

000
001
002
003
004
005
006
007
008

THINKING WITH CAMERA: A UNIFIED MULTIMODAL MODEL FOR CAMERA-CENTRIC UNDERSTANDING AND GENERATION

009 **Anonymous authors**

010 Paper under double-blind review

011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030

Figure 1: Illustration of the versatile capabilities of our Puffin model. It unifies camera-centric generation (a) and understanding (b), supports the thinking mode (c), and enables diverse applications (d).

054
055

ABSTRACT

056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071

Camera-centric understanding and generation are two cornerstones of spatial intelligence, yet they are typically studied in isolation. We present **Puffin**, a unified camera-centric multimodal model that extends spatial awareness along the camera dimension. Puffin integrates language regression and diffusion-based generation to interpret and create scenes from arbitrary viewpoints. To bridge the modality gap between cameras and vision-language, we introduce a novel paradigm that treats *camera as language*, enabling *thinking with camera*. This guides the model to align spatially grounded visual cues with photographic terminology while reasoning across geometric context. Puffin is trained on **Puffin-4M**, a large-scale dataset of 4 million vision-language-camera triplets. We incorporate both global camera parameters and pixel-wise camera maps, yielding flexible and reliable spatial generation. Experiments demonstrate Puffin’s superior performance over specialized models for camera-centric generation and understanding. With instruction tuning, Puffin generalizes to diverse cross-view tasks such as spatial imagination, world exploration, and photography guidance. We will release the code, models, dataset pipeline, and benchmark to advance multimodal spatial intelligence research.

072
073

1 INTRODUCTION

074
075
076
077
078
079
080
081
082
083
084

For machines, cameras serve as the primary interface to the physical world, enabling spatial intelligence that underlies applications such as robotics, AR/VR, and autonomous driving. In general, two principal camera-centric objectives work in tandem to enable machines to perceive and interact with their spatial context. On the one hand, *understanding* the camera geometry from images (Pollefeyns et al., 1999; Veicht et al., 2024; Zhang et al., 2024; Lin et al., 2025c), namely how the 3D world is projected onto the 2D image plane, lays the foundation for machines to recover spatial structure and navigate complex environments. On the other hand, by modulating intrinsic and extrinsic parameters, cameras encode spatial relationships and offer flexible control over spatial content *generation* (Bernal-Berdun et al., 2025; He et al., 2024; Ren et al., 2025; Ball et al., 2025), which simulates how the world appears from any viewpoint or orientation. To date, these two perspectives have been commonly treated as isolated problems and independently explored by the research community.

085
086
087
088
089
090
091
092
093
094
095
096
097

In this work, we make *the first attempt* to unify camera-centric understanding and generation in a cohesive framework. Motivated by recent progress in unified understanding and generation with large multimodal models (LMMs) (Team, 2024; Wu et al., 2025d; Pan et al., 2025; Wu et al., 2025b), we extend this paradigm to the spatial domain, where camera geometry plays a central role. However, unlike language or images, camera parameters are abstract and non-intuitive: they describe **field-of-view (FoV)**, orientation, or perspective in numerical form rather than semantic content. This discrepancy introduces a modality gap when integrating cameras into LMMs. For instance, when users specify “20° roll” or “35mm lens” for controllable generation, existing models often ignore or misinterpret such cues, pursuing semantic alignment while neglecting precise spatial control. Similarly, current LMMs tend to collapse geometric details into coarse representations when understanding camera information, leading to spatially inconsistent outputs. As a result, naïvely extending LMMs cannot resolve conflicts between modalities, producing suboptimal performance in both tasks.

098
099
100
101
102
103
104
105
106
107

To address this challenge, we introduce **Puffin**, a unified multimodal framework that interprets cameras as a first-class modality. Puffin combines autoregressive and diffusion modeling to jointly perform camera-centric understanding and generation¹. Instead of treating camera parameters as auxiliary labels, Puffin introduces the notion of *thinking with camera*, aligning spatially grounded visual cues with professional photographic terminology while reasoning over geometric context. This design provides a shared chain-of-thought across multimodal tasks, enabling spatially consistent understanding and controllably aligned generation.

To support this framework, we construct **Puffin-4M**, a large-scale dataset of 4 million vision-language-camera triplets. Puffin-4M includes single-view images with precise camera parameters, descriptive

¹We mainly focus on single-view calibration and text-to-image controllable generation, but Puffin can be flexibly extended to cross-view understanding and generation via instruction tuning (see Figure 6).

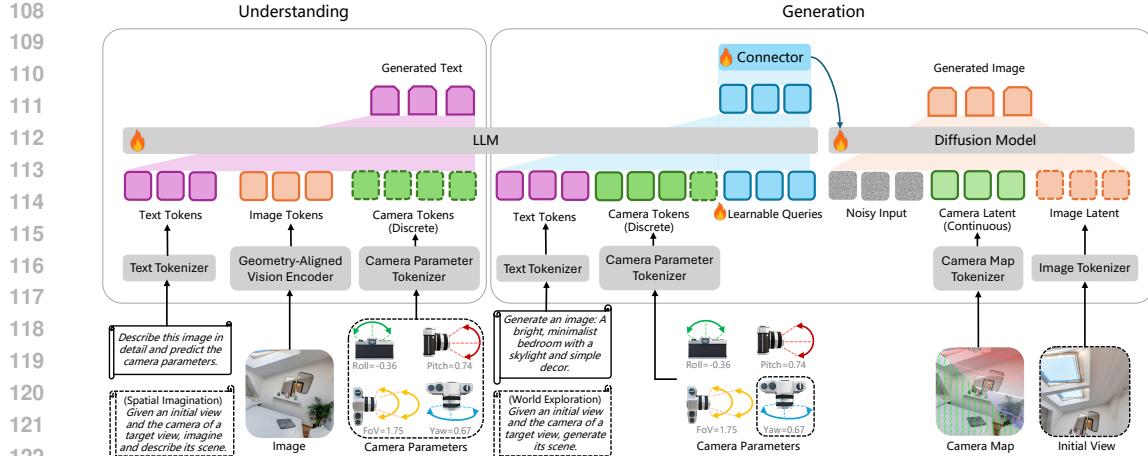


Figure 2: Overview of the proposed Puffin. It jointly learns the camera-centric understanding and generation tasks in a unified multimodal framework. The elements bounded with dotted boundaries represent the cross-view understanding and generation during instruction tuning, such as spatial imagination and world exploration.

captions, pixel-wise camera maps, and spatial reasoning annotations across diverse indoor and outdoor scenarios. Beyond single views, it also incorporates cross-view and aesthetic images, making it a versatile benchmark for both understanding and generation tasks.

Experimental results show Puffin outperforms specialized models for camera-centric understanding or generation, and can be adapted to diverse downstream applications. We illustrate the versatile capabilities of our Puffin model in Figure 1. In each generated image (a), the target camera is marked at the bottom left, and the horizon lines are visualized from the estimated camera parameters (b). For world exploration (d), we visualize 3D reconstruction results derived from the initial and generated views. Our main contributions are threefold:

- We make *the first attempt* to seamlessly integrate camera geometry into a unified multimodal model, introducing a camera-centric framework to advance multimodal spatial intelligence.
- We propose *thinking with camera*, a novel mechanism that guides the model to align spatially grounded visual cues with photographic terminology, bridging the modality gap between camera and vision-language and enabling effective spatial reasoning.
- We construct **Puffin-4M**, a large-scale dataset of 4M vision-language-camera triplets spanning diverse indoor and outdoor scenes, and establish a comprehensive benchmark for evaluating camera-centric multimodal models.

2 CAMERA-CENTRIC UNIFIED MULTIMODAL MODEL

Puffin, as illustrated in Figure 2, unifies camera-centric understanding and generation within a multimodal paradigm. For understanding, we introduce a geometry-aligned vision encoder to a large language model (LLM) to retain rich geometric features and enhance the model’s capacity for spatial analysis. For generation, a connector module learns to map the hidden states of the LLM (via a set of learnable queries) into conditioning signals that can be interpreted by the diffusion model. To facilitate the integration of camera geometry, apart from the discrete camera tokens derived from numerical camera parameters, we introduce continuous camera latent obtained from pixel-wise camera maps, allowing fine-grained spatial control in image generation.

2.1 CAMERA UNDERSTANDING

Definition. In this work, camera understanding is formulated as a question-answering task conditioned on image content. The generated text consists of a concise description or spatial reasoning along with the estimated camera parameters (*i.e.*, roll, pitch, FoV) of the input image. Unlike previous methods that directly estimate the parameters from images, our approach integrates camera geometry within the text and performs next-token prediction in a multimodal sequence modeling paradigm.

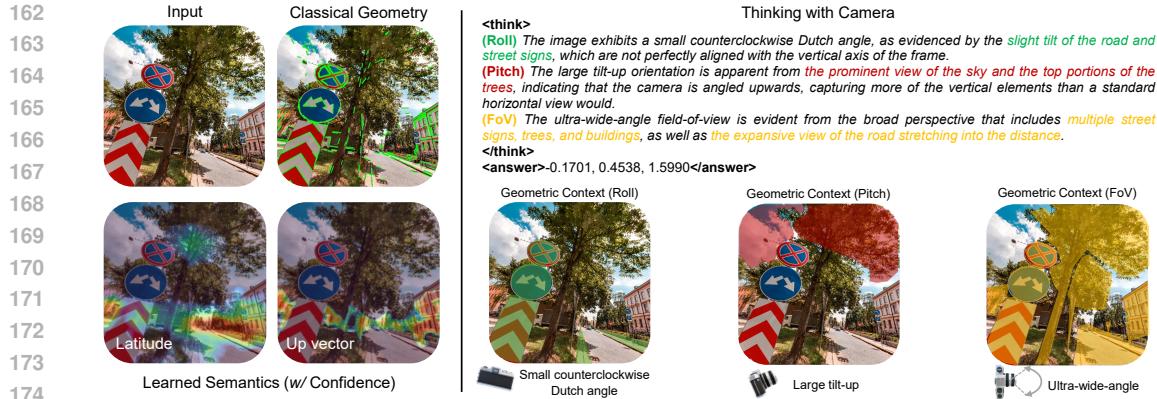


Figure 3: Methods for learning camera geometry. (Left) Previous classical and learning-based methods focused on extracting or learning representations such as geometric structures or semantic features (with confidence). (Right) We introduce the notion of *thinking with camera* through LMMs. It first decouples the camera parameters across geometric context, establishing connections between spatially grounded visual cues (highlighted in the masked regions) and professional photographic terms. The camera parameters are then predicted within the `<answer></answer>` tag through this spatial reasoning process `<think></think>`.

Motivation. As illustrated in Figure 3 (left), previous classical and learning-based methods focus on extracting or learning representations to predict the camera parameters, such as geometric structures (Pautrat et al., 2023) or semantic features with confidence estimates (Veicht et al., 2024). However, these representations often emphasize low-/mid-level patterns, limiting their ability to capture a holistic and coherent spatial concept. As a result, existing approaches tend to excel in scenarios with rich features but struggle to generalize across diverse visual environments.

Thinking. Instead of focusing on how to learn a representation, we propose to interpret the camera as language and introduce the notion of *thinking with camera*. It guides the LMMs to align spatially grounded visual cues with photographic terminology while reasoning across geometric context. The details of each key element are elaborated below.

• *Spatially Grounded Visual Cues.* The 3D world is governed by physical laws, where gravity and human design shape stable spatial regularities that serve as strong perceptual priors. Texture-less regions such as sky, ceilings, floors, or ground surfaces lack local features but encode vertical regularities critical for pitch estimation. Similarly, FoV estimation relies on perceiving spatial composition, including the foreground–background ratio, object scale, and depth distribution. While such properties are difficult to infer from purely visual representations, they are implicitly captured by LMMs as knowledge priors. Thus, we embed these spatially grounded visual cues into our thinking captions, enabling the model to perform explicit spatial reasoning about camera geometry.

• *Professional Photographic Terms.* Existing LMMs typically acquire over-abstracted semantics, whereas the detailed numerical values of camera parameters are too fine-grained to estimate precisely. As a practical alternative, professional photographic terms (e.g., close-up, tilt-up, Dutch angle) are widely used in annotations and well aligned with LMM knowledge (Liu et al., 2025; Wang et al., 2025b; Lin et al., 2025c). Thus, we leverage them as intermediate supervisory signals to naturally bridge low-/mid-level camera geometry and high-level multimodal reasoning. These terms, derived as quantized abstractions of camera parameters, are merged with textual scene descriptions, making global spatial arrangements linguistically accessible. The parameter-to-term mapping can be formulated as $f : p \mapsto t$, in which the mapping f is shown in Appendix A.2 (Table A1).

• *Geometric Context.* As shown in Figure 3 (right), we decouple camera parameters across geometric context (roll, pitch, and FoV), which aligns specific spatially grounded visual cues such as sky, foreground composition, and object-level depth ordering with each professional photographic terminology. By anchoring numerical attributes to semantically meaningful descriptors, our framework bridges abstract visual features and physically interpretable geometry. The final parameters are predicted through this structured spatial reasoning.

With the above designs, we interpret the camera as language by grounding its physical attributes in stable spatial regularities. Numerical parameters are abstracted into professional photographic terms, providing a semantic vocabulary aligned with LMMs. Through this mapping, camera geome-

try becomes linguistically interpretable, allowing structured spatial reasoning for accurate camera parameter prediction. We visualize more reasoning results in [Appendix A5.1 \(Figure A8\)](#).

Choosing a Suitable Vision Encoder. A straightforward approach to camera understanding is to fine-tune existing LMMs that couple a vision encoder with an LLM, but this naïve strategy faces two major limitations: (i) vision encoders in LMMs are primarily designed for recognition tasks and thus yield condensed features lacking geometric fidelity, and (ii) language components contain little prior knowledge of spatial perception, reducing adaptability to camera-centric tasks. As a result, such fine-tuning can lead to performance bottlenecks and even underperform pure vision-based methods (see Section 3.3). To overcome these issues, we introduce a *geometry-aligned vision encoder* distilled from both semantic (e.g., CLIP, SigLIP) and vision-centric (e.g., DINO, SAM) teachers (Heinrich et al., 2025), offering versatile features that preserve geometric fidelity while maintaining strong semantic understanding. We then align this encoder with an LLM (Qwen et al., 2024) via progressive unfreezing and joint fine-tuning. This staged optimization stabilizes training and fosters spatial awareness that bridges low-/mid-level structural cues with high-level linguistic reasoning. The detailed training recipe is provided in Appendix A4.

2.2 CAMERA-CONTROLLABLE GENERATION

Motivation. Unlike image understanding, image generation requires complex cross-modal alignment and the synthesis of fine-grained visual details. As discussed in Section 2.1, the detailed numerical values of camera parameters are too specific for current LMMs to interpret effectively, failing to faithfully capture the realistic spatial distribution required for camera-controllable generation.

Thinking. To address this, we design a step-by-step process that integrates visual detail analysis with reasoning. The model first infers the potential visual cues from vanilla captions, and then uses this textual reasoning as a semantic planning stage to guide image generation. For instance, a large pitch value may correspond to an expansive sky with clouds in outdoor scenes or to pendant lights and uncluttered ceilings indoors. Beyond textual reasoning, numerical camera parameters are translated into professional photographic terms more suitable for LMMs, naturally aligning with the reasoning process in camera understanding. We therefore adopt a shared chain-of-thought mechanism between understanding and controllable generation. As shown in Figure 1 (c), given a small pitch value and a caption describing a modern interior, our method translates the value into a photographic term (e.g., small tilt-down), imagines salient cues such as a windowsill, and produces more precise spatial simulation than the baseline.

Flexible and Faithful Control. The pipeline of camera-controllable generation is shown in Figure 2 (right). The key design is to incorporate pixel-wise camera maps as a continuous latent of camera geometry, apart from the discrete camera tokens derived from numerical parameters. Unlike tokens that capture only global attributes, these dense maps encode local geometric context at each pixel, including orientation and displacement cues (Jin et al., 2023). By converting maps into continuous latent, the diffusion model receives fine-grained spatial priors that preserve global camera settings while adapting to subtle geometric variations, thus offering flexible control of spatial layout and viewpoint. Additionally, we introduce a connector module as an adaptive interface between the LLM and the diffusion model, where a set of learnable queries together with text and camera tokens extract and restructure LLM hidden representations, which are then projected into conditioning signals for generation Pan et al. (2025); Wu et al. (2025c). This design enables semantic and geometric understanding from the LLM to faithfully guide the diffusion model.

