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Abstract

Cross-Domain Few-Shot Object Detection (CD-FSOD) aims to generalize to un-
seen domains by leveraging a few annotated samples of the target domain, requiring
models to exhibit both strong generalization and localization capabilities. However,
existing well-trained detectors typically have strong localization capabilities but
suffer from limited generalization, whereas vision foundation models (VFMs)
generally exhibit better generalization but lack accurate localization capabilities. In
this paper, we propose a novel Mixture-of-Experts (MoE) structure that integrates
the detector’s localization capability and the VFM’s generalization by using VFM
features to improve detector features. Specifically, we propose Expert-wise Router
(ER) that dynamically selects the most relevant VEM experts for each backbone
layer, and Region-wise Router (RR) that emphasizes foreground and suppress
background. To bridge representation gaps, we further propose Shared Expert
Projection (SEP) module and Private Expert Projection (PEP) module, which align
VEM features to the detector feature space while decoupling shared image feature
from private image feature in the VFM feature map. Finally, we construct MoE
module to transfer the VFM’s generalization to the detector without modifying
the original detector architecture. Furthermore, our method extend well-trained
detectors for detecting novel classes in unseen domains without re-training on the
base classes. Experimental results on multiple cross-domain datasets validate the
effectiveness of our method.

1 Introduction

Few-Shot Object Detection (FSOD) aims to detect objects of novel classes with a few labeled
support data. Existing FSOD methods [, 2, 3, 4, 5, 6, 7, 8] have achieved notable progress in
generalizing to various in-domain novel categories. However, these methods often struggle with
domain shifts, where training and testing data originate from different domains. This challenge
underscores the significance of Cross-Domain Few-Shot Object Detection (CD-FSOD). CD-FSOD
aims to generalize object detection models to detect novel classes in unseen domains by using a few
training samples. This challenging task typically requires model to combine strong generalization
and accurate localization capability.

Existing well-trained object detection methods [9, 10, 11, 12, 13, 14, 15] usually excel at localizing
and recognizing seen objects but struggle to generalize to unseen categories or knowledge. To address
this problem, previous CD-FSOD methods [16, 17, 18] mainly adopt a two-stage training paradigm

that first involves base training on a large-scale dataset of base classes, follow by novel fine-tuning
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Figure 1: Existing CD-FSOD methods generally require time-consuming base training to adapt
their specific-designed detection models. In contrast, our method directly extends the well-trained
common-used detection models, e.g., DETR [25], to CD-FSOD without retraining the model on
base data. Our method significantly improves the cross-domain performance of well-trained object
detection methods [21, 20, 19, 22]. Our method also outperforms the state-of-the-art method CD-
ViTO [18].

on a small dataset of novel classes. However, these models are typically redesigned for CD-FSOD
and retrained on base classes which brings substantial computational and time costs, as shown in
Figure 1. Moreover, they fail to fully utilize the well-trained powerful object detection models, e.g.,
DETR-based methods [19, 20, 21, 22]. Thus, we propose a novel CD-FSOD paradigm by extending
well-trained in-domain object detection methods to detect unseen classes in new domains without
retraining on the base classes. Our key idea is to leverage the powerful vision foundation models
(VEMs) [23, 24] to equip well-trained DETR models with powerful domain generalization ability.

Vision foundation models [26, 27] have demonstrated excellent generalization to new domains,
powered by sophisticated architectures and large-scale pretraining datasets. However, VFMs typically
lack accurate localization capabilities due to the lack of bounding box annotations in their pretraining
datasets. Consequently, directly applying VFMs to object detection generally results in suboptimal
performance. To address this problem, existing VFM-based CD-FSOD methods [18, 28] usually
modify the detector structure to integrate VFMs and retrain on the base data to achieve precise
localization capabilities, which incurs substantial computational and time costs.

It is essential to fully utilize the VFM’s generalization capabilities and the well-trained object
detection model’s localization capabilities while reducing computational and time costs. Thus,
instead of altering the structure of existing detection models, we introduce a flexible framework based
on a Mixture-of-Experts (MoE) [29] architecture to integrate detector with VFM. Our method enables
well-trained detectors to achieve both strong localization and generalization capabilities, without
retraining on base class. Specifically, we adopt Detection Transformer (DETR) as our detection
framework due to its superior localization capabilities and leverage VFM features as experts to
improve the detector’s representations by aggregating both detector and VFM features.

Overall, our method focuses on two parts: VFM expert feature selection and VFM-detector feature
fusion. Since detector features at different layers contain varying levels of semantic information,
each backbone layer generally requires distinct VFM features for effective guidance. Accordingly,
we propose Expert-wise Router (ER) to select appropriate VFM features based on image features
from different backbone layers. Meanwhile, to highlight the foreground regions and suppress
irrelevant background in the VFM feature map, we propose the Region-wise Router (RR) module
which generates region-wise gating weights to reweight different spatial regions in the VFM expert
features. The ER and RR modules respectively generate expert-wise and region-wise gating weights,
dynamically prioritizing the most relevant VFM expert features for detector features at different
layers and effectively suppressing irrelevant background in the VFM expert features.

After selecting expert features, it is essential to ensure effective feature fusion between VFM expert
features and detector features. Due to the differences in both channel and spatial dimensions between
VFM expert features and detector features, it is necessary to project VEM features into the detector
feature space. However, assigning a dedicated projection layer to each expert feature will introduce a
large number of additional parameters, which increases the computational cost. In contrast, using a
single shared projection layer fails to capture the diverse projection requirements of different expert
features. To address this issue, we propose the Shared Expert Projection (SEP) and Private Expert
Projection (PEP) modules to project the VEM features to the detector feature space with minimal
parameters. Each expert feature contains shared image features, such as object shape. Additionally,
since each expert feature may focus on different regions of the object, it also includes private image
features. Based on this characteristic, we decouple the shared and private features of each expert
feature and project them using separate modules. Specifically, we use the SEP module to project



shared features across all expert features, while using the PEP module to project the private features
that are unique to each expert feature. This design minimizes the number of parameters required for
feature projection and preserves detailed features from different object regions.

