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Abstract

We present our current progress towards a metaprogramming framework for ten-
sor expressions embedded in Haskell; the system offers a high-level syntax for
linear algebra, and generates specialized source code with type-level dimension
annotations.

1 Introduction

The design of domain-specific languages (DSL) for numerical computing is characterized by a tension
between performance and expressiveness [1]. Traditional numerical libraries expose a number of
highly optimized “kernels” (for instance, the linear combination Ax+b); a user is expected to program
against this interface in order to achieve high performance. This approach is only limited by the
availability of such kernels for the operations and data formats of interest.

Recently, generative programming techniques have been applied to synthesize specialized code from
high-level specifications by leveraging statically known data (e.g. vector dimensions and types of the
input expression). Multi-stage compilation (or staging) is a form of metaprogramming in which one
or more code synthesis phases take place, each evaluating at least in part the output of the previous
one and emitting source code and metadata that will be consumed downstream [2–6].

Contribution In this work we describe a two-stage compiler for a high-level tensor DSL embedded
in Haskell, which aims to strike a balance between user-friendliness and high performance. In partic-
ular, the multi-stage approach makes it possible to synthesize code and corresponding specialized
type signatures from a concise mathematical specification, circumventing certain limitations of the
host language.
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2 Compiler pipeline

AST analysis Users define the expression to be compiled using the grammar shown in Figure 1;
for instance, contract (1) (0) x y denotes a contraction of variables x and y over the second and first
index respectively, and it may correspond to the matrix product Xi jY jk if both operands x and y have
order 2. The concrete syntax looks very similar to the abstract one, since it is encoded as a Haskell
sum type.

〈e〉 F Tn 〈sh〉
| contract 〈ix〉 〈ix〉 〈e〉 〈e〉
| binary 〈op2〉 〈e〉 〈e〉
| unary 〈op1〉 〈e〉

〈op2〉F + | ◦

〈op1〉F scale R | exp | log

Figure 1: Abstract syntax of tensor expressions e. Each tensor constant T is bound to a distinct
name n, op1 is the type of unary componentwise operations (e.g. scaling by a real coefficient, etc.),
whereas op2 denotes binary componentwise operations (e.g. sum and product). Tensor shapes sh and
contraction multi-indices ix are natural number tuples.

After checking its dimensional consistency, a number of structural operations are performed on
the expression tree. First, subexpressions are recovered from the abstract syntax tree (AST) by
hash-consing, which reconstructs the dataflow graph[7]. Afterwards, ontraction nodes are decorated
with stride data structures which map tensor indices to the underlying memory layout of the variable
(e.g. specifying that the fibers 3 × 4 × 5 tensor to be reduced over its second index are stored every 3
elements).

Given the expression DAG, we order the internal nodes into a min-heap according to their distance to
the leaves, which then induces the expression reduction order (i.e. from the bound variables to the
result).

Memory layout All operands are stored in memory as 1D unboxed arrays, as implemented by
the vector library. This library provides implicit fusion of intermediate mapping and reduction
operations over contiguous ranges, which can decrease memory pressure and improve performance.

The tensor storage type T is decorated with dimension annotations, implemented with a type-level list
of naturals, as shown in Figure 2.

-- | Dense tensor
data T sh a = T {
tsShape :: SDim sh ,
tsData :: Vector a }

data SDim :: [Nat]→* where
SNil :: SDim ’[]
SCons :: KnownNat n⇒Proxy n→SDim ns→SDim (n ’: ns)

Figure 2: In-memory operands with type-checked dimension annotations

Code and type signature generation The Q monad (for quotation, implemented in the
template-haskell package) provides an effect system for creating unique names (analogous
to Lisp’s “gensym”), as well as the syntactic marker separating our compiler stages. In the code
generation stage we employ a simple monad transformer type over Q which adds safe mutation of
code fragments and read-only access to the expression DAG.

The expression node heap from the AST analysis phase is popped until empty, and code corresponding
to a let declaration is created and inserted into a hashmap; the last node represents the expression
value, and will be returned by reference in the body of a let (whereas the internal nodes are bound
as clauses).

Template Haskell also permits the generation of types, including those having existentially quantified
type variables and type-level literals such as strings and natural numbers. In our case, this lets us
specialize the signature of the generated bindings by adding mentions of the T tensor type as well
as dimension annotations computed from the AST itself. This can be seen as a convenient way
of circumventing part of the typesystem that don’t support fully dependent-typing techniques (e.g.
computing specific functions of types).

2



3 Example session

Here we show a typical interaction with the system. The expression in this example is the action
of a 2 × 3 matrix on a 3-vector. The user declares their expression in a separate module, using the
provided combinators, and compiles it elsewhere (the GHC “stage restriction” prevents code from
different stages to run in the same module).

Figure 4 shows the source code resulting from the compile step: its main features are the inlined
inner products of the rows of the first operand with the second operand, as well as the packing and
unpacking with the T type that provides type-level dimension annotations.