2.3 INSTRUCTION TUNING

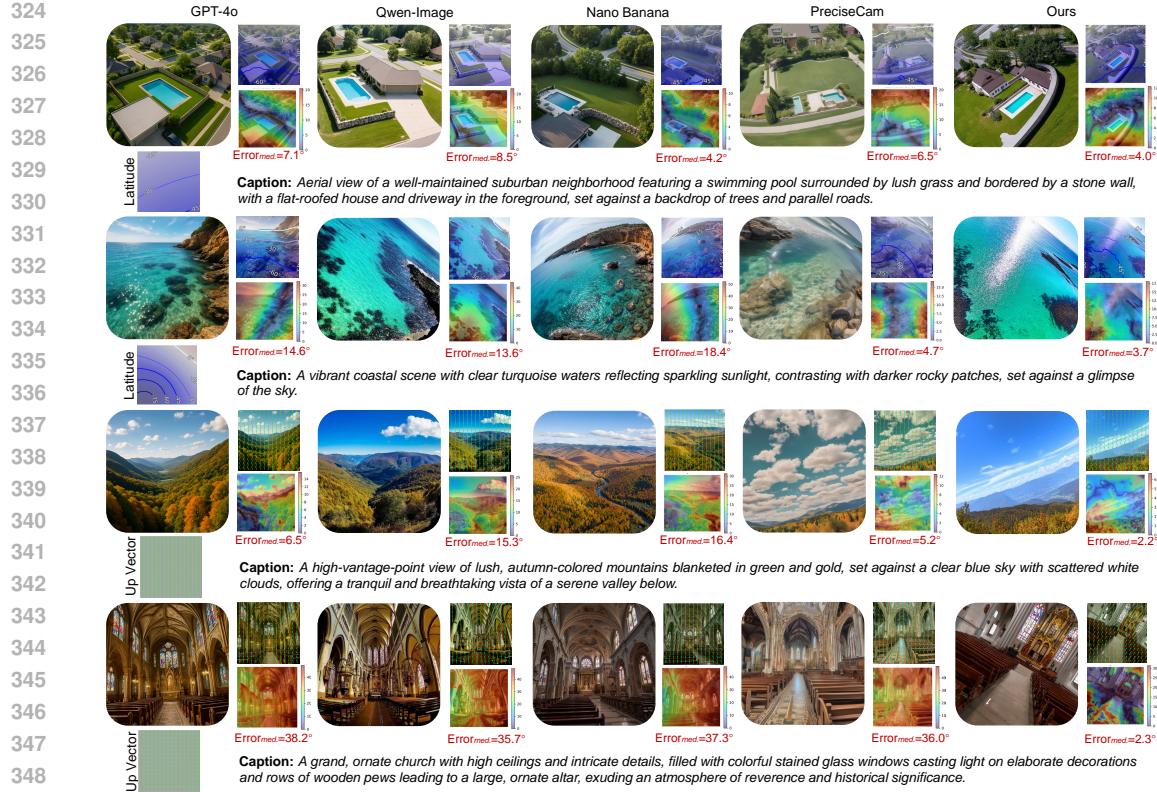
Although our Puffin focuses on single-view camera calibration and text-to-image controllable generation, it can be flexibly extended to cross-view settings with only minor modifications, such as appending additional tokens and switching prompts according to the target task. As shown in Figure 2, the dotted modules denote cross-view understanding and generation. We explore three tasks: (i) spatial imagination, where the model imagines the scene description of a target view given its camera parameters and an initial view; (ii) world exploration, where the model generates the target view, incorporating an additional yaw parameter to represent cross-view deviations and conditioning on both the target-view camera map and the VAE-encoded initial view (with text descriptions randomly dropped to support both text-conditioned and text-free generation); and (iii) photographic guidance,

270

Table 1: Evaluation results on camera understanding. We color the **best** and **second best** results.

271

272	Approach	Roll [degrees]				Pitch [degrees]				FoV [degrees]			
		273	error \downarrow	AUC $\triangleright 1/5/10^\circ \uparrow$	274	error \downarrow	AUC $\triangleright 1/5/10^\circ \uparrow$	275	error \downarrow	AUC $\triangleright 1/5/10^\circ \uparrow$	276	error \downarrow	AUC $\triangleright 1/5/10^\circ \uparrow$
277	DeepCalib (Lopez et al., 2019)	1.41	34.6	65.4	79.4	5.19	11.9	27.8	44.8	11.14	5.6	12.1	22.9
	CTRL-C (Lee et al., 2021)	0.88	54.5	75.0	84.2	4.80	16.6	33.2	46.5	18.65	2.0	5.8	12.8
	MSCC (Song et al., 2024)	0.90	53.1	72.8	82.1	5.73	19.0	33.2	44.3	10.80	6.0	14.6	26.2
	ParamNet (Jin et al., 2023)	1.17	43.4	70.7	82.2	3.99	15.4	34.5	53.3	11.01	3.2	10.1	21.3
	SVA (Lochman et al., 2021)	-	31.9	35.0	36.2	-	13.6	20.6	24.9	-	9.4	16.1	21.1
	UVP (Pautrat et al., 2023)	0.51	69.2	81.6	86.9	4.59	21.6	36.2	47.4	10.92	8.2	18.7	29.8
	GeoCalib (Veicht et al., 2024)	0.36	82.6	90.6	94.0	1.94	32.4	53.3	67.5	4.46	13.6	31.7	48.2
278	Puffin (Ours)	0.32	84.9	93.4	96.2	1.08	47.6	68.2	79.4	2.42	23.9	47.8	64.1
279	DeepCalib (Lopez et al., 2019)	1.95	24.7	55.4	71.5	3.27	16.3	38.8	58.5	8.07	1.5	8.8	27.2
	CTRL-C (Lee et al., 2021)	1.68	32.8	59.1	74.1	2.39	24.6	48.6	65.2	5.64	10.7	25.4	43.5
	MSCC (Song et al., 2024)	3.50	15.0	37.2	57.7	3.48	18.8	38.6	54.3	11.18	4.4	11.8	23.0
	ParamNet (Jin et al., 2023)	1.63	34.5	59.2	73.9	3.05	19.4	42.0	60.3	8.21	6.0	16.8	31.6
	SVA (Lochman et al., 2021)	9.48	32.4	39.6	44.1	18.46	21.2	28.8	34.5	43.01	8.8	16.1	21.6
	UVP (Pautrat et al., 2023)	0.89	52.1	64.8	71.9	2.48	36.2	48.8	58.6	9.15	15.8	25.8	35.7
	GeoCalib (Veicht et al., 2024)	0.43	71.3	83.8	89.8	1.49	38.2	62.9	76.6	4.90	14.1	30.4	47.6
280	Puffin (Ours)	0.40	71.7	86.2	92.1	0.95	51.0	68.2	79.3	7.48	16.3	28.5	39.0
281	DeepCalib (Lopez et al., 2019)	1.15	44.1	73.9	84.8	4.68	10.8	28.3	49.8	10.93	0.7	13.0	24.0
	CTRL-C (Lee et al., 2021)	1.20	43.5	70.9	82.5	1.94	27.6	54.7	70.2	5.64	9.8	24.6	43.2
	MSCC (Song et al., 2024)	1.44	39.6	60.7	72.8	3.02	20.9	41.8	55.7	14.78	3.2	8.3	16.8
	ParamNet (Jin et al., 2023)	0.93	51.7	77.0	86.0	2.15	27.0	52.7	70.2	14.71	2.8	6.8	14.3
	SVA (Lochman et al., 2021)	-	8.6	9.2	9.7	-	3.4	5.7	7.0	-	1.2	2.7	4.1
	UVP (Pautrat et al., 2023)	0.38	72.7	81.8	85.7	1.34	42.3	59.9	69.4	5.57	15.6	30.6	43.5
	GeoCalib (Veicht et al., 2024)	0.28	86.4	92.5	95.0	0.87	55.0	76.9	86.2	3.03	19.1	41.5	60.0
282	Puffin (Ours)	0.38	80.6	89.8	93.5	0.71	61.7	78.9	86.4	3.62	17.0	37.3	53.1
283	DeepCalib (Lopez et al., 2019)	1.90	29.3	56.2	71.7	3.71	15.3	36.0	54.9	7.43	9.0	19.4	34.8
	CTRL-C (Lee et al., 2021)	4.69	20.3	35.2	46.7	8.43	10.8	24.6	36.1	11.70	5.3	12.7	23.5
	MSCC (Song et al., 2024)	4.40	17.4	34.7	47.9	6.87	13.1	26.3	38.9	9.79	6.8	16.3	29.0
	ParamNet (Jin et al., 2023)	2.11	24.9	53.6	71.5	3.40	16.1	38.7	58.6	6.21	9.4	22.3	39.8
	UVP (Pautrat et al., 2023)	2.03	32.7	46.4	54.9	9.04	11.4	22.6	32.5	18.80	5.0	12.1	19.9
	GeoCalib (Veicht et al., 2024)	0.92	53.6	73.9	82.6	2.18	28.9	52.5	69.6	5.04	12.4	28.0	45.8
	Puffin (Ours)	0.41	78.3	91.0	95.2	0.74	60.2	81.2	90.0	1.21	42.4	70.5	84.3
284													
285													
286													
287													
288													
289													
290													
291													
292													
293													
294													
295													
296													
297													
298													
299													
300													
301													
302													
303													
304													
305													
306													
307													
308													
309													
310													
311													
312													
313													
314													
315													
316													
317													
318													
319													
320													
321													
322													
323													
324													
325													
326													
327													
328													
329													
330													
331													
332													
333													
334													
335													
336													
337													
338													
339													
340													
341													
342													
343													
344													
345													
346													
347													
348													
349													
350													
351													
352													
353													
354													
355													
356													
357													
358													
359													
360													
361													
362													
363				</td									



349 **Figure 4: Comparison results on controllable generation.** We visualize the generated image along with its
350 camera map (latitude or up vector, estimated by (Veicht et al., 2024)), error map to the GT camera map, and the
351 median error. The caption and target camera map are presented at the bottom of each comparison.

352 **Table 2: Camera-controllable generation evaluation on Puffin-Gen.** When evaluating multimodal models,
353 we convert the camera parameters from radians to degrees* or express them using standard photographic terms†.
354

Approach	Up Vector [degrees]		Latitude [degrees]		Gravity [degrees]		Visual Quality
	mean error ↓	median error ↓	mean error ↓	median error ↓	mean error ↓	median error ↓	
GPT-4o* (OpenAI, 2025)	24.11	22.86	15.87	13.67	28.08	27.39	95.92
GPT-4o† (OpenAI, 2025)	24.07	22.10	14.67	12.43	27.19	26.32	94.43
Qwen-Image* (Wu et al., 2025a)	23.80	22.73	15.76	13.90	27.75	27.22	83.31
Qwen-Image† (Wu et al., 2025a)	23.98	22.60	15.92	13.92	27.86	26.45	83.37
Nano Banana* (Google DeepMind, 2025)	24.08	23.13	16.66	15.05	28.78	28.22	91.66
Nano Banana† (Google DeepMind, 2025)	24.65	23.50	15.80	13.98	28.22	26.73	88.02
PreciseCam (Bernal-Berdun et al., 2025)	18.66	17.47	12.49	9.99	18.39	15.34	90.91
Puffin (Ours)	11.94	10.12	6.34	4.04	6.79	3.43	69.46

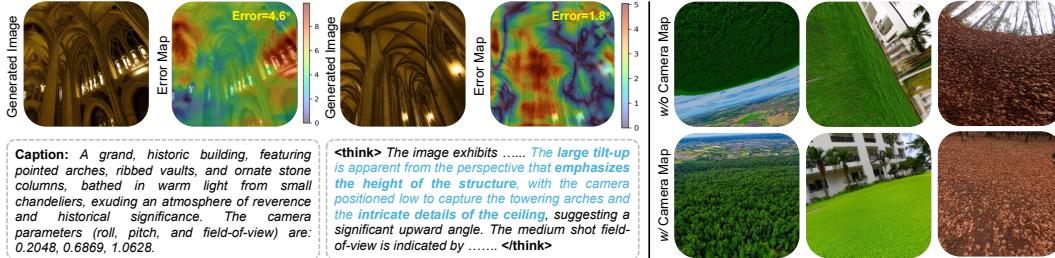
363 **Comparison Results.** As shown in Table 1, our method outperforms the baselines on MegaDepth
364 and Puffin-*Und*, and achieves comparable results on TartanAir and LaMAR. Due to the fixed image
365 resolution in our training data (512×512), we adopt a central cropping strategy followed by
366 resizing to rectangular inputs for evaluating non-square images. The vertical FoV is then computed
367 from the predicted value and scaled according to the crop ratio. Nevertheless, this procedure may
368 discard semantically valid content and thereby degrade our camera understanding performance,
369 particularly when the aspect ratio deviates substantially from unity, as in LaMAR, where Puffin
370 slightly underperforms the state-of-the-art method (Veicht et al., 2024). While this limitation is
371 orthogonal to our current exploration, it could be potentially mitigated in future work by constructing
372 a multi-scale training dataset. We present the horizon lines derived from the predicted camera
373 parameters of different methods in [Appendix A5.1 \(Figure A9\)](#).

3.2 EVALUATIONS ON CAMERA-CONTROLLABLE GENERATION

374
375 **Settings.** We evaluate our generation performance against the state-of-the-art method Precise-
376 Cam (Bernal-Berdun et al., 2025). In addition, we compare our approach with recent powerful

378 **Table 3: Ablation study on camera understanding.** We evaluate our method with different architectures and
 379 the mode of thinking with camera.

380 381 382 383 384 385	Approach	386 387 388 389 390 391 392 393 394			395 396 397 398 399 400 401 402 403 404 405 406 407 408			399 400 401 402 403 404 405 406 407 408					
		395 396 397 398 399 400 401 402 403 404 405 406 407 408											
InternVL3 (Zhu et al., 2025)		0.91	53.7	75.5	85.6	1.72	31.9	59.7	76.3	2.96	19.7	43.1	63.5
Qwen2.5-VL (Bai et al., 2025)		0.79	58.8	78.0	86.5	1.61	36.4	62.4	78.0	2.91	19.4	42.5	62.5
Vision Encoder (Heinrich et al., 2025)		0.55	69.0	86.2	92.6	1.00	49.8	74.1	85.9	1.87	28.3	57.9	75.9
Ours		0.47	75.6	89.7	94.6	0.91	54.2	77.5	87.9	1.48	38.0	66.2	81.5
Ours w/ Thinking		0.41	78.3	91.0	95.2	0.74	60.2	81.2	90.0	1.21	42.4	70.5	84.3



395 **Figure 5: Ablation study on the camera-controllable generation.** We evaluate the effectiveness of the thinking mode (left) and the precise geometric encoding provided by camera map (right).

398 multimodal models, including GPT-4o (OpenAI, 2025), Qwen-Image (Wu et al., 2025a), and Nano
 399 Banana (Google DeepMind, 2025), using the same captions as our method. The prompt templates are
 400 shown in Appendix A2.3. To mitigate the data gap for the multimodal models, we convert the camera
 401 parameters in captions from radians to degrees or express them using professional photographic terms.
 402 For quantitative evaluation, we adopt an offline method (Veicht et al., 2024) to estimate pixel-wise
 403 camera maps. Using the ground truth maps, we then compute the mean and median errors of the up
 404 vector, latitude, and gravity, all measured in degrees. **We also incorporate the standard FID metric**
 405 **to assess the overall visual quality of the generated images.** Since no benchmark dataset exists for
 406 text-to-image generation with precise camera parameters, we construct Puffin-*Gen* to fill this gap. The
 407 dataset consists of 650 caption-camera pairs spanning diverse scenarios and camera configurations.
 408 **The construction details of Puffin-*Gen* and Puffin-*Und* are presented in Appendix A3, and we will**
 409 **release them to support standardized evaluation and facilitate subsequent works.**

410 **Comparison Results.** We report quantitative and qualitative results in Table 2 and Figure 4. Our
 411 method outperforms existing multimodal models by a large margin across all metrics. While these
 412 models produce high-quality and aesthetically pleasing images, they fail to ensure spatially consistent
 413 layouts under specific camera configurations. PreciseCam (Bernal-Berdun et al., 2025) provides
 414 effective control but often generates monotonous stylized outputs (e.g., anime) with limited diversity,
 415 and struggles with challenging configurations such as significantly tilted poses. In contrast, our method
 416 generalizes well across diverse scenarios and camera settings, demonstrating strong practicality
 417 for real-world image generation. **Additional results and parameter-specific controls are shown in**
 418 **Appendix A5.2 (Figure A11 and Figure A12).**

419 3.3 ABLATION STUDIES

420 **Architecture.** As discussed in Section 2.1, directly fine-tuning the existing VLMs yields a significant
 421 performance bottleneck since their vision encoders learn overly condensed high-level features and
 422 language models have little prior knowledge of spatial perception. As listed in Table 3, directly
 423 finetuning the current VLMs (Bai et al., 2025; Zhu et al., 2025) even underperforms the vision-only
 424 network. To this end, we carefully pair an LLM (Qwen et al., 2024) with the vision encoder (Heinrich
 425 et al., 2025); both of them are first aligned and then fine-tuned on the camera understanding dataset.
 426 By jointly integrating the geometric perception and context understanding in a staged optimization
 427 manner, our method (Ours) outperforms the above approaches on all evaluation metrics.

