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Abstract001

We introduce seqBench, a parametrized bench-002
mark for probing sequential reasoning limits003
in Large Language Models (LLMs) through004
precise, multi-dimensional control over several005
key complexity dimensions. seqBench allows006
systematic variation of (1) the logical depth,007
defined as the number of sequential actions re-008
quired to solve the task; (2) the number of back-009
tracking steps along the optimal path, quantify-010
ing how often the agent must revisit prior states011
to satisfy deferred preconditions (e.g., retriev-012
ing a key after encountering a locked door); and013
(3) the noise ratio, defined as the ratio between014
supporting and distracting facts about the en-015
vironment. Our evaluations on state-of-the-art016
LLMs reveal a universal failure pattern: accu-017
racy collapses exponentially beyond a model-018
specific logical depth. Unlike existing bench-019
marks, seqBench’s fine-grained control facili-020
tates targeted analyses of these reasoning fail-021
ures, illuminating universal scaling laws and022
statistical limits, as detailed in this paper along-023
side its generation methodology and evalua-024
tion metrics. We find that even top-performing025
models systematically fail on seqBench’s struc-026
tured reasoning tasks despite minimal search027
complexity, underscoring key limitations in028
their commonsense reasoning capabilities. De-029
signed for future evolution to keep pace with030
advancing models, the seqBench datasets are031
publicly released to spur deeper scientific in-032
quiry into LLM reasoning, aiming to establish033
a clearer understanding of their true potential034
and current boundaries for robust real-world035
application.036

Large Language Models (LLMs) have shown037

remarkable performance (Vaswani et al., 2017;038

Brown et al., 2020; Lieber et al., 2021; Rae et al.,039

2021; Smith et al., 2022; Thoppilan et al., 2022;040

Hoffmann et al., 2022; Du et al., 2021; Fedus et al.,041

2022; Zoph et al., 2022) on a wide range of tasks042

and benchmarks spanning diverse human-like capa-043

bilities; however, these successes can obscure fun-044

damental limitations in sequential reasoning that 045

still persist. Arguably, reasoning captures a more 046

pure form of intelligence, going beyond mere pat- 047

tern matching or fact memorization, and is thus a 048

critical capability to understand and enhance in AI 049

systems. Recent studies show that state-of-the-art 050

LLMs (OpenAI, 2025; Google DeepMind, 2025; 051

Meta AI, 2025; Mistral AI, 2024; Anthropic, 2025) 052

excel at complex benchmarks, yet stumble upon 053

simple common-sense inferences trivial for an adult 054

human (Nezhurina et al., 2025; Han et al., 2024; 055

Sharma, 2024; Berglund et al., 2024; Yang et al., 056

2019). Most existing benchmarks saturate quickly, 057

leaving little room for fine-grained attribution stud- 058

ies to perform systemic probes of LLM failure 059

modes. Consequently, a robust understanding of 060

why and under what circumstances these models 061

fail, especially on problems requiring sequential 062

reasoning, remains elusive. 063

This gap, we argue, stems from the lack of 064

evaluation benchmarks allowing systematic, multi- 065

dimensional control over key independent factors 066

that influence a task’s overall reasoning difficulty. 067

Most benchmarks (Cobbe et al., 2021; Hendrycks 068

et al., 2021; Srivastava et al., 2023; Weston et al., 069

2015; Clark et al., 2018; Dua et al., 2019; Rein 070

et al., 2023), despite their evaluation merits, of- 071

ten do not support a systematic variation of cru- 072

cial complexity dimensions. This makes it diffi- 073

cult to isolate the specific conditions under which 074

reasoning in LLMs falter. For instance, discern- 075

ing whether a failure is due to the length of the 076

required reasoning chain, the necessity to revise 077

intermediate conclusions, or the density of distract- 078

ing information is often not quantitatively possible. 079

While prompting strategies like chain-of-thought 080

(CoT) and model scaling have boosted aggregate 081

performance, they often obscure sharp performance 082

cliffs that can emerge when these underlying com- 083

plexity dimensions are varied independently (Wei 084

et al., 2023; Kojima et al., 2022). Without such 085
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systematic control, disentangling inherent architec-086

