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ABSTRACT

Topological data analysis (TDA) is a new area of geometric data analysis that
focuses on using invariants from algebraic topology to provide multiscale shape
descriptors for point clouds. One of the most important shape descriptors is persis-
tent homology, which studies the topological variations as a filtration parameter
changes; a typical parameter is the feature scale.
For many data sets, it is useful to consider varying multiple filtration parameters
at once, for example scale and density. While the theoretical properties of single
parameter persistent homology are well understood, less is known about the multi-
parameter case. Of particular interest is the problem of representing multiparameter
persistent homology by elements of a vector space for integration with traditional
machine learning.
Existing approaches to this problem either ignore most of the multiparameter
information to reduce to the one-parameter case or are heuristic and potentially
unstable in the face of noise. In this article, we introduce a general representation
framework for multiparameter persistent homology that encompasses previous
approaches. We establish theoretical stability guarantees under this framework
as well as efficient algorithms for practical computation, making this framework
an applicable and versatile tool for TDA practitioners. We validate our stability
results and algorithms with numerical experiments that demonstrate statistical
convergence, prediction accuracy, and fast running times on several real data sets.

1 INTRODUCTION

Topological Data Analysis (TDA) (Carlsson, 2009) is a methodology for analyzing data sets using
multiscale shape descriptors coming from algebraic topology. There has been intense interest in
the field in the last decade, since topological features have allowed practitioners to compute and
encode information that classical approaches do not capture. Moreover, TDA rests on solid theoretical
grounds, with guarantees accompanying many of its methods and descriptors. TDA has proved useful
in a wide variety of application areas, including computer graphics (Carrière et al., 2015a; Poulenard
et al., 2018), computational biology (Rabadán & Blumberg, 2019), and material science (Buchet
et al., 2018; Saadatfar et al., 2017), among many others.

The main tool of TDA is persistent homology. In its most standard form, one is given a finite metric
space (e.g., a finite set of points and their pairwise distances) and a continuous function f : X → R.
This function usually represents a parameter of interest (such as, e.g., scale or density for point clouds,
marker genes for single-cell data, etc), and the goal of persistent homology is to characterize the
topological variations of this function on the data. Of course, the idea of considering multiscale
representations of geometric data is not new (Chapelle et al., 2002; Ozer, 2019; Witkin, 1987); the
contribution of persistent homology is to obtain a novel and theoretically tractable multiscale shape
descriptor. More formally, this is achieved by computing the so-called persistence diagram of f ,
which is obtained by looking at all sublevel sets of the form {f−1((−∞, α])}α and by computing a
decomposition of these sets, that is, by recording the appearances and disappearances of topological
features (connected components, loops, enclosed spheres, etc) in these sets. When such a feature
appears (resp. disappears), e.g., in a sublevel set f−1((−∞, αb]), we call the corresponding threshold
αb (resp. αd) the birth time (resp. death time) of the topological feature, and we summarize
this information in the persistence diagram D(f) := {(αb, αd)}α∈A ⊂ R2. Moreover, it is also
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usual to consider the distance to the diagonal αd − αb as a proxy for the statistical significance of
the corresponding feature. The most important foundational result in the subject establishes that
persistence diagrams are stable — they will not change much when computed on a small perturbation
f̃ of the function f (Cohen-Steiner et al., 2007).

However, an inherent limitation of the formulation of persistent homology is that it can handle
only a single filtration parameter f . However, in practice it is common that one has to deal with
multiple parameters. This translates into multiple filtration functions: a standard example is given
in Figure 1, where both feature scale and density functions are necessary to obtain meaningful
topological representation of a noisy point cloud. An extension of persistent homology to this more
general setting is called multiparameter persistent homology (Botnan & Lesnick, 2022; Carlsson
& Zomorodian, 2009), since roughly speaking it amounts to studying the topological variation of a
continuous multiparameter function f : X → Rn with n ∈ N∗. This setting is notoriously difficult
to analyze theoretically, as there is no general decomposition theorem and hence no analogue of
persistence diagrams.

Still, it remains possible to define topological invariants, even in this setting. The most common one
is the so-called rank invariant, which describes how the topological features associated to any pair of
sublevel sets {x ∈ X : f(x) ≤ α} and {x ∈ X : f(x) ≤ β} such that α ≤ β (w.r.t. the partial order
in Rn), are connected. Since it is defined as an algebraic construction, and, as such, not suitable as
input for subsequent data science purposes, the task of finding appropriate representations of this
invariant, i.e., embeddings into Hilbert spaces, is critical. Hence, a number of such representations
have been defined recently (Corbet et al., 2019; Coskunuzer et al., 2021; Vipond, 2020).

However, while the rank invariant is equivalent to the persistence diagram in the single-parameter
case, it is known to be much less informative in the multiparameter case, even when the function
admits a decomposition: many functions have different decompositions yet same rank invariants.
Therefore, all aforementioned representations can encode only limited multiparameter topological
information. Instead, in this work, we define representations based on candidate decompositions
of the function, in order to create descriptors that are strictly more powerful than the rank invariant.
Indeed, while there is no general decomposition theorem, there is now a whole body of work that
allows to define stable, candidate decompositions (Asashiba et al., 2019; Botnan et al., 2021; Cai
et al., 2020; Dey & Xin, 2021; Loiseaux et al., 2022), that are more informative than the rank invariant
and that agree with the true decomposition when it exists1. Our representation is motivated from this
series of recent contributions, and expects one of such candidate decompositions as input. Closely
related to our method is the recent contribution (Carrière & Blumberg, 2020), which also proposes a
representation built from a given decomposition. However, their approach, while being efficient in
practice, is a heuristic with no corresponding mathematical guarantees. In particular, it is known to
be unstable: similar decompositions can lead to very different representations. Our approach can be
understood as a subsequent generalization of the work of (Carrière & Blumberg, 2020), with new
mathematical guarantees that allow to derive, e.g., statistical rates of convergence.

Figure 1: (left) Example of point cloud X filtered by both feature scale (computed from unions of
balls centered on X with increasing radii) and (co)density. A point will be in the bifiltration if its
density is high enough, and if it is close enough to X . Note that the circle is present in the red zone,
and can be detected as a large summand in the decomposition of the corresponding module (middle),
or in a representation of it (right).

1Strictly speaking, multiparameter persistent homology can always be decomposed in an abstract way (Botnan
& Lesnick, 2022, Theorem 4.2). However, such abstract decompositions are hard to interpret and work with,
hence the motivation for finding candidate decompositions that are more visual and intuitive.
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Contributions. Our contributions in this work are listed below:

• We provide a general framework that parametrizes representations of multiparameter persis-
tent homology (Definition 3.1) and which encompasses previous approaches in the literature.

• We identify parameters in this framework that result in representations that have stability
guarantees while still encoding more information than the rank invariant (see Theorem 3.4).

• We illustrate the performance of our framework with numerical experiments: (1) We
demonstrate the practical consequences of the stability theorem by measuring the statistical
convergence of our representations. (2) We achieve the best performance with the lowest
runtime on several classification tasks on public data sets (see Sections 4.1 and 4.2).

Outline. Our work is organized as follows. In Section 2, we recall the basics of multiparameter
persistent homology. Next, in Section 3 we present our general framework and state our associated
stability result. Finally, we showcase the numerical performances of our representations in Section 4,
and we conclude in Section 5.