Compared with existing methods that adopt the foundation model as a learnable backbone [30, 31, 32]
or a frozen backbone [33, 34], our method offers the following advantages:

* Maintaining strong localization capability. Our method uses VFM features as experts to
enhance detector backbone features, rather than using the VFM as the detector backbone
directly. This design avoids transferring the VFM’s limited localization capability to the
detector.

* No retraining requirement on base classes. We introduce only a few trainable parameters
to fuse VEM and detector features. Therefore, the model can be directly finetuned on
downstream tasks without retraining on base classes.

* High extensibility. By treating the VFM as an expert model independent of the detector,
our method avoids modifying the detector structure and can be easily transferred to other
well-trained object detection models.

2 Related Works

DETR and Its Variants. Detection Transformer (DETR)[25] initially proposed an end-to-end object

detector based on the Vision Transformer architecture. Many subsequent studies [35, 36] have
improved DETR from various perspectives, such as accelerating convergence speed [37, 38, 20, 39],
improving the matching strategy [38, 40], and applying advanced query learning methods [41, 21,

, 43]. Although these methods demonstrate strong performance, DETR and its variants typically
struggle on CD-FSOD tasks because they are trained on base classes and thus fail to extract robust
representations for target domain images, impairing DETR’s generalization capabilities. In this work,
we propose a MoE framework to integrate DETR with vision foundation model. Specifically, we
leverage vision foundation model’s features as experts to improve the detector’s features, enabling
the detector to inherit the strong generalization of vision foundation model.

Cross-Domain Few-Shot Object Detection. Cross-Domain Few-Shot Object Detection (CD-FSOD)
aims to enable object detection models to detect novel classes in unseen domains by using only a few
training samples. Existing FSOD methods can be categorized into meta-learning-based [44, 34, 45],
fine-tuning-based [40, 47, 48, 49], and data-enhancement-based [50, 51, 52, 53] approaches. Although
these methods perform well in standard FSOD tasks, their performance generally degrades in CD-
FSOD settings due to substantial domain gaps. Several methods [54, 55] specifically address
CD-FSOD challenges. For instance, AcroFOD [16] uses domain-aware augmentation to reduce
domain gaps. OA-FSUI2IT [17] leverages a few unlabeled target-domain samples to generate
cross-domain images for feature alignment. CD-ViTO [18] improves inter-class discrimination
using DINOV2 prototypes. ETS [56] uses a two-step augmentation strategy for foundation model
adaptation. CDFormer [57] introduces transformer-based modules to distinguish object-background
and object-object features. IFC [58] uses learnable instance feature caches for robust prototypes.
These methods generally require modifying the original detector’s structure and retraining on the
base classes. In this work, we propose a novel Mixture-of-Experts (MoE) structure to aggregate
VFM features and detector features with a few parameters. Our method treats the VFM as an expert
model independent of the detector, avoiding modifications to the detector architecture and reducing
the computational and time cost of retraining.

Vision Foundation Model. Current vision foundation models (VFEMs) are primarily trained under
two paradigms: supervised learning and self-supervised learning. Supervised learning model [59, 60]
commonly relies on high-quality labeled datasets for pretraining. These models often exhibit strong
generalization, demonstrating excellent performance even without fine-tuning based on downstream
tasks. However, large-scale, high-quality labeled datasets are difficult to obtain due to the high cost of
manual annotation. To address this problem, self-supervised learning models [01, 62, 63, 64, 65, 66]
leverage techniques such as contrastive learning [67, 68] and masked image modeling [69, 70] to
train on unlabeled data, reducing reliance on labeled datasets and improving image understanding
through greater data diversity. However, the lack of accurate bounding boxes limits the localization
capabilities of vision foundation models. When the vision foundation model is directly used as the
backbone for object detection tasks, its weak localization capability is transferred to the detector.
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Figure 2: Method overview. Our method consists of two main components: 1) : The Expert-wise
Router (ER) module generates expert-wise gating weight to select the appropriate VFM expert
features for the detector’s features at different layers. The Region-wise Router (RR) module generates
region-wise gating weight to filter out the invalid background regions in the VFEM feature map. 2) :
Expert Projection (EP) module: The EP module primarily consists of shared expert projection (SEP)
module and private expert projection (PEP) module. The SEP module projects the shared image
feature contained in different expert features. The PEP module projects the private image feature
contained in each expert feature.

To overcome this limitation, we use VFM features as experts to improve the detector backbone
features, rather than directly replacing the detector’s backbone. This approach avoids modifications
to the detector architecture and preserves the detector’s localization capability. Additionally, since our
method does not modify the detector structure, it can be easily applied to other detector architectures.

3 Method

3.1 Method Overview

To fully exploit the VFM’s generalization for CD-FSOD while preserving the detector’s strong
localization capability, we propose a novel MoE framework that leverages VFM features to improve
detector representations without modifying the original detector architecture, as shown in Figure 2.
It consists of two key components: the expert routing module and the expert projection modules.
Specifically, given VFM expert features {F7}V_| € RBxCaxHaxWa apq detector feature F! €
REXCXHXW from the I-th detector backbone layer, where B denotes the batch size, N corresponds
to the number of expert features, C, C represent the channel dimension of detector feature and VFM
expert feature, H x W, H; x W represent the spatial size of detector feature and VFM expert feature,
the Expert-wise Router (ER) module is used to generate expert-wise gating weights base on F! to
select suitable VFM expert features for current detector feature. Simultaneously, the Region-wise
Router (RR) module is used to generate region-wise gating weights based on F! to suppress irrelevant
background regions in the selected VFM expert feature. Then, the Shared Expert Projection (SEP) and
Private Expert Projection (PEP) modules are applied to address the dimensional mismatch between
the VFM features and the detector features. The SEP module is used to project the shared feature
contained in expert features. The PEP module is used to project the private feature contained in
each expert feature. After applying expert projection, the projected VFM features are denoted as

{ F","l},]y:l € RBxCxHaxWa Finally, the MoE module fuses VFM features and detector features to
obtain F} € REXCXHXW a4 the input for the next layer of the detector backbone.