tural limitations from those addressable via scal-087

ing (model size, data, or compute), fine-tuning,088

or prompting techniques is challenging. A fine-089

grained understanding of these performance bound-090

aries is crucial for developing more robust and reli-091

able reasoning systems.092

To complement recent efforts (Sprague et al.,093

2024; Tyagi et al., 2024; Kuratov et al., 2024; Tang094

and Kejriwal, 2025; Mirzaee et al., 2021; Tikhonov,095

2024; Mirzaee and Kordjamshidi, 2022; Shi et al.,096

2022) in evaluating reasoning, and to address the097

need for more controlled analysis, we introduce098

seqBench, a tunable benchmark designed explic-099

itly to probe and analyze sequential reasoning capa-100

bilities in language models. The dataset comprises101

synthetic yet linguistically grounded pathfinding102

task configurations on two-dimensional grids. Solv-103

ing each problem requires sequential inference over104

relevant and distracting structured facts. Each in-105

stance is automatically verifiable and parameter-106

ized by controllable factors that directly address107

the previously identified gaps: (1) logical depth108

(total number of actions in the ground-truth solu-109

tion, reflecting the length of the reasoning chain);110

(2) backtracking count (number of locked-door de-111

tours on the optimal path, requiring revision of112

tentative solution paths); and (3) noise ratio (pro-113

portion of distracting vs. supporting facts, testing114

robustness to irrelevant information). Performance115

against these dimensions can be quantified with116

fine-grained metrics (e.g., via progress ratio as we117

define here). We observe that beyond a certain118

logical depth, Pass@1 success collapses to near119

zero for all models (see Figure 1). These features120

enable precise attribution studies of model failure121

modes, offering insights into the brittle boundaries122

of current LLM generalization.123

Furthermore, the seqBench benchmark is built124

upon a scalable data generation framework, allow-125

ing it to evolve alongside increasingly capable mod-126

els to help with both model training and evaluation.127

Through evaluations on popular LLMs, we reveal128

that top-performing LLMs exhibit steep universal129

declines as either of the three complexity dimen-130

sions increases, while remaining comparatively ro-131

bust to fact shuffle, despite the underlying logical132

structure being unchanged.133

Contributions. Our main contributions are:134

1. seqBench: A Tunable Benchmark for Se-135

quential Reasoning. We introduce an open-136
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Figure 1: Performance collapse of various models
with increasing logical depth L for a pathfinding task
(N,M = 40,B = 2 keys). Success rates (Pass@1) are
shown on linear (top panel) and logarithmic (bottom
panel) y-axes, averaged from 5 runs/problem across 40
problems per unit L-bin. All evaluations used Tem-
perature=1.0 and top-p=0.95 (Gemini-2.5-flash: ’auto’
thinking). The displayed fits employ a Weighted Least
Squares (WLS) (Carroll and Ruppert, 2017) method
on log-success rates. Weights are derived from in-
verse squared residuals of a preliminary Ordinary Least
Squares (OLS) fit.

source framework for generating pathfinding 137

tasks with fine-grained, orthogonal control 138

over logical depth, backtracking steps, and 139

noise ratio. We also evaluate secondary fac- 140

tors like fact ordering (shuffle ratio; See sup- 141

plementary material for details). 142

2. Comprehensive LLM Attribution Study. 143

Using seqBench, we demonstrate the signifi- 144

cant impact of these controlled complexities 145

on LLM performance, revealing sharp perfor- 146

mance cliffs in state-of-the-art models even 147

when search complexity is minimal. 148

The seqBench dataset is publicly available1 under 149

the CC BY 4.0 license to facilitate benchmarking. 150

1https://huggingface.co/datasets/emnlp-submi
ssion/seqBench
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Figure 2: On the left: Llama-4 Maverick-17B-128E-
Instruct Model’s performance (pass@1 success rate)
versus number of actions in the ground truth path of the
pathfinding problems is shown. This Pass@1 success
rate across 5 runs per problem is averaged over the
problem instances sampled from different actions count
bins of width equal to 1. On the right: The mean of
progress ratio as well as precision and recall is shown
to highlight models gradually increasing struggle in
completing the path. The Temperature is set to 1.0 and
the top-p is set to 0.95 in all runs.

1 Methods151

1.1 Dataset Generation152

The seqBench dataset consists of spatial pathfind-153

ing tasks. Task instance generation, detailed below154

(Algorithm 1; See Appendix A for details), is pred-155

icated on the precise independent control of the156

three key complexity dimensions introduced ear-157

lier: Logical Depth (L), Backtracking Count (B),158

and Noise Ratio (N ). This allows the creation of159

instances with specific values for these parameters,160

enabling targeted studies of their impact on LLM161

reasoning.162

Task instances are produced in a multi-stage163

process. Initially, primary generation parame-164

ters—maze dimensions (N,M ), target backtracks165

(Btarget), and target noise ratio (Ntarget)—are speci-166

fied. An acyclic maze graph (Mg) is formed on an167

N ×M grid using Kruskal’s algorithm (Kleinberg168

and Tardos, 2006). Our "Rewind Construction"169

method (Algorithm 1) then embeds Btarget back- 170

tracking maneuvers by working backward from a 171

goal to strategically place keys and locked doors, 172

yielding the instance’s actual backtracking count 173

B. Finally, a natural language fact list (F) is 174

derived from the maze, and distracting facts are 175

added according to Ntarget to achieve the final 176

noise ratio N . The logical depth L (optimal path 177

length) emerges from these generative steps, influ- 178

enced by N,M,Btarget, and construction stochas- 179

ticity. While L is not a direct input to the gener- 180

ation algorithm, the process is designed to yield 181

a wide spectrum of logical depths. Each gener- 182

ated instance is then precisely annotated with its 183

emergent L value, alongside its effective B and 184

N values. This annotation effectively makes L a 185

key, selectable parameter for users of the seqBench 186

dataset, enabling them to choose or filter tasks by 187

their desired logical depth. Our rewind construc- 188

tion method guarantees task solvability. The full 189

seqBench benchmark is constructed by systemat- 190

ically applying this instance generation process 191

(detailed in Algorithm 1) across a wide range of 192

initial parameters. This includes varied grid sizes 193

(e.g., N ∈ {5..50},M ≈ N ) and target backtracks 194

(Btarget ∈ {0..7}), yielding a large and diverse data 195

pool. For each (N,M,Btarget) configuration, mul- 196

tiple unique base mazes are generated, to which 197

different noise ratios (e.g., Ntarget ∈ {0..1}) are 198

subsequently applied. The creation of this com- 199

prehensive data pool was computationally efficient, 200

requiring approximately an hour of computation 201

on a standard laptop while using minimal mem- 202

ory. The publicly released benchmark comprises a 203

substantial collection of these generated instances, 204

each annotated with its specific emergent logical 205

depth L, effective backtracking count B, and noise 206

ratio N . This rich annotation is key, enabling re- 207

searchers to readily select or filter task subsets by 208

these dimensions for targeted studies (e.g., as done 209

for Figure 1, where instances were sampled into 210

L-bins with other parameters fixed). For the ex- 211

periments presented in this paper, specific subsets 212

were drawn from this benchmark pool, often in- 213

volving further filtering or parameter adjustments 214

tailored to the objectives of each study; precise 215

details for each experiment are provided in the rel- 216

evant sections and figure captions. Full details 217

on path derivation, fact compilation, and overall 218

dataset generation parameters are provided in the 219

Appendix A. 220
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1.2 Prompt Construction and Model221