2 BACKGROUND

In this section, we briefly recall the basics of single and multiparameter persistent homology, and
refer the reader to (Oudot, 2015; Rabadán & Blumberg, 2019) for a thorough treatment.

Persistent homology. A standard procedure for studying a data set provided as a finite metric space,
i.e., a set X with a distance dX : X ×X → R, is to form a graph with vertex set X and an each edge
connecting xi and xj when dX(xi, xj) < ϵ. Persistent homology is a simultaneous generalization of
this procedure, replacing the graph with a simplicial complex (a combinatorial model of a topological
space) and aggregating information across different scale parameters ϵ.

More generally, given a filtered topological space X , by which we mean a topological space X
together with a function f : X → R, the system of inverse images F (α) := f−1((−∞, α]) fit
together to produce a system F (α1) ⊆ F (α2) ⊆ . . . ⊆ F (αi) ⊆ . . ., where αi ≤ αi+1. This
system is an example of filtration of X , where a filtration is generally defined as a sequence of
nested subspaces X1 ⊆ . . . ⊆ Xi ⊆ . . . ⊆ X . Then, one can apply the kth homology functor Hk

on each F (αi). We do not define the homology functor explicitly here, but simply recall that each
Hk(F (αi)) is a vector space, whose basis elements represent the kth dimensional topological features
of F (αi) (connected components for k = 0, loops for k = 1, spheres for k = 2, etc). Moreover the
inclusions F (αi) ⊆ F (αi+1) translate into linear maps Hk(F (αi))→ Hk(F (αi+1)), which connect
the features of F (αi) and F (αi+1) together. Such a sequence of vector spaces connected with linear
maps is a persistence module, which is generally defined as a functor from (R,≤) (regarded as a
category) to Vec, the category of vector spaces.

Multiparameter persistent homology. The persistence modules defined above extend straight-
forwardly when there are multiple filtration directions. An n-filtration, or multifiltration, is a family
of subspaces F = {Xα ⊆ X}α∈Rn such that Xα ⊆ Xα′ whenever α ≤ α′ (in the partial order
of Rn). Moreover, we say that a multifiltration is 1-critical if there exists a function f : X → Rn

such that Xα is homeomorphic to the sublevel set {x ∈ X : f(x) ≤ α} (note that single parameter
filtrations are always 1-critical). Again, applying the homology functor Hk on a multifiltration F
induces a multiparameter persistence module M = M(F). The support of M is then defined as the
set supp (M) := {α ∈ Rn : dim(M(α)) > 0}. Any module which is of dimension 1 everywhere
on its support is called an indicator module, and, in addition, when its support is an interval of
Rn (Botnan & Lesnick, 2022, Definition 2.1), it is called an interval module.

A multiparameter persistence module M can always be decomposed in a unique way: M =
⊕m

i=1Mi (Botnan & Lesnick, 2022, Theorem 4.2), where the Mi are indecomposable modules
that are called the summands of M. See Figure 1 (middle) for an example of decomposition. For
single parameter filtrations, the summands of the decomposition are known to be interval modules
M = ⊕m

i=1I[αbi , αdi
], and can be summarized in a persistence barcode D(M) = {(αbi , αdi

)}1≤i≤m.
This result does not extend to the multiparameter setting however since summands can have dimension

3



Under review as a conference paper at ICLR 2023

larger than 1 on their support. Hence, the rank invariant has been introduced as a weaker invariant
for such modules: it is defined as the function RI : (α, β) 7→ rank(M(α)→M(β) for any α ≤ β.

Finally, multiparameter persistence modules can be compared with two standard distances: the
interleaving and bottleneck (or ℓ∞) distances. Their explicit definitions are technical and not
necessary for our main exposition, so we refer the reader to, e.g., (Botnan & Lesnick, 2022, Sections
6.1, 6.4) for more details. The stability theorem (Lesnick, 2015, Theorem 5.3) states that 1-critical
multiparameter persistence modules are stable: dI(M,M′) ≤ ∥f − f ′∥∞ , where f and f ′ are
functions associated to the 1-critical modules M and M′ respectively.

3 A FRAMEWORK FOR PERSISTENCE MODULE REPRESENTATION

Even though multiparameter persistence modules are known to encode useful data information,
their algebraic definitions make them not suitable for subsequent data science and machine learning
purposes. Hence, in this section, we propose a general framework for studying representations of
multiparameter persistence modules, i.e., maps defined on the space of multiparameter persistence
modules and taking values in an (implicit or explicit) Hilbert space. Defining such maps is crucial for
subsequent data science tasks, as most of the standard methods in statistical machine learning expect
the input to be Euclidean vectors, or at least to be equipped with a scalar product.

3.1 PERSISTENCE MODULE REPRESENTATION

Framework. In this article, we study the following general representation framework:
Definition 3.1. Let M be a multiparameter persistence module. Let M = ⊕m

i=1Mi be its decomposi-
tion (note that the Mi need not be intervals), and letM be the space of indecomposable persistence
modules. A multiparameter representation of M is:

Vop,w,ϕ(M) = op({w(Mi) · ϕ(Mi)}mi=1), (1)

where op is a permutation invariant operation (sum, max, min, mean, etc), w :M→ R is a weight
function, and ϕ :M→H sends any indecomposable module to a vector in a Hilbert spaceH.

This general definition is inspired from a similar framework that was introduced for single-parameter
persistence with the automatic representation method Perslay (Carrière et al., 2020).
Remark 3.2. Definition 3.1 requires being able to decompose multiparameter persistence modules.
Several approaches have been proposed for this problem in the literature, that provide either exact (Dey
& Xin, 2022; Lesnick & Wright, 2015) or approximate (Loiseaux et al., 2022) decompositions, or
decompositions that are restricted to specific homology dimensions (Cai et al., 2020).

Relation to previous work. Interestingly, specific choices of op, w and ϕ can reproduce the
previous work from the literature. For sake of simplicity, assume M = ⊕m

i=1Mi can be decomposed
into indicator modules (we can thus identify any summand Mi with its support), then:

• Using w : Mi 7→ 1, ϕ : Mi 7→
{

Rn → R
x 7→ Λ(x,Mi

∣∣
ℓx
) and op = kth maximum, where

lx is the diagonal line crossing x, and Λ(·, ℓ) denotes the tent function associated to any
segment ℓ ⊂ Rn, induces the kth multiparameter persistence landscape (Vipond, 2020).

• Using w : Mi 7→ 1, ϕ : Mi 7→
{

Rn × Rn → Rd

p, q 7→ w′(Mi ∩ [p, q]) · ϕ′(Mi ∩ [p, q])
and

op = op′, where op′, w′ and ϕ′ are the parameters of any persistence diagram representation
from Perslay, induces the multiparameter persistence kernel (Corbet et al., 2019).

• Using w : Mi 7→ vol(Mi), ϕ : Mi 7→
{

Rn → R
x 7→ exp(−minℓ∈Ld(x,Mi

∣∣
ℓ
)2/σ2)

and

op =
∑

, where L is a set of (pre-defined) diagonal lines, induces the multiparameter
persistence image (Carrière & Blumberg, 2020).