3.2 Expert Routers

Expert-wise Router. Detector features at different layers contain different levels of image features.
Shallow layers primarily focus on low-level feature such as edges and color, and deep layers focus on
high-level semantics such as object shape and category. Therefore, the importance of each VFM expert
feature varies across different layers of the detector backbone. Inspired by the routing strategy of MoE,
we propose the expert-wise router to select the most appropriate VFM expert features for detector
features at different backbone layers. Specifically, for the i-th layer detector feature F', we first apply



global average pooling along the spatial dimensions to aggregate spatial information of detector
feature and obtain spatial-wise aggregated feature vector f; = ﬁ ZZH:1 ZJVZI F!(:,: i, 7). Then,
the tensor f; is fed to a learnable fully connected layer 6. to aggregate channel information of detector
feature and obtain channel-wise aggregated feature vector fé = 0.(f,). Finally, a softmax function
is applied to the channel-wise aggregated feature vector f; along channel dimension to obtain the
expert-wise gating weight G, = softmax (f).

The expert-wise router generates expert-wise gating weights to select the most suitable VFM expert
features for different backbone layers. These VFM expert features typically exhibit high similarity to
the detector features, indicating they are more likely to focus on similar levels of image semantics.
Therefore, the expert-wise router can effectively improve the detector’s feature of different layers.

Region-wise Router. Different regions in the VFM feature maps exhibit varying importance for the
detector. Foreground regions are typically more informative for object detection and background
regions often contain more task-irrelevant image features. To filter out irrelevant background regions
and highlight foreground objects, we propose the region-wise router to generate region-wise gating
weights for different regions of the VFM expert feature maps. Specifically, the [-th layer detector
feature F! is fed to a learnable fully connected layer 6, along channel dimension to obtain projected
tensor f, = 0,.(F!). The projected tensor f, is then normalized using a softmax function to generate
the region-wise gating weights G,. = softmax (f;.).

The region-wise router generates region-wise gating weights to reweight different regions of the VFM
feature map. Compared with VFM, the detector can precisely localize foreground regions because of
its stronger localization capability. Therefore, The region-wise router generates region-wise gating
weights based on the detector features to highlight foreground regions.

3.3 Expert Projections

Since VFM expert features and detector features differ in both spatial and channel dimensions, it is
necessary to project VFM expert into the detector feature space to align their feature dimensionality.
However, due to the large number of VEM experts, assigning a dedicated projection layer to each
VEFM expert feature would introduce substantial parameters and degrade training efficiency. In
contrast, using a single shared projection layer reduces parameter overhead but fails to accommodate
the diverse projection needs across VFM expert features. To address this problem, we propose the
Shared Expert Projection (SEP) module and Private Expert Projection (PEP) module. Each expert
feature contains both shared information, e.g., object shape, and private information, e.g., fine-grained
details from different object regions. The SEP module is used to project shared information across
all VFM expert features, and the PEP module is used to project private information specific to each
VEM expert feature.

Shared Expert Projection. The shared expert projection module enables the model to effectively
project shared image feature across different expert features. Specifically, for the i-th VFM expert
feature F'i, we apply a shared linear projection layer 8, € R“*Cs to all expert features, where

Cs = ’”7;1 C, m is hyperparameter that control the channel dimensions of the shared expert projection

module transformation. This produces the shared projection component F! = F - 6,.

Private Expert Projection. The private expert projection modules enable the model to project private
image features contained in each VFEM expert feature. Specifically, each expert feature applies its
own private projection layer 0;; € R *C% to project its private image features, where Cp = iC’ .
The private projection component F; can be obtained as F;, = F; - 6;,.

The projected VFM expert feature F;, is constructed by concatenating F and F, zﬁ along the channel
dimension. After projecting the VFM expert features along the channel dimension, we resize their
spatial size via bilinear interpolation to match the spatial resolution of [-th detector backbone feature.

The final VFM expert features at {-th detector backbone layer are denoted as { Frf’l}ﬁ[:l.

3.4 Mixture of Experts

Given the projected expert features {F(Z’l N_, and their corresponding expert-wise and region-wise

gating weights for the [-th detector backbone layer, the final feature fusion is performed by our MoE



Table 1: Comparison results on the CD-FSOD benchmark. The models are trained on COCO dataset
and evaluated on six datasets with distinct domain shifts. The best results are highlighted with bold.
t indicates that the methods are fine-tuned on six cross domain datasets.