Configuration222

Our evaluation uses a standardized prompt tem-223

plate with four components: (i) task instructions224

and action schema, (ii) three few-shot examples of225

increasing complexity (simple navigation, single-226

key, and multi-key backtracking), (iii) optional rea-227

soning guidance, and (iv) the problem’s natural-228

language facts. All models are queried using tem-229

perature T=1.0, nucleus sampling p=0.95, and230

maximum allowed setting in terms of output token231

limits on a per model basis. For each instance, we232

compute 5 independent runs to establish robust per-233

formance statistics. The complete prompt structure,234

shown in Figure 6, is provided in the Appendix B.235

Algorithm 1: Rewind Construction of Path
Skeleton
Input :Grid N ×M , Target backtracks B
Output :Maze graph Mg, Locked doors DL,

Key info KI , Path skeleton ΠS

1 Mg ← Acyclic graph on grid (Kruskal’s);
2 x← Cgoal ← Random goal cell in Mg;
3 DL,KI ← ∅, ∅; b← 0;
4 ΠS ← [(Cgoal,GOAL)];
5 while b < B do
6 ckey ← Random cell in Mg accessible

from x (path avoids DL for this step);
7 πseg ← Unique path in Mg from x to

ckey;
8 if ∃e ∈ πseg such that e /∈ DL then
9 d← Randomly select such an edge

e;
10 DL ← DL ∪ {d};
11 Kid ← New unique key ID;
12 KI [Kid]← {opens : d, loc : ckey};
13 ΠS .prepend((ckey,PICKUP Kid),

(d,UNLOCK Kid),
(πseg,MOVE));

14 x← ckey; b← b+ 1;
15 end
16 else
17 Break
18 end
19 end
20 ΠS .prepend((x,START));
21 return Mg,DL,KI ,ΠS ;

236

1.3 Evaluation Metrics237

To analyze not just success but also how models fail,238

we employ several complementary metrics. Suc-239

cess Rate (Pass@1) measures the proportion of240

runs where the predicted action sequence exactly 241

matches the ground truth. The Progress Ratio 242

(Tyagi et al., 2024), calculated as k/n (where n is 243

the total ground-truth actions and k is the number 244

correctly executed before the first error), pinpoints 245

the breakdown position in reasoning. We also use 246

Precision and Recall. Precision is the proportion 247

of predicted actions that are correct, while Recall 248

is the proportion of ground-truth actions that were 249

correctly predicted. Low precision indicates hallu- 250

cinated actions, while low recall signifies missed 251

necessary actions. Additionally, we visualize error 252

locations via a Violation Map. This multi-faceted 253

approach reveals each model’s effective "reasoning 254

horizon"—the maximum sequence length it can 255

reliably traverse. Further details on all metrics and 256

visualizations are provided in the supplementary 257

material. 258

2 Benchmarking Results 259

2.1 Evaluated Models 260

We evaluate a diverse set of transformer-based 261

LLMs across different model families and param- 262

eter scales. Our analysis includes Gemini models 263

(2.5-flash-preview, 2.0-flash), Meta’s Llama fam- 264

ily (4-Maverick-17B, 3.3-70B, 3.2-3B), Google’s 265

Gemma-2-27b, and Qwen models (2.5-Coder-32B, 266

2.5-7B). Access to some open-weight models and 267

benchmarking infrastructure was facilitated by plat- 268

forms such as Together AI2 and Google AI Studio3. 269

Problem instances for varying logical depths (L) 270

were generated by sampling 40 problems for each 271

L, using a fixed maze size of 40× 40 and 2 keys, 272

unless otherwise specified for specific experiments 273

(e.g., when varying the number of keys for back- 274

tracking analysis). All models were evaluated using 275

the standardized prompt template (see Figure 6), 276

the inference settings detailed in Section 1.2, and a 277

common response parsing methodology. For each 278

task instance, we perform 5 independent runs to 279

establish robust performance statistics, primarily 280

analyzing Pass@1 success rates. 281

2.2 Universal Performance Collapse with 282

Increasing Logical Depth 283

A central finding of our study is the universal col- 284

lapse in reasoning performance observed across 285

all evaluated LLMs when confronted with tasks 286

requiring increasing sequential inference steps. As 287

2https://www.together.ai/
3https://aistudio.google.com/
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Figure 3: Performance as a function of the number of required backtracking steps, operationalized via the number of
locked doors with distributed keys along the optimal path. Holding all other complexity factors constant, all models
exhibit a clear decline in both progress ratio and success rate as backtracking demands increase. Additionally,
we report the corresponding rise in output token counts per model, highlighting the increased reasoning burden
associated with longer dependency chains.