Concerning the first two approaches, it is worth noting that they do not depend on the decompositions
and the global geometric shapes of the support of the summands since they are equivalent to the rank
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invariant. In particular, it is easy to build different modules with same rank invariants and thus same
landscapes and kernels (see (Loiseaux et al., 2022, Section 7.1) for examples). On the other hand, the
third approach does use the module decomposition but is known to be unstable (Figure 11 in (Botnan
& Lesnick, 2018) provides two modules that are close in the interleaving distance but that also have
multiparameter persistence images that are far away from each other). In the next section, we study
representations that allow to encode the summand shapes while also enjoying stability guarantees.

3.2 METRIC PROPERTIES

In this section, we study specific parameters within our framework in Definition 3.1, and prove
associated theoretical properties about their associated representations.

Definition. We begin by defining parameters that we call geometric and stable (GS) in the sense that
they capture shape information about the summands, and that they also lead to robust representations.

Definition 3.3. The geometric and stable (GS) representation parameters are:

1. the weight function w : M 7→ sup{ε > 0 : ∃y ∈ Rn s.t. ℓy,ε ⊂ supp (M)},where ℓy,ε is
the segment between y − ε · [1, . . . , 1] and y + ε · [1, . . . , 1],

2. the individual summand representations ϕδ(M) : Rn → R:

(a) ϕδ(M)(x) = 1
δw(supp (M) ∩Rx,δ), (b) ϕδ(M)(x) = 1

(2δ)n vol (supp (M) ∩Rx,δ),

(c) ϕδ(M)(x) = 1
(2δ)n supx′,δ′ {vol(Rx′,δ′) : Rx′,δ′ ⊆ supp (M) ∩Rx,δ},

where Rx,δ is the hypersquare {y ∈ Rn : x− δ ≤ y ≤ x+ δ} ⊆ Rn, δ := δ · [1, . . . , 1] ∈
Rn for any δ > 0, and vol denotes the volume of a set in Rn.

3. the permutation invariant operators op =
∑

and op = sup.

In other words, our weight function is the length of the largest diagonal segment one can fit inside
supp (M), and summand representations (a), (b) and (c) are largest diagonal length, volume, and
largest hypersquare volume one can fit locally inside supp (M) ∩Rx,δ respectively.

Equipped with these GS parameters, we can now define the two following GS representations, that
can be applied on any multiparameter persistence module M = ⊕m

i=1Mi:

Vp,δ(M) :=

m∑
i=1

w(Mi)
p∑m

j=1 w(Mj)p
ϕδ(Mi), for some p ∈ R+, (2)

V∞,δ(M) := sup
1≤i≤m

ϕδ(Mi). (3)

These GS parameters allow for some trade-off between computational cost and the amount of
information that is kept: (a) and (c) are very easy to compute on interval modules, but (b) encodes
more information about summand shapes. See Figures 1 (right) and 2b for visualizations.

Stability. The main motivation for introducing our GS representations is that one can show that
they are stable in the interleaving and bottleneck distances, as stated in the following theorem. We
assume that persistence modules have support included in a compact set K ⊆ Rn for simplicity (but
our results extend straightforwardly to modules restricted to K if their supports are infinite).

Theorem 3.4. Let M = ⊕m
i=1Mi and M′ = ⊕m′

j=1M
′
j be two multiparameter persistence modules that

can be decomposed with indicator modules. Assume that we have 1
m

∑
i w(Mi),

1
m′

∑
j w(M

′
j) ≥ C,

for some C > 0. Then for any parameter δ > 0, one has

∥V0,δ(M)− V0,δ(M′)∥∞ ≤ 2(dB(M,M′) ∧ δ)/δ, (4)

∥V1,δ(M)− V1,δ(M′)∥∞ ≤
[
4 +

2

C

]
(dB(M,M′) ∧ δ)/δ, (5)

∥V∞,δ(M)− V∞,δ(M′)∥∞ ≤ (dI(M,M′) ∧ δ)/δ, (6)
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These results are the main theoretical contribution in this work, as the only other decomposition-based
representation in the literature (Carrière & Blumberg, 2020) has no such guarantees. The other
representations (Corbet et al., 2019; Coskunuzer et al., 2021; Vipond, 2020) enjoy similar guarantees
than ours, but are computed from the rank invariant and do not exploit the information contained in
decompositions. Theorem 3.4 shows that our GS representations bring the best of both worlds: they
are richer than the rank invariant and stable at the same time.

A proof of Theorem 3.4 can be found in Appendix C. One might worry that the minimum with δ
encountered in the upper bounds in Theorem 3.4 show that our GS representations are too stable
and not discriminative enough for practical purposes; while we did not observe such behaviour in
our numerical experiments, we also provide an additional stability result with a similar, yet slightly
different representation in Appendix B, with an associated upper bound without minimum.
Remark 3.5. Our GS representations are injective on indicator modules: if the support of two modules
are different, then the GS representations (evaluated on a point that belongs to the support of one
summand but not on the support of the other) will differ, provided that δ is sufficiently small.

4 NUMERICAL EXPERIMENTS

In this section, we illustrate our GS representations with numerical experiments. First, we explore
the stability theorem in Section 4.1 by studying the convergence rates of our GS representations on
various data sets. Then, we showcase the efficiency of our GS representations on classification tasks
in Section 4.2. Our code for computing GS representations is based on the MMA (Loiseaux et al.,
2022) and Gudhi (The GUDHI Project, 2022) libraries and is publicly available2, and described in
Appendix D. We also provide a few (favorable) running time comparisons in Appendix E.

Decomposition. Our GS representations require to compute a persistence module decomposition
first. Many different approaches can be used for this task (Loiseaux et al., 2022; Dey & Xin, 2022;
Cai et al., 2020; Lesnick & Wright, 2015). In our experiments, we always use the MMA approximate
decomposition (Loiseaux et al., 2022) because of its simplicity and rapidity.

4.1 CONVERGENCE RATE

In this section, we study the convergence rate of our representation with respect to the number
of sampled points. Similar to the single parameter persistence setting (Chazal et al., 2015), these
rates are derived for free from our stability theorem. Indeed, since concentration inequalities for
multiparameter persistence modules have already been showed in the literature, these concentration
inequalities apply directly to our representations. Note that while Equations (7) and (8), which
provide such rates, are stated for GS representation (3), they also hold for GS representation (2).

Measure bifiltration. Let µ be a compactly supported probability measure of RD, and let µn be
the discrete measure associated to a sampling of n points from µ. The measure bifiltration associated
to µ and µn is defined as Fµ

r,t := {x ∈ RD : µ(B(x, r)) ≤ t}, where B(x, r) denotes the Euclidean
ball centered on x with radius r. Now, let M and Mn be the multiparameter persistence modules
obtained from applying the homology functor on top of the measure bifiltrations Fµ and Fµn . These
modules are known to enjoy the following stability result (Blumberg & Lesnick, 2021, Theorem 3.1,
Proposition 2.23 (i)):

dI(M,Mn) ≤ dPr(µ, µn) ≤ min(dpW (µ, µn)
1
2 , dpW (µ, µn)

p
p+1 ),

where dpW and dPr stand for the p-Wasserstein and Prokhorov distances between probability mea-
sures. Combining these inequalities with Theorem 3.4, then taking expectations and applying the
concentration inequalities of the Wasserstein distance (see (Lei, 2020, Theorem 3.1) and (Fournier &
Guillin, 2015, Theorem 1)) lead to:

δE
[
∥V∞,δ(M)− V∞,δ(Mn)∥∞

]
≤

(
cp,qE (|X|q)n−( 1

2p∨d )∧
1
p−

1
q logα/q n

) p
p+1

, (7)

where α = 2 if 2p = q = d, α = 1 if d ̸= 2p and q = dp/(d − p) ∧ 2p or q > d = 2p and α = 0
otherwise, cp,q is a constant that depends on p and q, and X is a random variable of law µ.
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Čech complex and density. A limitation of the measure bifiltration is that it can be difficult to
compute. Hence, we now focus on another, easier to compute bifiltration. Let X be a compact
d-submanifold of RD (d ≤ D), and µ be a measure on X with density f with respect to the uniform
measure on X . We now define the 1-critical bifiltration FC,f with:

FC,f
u,v := Čech(u) ∩ f−1([v,∞)) =

{
x ∈ RD : d(x,X) ≤ u, f(x) ≥ v

}
.