Methods Backbone  ArTaxOr  Clipartlk  DIOR  DeepFish ~ NEU-DET  UODD  Average
Distill-cdfsodf [54] ~ ResNet50 5.1 7.6 10.5 - - 5.9 -
DINO DETRf [20] ResNet50 29 13.6 6.9 11.6 4.5 2.8 7.1

ViTDeT7 [72] ViT-B/14 59 6.1 12.9 0.9 24 4.0 54
- Detic [73] ViT-L/14 0.6 11.4 0.1 0.9 0.0 0.0 22
El Detict [73] ViT-L/14 32 15.1 4.1 9.0 3.8 42 6.6
* DE-VIiT [28] ViT-L/14 0.4 0.5 2.7 0.4 0.4 1.5 1.0
DE-ViT§ [28] ViT-L/14 10.5 13.0 14.7 19.3 0.6 2.4 10.1
CD-ViTO¥ [18] ViT-L/14 21.0 17.7 17.8 20.3 3.6 3.1 13.9
Ourst ResNet50 26.1 20.1 20.6 24.2 9.1 9.0 18.2
Distill-cdfsodt [54] ResNet50 12.5 23.3 19.1 15.5 16.0 12.2 16.4
DINO DETRT [20] ResNet50 8.5 21.2 12.3 16.2 9.6 8.7 12.8
ViTDeTt [72] ViT-B/14 20.9 233 233 9.0 13.5 11.1 16.9
- Detic [73] ViT-L/14 0.6 11.4 0.1 0.9 0.0 0.0 22
El Detict [73] ViT-L/14 8.7 20.2 12.1 143 14.1 10.4 13.3
- DE-ViT [28] ViT-L/14 10.1 5.5 7.8 25 L5 3.1 5.1
DE-ViT7 [28] ViT-L/14 38.0 38.1 234 21.2 7.8 5.0 223
CD-ViTO7 [18] ViT-L/14 479 41.1 26.9 22.3 11.4 6.8 26.1
Ours¥ ResNet50 63.3 45.1 321 29.5 19.0 19.6 34.7
Distill-cdfsodt [54]  ResNet50 18.1 27.3 26.5 15.5 21.1 14.5 20.5
DINO DETR [20] ResNet50 11.4 232 14.4 20.5 11.8 9.9 15.2
ViTDeTf [72] ViT-B/14 23.4 25.6 29.4 6.5 15.8 15.6 19.4
= Detic [73] ViT-L/14 0.6 11.4 0.1 0.9 0.0 0.0 22
= Detict [73] ViT-L/14 12.0 22.3 154 17.9 16.8 144 16.5
3' DE-ViT [28] ViT-L/14 9.2 11.0 8.4 2.1 1.8 3.1 59
DE-ViT¥ [28] ViT-L/14 49.2 40.8 25.6 21.3 8.8 5.4 25.2
CD-ViTO7 [18] ViT-L/14 60.5 443 30.8 223 12.8 7.0 29.6
Ours¥ ResNet50 71.3 49.9 37.8 34.1 23.7 22.1 39.8
module:
N
l ! l mn,l N n,l
F=F+Y (aGloF'+5 GloF,"), M
n=1

where ® denotes tensor broadcast multiplication, and « and [ are weighting factors, set to @ =
0.5, 8 = 0.5 in our experiment. Ffl denotes the output of the [-th detector’s backbone layer.
Simultaneously, it also serves as the input to layer [ + 1. We repeat this process across all backbone
layers until obtaining the final layer backbone features, which are then fed into the subsequent detector
components to obtain the object detection results.

4 Experiments

We adopt the DINO detector [20] which is trained on the COCO source domain dataset as our baseline
and use the self-supervised foundation model DINOvV2 [27] as our expert model. Our method is
directly applied to the publicly available DINO with a ResNet50 [7 1] backbone, without any additional
re-training on the source domain dataset. For fine-tuning, we employ the AdamW optimizer with a
learning rate of 2e-3. Following the benchmark in previous work [ | 8], we evaluate our method on six
datasets with distinct domain shifts: ArTaxOr (insect images), Clipartlk (hand-drawn cartoon image),
DIOR (remote sensing imagery), DeepFish (underwater fish images), NEU-DET (industrial defect
images), and UODD (marine organism images). For the 1/5/10 shot task settings, we train our model
for 400, 800, and 1200 iterations, respectively. All experiments are conducted on four NVIDIA RTX
4090 GPUs. We rename the detector DINO as DINO DETR in the following.

4.1 Quantitative Results

Comparison with State-of-The-Arts. As shown in Table 1, we compare our method with typical
CD-FSOD [18, 54], ViT-based OD [72], and open-set based OD/FSOD methods [73, 28]. Our
method outperforms the baseline method DINO DETR, achieving improvements of 11.1/21.9/24.6
mAP on six cross domain datasets under the 1/5/10 shot task settings, respectively. Additionally,
compared with the previous state-of-the-art cross-domain few-shot object detection method CD-ViTO,



Table 2: Comparison results of our method, MLLMs and OVMs under 10-shot task setting. The best
results are highlighted in bold.

Methods ArTaxOr  Clipartlk  DIOR  DeepFish ~ NEU-DET  UODD  Average
Qwen model [74] 48.8 7.5 2.7 9.2 45 1.3 12.3
Ferret model [75] 5.5 8.5 0.8 5.0 0.6 1.4 3.6
YOLO-World [77] 10.5 37.5 3.1 29.5 0.1 0.2 13.5
Grounding DINO (Swin-B) [76] 12.8 49.1 4.5 28.6 1.2 10.1 17.7
DINO DETR (ResNet50) + Ours 71.3 49.9 37.8 34.1 23.7 22.1 39.8

Table 3: Result of method extensibility. All models are trained on COCO. The best results on each
baseline are highlighted in bold.

Methods Backbone  ArTaxOr  Clipartlk  DIOR  DeepFish ~ NEU-DET  UODD  Average
DAB-DETR [21] ResNet50 8.2 19.4 8.2 9.7 6.9 6.1 9.6
DAB-DETR + Ours  ResNet50 68.7 45.2 31.8 27.5 20.1 22.1 359
DETA [22] ResNet50 122 234 15.0 20.0 11.6 14.1 16.1
DETA + Ours ResNet50 69.9 45.5 371 26.3 20.9 19.0 36.5
AlignDETR [19] ResNet50 12.1 23.7 16.1 20.8 12.3 10.7 16.0
AlignDETR + Ours ResNet50 72.1 45.6 355 27.7 21.7 22.1 375

Table 4: Comparison results of different backbone. All models are trained on COCO. The best results
are highlighted in bold.