illustrated in Figure 1, Pass@1 success rates ex-288

hibit a consistent and sharp exponential decay as289

the ground-truth path length (L) increases. Perfor-290

mance rapidly approaches near-zero past a model-291

specific point in this decay. To quantify and com-292

pare this exponential decay, we fit an exponential293

decay curve P (L) = exp(−L/L0) to the success294

rates, deriving a characteristic path length L0. This295

L0 value, representing the path length at which296

performance drops by a factor of e−1, serves as297

a robust metric for each model’s sequential rea-298

soning horizon. Plotting success rates on a semi-299

logarithmic (log-y) scale against L reveals an ap-300

proximately linear decay trend across the evalu-301

ated regime. This log-linear relationship suggests302

that errors may accumulate with a degree of inde-303

pendence at each reasoning step, eventually over-304

whelming the model’s capacity for coherent infer-305

ence. The observed L0 values vary significantly,306

from 85.7 for Gemini-2.5-Flash down to 1.6 for307

Llama-3.2-3B (Figure 1), underscoring a funda-308

mental bottleneck in current transformer architec-309

tures for extended multi-step reasoning.310

2.3 Impact of Independently Controlled311

Complexity Dimensions312

Beyond the universal impact of logical depth (L)313

discussed in Section 2.2, our benchmark’s ability314

to independently vary key complexity dimensions315

allows for targeted analysis of their distinct impacts316

on LLM reasoning performance. We highlight the317

effects of noise, backtracking, and fact ordering,318

primarily focusing on Pass@1 success rates, mean319

progress ratios, and response token counts.320

Impact of Backtracking Requirements. In-321

creasing the number of required backtrack-322

ing steps—operationalized via key-door mecha- 323

nisms—also leads to a clear and significant decline 324

in Pass@1 success rates and mean progress ratios 325

across all evaluated models (Llama-4 Maverick, 326

Qwen 2.5-Code, Llama-3.2 Nemotron, Gemini 2.0 327

Flash, and Gemini 2.5 Flash-preview), as shown 328

in Figure 3. Gemini 2.5 Flash-preview maintains 329

the highest performance but still exhibits a notable 330

drop as backtracking count increases from 0 to 5. 331

This decline in reasoning accuracy is generally ac- 332

companied by an increase or sustained high level 333

in the mean number of response tokens (Figure 3, 334

right panel). For example, models like Llama-4 335

Maverick and Gemini 2.5 Flash-preview show a 336

clear upward trend or maintain high token counts 337

as backtracking complexity rises, reflecting the in- 338

creased reasoning effort or path length articulated 339

by the models when managing more complex se- 340

quential dependencies. 341

Sensitivity to Noise Ratio. Model performance 342

is highly sensitive to the noise ratio—the propor- 343

tion of distracting versus supporting facts. As 344

demonstrated in Figure 4 for Gemini 2.5 Flash 345

and Llama-4 Maverick, increasing the proportion 346

of irrelevant facts consistently and significantly 347

degrades both Pass@1 success rates and mean 348

progress ratios. For instance, Gemini 2.5 Flash’s 349

Pass@1 success rate drops from over 0.7 at zero 350

noise to approximately 0.2 at a noise ratio of 351

1.0. Llama-4 Maverick, starting with lower per- 352

formance, also shows a consistent decline. Inter- 353

estingly, for these two models, the number of CoT 354

(output) tokens remains relatively stable despite 355

the increasing noise and degrading performance 356

(Figure 4, right panel), suggesting that models do 357

not necessarily "work harder" (in terms of output 358
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Figure 4: Performance as a function of contextual noise for Gemini 2.5 flash and Llama-4 Maverick-17B-128E-
Instruct models. As noise increases through the inclusion of distracting or irrelevant facts, both models exhibit a
clear and consistent decline in performance.