428 **Thinking with Camera.** To mitigate the modality gap between camera and vision-language, we
 429 introduce thinking with camera. For camera understanding, we align spatially grounded visual cues
 430 with photographic terms across geometric context, enabling LMMs to predict camera parameters
 431 through structured spatial reasoning. As shown in Table 3, this design (Ours w/ Thinking) consistently
 432 improves performance, especially for pitch and FoV prediction that depend on broader contextual

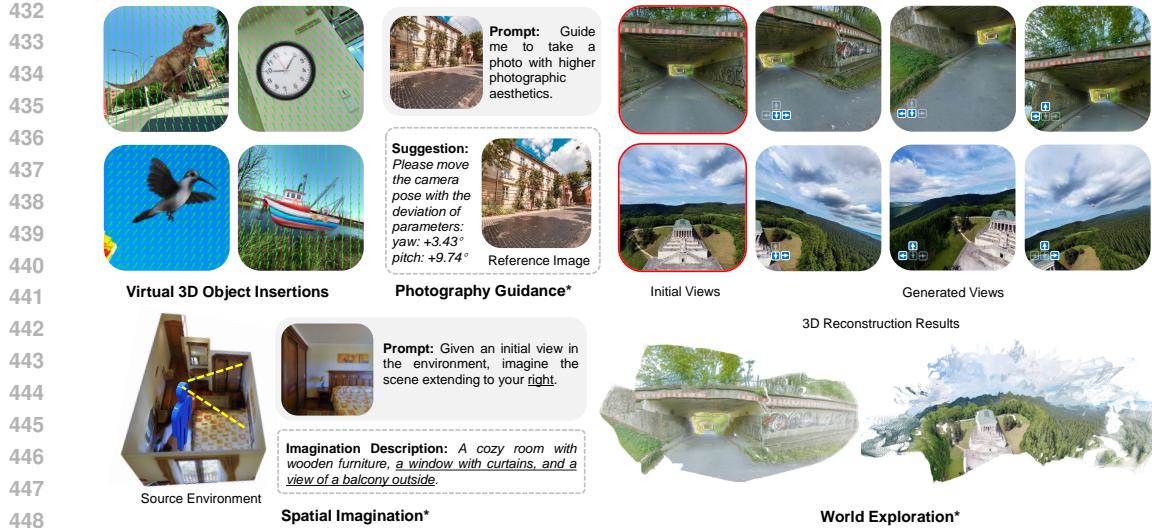


Figure 6: Applications of the proposed Puffin. Our method can help 3D object insertion into a wild image by predicting its camera parameters. Additionally, it can flexibly extend to various cross-view tasks such as the spatial imagination, world exploration, and photographic guidance, by instruction tuning*.

priors, demonstrating the framework’s ability to capture hierarchical spatial context beyond localized geometric cues. Thinking with camera also enhances camera-controllable generation: given a prompt with scene descriptions and target parameters, the model infers potential spatial cues and uses them as a semantic planning stage to guide synthesis. As illustrated in Figure 5 (left), it emphasizes visual cues such as ceilings under a large tilt-up, yielding more accurate spatial simulation.

Camera Parameters vs. Camera Map. Beyond discrete camera tokens derived from explicit numerical parameters, we further introduce a continuous representation of camera geometry via pixel-wise camera maps for controllable image generation. We show the effectiveness of the precise geometric encoding provided by camera map in Figure 5 (right). Compared to numerical values of the camera parameters, the camera map encodes the local geometric context at each pixel, including orientation and spatial displacement clues, offering precise control over spatial layout and viewpoint. Without the camera map as conditions, generated images may exhibit severe geometric distortions and inverted spatial illusions under challenging camera configurations.

3.4 APPLICATIONS

We illustrate the versatile capabilities of our Puffin in Figure 6. Similar to previous methods (Hold-Geoffroy et al., 2018; Jin et al., 2023), Puffin can support virtual 3D object insertion into in-the-wild images by accurately predicting camera parameters. Furthermore, it can be flexibly extended to a range of cross-view tasks through instruction tuning, such as spatial imagination, world exploration, and photographic guidance. For both the initial and generated views in world exploration, we visualize 3D reconstruction results with VGGT (Wang et al., 2025a), showing proper spatial consistency across viewpoints. **Additional results are presented in Appendix A5.3 (Figure A13, A14, A15).**

4 CONCLUSION

We introduce Puffin, a unified multimodal model that jointly performs camera-centric understanding and generation across arbitrary viewpoints. These two tasks have been commonly treated as isolated problems and independently explored by the research community. Yet, in essence, they represent two complementary sides: decoding the geometry of the world and encoding it back into controllable, perceptually consistent visual content. Unlike previous unified models restricted to oversimplified front-view assumptions, Puffin eliminates the modality gap by interpreting the camera as language and leverages the notion of thinking with camera. We argue that unifying camera-centric understanding and generation anchors perception and synthesis to a shared representation of camera geometry, allowing machines to reason about space more holistically and interactively. Such a unified camera-centric model underpins robust spatial intelligence and fosters more versatile applications.

486 REPRODUCIBILITY STATEMENT
487488 We have made every effort to ensure reproducibility. The main paper provides a complete description
489 of the framework, and the appendix details the implementation, dataset, and training recipe. We will
490 release the code, models, dataset construction pipeline, and benchmark to further advance research in
491 multimodal spatial intelligence.
492493 ETHICS STATEMENT
494495 We affirm our adherence to the ICLR Code of Ethics and have conducted this work with integrity and
496 responsibility. Our research does not involve human subjects, sensitive personal data, or applications
497 intended for harmful use. We aim to contribute positively to the community by releasing resources
498 that promote openness, reproducibility, and fair advancement of research.
499500 REFERENCES
501

502 Ambientcg. URL <https://ambientcg.com/list?type=hdri&sort=popular>.
503

504 Blenderkit. URL https://www.blenderkit.com/asset-gallery?query=category_subtree:hdr.
505

506 Flickr360. URL <https://www.flickr.com/groups/360degrees/>.
507

508 Google street view. URL <https://maps.google.com/streetview>.
509

510 Hdrmaps. URL <https://hdrmaps.com/hdris>.
511

512 Poly haven. URL <https://polyhaven.com/hdris>.
513

514 StreetView360AtoZ: A 360 equirectangular street view dataset. URL <https://huggingface.co/datasets/everettshen/StreetView360AtoZ>.
515

516 Wikimedia commons. URL <https://commons.wikimedia.org>.
517

518 Youtube. URL <https://www.youtube.com/@360swiss>.
519

520 Iro Armeni, Sasha Sax, Amir R Zamir, and Silvio Savarese. Joint 2d-3d-semantic data for indoor
521 scene understanding. *arXiv preprint arXiv:1702.01105*, 2017.
522

523 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2.5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025.
524

525 Philip J. Ball, Jakob Bauer, Frank Belletti, Bethanie Brownfield, Ariel Ephrat, Shlomi Fruchter,
Agrim Gupta, Kristian Holsheimer, Aleksander Holynski, Jiri Hron, Christos Kaplanis, Marjorie
526 Limont, Matt McGill, Yanko Oliveira, Jack Parker-Holder, Frank Perbet, Guy Scully, Jeremy Shar,
Stephen Spencer, Omer Tov, Ruben Villegas, Emma Wang, Jessica Yung, Cip Baetu, Jordi Berbel,
527 David Bridson, Jake Bruce, Gavin Buttimore, Sarah Chakera, Bilva Chandra, Paul Collins, Alex
Cullum, Bogdan Damoc, Vibha Dasagi, Maxime Gazeau, Charles Gbadamosi, Woohyun Han,
528 Ed Hirst, Ashyana Kachra, Lucie Kerley, Kristian Kjems, Eva Knoepfel, Vika Koriakin, Jessica
529 Lo, Cong Lu, Zeb Mehring, Alex Moufarek, Henna Nandwani, Valeria Oliveira, Fabio Pardo, Jane
530 Park, Andrew Pierson, Ben Poole, Helen Ran, Tim Salimans, Manuel Sanchez, Igor Saprykin,
Amy Shen, Sailesh Sidhwani, Duncan Smith, Joe Stanton, Hamish Tomlinson, Dimple Vijaykumar,
531 Luyu Wang, Piers Wingfield, Nat Wong, Keyang Xu, Christopher Yew, Nick Young, Vadim Zubov,
532 Douglas Eck, Dumitru Erhan, Koray Kavukcuoglu, Demis Hassabis, Zoubin Gharamani, Raia
533 Hadsell, Aäron van den Oord, Inbar Mosseri, Adrian Bolton, Satinder Singh, and Tim Rocktäschel.
534 Genie 3: A new frontier for world models. 2025.
535

536 Edurne Bernal-Berdun, Daniel Martin, Sandra Malpica, Pedro J Perez, Diego Gutierrez, Belen Masia,
537 and Ana Serrano. D-sav360: A dataset of gaze scanpaths on 360° ambisonic videos. *IEEE
Transactions on Visualization and Computer Graphics*, 29(11):4350–4360, 2023.
538

540 Edurne Bernal-Berdun, Ana Serrano, Belen Masia, Matheus Gadelha, Yannick Hold-Geoffroy, Xin
 541 Sun, and Diego Gutierrez. Precisecam: Precise camera control for text-to-image generation. In
 542 *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 2724–2733, 2025.
 543

544 Tobias Bertel, Mingze Yuan, Reuben Lindroos, and Christian Richardt. Omniphotos: casual 360 vr
 545 photography. *ACM Transactions on Graphics (TOG)*, 39(6):1–12, 2020.

546 Oleksandr Bogdan, Viktor Eckstein, Francois Rameau, and Jean-Charles Bazin. Deepcalib: A deep
 547 learning approach for automatic intrinsic calibration of wide field-of-view cameras. In *Proceedings*
 548 *of the 15th ACM SIGGRAPH European Conference on Visual Media Production*, pp. 1–10, 2018.
 549

550 Christophe Bolduc, Justine Giroux, Marc Hébert, Claude Demers, and Jean-François Lalonde. Be-
 551 yond the pixel: a photometrically calibrated hdr dataset for luminance and color prediction. In
 552 *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 8071–8081, 2023.

553 Zheng Cai, Maosong Cao, Haojong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui Chen,
 554 Zhi Chen, Pei Chu, et al. Internlm2 technical report. *arXiv preprint arXiv:2403.17297*, 2024.

556 Zidong Cao, Jinjing Zhu, Weiming Zhang, Hao Ai, Haotian Bai, Hengshuang Zhao, and Lin Wang.
 557 Panda: Towards panoramic depth anything with unlabeled panoramas and mobius spatial augmen-
 558 tation. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 982–992,
 559 2025.

560 Shih-Hsiu Chang, Ching-Ya Chiu, Chia-Sheng Chang, Kuo-Wei Chen, Chih-Yuan Yao, Ruen-Rone
 561 Lee, and Hung-Kuo Chu. Generating 360 outdoor panorama dataset with reliable sun position
 562 estimation. In *SIGGRAPH Asia 2018 Posters*, pp. 1–2. 2018.

563 Agneet Chatterjee, Rahim Entezari, Maksym Zhuravinskyi, Maksim Lapin, Reshith Adithyan, Amit
 564 Raj, Chitta Baral, Yezhou Yang, and Varun Jampani. Stable cinemetrics: Structured taxonomy and
 565 evaluation for professional video generation. *arXiv preprint arXiv:2509.26555*, 2025.

566 Juhai Chen, Zhiyang Xu, Xichen Pan, Yushi Hu, Can Qin, Tom Goldstein, Lifu Huang, Tianyi
 567 Zhou, Saining Xie, Silvio Savarese, et al. Blip3-o: A family of fully open unified multimodal
 568 models-architecture, training and dataset. *arXiv preprint arXiv:2505.09568*, 2025.

569 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Conghui He, Jiaqi Wang, Feng Zhao, and Dahua Lin.
 570 Sharegpt4v: Improving large multi-modal models with better captions. In *European Conference
 571 on Computer Vision*, pp. 370–387. Springer, 2024.

572 Dachuan Cheng, Jian Shi, Yanyun Chen, Xiaoming Deng, and Xiaopeng Zhang. Learning scene
 573 illumination by pairwise photos from rear and front mobile cameras. In *Computer Graphics Forum*,
 574 volume 37, pp. 213–221, 2018.

575 Changwoon Choi, Sang Min Kim, and Young Min Kim. Balanced spherical grid for egocentric
 576 view synthesis. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 577 Recognition*, pp. 16590–16599, 2023.

578 Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Weihao
 579 Yu, Xiaonan Nie, Ziang Song, et al. Emerging properties in unified multimodal pretraining. *arXiv
 580 preprint arXiv:2505.14683*, 2025.

581 Junyuan Deng, Wei Yin, Xiaoyang Guo, Qian Zhang, Xiaotao Hu, Weiqiang Ren, Ping Tan, et al.
 582 Boost 3d reconstruction using diffusion-based monocular camera calibration. *arXiv preprint
 583 arXiv:2411.17240*, 2024.

584 Richard T Dyde, Michael R Jenkin, and Laurence R Harris. The subjective visual vertical and the
 585 perceptual upright. *Experimental Brain Research*, 173(4):612–622, 2006.

586 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 587 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
 588 high-resolution image synthesis. In *International Conference on Machine Learning*, 2024.

594 Lijie Fan, Luming Tang, Siyang Qin, Tianhong Li, Xuan Yang, Siyuan Qiao, Andreas Steiner, Chen
 595 Sun, Yuanzhen Li, Tao Zhu, et al. Unified autoregressive visual generation and understanding with
 596 continuous tokens. *arXiv preprint arXiv:2503.13436*, 2025.

597

598 Google DeepMind. Gemini 2.5 flash image, 2025. URL <https://developers.googleblog.com/en/introducing-gemini-2-5-flash-image/>.

599

600 Richard Hartley and Andrew Zisserman. *Multiple view geometry in computer vision*. Cambridge
 601 University Press, 2003.

602

603 Hao He, Yinghao Xu, Yuwei Guo, Gordon Wetzstein, Bo Dai, Hongsheng Li, and Ceyuan Yang.
 604 Cameractrl: Enabling camera control for text-to-video generation. *arXiv preprint arXiv:2404.02101*,
 605 2024.

606

607 Kaiming He, Huiwen Chang, and Jian Sun. Content-aware rotation. In *Proceedings of the IEEE
 International Conference on Computer Vision*, pp. 553–560, 2013.

608

609 Xiankang He, Guangkai Xu, Bo Zhang, Hao Chen, Ying Cui, and Dongyan Guo. Diffcalib: Re-
 610 formulating monocular camera calibration as diffusion-based dense incident map generation. In
 611 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 3428–3436, 2025.

612

613 Greg Heinrich, Mike Ranzinger, Hongxu Yin, Yao Lu, Jan Kautz, Andrew Tao, Bryan Catanzaro, and
 614 Pavlo Molchanov. Radiov2. 5: Improved baselines for agglomerative vision foundation models. In
 615 *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 22487–22497, 2025.

616

617 Yannick Hold-Geoffroy, Kalyan Sunkavalli, Jonathan Eisenmann, Matthew Fisher, Emiliano Gam-
 618 baretto, Sunil Hadap, and Jean-François Lalonde. A perceptual measure for deep single image
 619 camera calibration. In *Proceedings of the IEEE Conference on Computer Vision and Pattern
 Recognition*, pp. 2354–2363, 2018.

620

621 Ian P. Howard and William B. Templeton. *Human Spatial Orientation*. John Wiley & Sons, 1966.

622

623 Huajian Huang, Changkun Liu, Yipeng Zhu, Hui Cheng, Tristan Braud, and Sai-Kit Yeung. 360loc:
 624 A dataset and benchmark for omnidirectional visual localization with cross-device queries. In
 625 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 626 22314–22324, 2024.

627

628 Sebastian Janampa and Marios Pattichis. Sofi: Multi-scale deformable transformer for camera
 629 calibration with enhanced line queries. *arXiv preprint arXiv:2409.15553*, 2024.

630

631 Zhigang Jiang, Zhongzheng Xiang, Jinhua Xu, and Ming Zhao. Lgt-net: Indoor panoramic room lay-
 632 out estimation with geometry-aware transformer network. In *Proceedings of the IEEE Conference
 633 on Computer Vision and Pattern Recognition (CVPR)*, 2022.