Moreover, given a set Xn of n points sampled from µ, we also consider the approximate bifiltration
FC,fn , where fn : X → R is an estimation of f (such as, e.g., a kernel density estimator). Let M and
Mn be the multiparameter persistence modules associated to FC,f and FC,fn . Then, the stability of
the interleaving distance (Lesnick, 2015, Theorem 5.3) ensures:

dI(M,Mn) ≤ ∥f − fn∥∞ ∨ dH(X,Xn),

where dH stands for the Hausdorff distance. Moreover, concentration inequalities for the Hausdorff
distance and kernel density estimators are also available in the literature under some conditions (see
(Chazal et al., 2015, Theorem 4) and (Kim et al., 2019, Corollary 15)). More precisely, when the
density f is L-Lipschitz and bounded from above and from below, i.e., when 0 < fmin ≤ f ≤
fmax <∞, and when fn is a kernel density estimator of f with associated kernel k, one has:

E(dH(X,Xn)) ≲

(
log n

n

) 1
d

and E(∥f − fn∥∞) ≲ LhnE(∥K∥∞) +

√
log(1/hn)

nhd
n

,

where hn is the (adaptive) bandwidth of the kernel k, and K is a random variable of density k. In
particular, if µ is a measure comparable to the uniform measure of a d = 2-manifold, then for any
stationary sequence hn := h > 0, and considering a Gaussian kernel k, one has:

δE
[
∥V∞,δ(M)− V∞,δ(Mn)∥∞

]
≲

√
log n

n
+ L

√
2 log(d)h. (8)

Empirical convergence rates. Now that we have established the theoretical convergence rates of
our GS representations, we estimate and validate them on data sets. We will study a synthetic data set
and a real data set of point clouds obtained with immunohistochemistry.

Annulus with non-uniform density. In this synthetic example, we generate an annulus in R2 with a non-
uniform density, displayed in Figure 2a. Then, we compute the bifiltrationFC,fn corresponding to the
Alpha filtration and the sublevel set filtration of a kernel density estimator, with bandwidth parameter
h = 0.1, on the complete Alpha simplicial complex. Finally, we compute the representations (see
Figure 2b) of the associated multiparameter module (in homology dimension 1), and their normalized
distances to the target representation, using either ∥·∥22 or ∥·∥∞. The corresponding distances for
various number of sample points are displayed in log-log plots in Figure 2c. One can see that the
empirical rate is roughly consistent with the theoretical one (−1/2 for ∥·∥∞ and −1 for ∥·∥2), even
when p ̸=∞ (in which case our GS representations are stable for dB but not for dI).

Immunohistochemistry data. In our second experiment, we consider a point cloud representing cells,
taken from (Vipond et al., 2021), see Figure 3a. These cells are given with biological markers, which
are typically used to assess, e.g., cell types and functions. In this experiment, we first triangulate
the point cloud by placing a 100× 100 grid on top of it. Then, we filter this grid using the sublevel
set filtrations of kernel density estimators (with Gaussian kernel and bandwidth h = 1) associated
to the CD8 and CD68 biological markers for immune cells. Finally, we compute the associated
multiparameter modules in homology dimensions 0 and 1, and we compute and concatenate their
corresponding GS representations. The convergence rates are displayed in Figure 3b. Similar to the
previous experiment, the theoretical convergence rate of our representations is upper bounded by the
one for kernel density estimators with the∞-norm, which is of order 1√

n
with respect to the number

n of sampled points. Again, the observed convergence rate are consistent with the theoretical ones.
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(a) Scatter plot of the synthetic data set, comprised
of 25,000 points, and colored by a kernel density
estimator with bandwidth h = 0.5.

(b) GS representations with parameters, p = 0
(upper left), p = 1 (upper right), p = ∞ (bottom).

(c) (left) ∥·∥22 and (right) ∥·∥∞ (right) between the target representation and the empirical one w.r.t. n.

Figure 2: Convergence rate of synthetic data set.

(a) Point cloud of cells colored by CD8
(red) and CD68 (black).

(b) (left) ∥·∥22 and (right) ∥·∥∞ distances between the target repre-
sentation and the empirical one w.r.t. n.

Figure 3: Convergence rate of immunofluorescence data set.

4.2 CLASSIFICATION

We illustrate the efficiency of our GS representations by using them for classification purposes. We
show that they perform comparably or better than existing topological representations as well as
standard baselines on UCR benchmark data sets. We work with point clouds obtained from time
delay embedding on time series from the UCR data sets, following the procedure of (Carrière &
Blumberg, 2020). Furthermore, we show that on the immunohistochemistry data set of point clouds
from the previous section, where each point cloud represents single cells of a given type (CD8, CD68,
etc), our method is significantly better than the competition. In both tasks, every point cloud has a
label (corresponding, e.g., to the type of its cells in the immunohistochemistry data), and our goal is
to check whether we can predict these labels using the bifiltration defined in the previous section.
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We also compare the performances of our GS representations (evaluated on a 50× 50 grid) to the
one of the multiparameter persistence landscape (MPL) (Vipond, 2020), kernel (MPK) (Corbet
et al., 2019) and images (MPI) (Carrière & Blumberg, 2020) 3. We also compare to some non-
topological baselines: we used the standard Ripley function evaluated on 100 evenly spaced samples
in [0, 1] for immunohistochemistry data, and k-NN classifiers with three difference distances for
the UCR time series (denoted by B1, B2, B3), as suggested in (Dau et al., 2018). All scores on
the immunohistochemistry data were computed with 5 folds after cross-validating a few classifiers
(random forests, support vector machines and xgboost). We also evaluated the performances of
a few different GS representation parameters p and δ separately. For the time series data, our
accuracy scores were obtained after also cross-validating the following GS parameters; p ∈ {0, 1},
op ∈ {sum,mean}, δ ∈ {0.01, 0.1, 0.5, 1}, h ∈ {0.1, 0.5, 1, 1.5} with homology dimensions 0 and
1. All results can be found in Tables 1 (immunohistochemistry) and 2 (time series—note that there
are no variances since train/test splits were provided in the data sets). One can see that our GS
representations almost always outperform topological baselines, and are comparable to the standard
baselines on the UCR benchmarks. Most notably, all tested GS parameters showed improvement over
the baselines for the immunohistochemistry data.

Ours p δ Accuracy (%)
10−2 74.1± 2.9

- 1 10−3 75.6± 3.4
10−4 68.7± 3.0
10−2 77.81± 2.0

- 0 10−3 76.0± 3.3
10−4 70.5± 3.0

MPL - - 60.5± 3.5
Ripley - - 67.2± 2.3

Table 1: Accuracy scores for immunohisto-
chemistry data.