length) when faced with more distractors, but their359

accuracy suffers.360

Fact Ordering (Shuffle Ratio). In contrast to the361

strong effects of noise and backtracking, shuffle ra-362

tio (entropy of fact presentation order) within the363

prompt appears to play a secondary role when var-364

ied in isolation. Our experiments, exemplified by365

the performance of Gemini 2.5 Flash and Llama-4366

Maverick (see Appendix C Figure 14 for details),367

show that complete shuffling of facts (randomiz-368

ing their presentation order without adding or re-369

moving any information) has a minimal impact on370

Pass@1 success rates and mean progress ratios.371

Output token counts also remain stable. This sug-372

gests a relative robustness to presentation order as373

long as all necessary information is present and374

distinguishable. However, as details provided in375

supplementary material, when high noise and high376

shuffle co-occur, the combined effect can be more377

detrimental than either factor alone, though noise378

remains the dominant degrading factor.379

2.4 Characterizing Key Failure Modes and380

Error Patterns381

A Key Failure Mode: Omission of Critical Steps.382

Beyond simply taking illegal shortcuts, detailed383

analysis reveals that LLMs often fail by omit-384

ting critical sub-goals necessary for task comple-385

tion. Figure 2 (bottom panel) provides a quantita-386

tive view for Llama-4 Maverick (Meta AI, 2025),387

showing that while precision generally remains388

high (models infrequently hallucinate non-existent389

rooms or facts), recall and progress ratio plum-390

met with increasing path length (L). This indi-391

cates that models predominantly fail by missing392

necessary actions or entire crucial sub-sequences. 393

For a qualitative example, even capable models 394

like Gemini-2.5-Flash can neglect essential detours, 395

such as collecting a required key, thereby violat- 396

ing sequential dependencies and rendering the task 397

unsolvable (illustrative examples are provided in 398

the Appendix B.4; see Figures 8 and 9). This pat- 399

tern highlights a fundamental breakdown in robust 400

multi-step planning and execution. 401

Path-Length Dependent First Errors: The Bur- 402

den of Anticipated Complexity. The propensity 403

for models to make critical errors is not uniformly 404

distributed across the reasoning process, nor is it 405

solely a feature of late-stage reasoning fatigue. Ex- 406

amining the distribution of steps at which the first 407

constraint violations occur reveals a counterintu- 408

itive pattern: as the total required path length (L) of 409

a problem increases, models tend to fail more fre- 410

quently even at the earliest steps of the reasoning 411

chain. This leftward shift in the first-error distri- 412

bution also observed under increasing noise, (Ap- 413

pendix B.4; Figures 10 and 11) contradicts a sim- 414

ple cumulative error model where each step carries 415

a fixed, independent failure probability. Instead, an 416

error at an early step (e.g., step 5) becomes sub- 417

stantially more likely when the model is attempting 418

to solve an 80-step problem versus a 20-step prob- 419

lem. This suggests that the overall anticipated com- 420

plexity of the full problem influences reasoning 421

quality from the very outset, indicating a struggle 422

with global planning or maintaining coherence over 423

longer horizons, rather than just an accumulation 424

of local errors. This phenomenon may help explain 425

why prompting techniques that decompose long 426

problems into smaller, manageable sub-problems 427
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often succeed.428

2.5 Disparity: Information Retention vs.429

Reasoning Capacity430

On seqBench tasks, this disparity is quantitatively431

striking. While modern LLMs boast million-token432

contexts, their effective sequential reasoning depth433

typically remains on the order of hundreds of ac-434

tions (Figure 1). This functional limit, even at sev-435

eral hundred actions (e.g., 300 actions, with each436

like (’move_to’, ’A12’) being 5-7 tokens, to-437

taling 1.5k-2.1k tokens), still consumes a minute438

fraction of their nominal context. Consequently,439

the ratio of context capacity to reasoning tokens440

often spans from several hundred-fold (e.g., 500:1441

for 300 actions consuming 2k tokens within a 1M442

context) to potentially higher values given fewer443

limiting actions or larger model contexts. This444

striking gap suggests that while transformers can445

store and retrieve vast information, their ability to446

reliably chain it for coherent, multi-step inference447

appears surprisingly constrained.448

2.6 Challenging the Conventional449

Performance Hierarchy450

While metrics like average L0 provide a general451

ranking of model capabilities, our fine-grained anal-452

ysis reveals instances that challenge a simple linear453

performance hierarchy. Scatter plots of progress454

ratios across different models on identical tasks455

(see Appendix C Figure 13) show intriguing cases456

where models with lower overall L0 values (i.e.,457

typically weaker models) occasionally solve spe-458

cific complex problems perfectly, while models459

with higher average L0 values fail on those same460

instances. These performance inversions suggest461

that sequential reasoning failures may not solely462

stem from insufficient scale (parameters or general463

training) but could also arise from more nuanced464

reasoning limitations.465

3 Related Work466

Recent advancements in benchmarks evaluating467

sequential reasoning capabilities of LLMs have il-468

luminated various strengths and limitations across469

different dimensions of complexity. These bench-470

marks typically differ in how they isolate and quan-471

tify reasoning challenges, such as logical deduction,472

retrieval difficulty, combinatorial complexity, and473

sensitivity to irrelevant information. ZebraLogic474

(Lin et al., 2025), for instance, targets formal deduc-475

tive inference through logic-grid puzzles framed as476

constraint-satisfaction problems (csp, 2008). While 477

valuable for probing deduction, its core methodol- 478

ogy leads to a search space that grows factorially 479

with puzzle size (Sempolinski, 2009). This makes 480

it challenging to disentangle intrinsic reasoning 481

failures from the sheer combinatorial complexity 482

of the search. As the ZebraLogic authors them- 483

selves acknowledge: “solving ZebraLogic puzzles 484

for large instances may become intractable... the 485

required number of reasoning tokens may increase 486

exponentially with the size of the puzzle.” This in- 487

herent characteristic means that for larger puzzles, 488

performance is primarily dictated by the manage- 489

ability of the search space rather than the limits 490

of sequential reasoning depth. GridPuzzle (Tyagi 491

et al., 2024) complements this by providing a de- 492

tailed error taxonomy for grid puzzles, focusing 493

on what kinds of reasoning mistakes LLMs make. 494

However, like ZebraLogic, it doesn’t offer indepen- 495

dent control over key complexity dimensions such 496

as logical depth, backtracking needs, or noise, sep- 497

arate from the puzzle’s inherent search complexity. 498

Other benchmarks conflate reasoning with differ- 499

ent cognitive demands. BABILong (Kuratov et al., 500

2024) tests models on extremely long contexts (up 501

to 50M tokens), primarily assessing the ability to re- 502

trieve "needles" (facts) from a "haystack" (distract- 503

ing text that does not contribute to solving the task). 504

While valuable for evaluating long-context process- 505

ing, this design makes it hard to disentangle re- 506

trieval failures from reasoning breakdowns, as per- 507

formance is often dictated by finding the relevant 508

information rather than reasoning over it. MuSR 509

(Sprague et al., 2024) embeds reasoning tasks 510

within lengthy narratives (e.g., murder mysteries), 511

mixing information extraction challenges with com- 512

plex, domain-specific reasoning structures. This 513

realism obscures which specific aspect—extraction 514

or reasoning depth—causes model failures. Dyna- 515

bAbI (Tamari et al., 2021) offers a dynamic frame- 516

work for compositional generalization but focuses 517

on qualitative combinations rather than system- 518

atically varying quantitative complexity metrics 519

needed to find precise failure points. 520

Spatial reasoning benchmarks, while relevant, 521

also target different aspects. GRASP (Tang and 522

Kejriwal, 2025) assesses practical spatial planning 523

efficiency (like obstacle avoidance) in 2D grids, 524

a different skill than the abstract sequential rea- 525

soning seqBench isolates. SPARTQA (Mirzaee 526

et al., 2021) focuses on specialized spatial rela- 527

tional complexity (transitivity, symmetry) using 528
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coupled dimensions, preventing independent analy-529