634

635 Linyi Jin, Jianming Zhang, Yannick Hold-Geoffroy, Oliver Wang, Kevin Blackburn-Matzen, Matthew
 636 Sticha, and David F Fouhey. Perspective fields for single image camera calibration. In *Proceedings
 637 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 17307–17316,
 638 2023.

639

640 Alex Kendall, Matthew Grimes, and Roberto Cipolla. Posenet: A convolutional network for real-time
 641 6-dof camera relocalization. In *Proceedings of the IEEE International Conference on Computer
 642 Vision*, pp. 2938–2946, 2015.

643

644 Jinwoo Lee, Minhyuk Sung, Hyunjoon Lee, and Junho Kim. Neural geometric parser for single
 645 image camera calibration. In *European Conference on Computer Vision*, pp. 541–557. Springer,
 2020.

646

647 Jinwoo Lee, Hyunsung Go, Hyunjoon Lee, Sunghyun Cho, Minhyuk Sung, and Junho Kim. Ctrl-
 648 c: Camera calibration transformer with line-classification. In *Proceedings of the IEEE/CVF
 649 International Conference on Computer Vision*, pp. 16228–16237, 2021.

650

651 Xiaoyu Li, Bo Zhang, Pedro V Sander, and Jing Liao. Blind geometric distortion correction on
 652 images through deep learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 653 and Pattern Recognition*, pp. 4855–4864, 2019.

648 Zhengqi Li and Noah Snavely. Megadepth: Learning single-view depth prediction from internet
 649 photos. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp.
 650 2041–2050, 2018.

651 Kang Liao, Chunyu Lin, Yao Zhao, and Mai Xu. Model-free distortion rectification framework
 652 bridged by distortion distribution map. *IEEE Transactions on Image Processing*, 29:3707–3718,
 653 2020.

654 Kang Liao, Chunyu Lin, and Yao Zhao. A deep ordinal distortion estimation approach for distortion
 655 rectification. *IEEE Transactions on Image Processing*, 30:3362–3375, 2021.

656 Kang Liao, Lang Nie, Shujuan Huang, Chunyu Lin, Jing Zhang, Yao Zhao, Moncef Gabbouj, and
 657 Dacheng Tao. Deep learning for camera calibration and beyond: A survey. *arXiv preprint
 658 arXiv:2303.10559*, 2023.

659 Kang Liao, Zongsheng Yue, Zhonghua Wu, and Chen Change Loy. Mowa: Multiple-in-one image
 660 warping model. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2025.

661 Bin Lin, Zongjian Li, Xinhua Cheng, Yuwei Niu, Yang Ye, Xianyi He, Shenghai Yuan, Wangbo Yu,
 662 Shaodong Wang, Yunyang Ge, et al. Uniworld: High-resolution semantic encoders for unified
 663 visual understanding and generation. *arXiv preprint arXiv:2506.03147*, 2025a.

664 Haokun Lin, Teng Wang, Yixiao Ge, Yuying Ge, Zhichao Lu, Ying Wei, Qingfu Zhang, Zhenan Sun,
 665 and Ying Shan. Toklip: Marry visual tokens to clip for multimodal comprehension and generation.
 666 *arXiv preprint arXiv:2505.05422*, 2025b.

667 Zhiqiu Lin, Siyuan Cen, Daniel Jiang, Jay Karhade, Hewei Wang, Chancharik Mitra, Tiffany Ling,
 668 Yuhan Huang, Sifan Liu, Mingyu Chen, et al. Towards understanding camera motions in any video.
 669 *arXiv preprint arXiv:2504.15376*, 2025c.

670 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 671 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint
 672 arXiv:2412.19437*, 2024.

673 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in
 674 Neural Information Processing Systems*, 36:34892–34916, 2023.

675 Hongbo Liu, Jingwen He, Yi Jin, Dian Zheng, Yuhao Dong, Fan Zhang, Ziqi Huang, Yinan He,
 676 Yangguang Li, Weichao Chen, et al. Shotbench: Expert-level cinematic understanding in vision-
 677 language models. *arXiv preprint arXiv:2506.21356*, 2025.

678 Yaroslava Lochman, Oles Dobosevych, Rostyslav Hryniw, and James Pritts. Minimal solvers for
 679 single-view lens-distorted camera auto-calibration. In *Proceedings of the IEEE/CVF Winter
 680 Conference on Applications of Computer Vision*, pp. 2887–2896, 2021.

681 Manuel Lopez, Roger Mari, Pau Gargallo, Yubin Kuang, Javier Gonzalez-Jimenez, and Gloria Haro.
 682 Deep single image camera calibration with radial distortion. In *Proceedings of the IEEE/CVF
 683 Conference on Computer Vision and Pattern Recognition*, pp. 11817–11825, 2019.

684 OpenAI. Introducing 4o image generation, 2025. URL <https://openai.com/index/introducing-4o-image-generation/>.

685 Xichen Pan, Satya Narayan Shukla, Aashu Singh, Zhuokai Zhao, Shlok Kumar Mishra, Jialiang
 686 Wang, Zhiyang Xu, Jiahai Chen, Kunpeng Li, Felix Juefei-Xu, et al. Transfer between modalities
 687 with metaqueries. *arXiv preprint arXiv:2504.06256*, 2025.

688 Rémi Pautrat, Shaohui Liu, Petr Hruba, Marc Pollefeys, and Daniel Barath. Vanishing point estimation
 689 in uncalibrated images with prior gravity direction. In *Proceedings of the IEEE/CVF International
 690 Conference on Computer Vision*, pp. 14118–14127, 2023.

691 Marc Pollefeys, Reinhard Koch, and Luc Van Gool. Self-calibration and metric reconstruction inspite
 692 of varying and unknown intrinsic camera parameters. *International Journal of Computer Vision*,
 693 32(1):7–25, 1999.

702 A Yang Qwen, Baosong Yang, B Zhang, B Hui, B Zheng, B Yu, Chengpeng Li, D Liu, F Huang,
 703 H Wei, et al. Qwen2.5 technical report. *arXiv preprint*, 2024.

704

705 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 706 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 707 models from natural language supervision. In *International Conference on Machine Learning*, pp.
 708 8748–8763. PMLR, 2021.

709 Xuanchi Ren, Tianchang Shen, Jiahui Huang, Huan Ling, Yifan Lu, Merlin Nimier-David, Thomas
 710 Müller, Alexander Keller, Sanja Fidler, and Jun Gao. Gen3c: 3d-informed world-consistent video
 711 generation with precise camera control. In *Proceedings of the Computer Vision and Pattern
 712 Recognition Conference*, pp. 6121–6132, 2025.

713 Paul-Edouard Sarlin, Mihai Dusmanu, Johannes L Schönberger, Pablo Speciale, Lukas Gruber, Viktor
 714 Larsson, Ondrej Miksik, and Marc Pollefeys. Lamar: Benchmarking localization and mapping for
 715 augmented reality. In *European Conference on Computer Vision*, pp. 686–704. Springer, 2022.

716

717 Xu Song, Hao Kang, Atsunori Moteki, Genta Suzuki, Yoshie Kobayashi, and Zhiming Tan. Mscc:
 718 Multi-scale transformers for camera calibration. In *Proceedings of the IEEE/CVF Winter Conference
 719 on Applications of Computer Vision*, pp. 3262–3271, 2024.

720 Hongxuan Tang, Hao Liu, and Xinyan Xiao. Ugen: Unified autoregressive multimodal model with
 721 progressive vocabulary learning. *arXiv preprint arXiv:2503.21193*, 2025.

722

723 Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. *arXiv preprint
 724 arXiv:2405.09818*, 2024.

725

726 Javier Tirado-Garín and Javier Civera. Anycalib: On-manifold learning for model-agnostic single-
 727 view camera calibration. *arXiv preprint arXiv:2503.12701*, 2025.

728

729 Peter Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Adithya Jairam Vedagiri IYER, Sai Charitha
 730 Akula, Shusheng Yang, Jihan Yang, Manoj Middepogu, Ziteng Wang, et al. Cambrian-1: A fully
 731 open, vision-centric exploration of multimodal llms. *Advances in Neural Information Processing
 732 Systems*, 37:87310–87356, 2024a.

733

734 Shengbang Tong, David Fan, Jiachen Zhu, Yunyang Xiong, Xinlei Chen, Koustuv Sinha, Michael
 735 Rabbat, Yann LeCun, Saining Xie, and Zhuang Liu. Metamorph: Multimodal understanding and
 736 generation via instruction tuning. *arXiv preprint arXiv:2412.14164*, 2024b.

737

738 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 739 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 740 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

741

742 Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim Alabdul-
 743 mohsin, Nikhil Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, et al. Siglip 2:
 744 Multilingual vision-language encoders with improved semantic understanding, localization, and
 745 dense features. *arXiv preprint arXiv:2502.14786*, 2025.

746

747 Alexander Veicht, Paul-Edouard Sarlin, Philipp Lindenberger, and Marc Pollefeys. Geocalib: Learning
 748 single-image calibration with geometric optimization. In *European Conference on Computer Vision*,
 749 pp. 1–20. Springer, 2024.

750

751 Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David
 752 Novotny. Vggt: Visual geometry grounded transformer. In *Proceedings of the Computer Vision
 753 and Pattern Recognition Conference*, pp. 5294–5306, 2025a.

754

755 Wenshan Wang, Delong Zhu, Xiangwei Wang, Yaoyu Hu, Yuheng Qiu, Chen Wang, Yafei Hu, Ashish
 756 Kapoor, and Sebastian Scherer. Tartanair: A dataset to push the limits of visual slam. In *2020
 757 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, pp. 4909–4916.
 758 IEEE, 2020.

759

760 Xinlong Wang, Xaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
 761 Zhang, Yueze Wang, Zhen Li, Qiying Yu, et al. Emu3: Next-token prediction is all you need. *arXiv
 762 preprint arXiv:2409.18869*, 2024.

756 Xinran Wang, Songyu Xu, Xiangxuan Shan, Yuxuan Zhang, Muxi Diao, Xueyan Duan, Yanhua
 757 Huang, Kongming Liang, and Zhanyu Ma. Cinetechbench: A benchmark for cinematographic
 758 technique understanding and generation. *arXiv preprint arXiv:2505.15145*, 2025b.

759

760 Scott Workman, Connor Greenwell, Menghua Zhai, Ryan Baltenberger, and Nathan Jacobs. Deepfo-
 761 cal: A method for direct focal length estimation. In *2015 IEEE International Conference on Image
 762 Processing (ICIP)*, pp. 1369–1373. IEEE, 2015.

763

764 Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng-ming Yin, Shuai
 765 Bai, Xiao Xu, Yilei Chen, et al. Qwen-image technical report. *arXiv preprint arXiv:2508.02324*,
 766 2025a.

767

768 Chengyue Wu, Xiaokang Chen, Zhiyu Wu, Yiyang Ma, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda
 769 Xie, Xingkai Yu, Chong Ruan, et al. Janus: Decoupling visual encoding for unified multimodal
 770 understanding and generation. In *Proceedings of the Computer Vision and Pattern Recognition
 Conference*, pp. 12966–12977, 2025b.

771

772 Size Wu, Zhonghua Wu, Zerui Gong, Qingyi Tao, Sheng Jin, Qinyue Li, Wei Li, and Chen Change
 773 Loy. Openuni: A simple baseline for unified multimodal understanding and generation. *arXiv
 774 preprint arXiv:2505.23661*, 2025c.

775

776 Size Wu, Wenwei Zhang, Lumin Xu, Sheng Jin, Zhonghua Wu, Qingyi Tao, Wentao Liu, Wei Li, and
 777 Chen Change Loy. Harmonizing visual representations for unified multimodal understanding and
 778 generation. *arXiv preprint arXiv:2503.21979*, 2025d.

779

780 Yecheng Wu, Zhuoyang Zhang, Junyu Chen, Haotian Tang, Dacheng Li, Yunhao Fang, Ligeng
 781 Zhu, Enze Xie, Hongxu Yin, Li Yi, et al. Vila-u: a unified foundation model integrating visual
 782 understanding and generation. *arXiv preprint arXiv:2409.04429*, 2024.

783

784 Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
 785 Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
 786 to unify multimodal understanding and generation. *arXiv preprint arXiv:2408.12528*, 2024.

787

788 Jinheng Xie, Zhenheng Yang, and Mike Zheng Shou. Show-o2: Improved native unified multimodal
 789 models. *arXiv preprint arXiv:2506.15564*, 2025a.

790

791 Liuyue Xie, Jiancong Guo, Ozan Cakmakci, Andre Araujo, Laszlo A Jeni, and Zhiheng Jia. Aligndiff:
 792 Learning physically-grounded camera alignment via diffusion. *arXiv preprint arXiv:2503.21581*,
 793 2025b.

794

795 Hang Xu, Qiang Zhao, Yike Ma, Xiaodong Li, Peng Yuan, Bailan Feng, Chenggang Yan, and Feng
 796 Dai. Pandora: A panoramic detection dataset for object with orientation. In *European Conference
 797 on Computer Vision*, pp. 237–252. Springer, 2022.

798

799 Xiaoqing Yin, Xinchao Wang, Jun Yu, Maojun Zhang, Pascal Fua, and Dacheng Tao. Fisheyerecnet:
 800 A multi-context collaborative deep network for fisheye image rectification. In *Proceedings of the
 801 European Conference on Computer Vision (ECCV)*, pp. 469–484, 2018.

802

803 Menghua Zhai, Scott Workman, and Nathan Jacobs. Detecting vanishing points using global image
 804 context in a non-manhattan world. In *Proceedings of the IEEE Conference on Computer Vision
 805 and Pattern Recognition*, pp. 5657–5665, 2016.

806

807 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 808 image pre-training. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*,
 809 pp. 11975–11986, 2023.

810

811 Jason Y Zhang, Amy Lin, Moneish Kumar, Tzu-Hsuan Yang, Deva Ramanan, and Shubham Tulsiani.
 812 Cameras as rays: Pose estimation via ray diffusion. *arXiv preprint arXiv:2402.14817*, 2024.

813

814 Yi Zhang, Lu Zhang, Wassim Hamidouche, and Olivier Deforges. A fixation-based 360 $\{\backslash\deg\}$
 815 benchmark dataset for salient object detection. *arXiv preprint arXiv:2001.07960*, 2020.

810 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
811 Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
812 open-source multimodal models. *arXiv preprint arXiv:2504.10479*, 2025.

813
814 Shengjie Zhu, Abhinav Kumar, Masa Hu, and Xiaoming Liu. Tame a wild camera: In-the-wild
815 monocular camera calibration. *Advances in Neural Information Processing Systems*, 36:45137–
816 45149, 2023.

817 Chuhang Zou, Alex Colburn, Qi Shan, and Derek Hoiem. Layoutnet: Reconstructing the 3d room
818 layout from a single rgb image. In *Proceedings of the IEEE Conference on Computer Vision and*
819 *Pattern Recognition*, pp. 2051–2059, 2018.

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

APPENDIX

865

866

In this document, we provide the following supplementary content: related work, implementation details, dataset construction, training recipe, additional experiments, limitation and future work, and statements.

867

868

869

870

A1 Related Work 17

871

872

873

874

875

876

A1.1 Large Multimodal Models 17

877

878

879

880

881

A1.2 Unified Multimodal Models 18

882

A1.3 Camera Geometry from Vision 18

883

A2 Implementation Details 18

884

885

886

887

888

889

890

A2.1 Network Configuration 18

891

A2.2 Camera Parameters to Photographic Terms 19

892

A2.3 Prompt Template for Multimodal Tasks 19

893

A3 Dataset Construction 20

894

A3.1 Panoramic Data Collection and Preprocessing 20

895

A3.2 Perspective Image Generation 21

896

A3.3 Scene and Spatial Reasoning Captions 22

897

A3.4 Cross-View Dataset 22

898

A3.5 Prompt Design 23

899

A4 Training Recipe 23

900

A5 Additional Experiments 24

901

A5.1 Camera Understanding 24

902

A5.2 Camera-Controllable Generation 25

903

A5.3 Downstream Applications 26

904

A5.4 Ablation Study 26

905

A5.5 **Analysis** 26

906

A6 Limitation and Future Work 28

907

A7 Statements 29

908

909

910

A1 RELATED WORK

911

A1.1 LARGE MULTIMODAL MODELS

912

913

914

915

916

917

Built upon a visual encoder (Radford et al., 2021; Zhai et al., 2023; Tschannen et al., 2025) and a large language model (LLM) (Touvron et al., 2023; Qwen et al., 2024; Cai et al., 2024; Liu et al., 2024), LMMs (Liu et al., 2023; Chen et al., 2024; Tong et al., 2024a; Bai et al., 2025; Zhu et al., 2025) process mixed visual and textual inputs and perform understanding and reasoning via language generation.