Methods Backbone  ArTaxOr  Clipartlk  DIOR  DeepFish ~NEU-DET  UODD  Average
DINO DETR + Ours  ResNet50 71.3 49.9 37.8 34.1 23.7 22.1 39.8
DINO DETR + Ours Swin-B 75.4 56.7 39.5 35.1 232 23.1 422
DINO DETR + Ours ViT-L/14 75.8 60.3 42.0 37.2 25.1 259 44.4

our method achieves the improvements of 4.3/8.6/10.2 mAP on six cross domain datasets under the
1/5/10 shot task settings.

Comparison with MLLMs and OVMs. As shown in Table 2, we compare our method with
multimodal large language models (MLLMs) and open-vocabulary methods (OVMs). Using their
open-source code, we conducted fair comparisons on the same dataset. Qwen model [74] and
Ferret model [75] obtain results through text-guided visual grounding. Grounding DINO [76] and
YOLO-World [77] derive detection results via image-text matching. Our method achieves the highest
performance compared with OVMs and MLLMs across six cross domain datasets. Compared with
Grounding-DINO and YOLO-World model, our method achieves the improvements of 22.1/26.3
mAP. For Qwen model and Ferret model, our method achieves the improvements of 27.5/36.2 mAP.
We argue that models such as Qwen, despite being trained on large-scale image-text datasets, have
never seen the novel classes in the cross domain dataset, resulting in weak zero-shot performance. In
contrast, our method adopts a cross-domain learning strategy that integrates with vision foundation
models, achieving superior performance on cross-domain tasks.

Method Extensibility Analysis. To further validate the strong extensibility of our method, we adapt
our method to other DETR models and evaluate their performance under the 10-shot task setting
on all datasets. As shown in Table 3, the average performance of all models has been significantly
improved. For instance, the performance of DAB-DETR increased from 9.6 mAP to 35.9 mAP. To
validate the effectiveness of our method across different detector backbones, we apply our approach
to DINO DETR with various backbones and evaluate their performance under the 10-shot task setting
on six cross domain datasets. As shown in Table 4, the experimental results demonstrate that our
method achieves strong performance across different backbones. Specifically, when integrating our
method with a Swin-B [78] backbone, our method performance improves by 2.4 mAP compared to
the ResNet backbone, while using a ViT-L [79] backbone leads to an improvement of 4.6 mAP.

Ablation Studies. To assess the contribution of each module, we conduct ablation studies under the
10-shot task setting across six cross domain datasets. As shown in Table 5, adding the SEP module
raises the average performance to 34.6 mAP, surpassing the state-of-the-art CD-ViTO. Building on
this, adding the PEP module further improves performance to 35.7 mAP, demonstrating that the
private projection layer effectively retains rich private image features in the VFEM expert features.
After introducing the feature projection modules, we further evaluate the performance of the routing
modules. Adding the expert-wise routing (ER) module improves the average performance to 37.2
mAP, highlighting the importance of selecting different VFM expert features to guide different
detector layers. Adding the region-wise routing (RR) module further boosts performance to 38.2



Table 5: Results of ablation studies. “SEP” denotes the shared expert projection, “PEP” denotes the
private expert projection, “ER” denotes the expert-wise router, “RR” denotes the region-wise router.

SEP PEP ER RR ArTaxOr Clipartlk DIOR DeepFish NEU-DET UODD Average

X X X X 11.4 232 14.4 20.5 11.8 9.9 15.2
v X X X 62.1 43.8 34.5 26.4 21.2 19.3 34.6
X v X X 63.2 44.1 35.8 26.0 23.0 21.5 35.6
' v X X 65.1 44.6 34.8 27.4 22.0 20.3 35.7
v X v oox 63.1 452 36.1 29.5 233 17.3 35.8
v X X Vv 69.0 472 36.1 322 20.9 21.8 37.9
X v v oox 66.2 453 352 30.1 23.2 22.0 37.0
X v x Vv 67.1 46.7 37.5 28.5 232 22.5 37.6
v v v X 68.8 46.8 36.3 27.8 21.8 21.5 37.2
v v X Vv 68.7 493 35.2 31.4 22.2 22.1 38.2
v X v v 70.3 49.1 35.8 32.5 22.3 22.7 38.8
X v v v 70.9 49.5 37.1 32.9 23.1 22.0 39.3
' v v v 71.3 49.9 37.8 34.1 23.7 22.1 39.8

Table 6: Comparison results of generalization. The numbers in parentheses on the right represent
the decrease in dAP values relative to those in the first row. The green font denotes the best
performance. Under the 1/5/10-shot task setting, our method consistently achieves the lowest dAP
values, demonstrating its strong generalization capability in addressing cross-domain tasks.

Method 1-shot FP| S-shot FP| 10-shot FP|
DINO DETR 44.45 40.12 35.68

DINOv2 29.73 (-14.72)  27.70 (-12.42)  30.26 (-5.42)
Ours 2647 (-17.98) 22.54 (-17.58) 17.98 (-17.70)

mAP, demonstrating that the RR module effectively highlights foreground regions in the feature maps
and filters out irrelevant background information. Using ER and RR together achieves the best result
of 39.8 mAP, confirming their complementarity.