-- module Expressions.hs
testMatVec = do
aa <- matrix 2 3
v <- vector 3
let y = contract 1 0 aa v
pure y

-- module Program.hs

{-# language TemplateHaskell #-}

$(compile testMatVec "fMatVec")

Figure 3: Left : user expression. Right : once module Program is loaded, a new binding fMatVec
appears in scope, with type shown in Figure 4.

fMatVec ::
∀ a. (RealFloat a, Unbox a)⇒T ’[2, 3] a→T ’[3] a→T ’[2] a
fMatVec t_0 t_1
= let
x_1 = tsData t_1
x_0 = tsData t_0
v_result
= generate 2 $ \ i→
(x_0 (mod i 2 + 0)) * (x_1 i)
+ (x_0 (mod i 2 + 2)) * (x_1 i)
+ (x_0 (mod i 2 + 4)) * (x_1 i)
+ 0
)

in
(T ((SCons (Proxy :: Proxy 2)) SNil)) v_result

Figure 4: Code produced by the meta-code shown in Figure 3, desugared and with infix operators.
Juxtaposition (e.g. x_1 i) here denotes indexing into a vector. This generated source code is only
visible to the user by passing the -ddump-splices GHC flag.
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4 Related work

Array compilers and metaprogramming Generative programming has a history of successes
in self-tuning numerical libraries such as ATLAS [14] and FFTW [15]. Later research produced
whole-program compilers that optimize parallelism and arithmetic intensity [16], adapt deep learning
workloads to various hardware backends or generic compiler IR [17–20] and offer a mathematically-
intuitive API for tensor expressions while retaining the performance of hand-tuned kernels [8].
Similarly to other polyhedral compilers [21], our DSL is limited to modeling the static control part
(“SCoP”) of a numerical program, and it overlaps in scope with TACO [8], with the major difference
of being embedded in a declarative language.

5 Discussion

In this paper we have briefly described a metaprogramming environment that transforms sym-
bolic specifications of linear algebra programs into sequences of imperative loops and reductions
with statically-typed dimensions. The main rationale for this approach is to extend a preexisting,
widespread language (Haskell in this case) with tensor computing capabilities, rather than producing
a radically new domain-specific language. As such, further work will aim at proving the correctness
of this system and improving the ergonomics of the surface language.

Some authors (e.g. [20, 23]) have shown that transforming memory layout can improve overall
arithmetic efficiency of tensor reduction sequences, even though picking the optimal such schedule is
NP-hard [24], which motivates the use of approximations and heuristics at the expense of compiler
complexity. Others (e.g. [19] ) have demonstrated user-facing schedule combinators in their compiler
API, but this is beyond the scope of the present work.

Hardware support is another important aspect; since the one we present is a Haskell metaprogramming
environment, it only targets the hardware backends that are natively supported by the GHC compiler
(i.e. no GPUs or FPGAs at present).
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A Typed Template Haskell

An early version of this work used typed template Haskell for code generation, [9], a type-checked
extension to template Haskell (TH) [10] which provides syntactic support for quoting and splicing
(“anti-quoting”). In practice this means that we can compose target programs using higher-order
combinators (e.g. those shown in Figure 5), resting assured that the resulting code will be well-formed.
This approach to compiling embedded DSLs has been demonstrated e.g. in [11] and recently applied
to parser combinators [12] and extensible algebraic datatypes [13].

In typed TH, values of type Code a denote program fragments producing values of type a, whereas
quoting and splicing are here denoted with ~·� and σ(.) respectively.

-- Function abstraction
lam :: (Code x→Code y)

→Code (x→y)
lam f = ~ \y→σ( f ~ y � ) �

-- Function application
(>*<) :: Code (a→b)

→Code a→Code b
f >*< a = ~ σ(f) σ(a) �

-- | Numeric typeclasses
instance (Num a, Lift a)⇒Num (Code a) where
Code x + Code y = Code ~ σ(x) + σ(y) �

instance (Floating a, Lift a)⇒
Floating (Code a) where
exp (Code x) = Code ~ exp σ(x) �

Figure 5: Left : Typed TH combinators for abstraction and β-reduction. Right : Sample implementa-
tions of numeric typeclasses for Code.

The initial idea behind this paper was to provide a type-safe user-facing DSL based on Code combi-
nators, which would then be compiled into efficient array programs. Unfortunately this approach fell
short because GHC doesn’t currently support impredicative polymorphism [22], i.e. type variables
cannot be instantiated with polymorphic types. More specifically, precise, dependently-typed signa-
tures such as Code (∀ n . KnownNat n⇒ Vec n a→ Vec n a→ a) indicating binary operations on
vectors of statically-known identical length will be rejected.

B Development environment

The library described in this paper was developed using GHC 8.10.4 together with these additional
libraries :

• vector 0.12.3
• template-haskell 2.16
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