Fueled by large-scale pre-training of the vision and language models and sophisticated instruction-tuning, LMMs excel at high-level understanding tasks, such as object localization, counting, and optical character recognition. However, these models, optimized for semantic alignment between vision and language, remain limited in capturing image intrinsics (*e.g.*, depth and geometry), which constrains their ability in camera understanding and spatial reasoning. To bridge this gap, it is crucial

918 to enrich LMMs with geometry-aware prior knowledge that preserves structural details beyond
 919 semantics. Moreover, aligning such geometric cues with linguistic tokens provides a pathway to
 920 extend the reasoning capacity of LMMs from abstract semantics to physically grounded spatial
 921 understanding.

923 A1.2 UNIFIED MULTIMODAL MODELS

925 As an extension of standard LMMs, unified multimodal models (Team, 2024; Wang et al., 2024; Tang
 926 et al., 2025; Wu et al., 2025d; Lin et al., 2025b; Wu et al., 2024; Tong et al., 2024b; Pan et al., 2025;
 927 Lin et al., 2025a; Wu et al., 2025c; Chen et al., 2025; Wu et al., 2025b; Xie et al., 2024; 2025a) jointly
 928 learn visual understanding and generation within a single framework. Two main design philosophies
 929 are typically adopted. One line of work formulates visual generation as autoregression over either
 930 discrete (Team, 2024; Wu et al., 2024; Wang et al., 2024; Wu et al., 2025b) or continuous (Fan
 931 et al., 2025) image tokens, sharing LLM parameters for both understanding and generation. Another
 932 line (Pan et al., 2025; Chen et al., 2025; Wu et al., 2025c; Lin et al., 2025a) aligns pre-trained LMMs
 933 with diffusion modules, enabling faster convergence and lower training cost. While both types of
 934 models advance general image understanding and generation, they are constrained to simplistic
 935 camera assumptions (*e.g.*, fixed front-view, predefined FoVs), hindering their practical applicability
 936 to realistic and complex environments. To this end, we introduce a camera-centric framework that
 937 jointly performs camera understanding and controllable generation.

938 A1.3 CAMERA GEOMETRY FROM VISION

940 Tasks such as camera calibration and pose estimation have long been a central topic in 3D vision (Polle-
 941 feys et al., 1999; Hartley & Zisserman, 2003; Liao et al., 2023; Veicht et al., 2024; Hold-Geoffroy
 942 et al., 2018; Jin et al., 2023; Zhang et al., 2024; Lin et al., 2025c). While earlier learning-based
 943 works attempted to directly regress camera parameters from input images (Hold-Geoffroy et al.,
 944 2018; Workman et al., 2015; Bogdan et al., 2018; Zhai et al., 2016; Kendall et al., 2015), recent
 945 advances increasingly explore the use of intermediate representations or geometry fields to bridge
 946 the prediction gap. Representative approaches (Lee et al., 2020; 2021; Song et al., 2024; Janampa &
 947 Pattichis, 2024; Yin et al., 2018) leverage geometric structures or semantic features to alleviate the
 948 inherent difficulty of inferring camera parameters from a few views. Building on priors of the camera
 949 model and the perspective properties of captured images, a growing body of methods proposes to
 950 learn dense geometry fields, such as distortion distribution maps (Liao et al., 2020; 2021), pixel dis-
 951 placement fields (Li et al., 2019; Liao et al., 2025; Xie et al., 2025b), camera rays (Zhang et al., 2024),
 952 perspective fields (Jin et al., 2023; Veicht et al., 2024; Tirado-Garín & Civera, 2025), or incidence
 953 fields (Zhu et al., 2023; He et al., 2025; Deng et al., 2024). However, such representations typically
 954 emphasize low-/mid-level patterns, limiting their ability to capture a holistic and coherent spatial
 955 concept. Rather than pursuing better representations, this work explores an alternative perspective:
 956 interpreting the camera as language.

957 A2 IMPLEMENTATION DETAILS

958 A2.1 NETWORK CONFIGURATION

961 For the architecture of our Puffin, we use the pretrained C-RADIOv3-H (Heinrich et al., 2025),
 962 Qwen2.5-1.5B-Instruct (Qwen et al., 2024), and SD3-Medium (Esser et al., 2024) to initialize our
 963 geometry-aligned vision encoder, LLM, and diffusion model, respectively. Learnable queries with the
 964 number of 64 and a lightweight connector comprising six transformer layers are exploited to translate
 965 the LLM hidden states to conditioning signals for the diffusion model. The resolutions of the image
 966 and camera maps are set to 512×512 for all tasks. For tokenization, the camera parameter tokenizer
 967 follows the same procedure as the text tokenizer. **Since camera parameters are numerical, we first**
 968 **serialize them into discrete tokens, which are naturally handled by the standard text tokenizer without**
 969 **requiring any extra module. Introducing an additional tokenizer (or a separate text encoder) would**
 970 **substantially increase the alignment burden across modules and modalities in a unified multimodal**
 971 **model. For this reason, we keep the vanilla decoder-only LLM backbone and its tokenizer to process**
 972 **both language and camera parameters.** For the camera map, we adopt Perspective Field (Jin et al.,
 973 2023). We first normalize its values to the range $[-1, 1]$, and then reuse the image tokenizer (*i.e.*, the

972 **Table A1: Camera parameter-to-term mapping.** To align camera parameters (roll, pitch, and FoV) with
 973 the prior knowledge space of LMMs, their numerical ranges are mapped to professional photographic terms.
 974 **Combining different terms linguistically allows us to jointly describe the full camera geometry of an image.**

Roll					
Term (t)	Large counterclockwise Dutch angle	Small counterclockwise Dutch angle	Near level shot	Small clockwise Dutch angle	Large clockwise Dutch angle
Example					
Parameter (p)	$[-45^\circ, -20^\circ]$	$[-20^\circ, -5^\circ]$	$[-5^\circ, 5^\circ]$	$(5^\circ, 20^\circ]$	$(20^\circ, 45^\circ]$
Pitch					
Term (t)	Large tilt-down	Small tilt-down	Near straight-on shot	Small tilt-up	Large tilt-up
Example					
Parameter (p)	$[-45^\circ, -20^\circ]$	$[-20^\circ, -5^\circ]$	$[-5^\circ, 5^\circ]$	$(5^\circ, 20^\circ]$	$(20^\circ, 45^\circ]$
FoV					
Term (t)	Close-up	Medium shot	Wide-angle	Ultra wide-angle	
Example					
Parameter (p)	$[20^\circ, 35^\circ]$	$[35^\circ, 65^\circ]$	$[65^\circ, 90^\circ]$	$[90^\circ, 105^\circ]$	

990 VAE encoder), as the camera map also has three channels. Pretraining a specialized tokenizer for
 991 camera maps is left as future work.

993 A2.2 CAMERA PARAMETERS TO PHOTOGRAPHIC TERMS

995 To bridge the gap between the detailed numerical values of camera parameters and the highly
 996 abstracted understanding capability learned by LMMs, we propose using professional photographic
 997 terms as intermediate supervision for our framework. Specifically, we quantize the range of each
 998 camera parameter and map them to the following photographic terms: (i) Roll: large counterclockwise
 999 Dutch angle, small counterclockwise Dutch angle, near level shot, small clockwise Dutch angle, large
 1000 clockwise Dutch angle; (ii) Pitch: large tilt-down, small tilt-down, near straight-on shot, small tilt-up,
 1001 large tilt-up; (iii) FoV: close-up, medium shot, wide-angle, ultra wide-angle. The detailed mapping
 1002 relationship between the camera parameters and photographic terms is listed in Table A1.

1003 A2.3 PROMPT TEMPLATE FOR MULTIMODAL TASKS

1005 For text-to-image controllable generation, we use the following prompt template to format
 1006 user instructions: User: Generate an image: <caption>\n Assistant:”. The
 1007 <caption> includes both the image description and the numerical camera parameters (roll,
 1008 pitch, FoV, all in radians). For camera understanding, we employ the following prompt template
 1009 to format the basic user instruction: User: <image><question>\n Assistant:”.
 1010 The <question> can be set as “Describe the image in detail. Then reason
 1011 its spatial distribution and estimate its camera parameters (roll,
 1012 pitch, and field-of-view)”. For cross-view camera-controllable generation, the prompt
 1013 template is formatted as: “User: Generate a target image given an initial
 1014 view: <image><caption>\n Assistant:”. Here, <image> denotes the initial view
 1015 token from the image tokenizer, while <caption> represents the target image description
 1016 along with the target camera parameters (roll, pitch, yaw, and FoV, all in radians). During
 1017 cross-view instruction tuning, we randomly set the <caption> to null with a probability of
 1018 0.5, thereby enabling both text-free and text-conditioned image-to-image generation. When
 1019 applying the spatial reasoning paradigm, we switch to a new <question> for camera under-
 1020 standing: “Reason the spatial distribution of this image in a thinking
 1021 mode, and then estimate its camera parameters (roll, pitch, and
 1022 field-of-view)”. For generation, we first enrich the vanilla prompt using our model with the
 1023 template: “User: <caption><question>\n Assistant:”. Here, <caption> refers to
 1024 the vanilla image description, and <question> is “Given a scene description and
 1025 corresponding camera parameters, merge them into a coherent prompt
 and generate an accurate visualization that highlights visual cues
 for spatial reasoning”. For other instruction tuning tasks, <question> is set to “Given

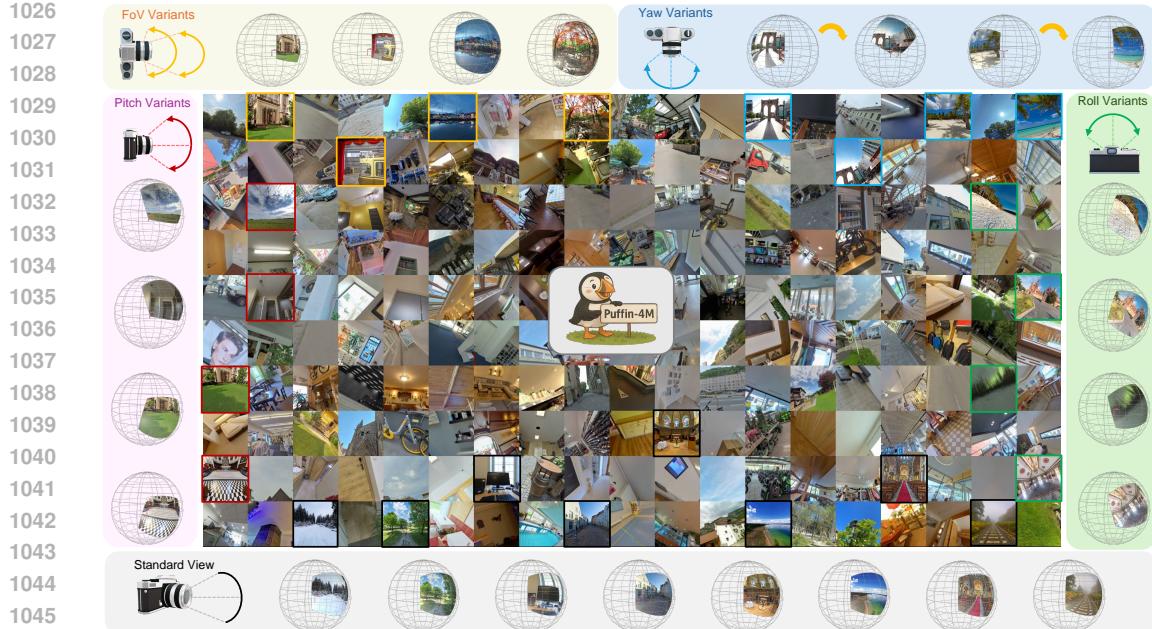


Figure A1: Overview of the proposed Puffin-4M dataset. It consists of 4 million vision-language-camera triplets under various scenarios and camera configurations. We mark the sample images with different colors, each denoting a different variant of the camera configurations.

the initial view and the camera parameters of the target view with the deviation yaw angle, how would you describe the target image to build a replica of the scene?” for spatial imagination, and “Estimate the camera parameters (roll, pitch, and field-of-view) of this image. And then predict the deviation camera yaw angle and pitch angle of the target view with high photographic aesthetics.” for photographic guidance.

A3 DATASET CONSTRUCTION

The overview of our Puffin-4M is shown in Figure A1. The construction of this curated dataset consists of four stages: panoramic data collection and preprocessing, perspective image generation, scene and spatial reasoning captioning, and extensions for cross-view scenarios. Following previous works (Veicht et al., 2024; Jin et al., 2023; Bernal-Berdun et al., 2025; Hold-Geoffroy et al., 2018), we render the perspective images with various camera intrinsic and extrinsic parameters from 360° panoramic images using a standard camera model. The pipeline of the dataset construction is illustrated in Figure A2 and the dataset comparison with previous works is listed in Table A2. **Puffin-Und and Puffin-Gen are constructed by exactly the same pipeline as Puffin-4M; the only difference lies in the source images and the task-specific splits.** More details are described as follows.

A3.1 PANORAMIC DATA COLLECTION AND PREPROCESSING

We begin by collecting panoramic images from publicly available datasets (Bertel et al., 2020; Choi et al., 2023; Cao et al., 2025; Huang et al., 2024; Xu et al., 2022; Zhang et al., 2020; Bernal-Berdun et al., 2023; Cheng et al., 2018; Bolduc et al., 2023; Chang et al., 2018; Veicht et al., 2024; Armeni et al., 2017) as well as from online platforms (Fli; Str; Wik; HDR; Pol; Amb; Ble; You). In addition, we acquire a large volume of outdoor panoramic data from Google Street View (Goo), spanning 12 cities across Asia, Europe, and North America. In total, our curated dataset comprises approximately 200K high-quality panoramic images with substantial diversity. A significant portion of these images reaches 4K resolution or higher, up to 10K. However, due to variations in 360° camera calibration and acquisition stability, some panoramas exhibit geometric distortions and misalignment. To mitigate this, we apply geometric correction techniques based on line segmentation and vanishing point

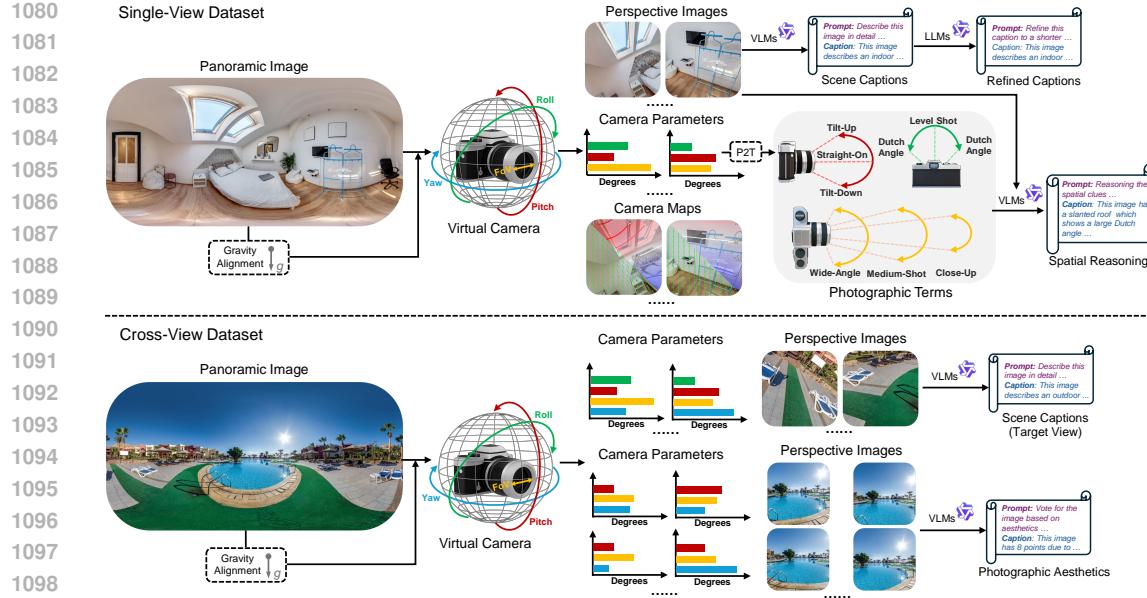


Figure A2: Pipeline of the dataset construction. P2T denotes the mapping from the numerical camera parameters to the professional photographic terms. For clarity, we omit the orientations “clockwise” and “counterclockwise” of the Dutch angle in photographic terms.