Cross-Domain Generalization Analysis. To validate that the VFMs have strong generalization
and the detectors have poor generalization on the cross domain tasks, we fine-tune DINO DETR,
DINOV?2 and our method on six cross-domain datasets and evaluate their performance. DINOv?2 refers
to replacing the ResNet50 backbone of original DINO DETR with DINOv2. We use the average
precision loss(dAP) caused by false positive samples as our evaluation metric. As shown in Table 6,
DINO DETR has the highest dAP values reach 44.45/40.12/35.68 under the 1/5/10-shot task settings,
respectively, indicating its poor generalization in cross domain tasks. In contrast, DINOv2 has lower
dAP values of 29.73/27.7/30.26, indicating the strong generalization capability. Our method leverages
a router module further to filter out irrelevant background region in VFM feature map. As a result,
our method achieves the lowest dAP values of 26.47/22.54/17.98 under the 1/5/10-shot settings,
respectively. Notably, under the 10-shot task setting, our method reduces dAP by 12.28 compared
with DINOvV2, validating the stronger generalization capability of our approach.

Cross-Domain Localization Performance Analysis. To validate that the detectors have strong
localization capabilities and the VFEMs lack accurate localization capabilities, we fine-tune DINO
DETR, DINOv2 and our method on six cross-domain datasets and evaluate their performance under
the 1-shot task setting. We use the decrease of AP75 relative to AP50 to evaluate model’s localization
capability. As shown in Table 7, DINOv2 shows the highest drop of 69.35%, indicating limited
localization capabilities because its training dataset lacks accurate bounding box annotations. In
comparison, DINO DETR exhibits better localization performance with a drop of 48.76%. Our
method treats DINOv2 as an independent expert model to improve the detector’s generalization rather
than using DINOv2 directly as the detector backbone. Therefore, our method avoids the transfer
of weak localization capabilities from the VFM to the detector. Experimental results show that our
method achieves an attenuation of only 40.41%, demonstrating its effectiveness in maintaining the
detector’s localization performance.

4.2 Qualitative Visualizations

Method Analysis. To validate our method’s effectiveness, we visualize the backbone feature maps.
As shown in Figure 3, our method makes the model focus on foreground regions, showing that our
router module can effectively filter out the useless background in the VFM feature maps. Additionally,
we use t-SNE [80] to visualize backbone features on the DIOR dataset to demonstrate the model’s



Table 7: Comparison results of localization capability under the 1-shot task setting. The arrows
and values on the top-right denote the decrease in AP75 relative to AP50. Our method exhibits the
smallest relative decrease, demonstrating strong robustness in localization performance.

DINO DETR DINOv2 Ours
AP50 AP75 AP50 AP75 AP50 AP75
12.51 6.41¥4876% 1938 5.9416935% 28 48 16.97440:41%

DINO DETR

DINOv2

Ours

Figure 3: Visual comparison of backbone feature. The red regions in the figure represent show the
model’s focus regions.

DINO DETR DINOv2 Ours

A-SNE2

CtSNE1

Figure 4: The t-SNE visualization of different detector features on the DIOR dataset. Each point in
the figure represents a sample from the dataset, with color indicating its class. Our method effectively
minimizes the distance between samples within the same class while maximizing the separation
between samples of different classes.

ArTaxOr . Clipartlk DIOR DeepFish NEU-DET uoDD

Stage 2.

Expert-wise gating weight

Stage3.

. Stage 4

" DINOVZ expert feature index
Figure 5: Expert feature selection at different layers of the backbone. The horizontal axis represents
expert features, the vertical axis represents the expert-wise gating weights at different layers.

classification performance. As shown in Figure 4, our method shows higher intra-class compactness
and inter-class separability, further demonstrating the strong generalization of our model.

Expert-wise Routing Mechanism. To illustrate that the importance of expert features varies across
backbone layers, we analyze expert-wise gating weights. As shown in Figure 5, different backbone
layers employ different VEM feature selection strategies. Deep detector features generally tend to



Figure 6: Heatmap visualization of region-wise gating weight, the brighter areas indicate higher
levels of model attention.

select VEM expert feature from the deep VFM layer because they contain similar level image features.
However, the deep detector features also select some shallow VEM expert features, showing that
low-level image features, like object edges and colors, can also improve the high-level image feature.
The VFM feature selection strategy at the same detector layer also changes on the different test
datasets. These experimental results indicate that it is necessary to introduce a learnable module to
dynamically adjust the VFM feature selection strategy. Therefore, inspired by the routing mechanism
in MoE, we propose an expert-wise router method that generates expert gating weights based on
detector features to select the VFM expert feature dynamically.

Region-wise Routing Mechanism. The information density is different in different regions of the
VEM feature map. The foreground regions typically have higher information density, and background
regions tend to have lower information density. To make the model to focus on the foreground region,
we propose a region-wise router to filter background region of the VFM feature map and highlight
foreground regions. To demonstrate the effectiveness of our method, we visualize the region-wise
gating weights by using heatmap. As shown in Figure 6, after applying our region-wise router, the
model focuses on foreground regions and ignores the irrelevant background regions.

5 Conclusion

In this paper, we propose a novel Cross-Domain Few-Shot Object Detection (CD-FSOD) paradigm
leveraging a Mixture of Experts (MoE) architecture to integrate the vision foundation model with the
well-trained detection model. Our method transfers VFM’s generalization to the detector without
modifying the original detector structure or retraining on the base class. We introduce expert-wise
and region-wise routers to select VFM expert feature and filter irrelevant background regions in the
VEM feature map. Additionally, we propose the shared expert projection module and private expert
projections module, which decouple the shared and private image feature projections and minimize
the parameters introduced by the VFM feature projection. Extensive experiments demonstrate the
effectiveness of our approach in improving cross-domain performance.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the main contributions of our
method.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [NA]
Justification: This paper has limitations, but those are not discussed in the paper.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the method was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