Dataset B1 B2 B3 MPK MPL MPI Ours
DPOAG 62.6 62.6 77.0 67.6 70.5 71.9 71.9
DPOC 71.7 72.5 71.7 74.6 69.6 71.7 73.8
DPTW 63.3 63.3 59.0 61.2 56.1 61.9 62.6
PPOAG 78.5 78.5 80.5 78.0 78.5 81.0 81.9
PPOC 80.8 79.0 78.4 78.7 78.7 81.8 79.4
PPTW 70.7 75.6 75.6 79.5 73.2 76.1 75.6
ECG200 88.0 88.0 77.0 77.0 74.0 83.0 83.0
IPD 95.5 95.5 95.0 80.7 78.6 71.9 81.2
MI 68.4 74.7 73.7 55.4 55.7 60.0 64.3
P 96.2 100.0 100.0 92.4 84.8 97.1 99.0
SL 78.9 84.6 79.2 78.2 64.6 83.8 83.8
GP 91.3 91.3 90.7 88.7 94.0 90.7 96.3

GPAS 89.9 96.5 91.8 93.0 85.1 90.5 88.0
GPMVF 97.5 97.5 99.7 96.8 88.3 95.9 95.3
GPOVY 95.2 96.5 83.8 99.0 97.1 100.0 100.0
PC 93.3 92.2 87.8 85.6 84.4 86.7 93.1
SC 88.0 98.3 99.3 50.7 60.3 60.0 61.3

Table 2: Accuracy scores for time series.

5 CONCLUSION

In this article, we study the general question of representing multiparameter persistence modules in
Topological Data Analysis. We first introduce a general theoretical framework that allows to recover
existing approaches in the literature, as well as to define new ones. Then, we identify and prove the
stability of some specific representations in that framework, that we call geometric and stable (GS)
representations since they are able to encode the shapes of the summands comprised in the modules,
making these representations more powerful than already existing ones. We finally showcase the
stability and efficiency of these GS representations in various theoretical and numerical applications
about statistical convergence and classification accuracies.

Several questions remain open for future works:

• The framework that we introduced in Definition 3.1 is similar to the Perslay framework of
single parameter persistence (Carrière et al., 2020). In this work, each of the framework
parameter was optimized by a neural network. It is thus natural to investigate whether one
can optimize the module representation within our framework in a data-driven way as well.

• In our numerical applications, we focused on representations computed off of MMA decom-
positions (Loiseaux et al., 2022). In the future, we plan to investigate whether working with
other decomposition methods (Cai et al., 2020; Dey & Xin, 2022) lead to better numerical
performances when combined with our representation framework.

• Even though our experiments were done on data sets equipped with bifiltrations, our code
and framework is well-defined for any number of filtrations. Investivating the dependences
and performances of our framework on more than two filtrations is thus of particular interest.

3Note that the sizes of the point clouds obtained from immunohistochemistry were too large for MPK and
MPI using the code provided in https://github.com/MathieuCarriere/multipers.
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A ADDITIONAL BACKGROUND

Definition A.1. Let n ∈ N∗ and F = {F (1), . . . ,F (n)} be a multi-filtration on a topological
space X . Let e, b ∈ Rn, and ℓe,b : R → Rn be the line in Rn defined with ℓe,b(t) = t · e + b,
that is, ℓe,b is the line of direction e passing through b. Let Fe,b : R → P(X) defined with
Fe,b(t) =

⋂n
i=1 F (i)([ℓe,b(t)]i), where [·]i denotes the i-th coordinate. Then, each Fe,b is a single-

parameter filtration and has a corresponding persistence diagram, or barcode Be,b. The set B(F) =
{Be,b : e, b ∈ Rn} is called the fibered barcode of F .

The two following lemmas from (Landi, 2018) describe two useful properties of the fibered barcode.

Lemma A.2 (Lemma 1 in (Landi, 2018)). Let e, b ∈ Rn and ℓe,b be the corresponding line. Let
ê = mini[e]i. Let F ,F ′ be two multi-filtrations, M,M′ be the corresponding persistence modules
and Be,b ∈ B(F) and B′

e,b ∈ B(F ′) be the corresponding barcodes in the fibered barcodes of F
and F ′. Then, the following stability property holds:

dB(Be,b, B
′
e,b) ≤

dI(M,M′)

ê
. (9)

Lemma A.3 (Lemma 2 in (Landi, 2018)). Let e, e′, b, b′ ∈ Rn and ℓe,b, ℓe′,b′ be the corresponding
lines. Let ê = mini[e]i and ê′ = mini[e

′]i. Let F be a multi-filtration, M be the corresponding
persistence module and Be,b, Be′,b′ ∈ B(F) be the corresponding barcodes in the fibered barcode of
F . Assume M is decomposable M = ⊕m

i=1Mi, and let K > 0 such that Mi ⊆ B∞(0,K) := {x ∈
Rn : ∥x∥∞ ≤ K} for all i ∈ J1,mK. Then, the following stability property holds:

dB(Be,b, Be′,b′) ≤
(K +max{∥b∥∞ , ∥b′∥∞}) · ∥e− e′∥∞ + ∥b− b′∥∞

ê · ê′
. (10)

B AN ADDITIONAL STABILITY THEOREM

In this section, we define a new GS representation, with a slightly different type of upper bound. It
relies on the notations introduced in Appendix A. We also slightly abuse notations and use Mi to
denote both an indicator module and its support.

Proposition B.1. Let σ > 0, and let 0 ≤ δ ≤ δ(M), where

δ(M) := inf{δ ≥ 0 : ΓM achieves dB(Be∆,x, Be∆,x+δu) for all x,u s.t. ∥u∥∞ = 1, ⟨e∆,u⟩ = 0},

where ΓM is the partial matching induced by the decomposition of M. Let N (x, σ) denote the

function N (x, σ) :

{
Rn → R
p 7→ exp

(
−∥p−x∥2

2σ2

) and let

Vδ,σ(M) :

{
Rn → R
x 7→ max1≤i≤m maxf∈C(x,δ,Mi) ∥N (x, σ) · f∥1

(11)

where C(x, δ,Mi) stands for the set of indicator functions from Rn to {0, 1} whose support is
Tδ(ℓ) ∩Mi, where ℓ is a connecting component of im(ℓe∆,x) ∩Mi and e∆ = [1, . . . , 1] ∈ Rn, and
where Tδ(ℓ) is the δ-thickening of the line L(ℓ) induced by ℓ: Tδ(ℓ) = {x ∈ Rk : ∥x, L(ℓ)∥∞ ≤ δ}.
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Then, Vδ,σ satisfies the following stability property:

∥Vδ,σ(M)− Vδ,σ(M′)∥∞ ≤ (
√
πσ)n ·

√
2n+1δn−1dI(M,M′) + Cn(δ), (12)

where Cn(·) is a continuous function such that Cn(δ)→ 0 when δ → 0.

Proof. Let M = ⊕m
i=1Mi and M′ = ⊕m′

j=1M
′
j be two persistence modules that are decomposable

into indicators, let x ∈ Rk and let 0 ≤ δ ≤ min{δ(M), δ(M′)}.

