1


=

W(𝑙 )
Ψ

  1

|S0 |
∑︁
𝑖∈S0

h(𝑙 )
𝑖

− 1

|S1 |
∑︁
𝑖∈S1

h(𝑙 )
𝑖


=

W(𝑙 )
Ψ

ΔGSP

(
H(𝑙 )

)
.

(32)

Combining Eq. (26), Eq. (27), and Eq. (32), we arrive that

Δ
GSP

(
H(𝑙+1)

)
≤

(
(𝜇

0
+ 𝜇

1
− 1)Δ

GSP

(
H(𝑙 )

)
+ 2

√
𝑁𝛿 (𝑙+1)

) W(𝑙 )
Ψ

 ,
(33)

where

|𝛿 ′(𝑙+1) | ≤ max

(
𝛿
(𝑙+1)
0

, 𝛿
(𝑙+1)
1

)
, 𝛿

(𝑙+1)
𝑘

= max

𝑖∈S1−𝑘

c(𝑙+1)𝑖
− c(𝑙+1)

𝑘

 .
(34)

Proof finished. □
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C.2 ΔGSP for the Adapter
Theorem 4. For a 𝐿-layer MLP adapter 𝚵 : H → z ∈ R𝑁 , if

Assumption 1 holds, we have

ΔGSP (z) ≤
∏

𝑙=0,...,𝐿−1

W(𝑙 )
Ξ

ΔGSP (H), (35)

whereW(𝑙 )
Ξ is the parameter at the 𝑙-th layer of the adapter.

Proof of Theorem 4. Denote the representation at the 𝑙-th layer

as Z(𝑙 )
and Z(0) = H. Notice that

ΔGSP

(
Z(𝑙+1)

)
=

E [
z(𝑙+1)
𝑖

| 𝑖 ∈ S0

]
− E

[
z(𝑙+1)
𝑖

| 𝑖 ∈ S1

]
=

 1

|S0 |
∑︁
𝑖∈S0

z(𝑙+1)
𝑖

− 1

|S1 |
∑︁
𝑖∈S1

z(𝑙+1)
𝑖


=

 1

|S0 |
∑︁
𝑖∈S0

𝜎

(
t(𝑙+1)
𝑖

)
− 1

|S1 |
∑︁
𝑖∈S1

𝜎

(
t(𝑙+1)
𝑖

)
(𝑎)
≤

 1

|S0 |
∑︁
𝑖∈S0

t(𝑙+1)
𝑖

− 1

|S1 |
∑︁
𝑖∈S1

t(𝑙+1)
𝑖

 ,
(36)

where t(𝑙+1)
𝑖

= W(𝑙 )
Ξ z(𝑙 )

𝑖
, 𝜎 (·) denotes the activation function, and

(𝑎) is due to the Lipschitz continuity of the activation functions

(Assumption 1). Becauset(𝑙+1)
0

− t(𝑙+1)
1


=

W(𝑙 )
Ξ

  1

|S0 |
∑︁
𝑖∈S0

z(𝑙 )
𝑖

− 1

|S1 |
∑︁
𝑖∈S1

z(𝑙 )
𝑖


=

W(𝑙 )
Ξ

ΔGSP

(
Z(𝑙 )

)
.

(37)

Thus we have

ΔGSP (H(𝑙+1) ) ≤
W(𝑙 )

Ξ

ΔGSP (H(𝑙 ) ) . (38)

Proof finished. □

C.3 ΔGSP for the Pre-Training and Fine-Tuning
Graph Model

Proof of Theorem 2. For simplicity, we assume the both GNN

backbone and the adapter have one layer. Thus we have

ΔGSP (z) ≤ ∥WΞ∥ ΔGSP (H)

≤ ∥WΞ∥ ∥WΨ∥
(
(𝜇

0
+ 𝜇

1
− 1)ΔGSP (X) + 2

√
𝑁𝛿

)
,
(39)

where

|𝛿 | ≤ max (𝛿0, 𝛿1) , 𝛿 (𝑙+1)𝑘
= max

𝑖∈S1−𝑘

x(𝑙+1)𝑖
− c(𝑙+1)

𝑘

 , (40)

where c(𝑙+1)
𝑘

=
∑
𝑖∈S𝑘

x(𝑙 )
𝑖

/|S𝑘 |, 𝑘 = 0, 1. Proof finished. □
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