 The authors should reflect on the factors that influence the performance of the method.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their method to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer:
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Justification: Our assumptions are validated through experimental results, without involving
formal derivations or mathematical proofs.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Our method is straightforward to implement and highly reproducible.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We will provide part of the code and links to the publicly available datasets
used in this paper in the supplementary materials.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All experimental settings are thoroughly described in the main text.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Our experimental results represent consistent and reliable findings confirmed
through multiple independent trials.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have detailed the computational resources used in our experiments in the
Experiment section.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper fully complies with the NeurIPS Code of
Ethics in all aspects.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our method significantly enhances the performance of well-trained object
detection models on cross-domain tasks, making it more aligned with real-world scenarios.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: Our method exclusively utilizes open-source models and datasets, ensuring
that there is no risk of misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Our method exclusively utilizes open-source models and datasets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:
Justification: This paper does not involve crowdsourcing nor research with human subjects
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Ablation Study on Different Vision Foundation Models

To evaluate the impact of using different VFMs as expert models in our method, we compare the
performance of using DINOv2 [27], CLIP [81], and combination of both as expert models. As shown
in Table 8, DINOvV2 has better performance than CLIP on cross-domain tasks. We further explore
integrating multiple vision foundation models simultaneously to boost feature representation. The
integration of DINOv2 and CLIP exceeds the GPU memory limitation, forcing us to reduce the batch
size to 1. Experimental results demonstrate that integrating multiple vision foundation model leads
to a slight performance improvement, confirming the complementary of different vision foundation
models. However, this integration significantly increases training time and memory consumption.
Considering the trade-off between performance improvement and computational costs, we ultimately
only select DINOvV?2 as the expert model.

Table 8: Comparison results of combining different vision foundation models. The best results are
highlighted with bold. bs denotes the batch size.

Method ArTaxOr  Clipartlk DIOR  DeepFish NEU-DET UODD Avg Training time
Baseline (bs = 2) 11.4 232 14.4 20.5 11.8 9.9 15.2 0.8h
+ CLIP (bs =2) 53.7 471 35.0 28.9 24.0 19.2 34.8 1.7h
+ DINOV?2 (bs = 2, Ours) 71.3 49.9 37.8 34.1 23.7 22.1 39.8 2.0h
+ DINOV2&CLIP (bs = 1) 71.8 50.2 38.1 33.9 23.8 21.7 39.9 3.6h

B Ablation Study on DINOv2 Models of Different Parameter Sizes

To evaluate the impact of VFMs with different parameter scales, we use DINOv2-small, DINOv2-
base, DINOv2-large, and DINOv2-giant as expert models and evaluate method permformance under
the 10-shot task setting. As shown in Table 9, DINOv2-giant exceeds the memory capacity of our
GPU, forcing us to reduce the batch size to 1 during training. The performance of DINOv2-giant is
suboptimal due to its large intermediate feature maps, which require processing a large number of
additional parameters. These extra parameters not only hinder effective fine-tuning on downstream
tasks but also considerably increase training time. In contrast, DINOv2-large offers a balanced
trade-off between parameter size, training time, and performance improvement, delivering the
best results within a reasonable computational cost. Consequently, we select DINOv2-large as the
expert model.

Table 9: Comparison results of DINOv2 Models of Different Parameter Sizes. Size denotes the
parameter scales of different DINOV2 models.

Method ArTaxOr  Clipartlk DIOR  DeepFish NEU-DET UODD  Training time Size
DINOV2-S (bs = 2) 54.9 38.5 304 28.5 224 20.2 1.1h 2IM
DINOV2-B (bs = 2) 67.5 459 35.6 304 21.6 213 1.5h 86M
DINOV2-L (bs = 2, Ours) 71.3 49.9 37.8 34.1 23.7 22.1 2.0h 300M
DINOv2-g (bs = 1) 69.1 48.7 36.7 33.1 22.0 21.4 4.5h 1100M

C Ablation Study on Hyperparameters Setting

In the shared and private expert projection modules, we introduce the hyperparameters m, to control
the parameter scales of the shared expert projection module and the private expert projection module.
e.g., F! = Fj,-0, € REXC:xHXW i — 1.0 € REXCrxHXW where Oy = 2=1C,C), = +C.
To determine the optimal configuration, we conduct an ablation study on the values of m. As shown
in Table 10, our method shows the best performance when m = 16.

In the mixture of experts module, we introduce two hyperparameters, « and 3, e.g., Ffl = Fl +
DO (a GVl @ F' 4+ 5-GM @ Fi'). To evaluate the impact of these parameters, we perform
an ablation study on « and /3. As shown in Table 11, the results indicate that the optimal configuration
isa=0.5and g =0.5.
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Table 10: The 10-shot ablation results on hyperparameters m and n.

m ArTaxOr  Clipartlk DIOR  DeepFish NEU-DET UODD Avg
2 71.9 49.6 36.6 31.1 22.8 18.2 384
4 70.0 49.0 37.3 325 21.1 214 38.6
8 70.3 48.9 357 323 22.4 214 38.5
16 (Ours) 71.3 49.9 37.8 34.1 23.7 22.1 39.8
32 69.5 48.5 36.4 332 23.1 229 38.9

Table 11: The 10-shot ablation results on hyperparameters « and /3.

a&f ArTaxOr  Clipartlk DIOR  DeepFish NEU-DET UODD Avg
0.1,0.9 71.1 49.1 353 349 22.9 22.8 394
0.3,0.7 70.5 49.7 30.5 34.1 23.0 20.6 38.1
0.5, 0.5 (Ours) 71.3 49.9 37.8 34.1 23.7 22.1 39.8
0.7,0.3 70.1 49.2 37.6 31.9 21.7 18.1 38.1
0.9, 0.1 68.2 49.8 36.4 322 21.1 21.0 38.1

D Ablation Study on Fine-Tuning Strategy

To evaluate the impact of different fine-tuning strategies, we evaluate the performance of four fine-
tuning strategies: Full Finetune, LoRA [82], Partial Finetune and our fine-tuning strategy. As shown
in Table 12, All fine-tuning Strategies keep the vision foundation model frozen without updating
its parameters. LoRA-based fine-tuning achieves the lowest number of trainable parameters but
suffers from limited performance. Partially fine-tuning the model while excluding the backbone
introduces a moderate increase in trainable parameters and yields improved results. Full fine-tuning
achieves the highest accuracy, yet comes at the cost of significant training overhead and a heightened
risk of overfitting in few-shot scenarios. In contrast, our proposed strategy, which fine-tunes only
the classification head, regression head and the new proposed module, strikes an effective balance
between computational efficiency and detection performance, demonstrating strong generalization in
cross-domain few-shot object detection tasks.