Notations. We first introduce some notations. Let N (resp. N ′) be the number of bars in Be∆,x

(resp. B′
e∆,x), and assume without loss of generality that N ≤ N ′. Let Γ be the partial matching

achieving dB(Be∆,x, B
′
e∆,x). Let N1 (resp. N2) be the number of bars in Be∆,x that are matched

(resp. not matched) to a bar in B′
e∆,x under Γ, so that N = N1 +N2. Finally, note that Be∆,x =

{ℓ : ∃i such that ℓ ∈ C(im(ℓe∆,x) ∩Mi) and im(ℓe∆,x) ∩Mi ̸= ∅}, where C stands for the set
of connected components (and similarly for B′

e∆,x), and let FΓ : Be∆,x → B′
e∆,x be a function

defined on all bars of Be∆,x that coincides with Γ on the N1 bars of Be∆,x that have an associated
bar in B′

e∆,x, and that maps the N2 remaining bars of Be∆,x to some arbitrary bars in the (N ′ −N1)
remaining bars of B′

e∆,x.

A reformulation of the problem with vectors. We now derive vectors that allow to reformulate
the problem in a useful way. Let V̂ be the sorted vector of dimension N containing all weights
∥N (x, σ) · f∥1, where f is the indicator function whose support is Tδ(ℓ) ∩Mi for some Mi, where
ℓ ∈ Be∆,x is a connected component of im(ℓe∆,x) ∩Mi. Now, let V̂ ′ be the vector of dimension N ′

obtained by concatenating the two following vectors:

• the vector V̂ ′
1 of dimension N whose ith coordinate is ∥N (x, σ) · f ′∥1, where f ′ is the

indicator function whose support is Tδ(ℓ
′) ∩M ′

j for some M ′
j , and ℓ′ ∈ B′

e∆,x is the image
under Γ of the bar ℓ ∈ Be∆,x corresponding to the ith coordinate of V̂ , i.e., ℓ′ = FΓ(ℓ)

where [V̂ ]i = ∥N (x, σ) · f∥1 and f is the indicator function whose support is Tδ(ℓ) ∩Mi0

for some Mi0 . In other words, V̂ ′
1 is the (not necessarily sorted) vector of weights computed

on the bars of B′
e∆,x that are images (under the partial matching Γ achieving the bottleneck

distance) of the bars of Be∆,x that were used to generate the (sorted) vector V̂ .

• the vector V̂ ′
2 of dimension (N ′ −N) whose jth coordinate is ∥N (x, σ) · f ′∥1, where f ′ is

an indicator function whose support is Tδ(ℓ
′) ∩M ′

j for some M ′
j , and ℓ′ ∈ B′

e∆,x satisfies
ℓ′ ̸∈ im(FΓ). In other words, V̂ ′

2 is the vector of weights computed on the bars of B′
e∆,x (in

an arbitrary order) that are not images of bars of Be∆,x under Γ.

Finally, we let V be the vector of dimension N ′ obtained by filling V̂ (whose dimension is N ≤ N ′)
with null values until its dimension becomes N ′, and we let V ′ = sort(V̂ ′) be the vector obtained
after sorting the coordinates of V̂ ′. Observe that:

|Vδ,σ(M)(x)− Vδ,σ(M′)(x)| = [V − V ′]1 = [V − sort(V̂ ′)]1 (13)

An upper bound. We now upper bound
∥∥∥V − V̂ ′

∥∥∥
∞

. Let q ∈ J1, N ′K. Then, one has [V ]q =

∥N (x, σ) · f∥1, where f is an indicator function whose support is Tδ(ℓ) ∩Mi for some Mi with
ℓ ∈ Be∆,x if q ≤ N and ℓ = ∅ otherwise; and similarly [V̂ ′]q = ∥N (x, σ) · f ′∥1, where f ′ is an
indicator function whose support is Tδ(ℓ

′) ∩M ′
j for some M ′

j with ℓ′ ∈ B′
e∆,x. Thus, one has:

[V − V̂ ′]q = | ∥N (x, σ) · f∥1 − ∥N (x, σ) · f ′∥1 |
≤ ∥N (x, σ) · f −N (x, σ) · f ′∥1 by the reverse triangle inequality

= ∥N (x, σ) · (f − f ′)∥1 by linearity

≤ ∥N (x, σ)∥2 · ∥f − f ′∥2 by Hölder’s inequality

= (
√
πσ)k · ∥f − f ′∥2
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Since (f − f ′) is an indicator function whose support is (Tδ(ℓ) ∩Mi)△(Tδ(ℓ
′) ∩M ′

j), one has

∥f − f ′∥2 =
√
|(Tδ(ℓ) ∩Mi)△(Tδ(ℓ′) ∩M ′

j)|. Given a segment ℓ and a vector u, we let ℓu denote
the segment u+ ℓ, and we let ℓu denote the (infinite) line induced by ℓu. More precisely:

∥f − f ′∥22 = |(Tδ(ℓ) ∩Mi)△(Tδ(ℓ
′) ∩M ′

j)|

= |
⋃
u

(ℓu ∩Mi)△
⋃
u

((ℓ′)u ∩M ′
j)|

where u ranges over the vectors such that ∥u∥∞ ≤ δ, ⟨u, e∆⟩ = 0

≤
∫
u

|(ℓu ∩Mi)△((ℓ′)u ∩M ′
j)|du

≤
∫
u

|(ℓu ∩Mi)△(ℓ ∩Mi)u|+ |(ℓ ∩Mi)u△(ℓ′ ∩M ′
j)u|+ |(ℓ′ ∩M ′

j)u△((ℓ′)u ∩M ′
j)|du

≤
∫
u

4dB(Be∆,x, Be∆,x+u) + 4dB(Be∆,x, B
′
e∆,x) + 4dB(B

′
e∆,x, B

′
e∆,x+u)du (14)

≤ 4

∫
u

∥u∥∞ + dI(M,M′) + ∥u∥∞ du by Lemma A.2 and A.3

Inequality (14) comes from the fact that the symmetric difference between two bars (in two different
barcodes) that are both matched (or unmatched) by the optimal partial matching is upper bounded
by four times the bottleneck distance between the barcodes, and that (by assumption) the partial
matchings achieving dB(Be∆,x, Be∆,x+u) and dB(B

′
e∆,x, B

′
e∆,x+u) are induced by M and M′.

Conclusion. Finally, one has

|Vδ,σ(M)(x)− Vδ,σ(M′)(x)| = [V − V ′]1 = [V − sort(V̂ ′)]1 from Equation (13)

≤ ∥V − V ′∥∞
≤ (
√
πσ)k ·

√
2n+1δn−1dI(M,M′) + Cn(δ), (15)

with Cn(δ) = 8
∫
u
∥u∥∞ du→ 0 when δ → 0. Inequality (15) comes from the fact that any upper

bound for the norm of the difference between a given vector V̂ ′ and a sorted vector V , is also an
upper bound for the norm of the difference between the sorted version V ′ of V̂ ′ and the same vector
V (see Lemma 3.9 in (Carrière et al., 2015b)).

While the stability constant is not upper bounded by δ, Vδ,σ is more difficult to compute than the GS
representations presented in Definition 3.3.

C PROOF OF THEOREM 3.4

Our proof is based on several lemmas. In the first one, we focus on the GS weight function w as
defined in Definition 3.3.
Lemma C.1. Let M and M ′ be two indicator modules with compact support. Then, one has

dI(M, 0) =
1

2
sup

b,d∈supp(M)

min
j

(dj − bj)+ = w(M). (16)

Furthermore, one has the equality

|w(M)− w(M ′)| ≤ dI(M,M ′). (17)

Proof. We first show Equation (16) with two inequalities.