Table A2: Dataset Comparisons. The datasets proposed in previous individual models tailored for camera understanding (Lee et al., 2021; Bogdan et al., 2018; Veicht et al., 2024; Jin et al., 2023; Hold-Geoffroy et al., 2018) or camera-controllable image generation (Bernal-Berdun et al., 2025) vs. our Puffin-4M for the camera-centric unified multimodal model. In addition to its larger scale, our dataset also offers advantages in spatial reasoning captions, and cross-view image pairs. For the camera parameters, we denote the intrinsic parameters: focal length (f), radial distortion coefficient (ξ); and the extrinsic parameters: roll (ϕ), pitch (θ), yaw (ψ).

Dataset	Task Type	Intrinsics	Extrinsics	# Frames	Details				
					Camera	Text	Reasoning	Single-View	Cross-View
GeoCalib (Veicht et al., 2024)	Understanding	$\{f, \xi\}$	$\{\phi, \theta\}$	37K	✓	✗	✗	✓	✗
CTRL-C (Lee et al., 2021)	Understanding	f	$\{\phi, \theta\}$	45K	✓	✗	✗	✓	✗
Deepcalib (Bogdan et al., 2018)	Understanding	$\{f, \xi\}$	-	67K	✓	✗	✗	✓	✗
ParamNet (Jin et al., 2023)	Understanding	f	$\{\phi, \theta\}$	190K	✓	✗	✗	✓	✗
Perceptual (Hold-Geoffroy et al., 2018)	Understanding	f	$\{\phi, \theta\}$	390K	✓	✗	✗	✓	✗
PrecisCam (Bernal-Berdun et al., 2025)	Generation	$\{f, \xi\}$	$\{\phi, \theta\}$	57K	✓	✓	✗	✓	✗
Puffin-4M (Ours)	Unified	f	$\{\phi, \theta, \psi\}$	4M	✓	✓	✓	✓	✓

estimation (Jiang et al., 2022; Zou et al., 2018), aligning the panoramas with the gravity direction and improving structural consistency.

A3.2 PERSPECTIVE IMAGE GENERATION

We adopt the pinhole camera model with varying intrinsic parameters (vertical FoV) and extrinsic parameters (roll and pitch) to synthesize perspective images, following the protocol established in recent state-of-the-art camera calibration works (Veicht et al., 2024; Jin et al., 2023). For each panoramic image, we generate multiple perspective crops by uniformly sampling roll, pitch, and vertical FoV within the ranges $[-45^\circ, 45^\circ]$, $[-45^\circ, 45^\circ]$, and $[20^\circ, 105^\circ]$, respectively. The number of crops is adaptively determined based on the resolution of the original panorama. While our current setup assumes an ideal pinhole model, incorporating radial distortion effects via an additional distortion parameter k is left as future work. After generating the perspective images, we further convert the corresponding camera parameters into a pixel-wise Perspective Field (Jin et al., 2023) as camera map, where each pixel is annotated with its up-vector \mathbf{u}_x and latitude angle φ_x to enable fine-grained spatial encoding:

$$\mathbf{u}_x = \lim_{c \rightarrow 0} \frac{\mathcal{P}(\mathbf{X} - c\mathbf{g}) - \mathcal{P}(\mathbf{X})}{\|(\mathcal{P}(\mathbf{X}) - c\mathbf{g}) - \mathcal{P}(\mathbf{X})\|_2}, \quad \varphi_x = \arcsin \left(\frac{\mathbf{R} \cdot \mathbf{g}}{\|\mathbf{R}\|_2} \right), \quad (1)$$

where $\mathcal{P}(\mathbf{X}) = \mathbf{x}$ denotes the mapping of a 3D point \mathbf{X} to an image pixel \mathbf{x} , and each pixel \mathbf{x} corresponds to a light ray \mathbf{R} originating from \mathbf{X} .

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460</

1188 **Table A3: Training recipe of Puffin.** For the data sampling ratio, we mark the data involving the spatial
 1189 reasoning and instruction tuning in light blue and light red, respectively. For clarity, we abbreviate the
 1190 generation and understanding as *Gen.* and *Und.*.

	Stage I	Stage II	Stage III	Stage IV
Hyperparameters				
Learning rate	1×10^{-4}	2×10^{-5}	1×10^{-5}	5×10^{-6}
LR Scheduler		Cosine		
Weight Decay		0.05		
Betas		(0.9, 0.95)		
Optimizer		AdamW		
Batch Size	1024	1024	512	256
Training Steps	10K	30K	60K	20K
Warm-up Steps	1K	900	1.8K	600
LLM	Frozen	Trainable	Trainable	Trainable
Diffusion Model	Frozen	Trainable	Trainable	Trainable
Vision Encoder	Frozen	Trainable	Trainable	Frozen
Data Sampling Ratio				
Text-Camera→Image (<i>Gen.</i>)	0.5	0.5	0.0	0.0
Image→Text-Camera (<i>Und.</i>)	0.5	0.5	0.0	0.0
Text→Text	0.0	0.0	0.33	0.0
Text-Camera→Image (<i>Gen.</i>)	0.0	0.0	0.33	0.0
Image→Text-Camera (<i>Und.</i>)	0.0	0.0	0.33	0.0
Image-Camera→Text (Cross-view <i>Und.</i>)	0.0	0.0	0.0	0.47
Image-(Text)-Camera→Image (Cross-view <i>Gen.</i>)	0.0	0.0	0.0	0.47
Image→Camera (Photography <i>Und.</i>)	0.0	0.0	0.0	0.06

1201 For the photographic guidance task, we first consulted photography experts and enthusiasts to identify
 1202 four key aspects of photographic aesthetics: viewpoint creativity, subject emphasis, compositional
 1203 balance, and spatial harmonization. These are then formulated into four criteria that serve as aesthetic
 1204 rating prompts for LMMs. We focus on pitch and yaw as the key controllable camera parameters². An
 1205 initial view is generated with a random pitch in $[-20^\circ, 20^\circ]$, and N neighboring views are sampled
 1206 by perturbing pitch and yaw within the same range. All rendered views are evaluated by Qwen2.5-VL-
 1207 32B-Instruct using the aesthetic prompts, and scores are assigned through voting. The pitch and yaw
 1208 offsets between the initial view and the highest-scoring view are taken as labels for the photographic
 1209 guidance task.

1210 A3.5 PROMPT DESIGN

1211 For the scene caption of each image, the prompt is formatted as: “Describe this image in
 1212 3–4 sentences”. Then, we refine the caption into a more compact description using: “Here
 1213 is a detailed image description: <caption>. Rewrite it into a much
 1214 shorter, vivid, and visually rich sentence (one or two sentences)
 1215 that captures only the most essential elements and atmosphere of
 1216 the scene. Ensure the description is concise, clear, and optimized
 1217 for use with a text-to-image generation model”. For captioning the spatial
 1218 reasoning and photographic aesthetics of each image, we show the corresponding prompts and
 1219 example results in Figure A3.

1220 A4 TRAINING RECIPE

1221 The whole training process takes around 4 days with 64 NVIDIA A100 (80 GB) GPUs. In reference,
 1222 we use greedy search for text generation in camera understanding and set the CFG weight as 4.5 for the
 1223 camera-controllable image generation. We conduct a multi-stage training strategy, where the vision
 1224 encoder, LLM, and the diffusion model are aligned in the first stage. Then, in the supervised fine-
 1225 tuning (SFT) stage, the models are jointly optimized using both base and thinking datasets. Finally,
 1226 an instruction-tuning stage is applied, involving various cross-view generation and understanding
 1227 tasks. We elaborate each training stage as follows.

- 1228 • **Stage I-Alignment.** In this stage, we align the vision encoder with the LLM by training
 1229 only the MLP projector for the understanding task, where the framework learns to predict

1230 ²Both professional and amateur users generally prefer near level-shot photography, as humans are highly
 1231 sensitive to horizontal perturbations (Howard & Templeton, 1966; Dyde et al., 2006). Thus, we fix roll at 0° for
 1232 this task.

1242 **Table A4: Additional evaluation results on camera understanding.**
1243

1244	Approach	1245 Roll [degrees]			1246 Pitch [degrees]			1247 FoV [degrees]		
		1248 error ↓	1249 AUC ▷ 1/5/10° ↑	1250 error ↓	1251 AUC ▷ 1/5/10° ↑	1252 error ↓	1253 AUC ▷ 1/5/10° ↑	1254	1255	1256
1257 Stanford2D3D	DeepCalib (Lopez et al., 2019)	1.59	33.8	63.9	79.2	2.58	21.6	46.9	65.7	6.67
	Perceptual (Hold-Geoffroy et al., 2018)	2.08	26.8	53.8	70.7	3.17	21.5	41.8	57.8	13.84
	CTRL-C (Lee et al., 2021)	3.04	23.2	43.0	56.9	3.43	18.3	38.6	53.8	8.50
	MSCC (Song et al., 2024)	3.43	13.5	36.8	57.3	2.64	22.6	45.0	60.5	5.81
	ParamNet (Jin et al., 2023)	1.14	44.6	73.9	84.8	1.94	29.2	56.7	73.1	9.01
	SVA (Lochman et al., 2021)	-	21.7	24.6	25.8	-	15.4	19.9	22.4	-
	UVP (Pautrat et al., 2023)	0.52	65.3	74.6	79.1	0.95	51.2	63.0	69.2	3.65
	GeoCalib (Veicht et al., 2024)	0.40	83.1	91.8	94.8	0.93	52.3	74.8	84.6	3.21
Puffin (Ours)		0.26	96.6	99.0	99.4	0.48	82.0	93.6	96.7	2.30
										23.4
										51.2
										71.4

1257 both text descriptions and camera parameters from the input image. For generation, the
1258 framework takes text descriptions, camera parameters, and the camera map as inputs, and
1259 learns to synthesize the target image with the corresponding description and configuration.
1260 Specifically, we train learnable queries and a connector to bridge the LLM and the diffusion
1261 transformer, where the connector maps LLM hidden states into conditioning signals for the
1262 diffusion model. A cross-entropy loss and diffusion loss supervise the understanding and
1263 generation, respectively, while parameters of the vision encoder, LLM, and diffusion model
1264 remain frozen.

- 1265 • **Stage II-SFT.** After aligning different modalities, we unfreeze all modules except the VAE
1266 and fine-tune the entire framework, using the same inputs and outputs as in Stage I. To
1267 stabilize training, we apply gradient scaling of 0.1 to the vision encoder.
- 1268 • **Stage III-SFT w/ Thinking.** To further bridge the modality gap between the camera and
1269 vision-language, we introduce *thinking with camera* in this stage. The implementation is
1270 the same as Stage-II, except that the training data contains spatial reasoning captions (the
1271 details of obtaining such captions are provided in Section A3). Beyond generation and
1272 understanding, this stage also learns the textual reasoning task, which enriches the vanilla
1273 captions with spatially grounded visual cues and translates specific camera parameter values
1274 into professional photographic terms.
- 1275 • **Stage IV-Instruction Tuning.** Finally, we improve our model’s ability to adapt to diverse
1276 spatial configurations. In particular, three types of cross-view data are trained simultaneously,
1277 including the spatial imagination, world exploration, and photographic guidance. The KV
1278 cache mechanism is utilized in cross-view generation. The vision encoder is frozen while
1279 other modules are trainable.

1280 We release three model variants: Puffin-Base, Puffin-Thinking, and Puffin-Instruct, to accommodate
1281 different application needs. Puffin-Base provides a foundation model for unified camera under-
1282 standing and camera-controllable image generation; Puffin-Thinking enhances spatial reasoning and
1283 generation; and Puffin-Instruct is optimized by instruction tuning, supporting cross-view tasks and
1284 complex multimodal interactions.

1285 A5 ADDITIONAL EXPERIMENTS

1286 A5.1 CAMERA UNDERSTANDING

1287 **Results.** Note that our training dataset consists of images rendered from the source panoramas
1288 in Stanford2D3D (Armeni et al., 2017). Although the sampled perspective images and camera
1289 parameters differ from those in the test set (Armeni et al., 2017), we exclude these results from the
1290 main evaluation to ensure rigor and report them in Table A4 only for reference.

1291 We show more visualization results on the proposed thinking with camera for camera understand-
1292 ing in Figure A8. Qualitative evaluations of the camera understanding methods with horizon line
1293 visualization are illustrated in Figure A9. Compared to prior approaches, our Puffin demonstrates
1294 strong performance not only in common scenarios such as architectural and indoor scenes, but
1295 also in challenging cases characterized by limited geometric features or significantly tilted camera
1296 poses. These results highlight the robustness of the proposed method. We visualize additional camera
1297 understanding results (with camera maps converted from the predicted camera parameters) on diverse
1298 inputs, including AIGC images (OpenAI, 2025) and real-world photographs, in Figure A10.

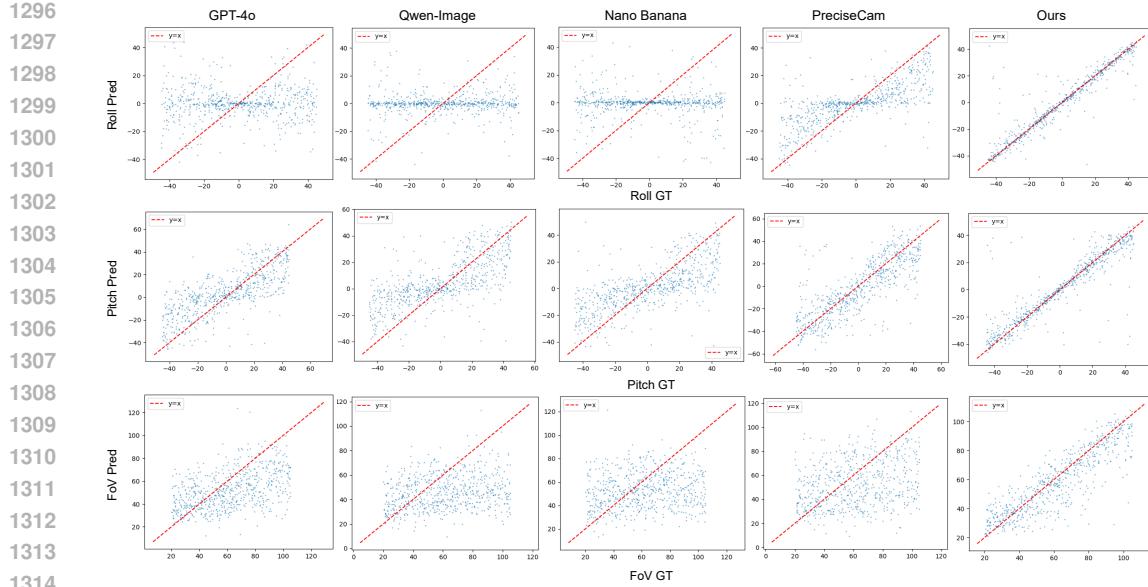


Figure A4: The predicted vs. ground truth camera parameters across all generated samples. Compared with previous methods, our generated results well align with the distribution of the ground truth camera parameters.

Discussion. From the evaluation of existing methods (Table 1), we observe that estimating pitch and FoV is considerably more challenging than estimating roll. This difference arises from the nature of the underlying visual cues. Roll estimation is supported by mid-level geometric representations, such as edges and vanishing lines, which are directly embedded in the image structure and thus relatively straightforward to learn. In contrast, accurate estimation of pitch and FoV requires more extensive contextual priors. Unlike previous vision-based approaches, our method explicitly models the relationship between physical camera parameters and spatial context using a large multimodal model. This integration allows the model to capture spatially contextual knowledge that cannot be sufficiently represented through visual features alone.

A5.2 CAMERA-CONTROLLABLE GENERATION

Results. Our camera-controllable generation results with various camera configurations are shown in Figure A11, and the text-to-image generation (single-view) results with specific controls for each camera parameter are presented in Figure A12.

Discussion. We further conduct an in-depth analysis to understand why existing image generation models fail to achieve accurate spatial simulation. Specifically, we decouple the spatial distributions of the generated images with respect to three camera parameters: roll, pitch, and FoV. As illustrated in Figure A4, we visualize scatter plots of the predicted vs. ground truth camera parameters (with the reference line $y = x$) across all generated samples. For fairness, the predicted camera parameters are obtained using the state-of-the-art vision-based camera calibration method (Veicht et al., 2024).

Interestingly, we observe a reversed role of camera parameters in controllable generation compared with camera understanding. Specifically, images generated by previous methods (OpenAI, 2025; Wu et al., 2025a; Google DeepMind, 2025; Bernal-Berdun et al., 2025) exhibit poor simulation accuracy on roll compared to pitch, where the predicted roll values fail to align with the target ground truth. In contrast, roll estimation in camera understanding is generally easier than pitch, due to its explicit link with geometric structures.