Table 12: The 10-shot ablation results on different finetuning strategies. Full Finetune denotes fine-
tuning all model parameters. LoRA denotes fine-tuning all model based on Low-Rank Adaptation.
Partial Finetune denotes fine-tuning all components except the backbone. Ours denotes fine-tuning
only the classification head, regression head, and the proposed module. Train params indicates the
number of trainable parameters.

Fine-Tuning Strategy =~ ArTaxOr  Clipartlk DIOR  DeepFish NEU-DET  UODD Avg

Full Finetune 55.2 39.0 32.6 22.3 20.8 19.3 31.5
LoRA 44.5 28.0 26.7 20.9 18.4 159 25.7
Partial Finetune 50.7 34.7 30.9 22.6 20.9 16.2 29.3
Ours 71.3 49.9 37.8 34.1 23.7 22.1 39.8

E Ablation Study on Feature Aggregation Strategy

To validate the effectiveness and necessity of our proposed MoE-based feature aggregation strategy,
we compare our method with four simpler feature aggregation strategies. Specifically, we design and
evaluated four variants:

* All Stages: Retain all stage PEP modules and replace them with simple MLPs, removing all
other modules.

* Final Stage: Retain only the final-stage PEP module and replace it with a simple MLP,
removing all other modules.

* Linearly Adding: Remove all modules and aggregate features at the backbone stage via
linear addition.

* Learnable Weight: Introduce a learnable weight parameter to aggregate features from
different layers of the VFM.
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As shown in Table 13, simple feature aggregation strategies lead to a substantial performance decline,
thereby validating the efficacy of our approach. Learnable Weight feature aggregation strategy
introduces learnable weight parameters as a simple routing network to select and aggregate VFM
features, thereby maintaining the MoE structure similar to ours. In contrast, the other three aggregation
strategies (All Stages, Final Stage, Linearly Adding) simply aggregate the VFM features into the
backbone features without selecting them. Therefore, it outperforms the other simple aggregation
strategies. However, it still leads to a decline in performance compared to our method, highlighting
the importance of backbone features in guiding VFM feature selection.

Table 13: Comparison results of our method and simple feature aggregation strategies.

Method ArTaxOr  Clipartlk DIOR  DeepFish NEU-DET UODD  Avg

All Stages 56.3 44.4 34.1 26.4 16.8 17.6 32.6
Final Stage 48.8 43.8 30.7 24.1 17.1 17.4 303
Linearly Adding 2.5 5.1 9.1 4.7 39 5.4 5.1
Learnable Weight 62.5 474 31.6 31.1 19.1 20.7 35.4
Ours 71.3 49.9 37.8 34.1 23.7 22.1 39.8

F Comparison with Recent Works

Comparison with ETS. We compare our method with ETS [56] on six cross domain datasets. For
fairness, we reproduce the experiments using the official ETS code. As shown in Table 14, our
method can be directly applied to Grounding DINO without any modification and achieves similar
performance to ETS, even though it is not specifically designed for Grounding DINO.

Table 14: Comparison results of ETS method and our method under the 10-shot task setting.

Method ArTaxOr  Clipartlk DIOR  DeepFish NEU-DET UODD Avg
ETS (Our implementation) 70.6 60.8 375 42.8 26.1 28.3 44.4
Grounding DINO (Swin-B) + Ours 73.8 60.3 40.2 37.0 279 29.2 44.7

Comparison with Frozen DETR. We compare our method with Frozen DETR [83]. We adopt the
same baseline structure as Frozen DETR. Frozen DETR follows a two-stage training paradigm of
base training and finetuning. To align the experimental and dataset settings, we skip the base training
step, finetuning only on the cross domain datasets. To validate the effectiveness of the method on
in-domain datasets, we train our method on COCO for 12 epochs and compare it to the performance
of Frozen DETR reported in the original paper. As shown in Table 15, our method consistently
outperforms Frozen DETR across six cross domain datasets and the COCO dataset.

Table 15: Comparison results of Frozen DETR and our method under the 10-shot task setting.

Method ArTaxOr  Clipartlk DIOR DeepFish NEU-DET UODD COCO
DINO(ResNet50) 2.9 13.6 6.9 11.6 45 2.8 49.0
Frozen DETR 45.8 33.9 31.5 17.5 9.1 32 51.9
DINO(ResNet50) + Ours 71.3 49.9 37.8 34.1 23.7 22.1 55.2

G Analysis of Routing Network Based on Detector Feature

To validate the feasibility of using detector features to route VFM features, we visualize the feature
maps of detector and VFM using PCA. As shown in Figure 7, the detector shows higher attention
in the foreground regions, reflecting its strong localization ability. However, the foreground object
feature are unclear, leading to weaker classification performance. In contrast, the VFM extracts clear
feature representations but maintains high attention in multiple background regions, indicating its
weaker localization ability. Therefore, we leverage the detector’s localization ability to guide VFM
feature maps in supplementing the missing key features in foreground regions.
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DINO DETR

DINOv2

Figure 7: Visual comparison of detector feature and DINOv2 feature. The red regions in the figure
represent the areas of focus during feature extraction by the model.
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