First inequality: ≤ Let M be an indicator module. If dI(M, 0) = 0, then the inequality is trivial,
so we now assume that dI(M, 0) > 0. Let δ > 0 such that δ < dI(M, 0). By definition of dI, the
identity morphism M → M [2δ] cannot be factorized by 0. This implies the existence of some
b ∈ Rn such that rank(M(b) → M(b+ 2δ)) > 0; in particular, b, b+ 2δ ∈ supp (M). Making δ
converge to dI(M, 0) yields the desired inequality.
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Second inequality: ≥ Let (Kn)n∈N be a compact interval exhaustion of supp (M), and bn, dn ∈ Kn

be two points that achieve the maximum in

1

2
sup

b,d∈Kn

min
j

(dj − bj)+.

Now, by functoriality of persistence modules, we can assume without loss of generality that bn
and dn are on the same diagonal line (indeed, if they are not, it is possible to transform dn into
d̃n such that bn and d̃n are on the same diagonal line and also achieve the maximum). Thus,
rank(M(bn)→M(dn)) > 0, and dI(M, 0) ≥ 1

2 ∥dn − bn∥∞. Taking the limit over n ∈ N leads to
the desired inequality.

Inequality (17) follows directly from the triangle inequality applied on dI.

In the following lemma, we rewrite volumes of indicator module supports using interleaving distances.

Lemma C.2. Let M be an indicator module, and R ⊆ Rn be a compact rectangle, with n ≥ 2. Then,
one has:

vol (supp (M) ∩R) = 2

∫
{y∈Rn:yn=0}

dI

(
M

∣∣
ly∩R

, 0
)
dλn−1(y)

where ly is the diagonal line crossing y, and λn−1 denotes the Lebesgue measure in Rn−1.

Proof. Using the change of variables yi = xi − xn and t = xn (which has a trivial Jacobian) yields
the following inequalities:

vol(supp (M) ∩R) =

∫
supp(M)∩R

dλn(x)

=

∫
{y∈Rn:yn=0}

∫
t∈R

1supp(M)∩R(y + t) dtdλn−1(y)

=

∫
{y∈Rn:yn=0}

diam∥·∥∞
(supp (M) ∩ ly ∩R) dλn−1(y)

where ly is the diagonal line passing through y. Now, since M is an indicator module, one has
diam∥·∥∞

(supp (M) ∩ ly ∩R) = 2dI(M
∣∣
ly∩R

, 0), which concludes the proof.

In the following proposition, we provide stability bounds for single indicator modules.

Proposition C.3. If M and M ′ are two indicator modules, then for any δ > 0 and GS parameter ϕδ

in Definition 3.3, one has:

1. 0 ≤ ϕδ(M)(x) ≤ w(M)
δ ∧ 1, for any x ∈ Rn,

2. ∥ϕδ(M)− ϕδ(M
′)∥∞ ≤ 2(dI(M,M ′) ∧ δ)/δ.

Proof. Claim 1. is a simple consequence of Equation (16).

Claim 2. for GS parameter (a) is a simple consequence of the triangle inequality.

Let us prove Claim 2. for (b). Let x ∈ Rn and δ > 0. One has:

|ϕδ(M)(x)− ϕδ(M
′)(x)| ≤ 2

(2δ)n

∫
{y:yn=0}

|dI
(
M

∣∣
ly∩Rx,δ

, 0
)
− dI

(
M ′∣∣

ly∩Rx,δ
, 0
)
|dλn−1(y)

≤ 2

(2δ)n

∫
{y:yn=0}

dI

(
M

∣∣
ly∩Rx,δ

,M ′∣∣
ly∩Rx,δ

)
dλn−1(y)

≤ 2(dI(M,M ′) ∧ δ)/δ,
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where the first inequality comes from Lemma C.2, the second inequality is an application of the
triangle inequality, and the third inequality comes from Lemma A.2.

Finally, let us prove Claim 2. for (c). Let x ∈ Rn and δ > 0. Let b ≤ d ∈ supp (M) ∩ Rx,δ . Let
also γ > 0. Then, using Lemma C.2, one has:

1

(2δ)n
vol(supp (M) ∩Rb,d) =

2

(2δ)n

∫
{y∈Rn:yn=0}

dI(M
∣∣
Rb,d∩ly

, 0) dλn−1(y)

≤ 2

δ
γ +

2

(2δ)n

∫
{y∈Rn:yn=0}

dI(M
∣∣
Rb+γ,d−γ∩ly

, 0) dλn−1(y),

using the convention Ra,b = ∅ if a ̸≤ b. Now, set γ := dI(M
∣∣
Rx,δ

,M ′
∣∣
Rx,δ

). If b + γ or

d− γ ̸∈ supp (M ′) then dI(M
∣∣
Rx,δ

,M ′
∣∣
Rx,δ

) = γ > dI(M,M ′) which is impossible. Thus,

1

(2δ)n
vol(Rb,d) ≤ 2dI(M

∣∣
Rx,δ

,M ′∣∣
Rx,δ

)/δ

+ sup
a,c∈Rx,δ∩supp(M ′)

2

(2δ)n

∫
{y∈Rn:yn=0}

dI(M
∣∣
Ra,c∩ly

, 0) dλn−1(y)

= 2dI(M
∣∣
Rx,δ

,M ′∣∣
Rx,δ

)/δ + ϕδ(M
′)(x)

Finally, taking the supremum on b ≤ d ∈ supp (M) ∩Rx,δ yields

ϕδ(M)(x)− ϕδ(M
′)(x) ≤ 2dI(M

∣∣
Rx,δ

,M ′∣∣
Rx,δ

)/δ ≤ 2 (dI(M,M ′) ∧ δ) /δ.

The desired inequality follows by symmetry on M and M ′.

Equipped with these results, we can finally prove Theorem 3.4.

Proof. Theorem 3.4.

Let M = ⊕m
i=1Mi and M′ = ⊕m′

j=1M
′
j be two modules that are decomposable into indicator modules

and x ∈ Rn.

Inequality 5. To simplify notations, we define the following: wi := w(Mi), ϕi,x := ϕδ(Mi)(x) and
w′

j := w(M ′
j), ϕ

′
j,x := ϕδ(x,M

′
j). Let us also assume without loss of generality that the indices

are consistent with a matching achieving the bottleneck distance. In other words, the bottleneck
distance is achieved for a matching that matches Mi with M ′

i for every i (up to adding 0 modules in
the decompositions of M and M′ so that m = m′). Finally, assume without loss of generality that∑

i w
′
i ≥

∑
i wi. Then, one has:

|V1,δ(M)(x)− V1,δ(M′)(x)| =

∣∣∣∣∣ 1∑
i wi

∑
i

wiϕi,x −
1∑
i w

′
i

∑
i

w′
iϕ

′
i,x

∣∣∣∣∣
≤ 1∑

i w
′
i

∣∣∣∣∣∑
i

wiϕi,x −
∑
i

w′
iϕ

′
i,x

∣∣∣∣∣+
∣∣∣∣ 1∑

i wi
− 1∑

i w
′
i

∣∣∣∣
∣∣∣∣∣∑

i

wiϕi,x

∣∣∣∣∣ .
Now, for any index i, since dI(Mi,M

′
i) ≤ dB(M,M′) and |wi − w′

i| ≤ dI(Mi,M
′
i) ≤ dB(M,M′)

by Lemma C.1, Proposition C.3 ensures that:
|wiϕi,x − w′

iϕ
′
i,x| ≤ |wi − w′

i|ϕi,x + w′
i|ϕi,x − ϕ′

i,x| ≤ 2(wi + w′
i)(dB(M,M′) ∧ δ)/δ

and ∣∣∣∣ 1∑
i wi
− 1∑

i w
′
i

∣∣∣∣ ≤ 1∑
i w

′
i

∣∣∣∣∑i w
′
i − wi∑
i wi

∣∣∣∣ ≤ mdB(M,M′)

(
∑

i w
′
i)(

∑
i wi)

.