sis of factors like path length. SpaRTUN (Mirzaee530

and Kordjamshidi, 2022) uses synthetic data pri-531

marily for transfer learning in Spatial Question532

Answering (SQA), aiming to improve model per-533

formance rather than serve as a diagnostic tool with534

controllable complexity. Similarly, StepGame (Shi535

et al., 2022) demonstrates performance decay with536

more reasoning steps in SQA but lacks the fine-537

grained, orthogonal controls over distinct complex-538

ity factors provided by seqBench.539

In contrast, seqBench takes a targeted diagnos-540

tic approach. By deliberately simplifying the spa-541

tial environment to minimize search complexity,542

it isolates sequential reasoning. Its core contribu-543

tion lies in the independent, fine-grained control544

over (1) logical depth (the number of sequential545

actions required to solve the task), (2) backtrack-546

ing count (the number of backtracking steps along547

the optimal path), and (3) noise ratio (the ratio of548

supporting to distracting facts). This orthogonal549

parameterization allows us to precisely pinpoint550

when and why sequential reasoning capabilities de-551

grade, revealing fundamental performance cliffs552

even when search and retrieval demands are triv-553

ial. seqBench thus offers a complementary tool for554

understanding the specific limitations of sequential555

inference in LLMs.556

4 Conclusion557

We introduced seqBench, a novel benchmark558

framework designed for the precise attribution of559

sequential reasoning failures in Large Language560

Models. seqBench’s core strength lies in its unique561

capability for fine-grained, independent control562

over fundamental complexity dimensions; most no-563

tably, logical depth (L), backtracking requirements,564

and noise ratio, its provision of automatically verifi-565

able solutions, and critically minimizing confound-566

ing factors like search complexity. This design567

allows seqBench to isolate and rigorously evaluate568

the sequential inference capabilities of LLMs, en-569

abling the automatic quantification of fine-grained570

performance metrics (such as progress ratio) and571

providing a clear lens into mechanisms often ob-572

scured in most other benchmarks. The framework’s573

inherent scalability and open-source nature posi-574

tion it as a durable tool for assessing and driving575

progress in current and future generations of mod-576

els, ultimately aiming to enhance their utility for577

complex, real-world problems that often span multi-578

ple domains. Our comprehensive evaluations using 579

seqBench reveal that reasoning accuracy consis- 580

tently collapses exponentially with increasing logi- 581

cal depth across a diverse range of state-of-the-art 582

LLMs. This collapse is characterized by a model- 583

specific parameter L0 (Section 2.2), indicating an 584

inherent architectural bottleneck in maintaining co- 585

herent multi-step inference. In alignment with the 586

goal of advancing NLP’s reach and fostering its 587

responsible application in other fields by offering 588

this precise analysis, seqBench provides a valuable 589

resource. It encourages a shift beyond aggregate 590

benchmark scores towards a more nuanced under- 591

standing of model capabilities, an essential step 592

for rigorously assessing the true impact and poten- 593

tial risks of applying LLMs in new domains. The 594

insights gleaned from seqBench can inform both 595

NLP developers in building more robust models, 596

and experts in other disciplines in setting realistic 597

expectations and co-designing NLP solutions that 598

are genuinely fit for purpose. Targeted improve- 599

ments, guided by such fundamental understanding, 600

are key to enhancing the robustness of sequential 601

reasoning, making LLMs more reliable partners in 602

interdisciplinary endeavors. Future work should 603

leverage these insights to develop models that can 604

overcome the observed performance cliffs and ex- 605

tend their effective reasoning horizons, thereby un- 606

locking their transformative potential in diverse 607

interdisciplinary applications—such as navigating 608

complex scientific literature, supporting intricate 609

legal analysis, or enabling robust multi-step plan- 610

ning in critical autonomous systems. Focusing on 611

commonsense reasoning is paramount for NLP to 612

achieve transformative societal impact, moving be- 613

yond incremental improvements to genuine break- 614

throughs. 615

5 Limitations 616

While seqBench offers precise control over key 617

reasoning complexities, our study has limitations 618

that open avenues for future research: 619

1. Generalizability and Task Design Fidelity: 620

Our current findings are rooted in synthetic 621

spatial pathfinding tasks. While this allows for 622

controlled experimentation, future work must 623

extend seqBench’s methodology to more di- 624

verse reasoning domains (e.g., mathematical 625

proofs) and incorporate greater linguistic di- 626

versity (e.g., ambiguity) to assess the broader 627

applicability of the observed phenomena of 628

8



performance collapse (quantified by L0) and629

failure patterns.630

2. Model Scope and Understanding Deeper631

Failure Dynamics: Our current evalua-632

tion, while covering diverse public mod-633

els, should be expanded to a wider ar-634

ray of LLMs—including recent proprietary635

and newer open-source variants (e.g., GPT,636

Claude, DeepSeek series)—to rigorously as-637

sess the universality of our findings on638

the characteristic length L0 and failure pat-639