We attribute this discrepancy to two main factors: (i) Most existing image generation models are trained on datasets curated for high visual aesthetics. Both professional and amateur photographers tend to prefer near-level shots, as humans are sensitive to horizontal perturbations (He et al., 2013). Consequently, variations in roll often conflict with aesthetic preferences, leading to a skewed dataset distribution with far fewer roll variants compared to pitch or FoV. (ii) Roll directly alters the perceived gravity direction in an image, thereby reformulating the common sense of spatial layout. For instance, a strong Dutch angle can make the sea surface appear above the horizon line, creating an inverted

1350
1351 **Table A5: Model size comparisons:** the specialized understanding and generation models (GeoCalib (Veicht
1352 et al., 2024) and PreciseCam (Bernal-Berdun et al., 2025)), and the proposed unified camera-centric model.
1353

Model	Type	Parameters	GFLOPs
GeoCalib (Veicht et al., 2024)	Specialized Model (Understanding)	28.9M	3.47×10^2
PreciseCam (Bernal-Berdun et al., 2025)	Specialized Model (Generation)	1.3B	2.67×10^3
Puffin-4M (Ours)	Unified Model	4.4B	2.92×10^5

1356 spatial illusion. Such cases are inherently more difficult to simulate, whereas pitch and FoV changes
1357 typically only affect the viewing scope without fundamentally disrupting the physical law.
1358

1359 A5.3 DOWNSTREAM APPLICATIONS

1360 We visualize more downstream application results by instruction tuning here. Specifically, image-
1361 to-image generation (cross-view) results with varying yaw angles are shown in Figure A13. World
1362 exploration results are provided in Figure A14. Examples of the spatial imagination and photographic
1363 guidance are shown in Figure A15.

1364 A5.4 ABLATION STUDY

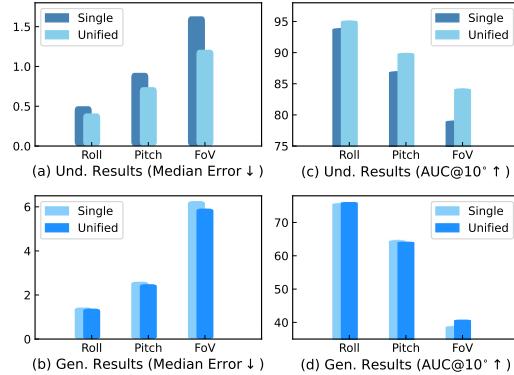
1365 We provide additional results and analyses of the ablation study in this part, especially for the mutual
1366 effect between camera-centric understanding and generation.

1367 **Single Task vs. Unified Training.** In addition to performing multimodal tasks within a unified
1368 framework, we aim to exploit the mutual benefits between understanding and generation through
1369 joint training. Unlike previous works (Pan et al., 2025; Wu et al., 2025c), we jointly optimize
1370 both the LLM and the diffusion model across understanding and generation tasks. This strategy
1371 avoids the representational bottleneck imposed by frozen modules and fosters a bidirectional synergy
1372 between the two tasks. As illustrated in Figure A5(a)(c), training the camera understanding
1373 component in isolation underperforms compared to the unified framework, as the generation process
1374 contributes auxiliary diffusion loss at the low-level appearance, which implicitly enhances detailed
1375 geometric perception. While the performance gain for generation is less pronounced than for under-
1376 standing in Figure A5(b)(d), notable improvements emerge in challenging scenarios such as FoV
1377 simulation, which requires prior knowledge regarding precise and holistic spatial understanding
1378 within an image.

1379 For other general-purpose unified models, the understanding tasks mainly target high-level concepts
1380 such as recognition and semantic comprehension. As a result, the domain gaps across multimodal
1381 tasks are more pronounced in these models, likely requiring more delicate architectural designs to
1382 harmonize representations across different modalities.

1383 A5.5 ANALYSIS

1384 **Model Size.** We show the comparison results on the total parameter count and FLOPs with previous
1385 understanding and generation models in Table A5, such as GeoCalib Veicht et al. (2024) and
1386 PreciseCam Jin et al. (2023). While Puffin is larger than previous specialized models, it replaces
1387 separate understanding and generation networks with a single unified model that handles both
1388 tasks within one framework. This design not only simplifies deployment, but also allows us to fully
1389 exploit a high-capacity backbone when training on large-scale multimodal datasets. In terms of overall
1390 parameter count and FLOPs, Puffin remains substantially more affordable than recent general-purpose
1391 unified multimodal models such as Bagel (14B) Deng et al. (2025) and Qwen-Image (20B) Wu et al.
1392 (2025a).



1393 **Figure A5: Ablation study on the mutual effect**
1394 between camera understanding (a)(c) and camera-
1395 controllable generation (b)(d) supervision.

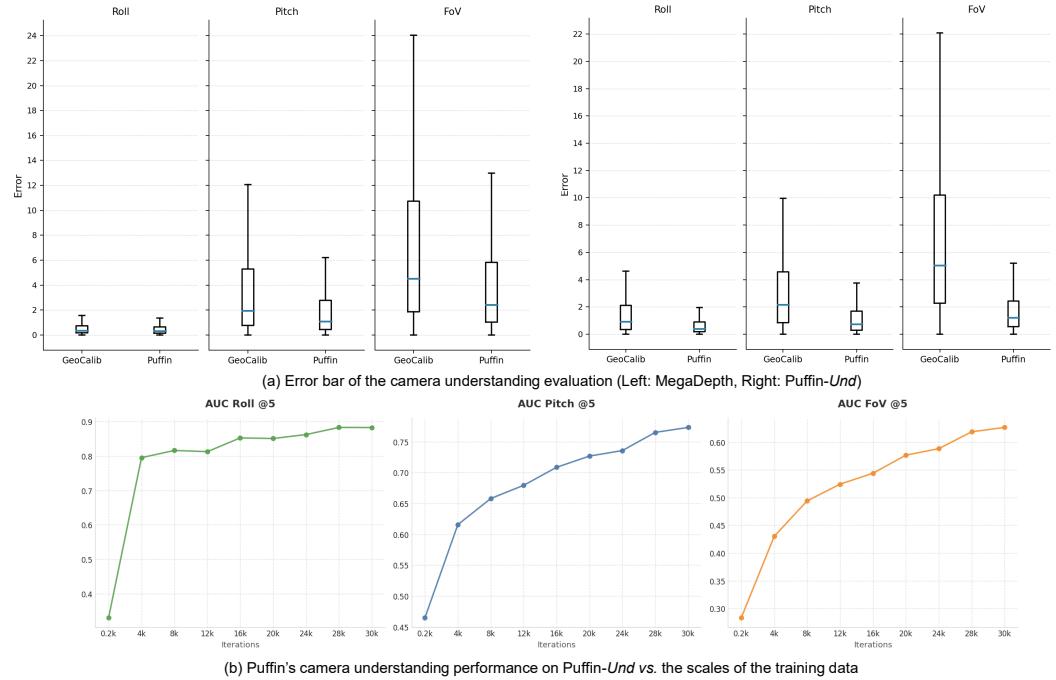
1404 **Table A6: Additional evaluation results on camera understanding** by re-training the comparison method (Veicht et al., 2024)
1405 on our constructed Puffin-4M dataset*.

Approach	Roll [degrees]			Pitch [degrees]			FoV [degrees]		
	error ↓	AUC $\Delta 1/5/10^\circ \uparrow$	error ↓	AUC $\Delta 1/5/10^\circ \uparrow$	error ↓	AUC $\Delta 1/5/10^\circ \uparrow$	error ↓	AUC $\Delta 1/5/10^\circ \uparrow$	
GeoCalib* (Veicht et al., 2024)	1.12	46.0	69.3	80.1	2.54	24.5	47.5	65.4	5.47
GeoCalib (Veicht et al., 2024)	0.92	53.6	73.9	82.6	2.18	28.9	52.5	69.6	5.04
Puffin (Ours)	0.41	78.3	91.0	95.2	0.74	60.2	81.2	90.0	1.21

1411 **Error Analysis.** In addition to the metrics (error and AUC) used in the main experiments, we also
1412 add the error bars for the representative baselines and our method in Figure A6(a) to provide a clearer
1413 and more comprehensive comparison. The results show that Puffin exhibits better robustness across
1414 the entire data distribution. The improvement is consistent across all intrinsics/extrinsics components
1415 and remains stable even under challenging camera configurations.

1416 **Model vs. Data.** We conduct experiments where the comparison method (Veicht et al., 2024) is
1417 re-trained on the same dataset (Puffin-4M) as ours, strictly following its original training recipe.
1418 Interestingly, we find that the re-trained GeoCalib (Veicht et al., 2024) on our 4M dataset slightly
1419 underperforms the original GeoCalib model trained on its 40K dataset. The detailed evaluation results
1420 on the Puffin-*Und* test set are reported in Table A6.

1421 By carefully analyzing these results, we offer two explanations for this phenomenon: (i) Model
1422 capacity vs. data scale. GeoCalib (Veicht et al., 2024) is a relatively lightweight CNN-like architecture
1423 with around 29M parameters. When trained on a significantly larger 4M-scale dataset with broad
1424 scene and distribution coverage, it tends to underfit: its limited capacity cannot fully model the
1425 entire distribution, so it only fits some sub-distributions well while inevitably neglecting others. (ii)
1426 Consistent observations from previous experiments. The GeoCalib authors report a similar trend
1427 in their ablation: when training the network on a $5\times$ larger dataset, the camera understanding
1428 performance slightly degrades on most benchmarks, and no clear improvement is observed; they also
1429 show that more advanced architectures can further boost performance. These observations are fully
1430 consistent with our findings.



1453 **Figure A6: More data analysis of the experiments.** (a) We show the error bar of the camera understanding
1454 evaluation on GeoCalib (Veicht et al., 2024) and Puffin. (b) We show how the performance of Puffin scales with
1455 data size across different camera parameters.

1456 In contrast, Puffin is built on a high-capacity LLM backbone, which, like other large multimodal
1457 models (e.g., LLaVA, Qwen-VL, InternVL), requires sufficiently large and diverse training data

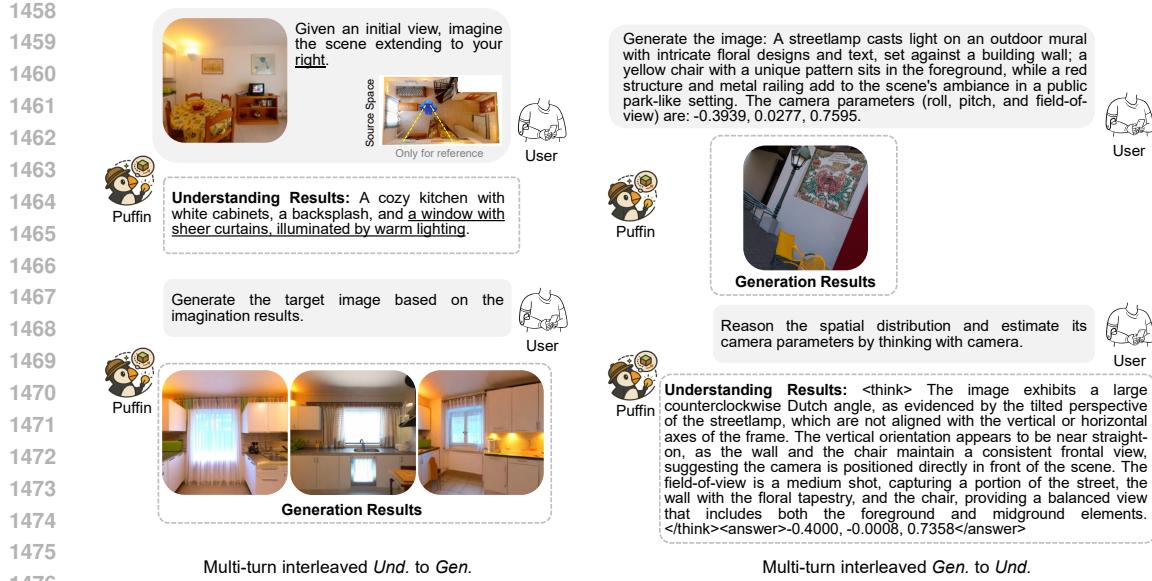


Figure A7: Multi-turn interleaved capability of Puffin.

1478 to avoid overfitting and to learn an accurate joint distribution over images, camera geometry, and
1479 language. In this sense, Puffin-4M is not merely a “bonus”, but rather a necessary data regime for
1480 such a unified multimodal model that jointly supports both understanding and generation.

1481 Furthermore, we also conduct additional experiments by re-training our model on Puffin-4M of different
1482 scales (Stage-II SFT). As shown in Figure A6 (b), we observe clear and consistent improvements
1483 as the data scale increases. Overall, these results suggest that the dataset and the model contribute
1484 jointly and should not be viewed in isolation.

1485 Beyond the above scaling results in Figure A6 (b), we find an interesting difference in trends across
1486 camera parameters. For roll, the model learns quickly even with relatively limited data, since it
1487 mainly relies on low- to mid-level geometric cues that are easy to capture (e.g., strongly slanted
1488 lines indicating a large roll). By contrast, estimating pitch and FoV requires more holistic and high-
1489 level spatial understanding, which cannot be sufficiently captured by local visual patterns alone
1490 and therefore benefits more from larger-scale data to form robust spatial reasoning concepts. This
1491 observation is consistent with our discussion in Section A5.1. Based on these trends, we believe that
1492 further scaling the dataset would bring additional gains in camera geometry understanding, especially
1493 for pitch and FoV.

1494 **Multi-turn Interleaved Capability.** Exploring the multi-round conversational capability of a unified
1495 multimodal model is meaningful. To this end, we conduct experiments on multi-turn interleaved
1496 conversations (generation → understanding and understanding → generation). As shown in Figure A7,
1497 Puffin can carry out coherent interleaved dialogues conditioned on previous turns. Specifically, it
1498 produces consistent cross-view generation results based on its previous reasoning, and accurate
1499 camera understanding based on its own generated images. This demonstrates that Puffin not only
1500 supports both capabilities within a single framework but can also use them in an interactive way over
1501 multiple conversational rounds, without any task-specific switching or separate models.

A6 LIMITATION AND FUTURE WORK

1505 Because our training dataset is constructed at a fixed resolution of 512×512 , Puffin’s image
1506 generation is currently restricted to a single scale. For camera understanding, we applied central
1507 cropping followed by resizing (Section 3.1), an operation that may discard semantically valid content
1508 and degrade performance, particularly when the aspect ratio deviates significantly from unity. While
1509 these limitations are orthogonal to our main focus, they could be addressed in future work by building
1510 multi-scale training datasets. Beyond data design, our evaluation of camera-controllable generation
1511 relied on an offline vision-based calibration method (Veicht et al., 2024). Although this approach
reflects the best available practice, the calibration errors it reports can be ambiguous, especially for

1512 generated images exhibiting only subtle spatial differences. Accurately evaluating spatial simulation
1513 thus remains an open challenge and is crucial for advancing camera-controllable generation. We
1514 plan to address this by incorporating stronger camera understanding models as evaluators and by
1515 designing benchmarks that more precisely capture geometric consistency. In addition, we aim to
1516 further enhance Puffin’s cross-view capability and extend it to camera-centric video generation and
1517 understanding, paving the way for broader applications in dynamic and immersive environments.

1518 Another interesting future direction is exploring camera-specific tokenizers, which could enable
1519 Puffin to model a richer and more nuanced camera control space beyond roll/pitch/FoV. Recent
1520 work such as Stable Cinematics (Chatterjee et al., 2025) provides a structured, industry-grounded
1521 taxonomy of cinematic controls, including a dedicated camera hierarchy with fine-grained nodes, and
1522 shows that even strong generative models still struggle to follow these nuanced camera instructions.
1523 This taxonomy and its evaluation protocol suggest a principled way to expand our photographic
1524 term set and to design more specialized camera tokens/bins that systematically cover lens types, shot
1525 grammar, and motion styles. Building on this insight, we plan to incorporate taxonomy-guided camera
1526 tokenization and supervision in the next iteration of Puffin, together with an extended Puffin-4M
1527 covering broader cinematic camera attributes, and release the resulting dataset and models to facilitate
1528 research on fine-grained multimodal spatial intelligence.

1529 A7 STATEMENTS

1530 **Use of Large Language Models.** We follow ICLR’s policy and use LLMs solely as general-purpose
1531 assistive tools. In our work, they were employed to polish the writing of certain paragraphs. They
1532 were not used for research ideation, experimental design, or the development of core technical
1533 contributions.

1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

Figure A8: Visualization on our spatial reasoning process for camera understanding. We highlight the reasoned spatially grounded visual cues regarding each camera parameter using different colors: **roll**, **pitch**, and **FoV**.