Finally,

|V1,δ(M)(x)− V1,δ(M′)(x)| ≤
[∑

i wi + w′
i∑

i w
′
i

+

∑
i wi

1
m (

∑
i wi)(

∑
i w

′
i)

]
2(dB(M,M′) ∧ δ)/δ

≤
[
4 +

2

C

]
(dB(M,M′) ∧ δ)/δ.
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Inequality 4 can be proved using the proof of Inequality 5 by replacing every wi by 1.

Inequality 6. Let us prove the inequality for (b). Let R := Rx−δ,x+δ . One has:

V∞,δ(M)(x)− V∞,δ(M′)(x) =

sup
i

2

(2δ)n

∫
{y∈Rn:yn=0}

dI(Mi

∣∣
ly∩R

, 0) dλn−1(y)

− sup
j

2

(2δ)n

∫
{y∈Rn:yn=0}

dI(M
′
j

∣∣
ly∩R

, 0) dλn−1(y)

(for any index j) ≤ sup
i

2

(2δ)n

∫
{y∈Rn:yn=0}

dI(Mi

∣∣
ly∩R

, 0)− dI(M
′
j

∣∣
ly∩R

, 0) dλn−1(y)

≤ 2

(2δ)n

∫
{y∈Rn:yn=0}

sup
i

inf
j
dI(Mi

∣∣
ly∩R

,M ′
j

∣∣
ly∩R

) dλn−1(y)

Now, as the interleaving distance is equal to the bottleneck distance for single parameter persistence
(Chazal et al., 2016, Theorem 5.14), one has:

sup
i

inf
j
dI(Mi

∣∣
ly∩R

,M ′
j

∣∣
ly∩R

) ≤ dB(M
∣∣
ly∩R

,M′∣∣
ly∩R

) = dI(M
∣∣
ly∩R

,M′∣∣
ly∩R

) ≤ dI(M,M′) ∧ δ

which leads to the desired inequality. The proofs for (a) and (c) follow the same lines (upper bound
the suprema in the right hand term with either infima or appropriate choices in order to reduce to the
single parameter case).

D PSEUDO-CODE FOR OUR REPRESENTATIONS

In this section, we briefly present the pseudo-code that we use to compute our GS representations.
Our code is based on implicit descriptions of the decompositions of multiparameter persistence
modules (which are the inputs of our GS representations) through their so-called birth and death
corners. These corners can be obtained with, e.g., the public softwares MMA (Loiseaux et al., 2022)
and RIVET (Lesnick & Wright, 2022).

In order to compute our GS representations, we implement the following procedures:

1. Given an indicator module M and a rectangle R ⊂ Rn, compute the restriction M
∣∣
R

.

2. Given a module M (or M
∣∣
R

), compute dI(M, 0). This allows (combined with the first
algorithm above) to compute our weight function and first summand representation in
Definition 3.3.

3. Given a module restricted to a rectangle, compute the volume of the biggest rectangle in the
support of this module. This allows (combined with the first algorithm above) to compute
the third summand representation in Definition 3.3.

For the first point, Algorithm 1 corresponds to ”pushing” the corners of the module on the given
rectangle in order to obtain the updated corners.
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Algorithm 1: Restriction of a module to a rectangle
Data: birth and death corners of a module M , rectangle R = {z ∈ Rn : m ≤ z ≤M}
Result: new summands corners, the birth and death corners of M

∣∣
R

.
for summand = {summand birth corners, summand death corners} in M do

new birth list← [ ];
for b in summand birth corners do

if b ≤M then
b′ = {max(bi,mi) for i ∈ J1, nK};
Append b′ to new birth list;

end
end
new death list← [ ];
for d in summand death corners do

if d ≥ m then
d′ = {min(di,Mi) for i ∈ J1, nK};
Append d′ to new death list;

end
end
new summands corners← [new birth list, new death list];

end

For the second point, we proved in Lemma C.1 that our GS weight function is equal to dI(M, 0) and
has a closed-form formula with corners, that we implement in Algorithm 2.

Algorithm 2: GS weight function
Data: birth and death corners of a module M
Result: distance, the interleaving distance dI(M, 0).
distance← 0;
for b in M birth corners do

for d in M death corners do
distance← max

(
result, 1

2 mini(di − bi)+
)
;

end
end

The third point also has a closed-form formula with corners, leading to Algorithm 3.

Algorithm 3: GS summand representation
Data: birth and death corners of a module M
Result: volume, the volume of the biggest rectangle fitting in supp (M)
volume← 0;
for b in M birth corners do

for d in M death corners do
volume← max (result,Πi(di − bi)+);

end
end

E RUNNING TIME COMPARISONS

In this section, we provide running time comparisons between our GS representations and the MPI
and MPL representations from the literature. It is worth noting that our implementation relies on
an implicit description of the summands in the module decomposition, which are characterized
with their corners (Loiseaux et al., 2022). This is in contrast with the implementations of the other
representations that are available in the multipers4 library, which require slicing the modules
with many lines first. This shows from Table 3, where it can be seen that our representations

4https://github.com/MathieuCarriere/multipers
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(computed on the pinched annulus and immunohistochemistry data sets defined in Section 4) can
be computed much faster than the others, by a factor of at least 25 (all representations are evaluated
on a grid of size 100 × 100, and we provide the maximum running time over p ∈ {0, 1,∞}).
All computations were done using a Ryzen 4800 laptop CPU, with 16GB of RAM. Interestingly,
this sparse and fast implementation based on corners can also be used to improve on the running
time of the multiparameter persistence landscapes (MPL), as one can see from our pseudo-code in
Algorithm 4 (which retrieves the persistence barcode of a multiparameter persistence module along a
given line; this is enough to compute the MPL) and from the second line of Table 3.

Algorithm 4: Restriction of a module to a line
Data: birth and death corners of a module M , a diagonal line l
Result: barcode, the persistence barcode associated to M

∣∣
l

barcode← [ ];
y ← an arbitrary point in l;
for summand = {summand birth corners, summand death corners} in M do

birth← y + 1×minb∈summand birth corners maxi bi − yi;
death← y + 1×maxd∈summand death corners mini di − yi;
bar← [birth,death];
Append bar to barcode;

end

Annulus Immuno
Ours (GS) 250ms± 2ms 275ms± 9.8ms

Ours (MPL) 36.9ms± 0.8ms 65.9ms± 0.9ms
MPI (50) 6.43s± 25ms 5.67s± 23.3ms
MPL (50) 17s± 39ms 15.6s± 14ms
MPI (100) 13.1s± 125ms 11.65s± 7.9ms
MPL (100) 35s± 193ms 31.3s± 23.3ms

Table 3: Running times for our GS representations and competitors.
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