terns. Furthermore, while seqBench effec-640

tively characterizes how reasoning perfor-641

mance degrades with logical depth (i.e., by de-642

termining L0), two complementary research643

thrusts are crucial for understanding why.644

First, systematic investigation is needed to645

disentangle how L0 is influenced by factors646

such as model architecture, scale (parameters,647

training data, compute), fine-tuning strategies,648

and inference-time computation (e.g., chain-649

of-thought depth). Second, deeper analysis is650

required to explain the precise mechanisms651

underlying the observed exponential perfor-652

mance collapse characterized by L0 and to653

account for other non-trivial error patterns,654

such as path-length dependent first errors.655

3. Impact of Prompting: Our current study em-656

ployed standardized prompts and inference657

settings. A crucial next step is a robust sen-658

sitivity analysis to determine overall decay659

behavior are influenced by different prompt-660

ing strategies (e.g., zero-shot vs. few-shot,661

decomposition techniques), varied decoding662

parameters (temperature, top-p), and interac-663

tive mechanisms such as self-verification or664

self-correction. Investigating the potential of665

these techniques to mitigate the observed se-666

quential inference failures, particularly given667

seqBench’s minimal search complexity, re-668

mains a key avenue for future research.669

Addressing these points by leveraging frameworks670

like seqBench will be vital for developing LLMs671

with more robust and generalizable sequential rea-672

soning capabilities, and for understanding their fun-673

damental performance limits.674
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Appendices888

A Dataset Generation Details889

The seqBench benchmark generates pathfinding890

tasks by systematically controlling several com-891

plexity dimensions. As described in Section 1892

(main paper), Algorithm 1 is central to this pro-893

cess. This appendix provides further details on the894

generation phases, natural language encoding of895

tasks, and specific dataset parameters.896

A.1 Generation Phases897

The generation process, guided by Algorithm 1,898

involves three main phases:899

1. Base Maze Construction: An initial N ×900

M grid is populated, and an acyclic maze901

graph (Mg) is formed using Kruskal’s algo-902

rithm (Kleinberg and Tardos, 2006). This en-903

sures a simply connected environment where904

a unique path exists between any two cells if905

all internal "walls" (potential door locations)906

were open. The overall process results in maze907

instances like the one visualized in Figure 5.908

2. Rewind Construction for Path Skeleton909

and Key/Door Placement: This phase im-910

plements the "Rewind Construction" (Algo-911

rithm 1 in the main paper). Starting from a912

randomly selected goal cell (Cgoal), the algo-913

rithm works backward to define a solvable914

path skeleton (ΠS). It iteratively:915

(a) Selects a cell ckey that would be a preced-916

ing point on a path towards the current917

cell x (initially Cgoal).918

(b) Identifies the unique path segment πseg919

in Mg from x to ckey.920

(c) Randomly selects an edge d on this seg-921

ment πseg to become a locked door. This922

edge d is added to the set of locked doors923

DL.924

(d) A new unique key Kid is conceptu-925

ally placed at ckey, and its information926

(which door it opens, its location) is927

stored in KI .928

(e) The conceptual steps (moving along πseg,929

unlocking door d with Kid, picking up930

Kid at ckey) are prepended (in reverse931

logical order) to the path skeleton ΠS .932

(f) The current cell x is updated to ckey, and933

the process repeats until the target num-934

ber of backtracks (B) is achieved or no 935

valid placements remain. 936

This backward construction ensures solvabil- 937

ity and controlled backtracking complexity. 938

The final agent starting position is the cell x 939

at the end of this phase. 940

3. Fact Compilation and Noise Injec- 941

tion: Based on the final maze structure 942

(Mg,DL,KI ), a set of natural language 943

facts F is compiled. This includes facts 944

describing room connections, key locations, 945

and door states. Distracting facts are then 946

introduced based on the target noise ratio N . 947

These distractors might describe non-existent 948

connections, spurious keys, or misleading 949

adjacencies, chosen to be plausible yet 950

incorrect. 951

A.2 Natural Language Encoding 952

Each task instance is translated into a set of atomic 953

natural language facts. We use a consistent tem- 954

plating approach: 955

• Room Connections: "Room A1 and B1 are 956

connected by an open door." 957

• Locked Connections: "Room C3 and D3 are 958

connected by a closed and locked door." 959

• Key Requirements: "The locked door be- 960

tween C3 and D3 requires key 5." (Key IDs 961

are simple integers). 962

• Key Placements: "Key 5 is in room E4." 963

(Room IDs use spreadsheet-like notation, e.g., 964

A1, B2). 965

• Starting Position: "Bob is in room A2." 966

• Goal Position: "Alice is in room D5." 967

The full set of facts for a given problem constitutes 968

its description. 969

A.3 Dataset Parameters and Scope 970

The seqBench dataset was generated using the fol- 971

lowing parameter ranges based on the generation 972

configuration: 973

• Grid Sizes (N ×M ): N ×M where N and 974

M range from 5 to 50 (e.g., [5,5], [6,6], ..., 975

[50,50]), with M = N for all configurations. 976
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• Target Backtracking Steps (B): Values from977