<think> The image exhibits a large counterclockwise Dutch angle, as evidenced by **the diagonal orientation of the road and the fields**, which are not aligned with the image's edges. The significant tilt-down perspective is apparent from **the elevated view of the house and the surrounding landscape**, providing a clear overhead look at the structures and fields. The close-up field-of-view is indicated by **the detailed visibility of the house's roof and the individual trees**, suggesting a focused and narrow scope that emphasizes specific elements within the scene. </think><answer>-0.4000, -0.6250, 0.4800</answer>

<think> The image exhibits a large counterclockwise Dutch angle, as evidenced by **the tilted horizon line and the diagonal alignment of the rows in the field**, which suggests a significant rotation of the camera. The vertical orientation shows a small tilt-down, indicated by the perspective that places **the foreground sunflowers closer to the viewer** while maintaining a clear view of the background, suggesting a slight downward angle without a dramatic shift. The medium shot field-of-view is apparent from **the balanced composition that captures both the detailed foreground of sunflowers and the expansive background of the field**. </think><answer>-0.6400, -0.2369, 0.6138</answer>

<think> The image exhibits a significant counterclockwise rotation, as evidenced by **the tilted alignment of the bookshelf and the wall-mounted objects**, which appear to lean towards the left side of the frame. The large tilt-up is apparent from the perspective, where **the ceiling and upper wall are prominently visible**, while the floor and lower elements are minimally shown, suggesting the camera is angled upwards. The wide-angle field-of-view is indicated by **the broad capture of the room's interior, including multiple elements like the bookshelf, wall art, and guitar**, all within a single frame, which emphasizes the expansive nature of the shot. </think><answer>0.6000, 0.5814, 1.5348</answer>

<think> The image exhibits a significant counterclockwise Dutch angle, as evidenced by **the tilted alignment of the buildings and the snowbank**, which appear to lean towards the left side of the frame. The large tilt-down orientation is apparent from the perspective, where **the ground and snowbank dominate the foreground**, while **the buildings are positioned higher in the frame**, suggesting a downward-angled view. The ultra-wide-angle field-of-view is indicated by **the expansive capture of the snowbank and the surrounding environment, with noticeable distortion at the edges**, particularly in the curvature of the snowbank and the buildings, which emphasizes the broad scope of the scene. </think><answer>-0.5364, -0.4957, 1.7608</answer>

<think> The image exhibits a small counterclockwise Dutch angle, as evidenced by **the slight diagonal alignment of the cobblestone pattern and the parked cars**, which are not perfectly parallel to the edges of the frame. The vertical orientation shows a small tilt-down, indicated by **the horizon line being slightly above the center of the image**, suggesting a downward perspective. The ultra-wide-angle field-of-view is apparent from **the expansive view of the cobblestone area, the trees, and the surrounding buildings**, which are captured with significant distortion at the edges, particularly noticeable in the curvature of the cobblestone pattern and the elongated appearance of the trees and cars. </think><answer>-0.1460, -0.3487, 1.8088</answer>

<think> The positioning of the clouds, which are not centered but rather skewed towards the bottom left, implies a large counterclockwise Dutch angle, as the frame is rotated to emphasize the diagonal orientation of the sky. The absence of any horizon line or terrestrial features indicates a significant tilt-up, as the camera is pointed upwards to capture the vastness of the sky. The medium shot field-of-view is evident from **the balance between the open sky and the presence of the clouds**, providing a sense of depth without including too much of the surrounding environment. </think><answer>-0.6704, 0.7098, 0.7048</answer>

<think> The image exhibits a large clockwise Dutch angle, as evidenced by **the diagonal orientation of the staircase and the railing**, which are not aligned with the vertical or horizontal axes of the frame. The significant tilt-down perspective is apparent from the low angle at which the **floor and the ornate emblem are captured**, emphasizing the depth and leading the viewer's eye downward. The medium shot field-of-view is indicated by **the inclusion of both the detailed emblem on the floor and the upper portion of the staircase**, providing a balanced view that captures the architectural elements without excessive cropping or wide expanse. </think><answer>0.5280, -0.4158, 0.6660</answer>

<think> The image exhibits a large counterclockwise Dutch angle, as evidenced by **the diagonal alignment of the building's facade and the street**, which tilts the scene to the left. The vertical orientation shows a significant tilt-up, as the lower portion of the building and street are cropped out, **emphasizing the upper levels and the sky**. The wide-angle field-of-view is apparent from the **broad perspective that captures multiple stories of the building and the surrounding environment**, including the adjacent structures and street elements, all within a single frame. </think><answer>-0.7119, 0.3745, 1.4028</answer>

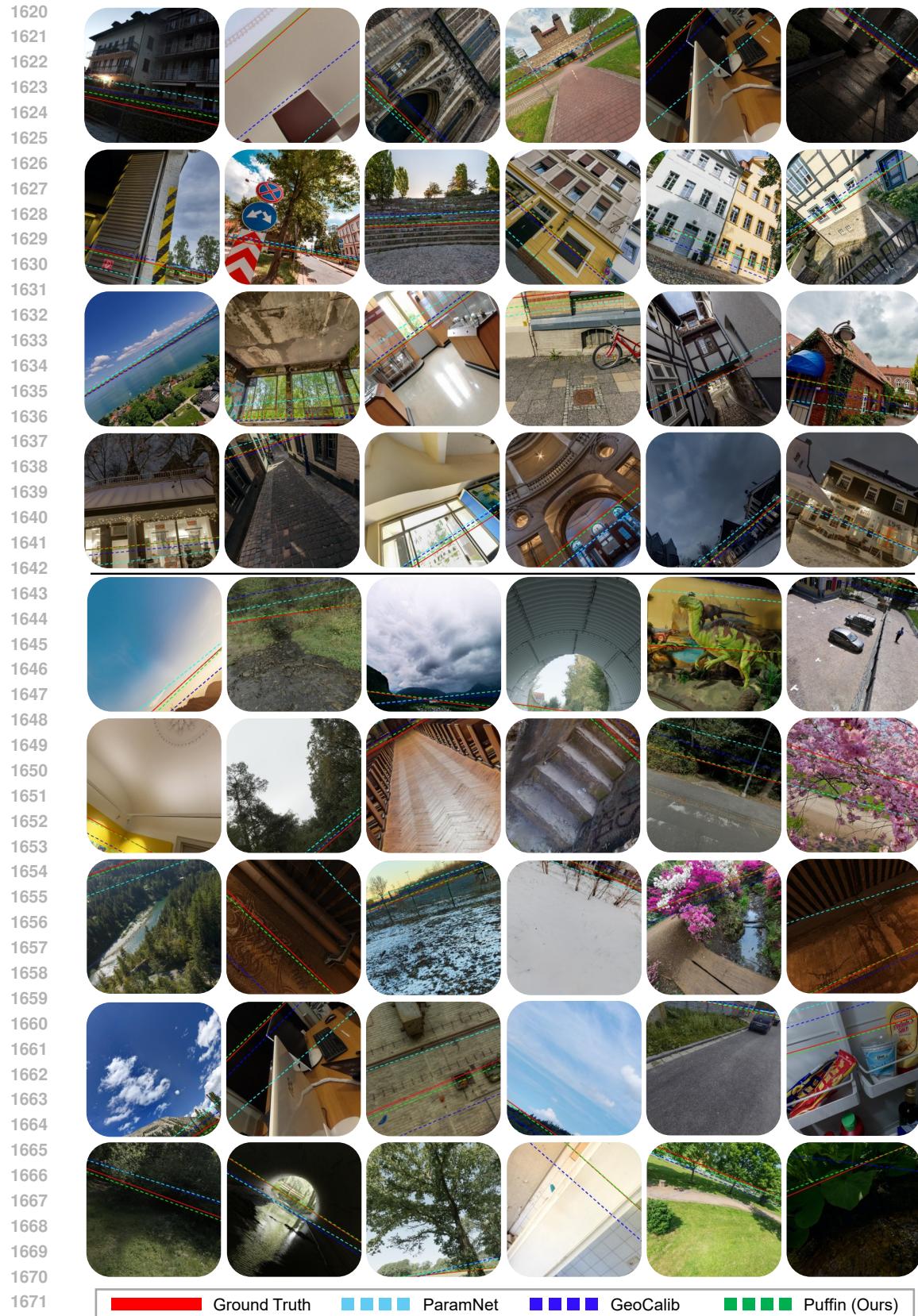


Figure A9: Qualitative evaluations on the camera understanding methods with horizon line visualization.
 We show the common cases (with architectures or indoor) and challenging cases (with few geometric features or significant tilted camera poses) at the top and bottom, respectively.

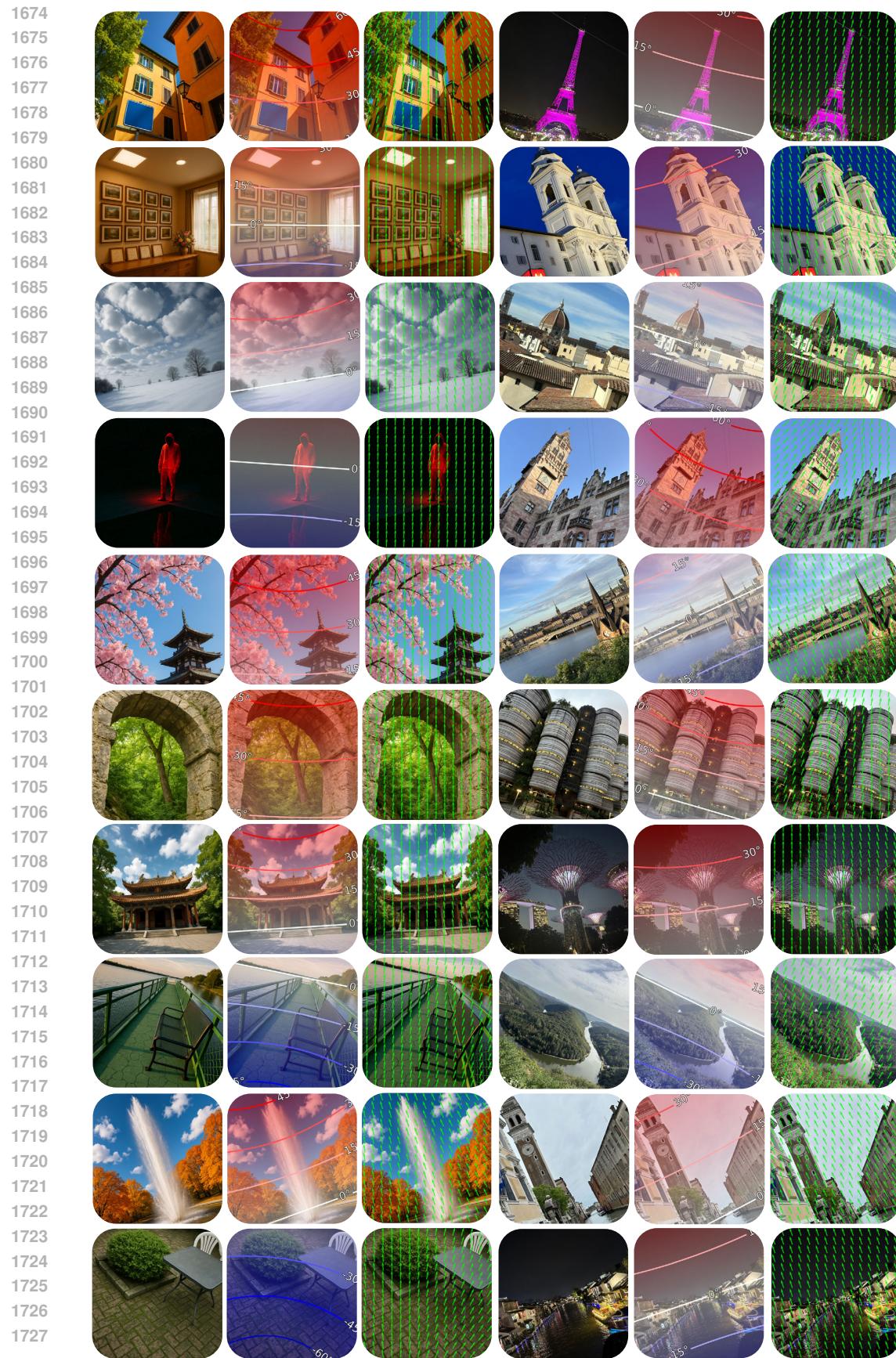


Figure A10: Our camera understanding on AIGC images (OpenAI, 2025) (left) and real-world photographs (right).

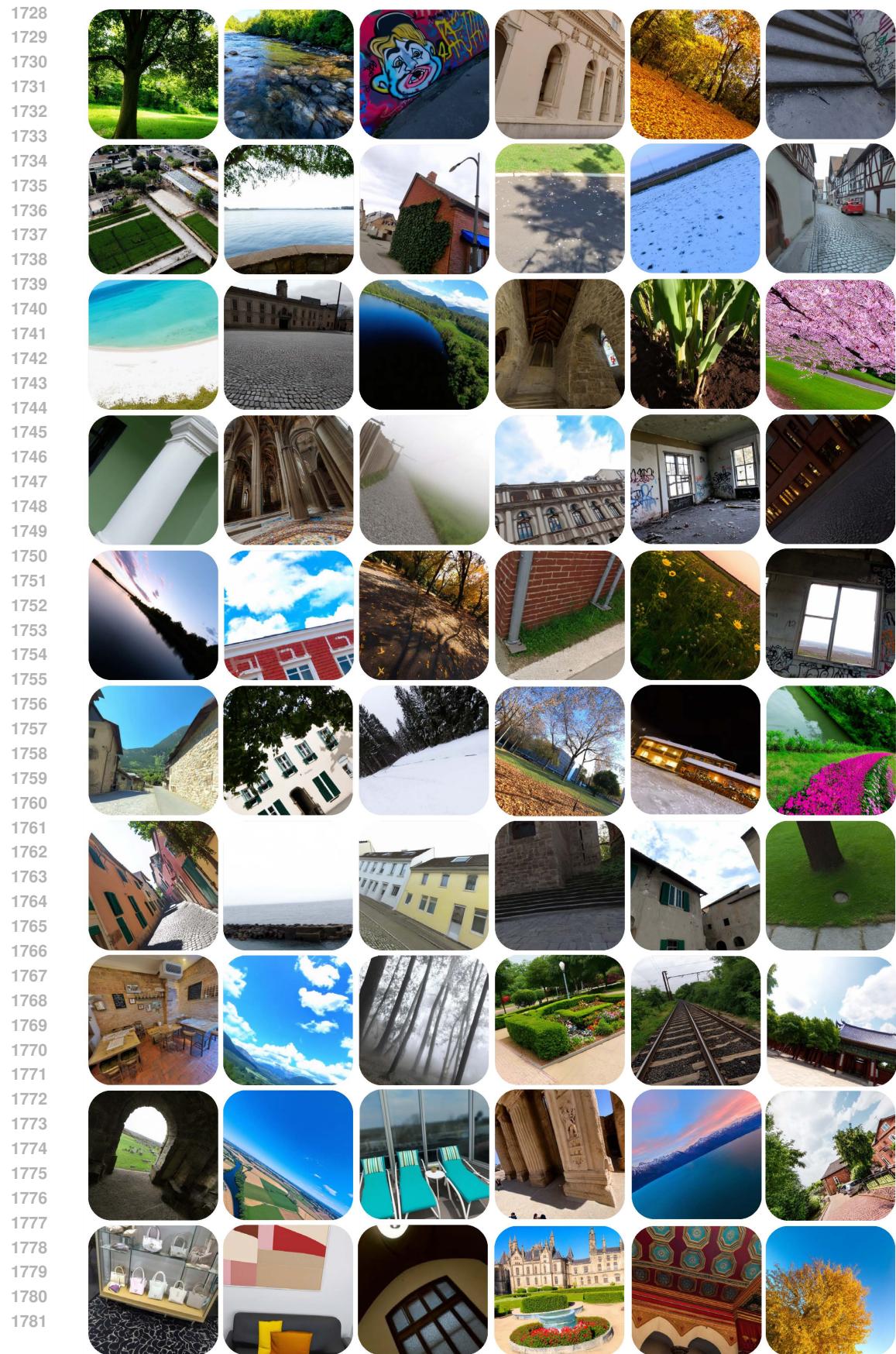


Figure A11: Our camera-controllable generation results with various camera configurations.

(a) Text-to-image generation with varying roll angles.

(b) Text-to-image generation with varying pitch angles.

(c) Text-to-image generation with varying FoVs.

Figure A12: Text-to-image generation (single-view) with specific controls for each camera parameter.

Figure A13: Image-to-image generation (cross-view) with varying yaw angles. The image with a red box denotes the initial view, and the others are the generated views based on the yaw deviation from the previous view.

Figure A14: World exploration results. The 3D reconstruction results are obtained by VGKT.