0 to 7. This controls the number of key-door978

mechanisms deliberately placed on the opti-979

mal path.980

• Noise Ratio (N ): Values from 0.0 (no dis-981

tracting facts) to 1.0 (equal number of sup-982

porting and distracting facts), typically in in-983

crements of 0.2.984

• Instances per Configuration: For each pri-985

mary configuration, defined by a specific grid986

size (N,M ) and a specific target backtrack-987

ing step count (B ∈ {0..7}), 400 unique base988

maze instances were generated.989

• Logical Depth (L): As an emergent prop-990

erty, L varies. Experiments typically se-991

lect problems from these generated instances992

that fall into specific L bins (e.g., L ∈993

[10, 11), [11, 12), . . .).994

This generation pipeline, leveraging the described995

parameter ranges and variations, can produce a vast996

and diverse set of problem instances. The publicly997

released seqBench dataset, used for the analyses998

in this paper (see main paper for access link), com-999

prises 7,079 such curated instances. This collection1000

offers a rich resource for studying the combined1001

effects of the controlled complexity dimensions.1002

B Prompt Design and Model1003

Configuration Details1004

This appendix provides the complete details of the1005

prompt structure and model configurations used1006

for evaluating LLMs on the seqBench benchmark.1007

The overall prompt, illustrated in Figure 6, con-1008

catenates four main components which are detailed1009

below.1010

B.1 Overall Prompt Components1011

The prompt presented to the LLMs consists of the1012

following components:1013

1. System Instructions and Task Definition1014

(Component 1): Outlines the agent’s task,1015

the structure of the maze description, valid1016

actions and their syntax, key operational con-1017

straints, and the required output format.1018

2. Few-Shot Examples (Component 2): Three1019

examples are provided to illustrate the task,1020

ranging in complexity. One of these examples1021

Figure 5: Example visualization of a 6 × 6 seqBench
maze instance. Red rectangles denote locked doors,
dashed lines indicate the locations of keys correspond-
ing to those doors, and triangles mark the start (upward-
pointing) and goal (downward-pointing) positions. This
illustrates the spatial nature of the tasks.

(a simple navigation task) is detailed in Fig- 1022

ure 6. The verbatim text for all three examples 1023

is provided in Figure 7 for completeness. 1024

3. Reasoning Guidance and Self-Assessment 1025

(Component 3): Offers step-by-step algorith- 1026

mic tips for solving the task and requests the 1027

model to provide a self-assessment of its con- 1028

fidence and the perceived difficulty of the in- 1029

stance. 1030

4. Problem Instance Facts (Component 4): 1031

The specific natural language facts describ- 1032

ing the current maze configuration for the task 1033

instance. As illustrated in Figure 6, these facts 1034

are appended after the preceding components 1035

and are followed by the line "YOUR SOLU- 1036

TION:" to prompt the model. These facts are 1037

generated using the templates described in Ap- 1038

pendix A. 1039

B.2 Evaluation Metrics and Error Analysis 1040

Details 1041

This section provides further details on specific as- 1042

pects of our evaluation metrics and observed error 1043

categories, complementing the overview of metrics 1044
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Figure 6: The complete prompt structure passed to the LLMs. This includes: Component 1 (System Instructions
and Task Definition), one of the three Few-Shot Examples (Component 2, specifically a simple navigation task),
Component 3 (Reasoning Guidance), and an illustration of where the Problem Instance Facts (Component 4) are
inserted. For clarity and completeness, the full verbatim text for all three few-shot examples (Component 2) is
provided in 7.

in Section 1 of the main paper and the discussion1045

of failure modes in Section 2 of the main paper.1046

Observed Violation Categories. Failures in1047

model solutions on seqBench tasks can be cate-1048

gorized into several types. Understanding these1049

categories is crucial for interpreting model perfor-1050

mance and failure modes. Key types of violations1051

observed include:1052

• Adjacency errors (e.g., attempting to move1053

between unconnected rooms).1054

• Locked door errors (e.g., navigating through1055

locked doors without the correct key or with-1056

out unlocking them).1057

• Key usage errors (e.g., attempting to use keys1058

not yet collected, or using the wrong key for a1059

door).1060

• Path inefficiency (e.g., taking unnecessary de-1061

tours or redundant actions; while not always1062

a hard violation that stops progress, this con-1063

tributes to solutions not matching the optimal1064

path and thus failing Pass@1).1065

• Missed critical actions (e.g., failing to pick up 1066

a necessary key or unlock a required door). 1067

This is a key failure mode discussed in the 1068

main paper (Section 2.4) and is often reflected 1069

in metrics like low recall or a low progress 1070

ratio if the omission occurs early and prevents 1071

further correct steps. 1072

Identifying these distinct categories of errors pro- 1073

vides a more granular understanding of why mod- 1074

els fail on sequential reasoning tasks and helps in 1075

the interpretation of aggregate performance metrics 1076

reported in the main paper. 1077

B.3 Violation Map: Qualitative Examples of 1078

Model Failures 1079

This section provides qualitative examples of char- 1080

acteristic model failures to illustrate common error 1081

types. These examples visually support the dis- 1082

cussion of failure modes in the main paper (Sec- 1083

tion 2.4, "A Key Failure Mode: Omission of Criti- 1084

cal Steps"). Figure 8 illustrates a significant error 1085

by Gemini-2.5-Flash on a complex task, where the 1086

model generates an illegal path, bypassing neces- 1087
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1. Example 1 (Simple Navigation): This example, as shown in Figure 6, involves navigating a maze
with only open doors.

EXAMPLE:
INPUT:
Maze Structure: Room C4 and C3 are connected by an open door. Room C3 and D3 are

connected by an open door. Room D5 and E5 are connected by an open door.
Room A2 and A1 are connected by an open door. Room A3 and B3 are connected
by an open door. Room A1 and B1 are connected by an open door. Room A4 and
A3 are connected by an open door. Room E5 and E4 are connected by an open
door. Room D4 and D3 are connected by an open door. Room A5 and B5 are
connected by an open door. Room D4 and E4 are connected by an open door. Bob
is in room D5. Alice is in room C4.

OUTPUT:
Solution: [('start ', 'D5 '), ('move_to ', 'E5 '), ('move_to ', 'E4 '), ('move_to ', '

D4 '), ('move_to ', 'D3 '), ('move_to ', 'C3 '), ('move_to ', 'C4 '), ('rescue ', '
Alice ')]

2. Example 2 (Single-Key Backtracking): This example introduces a single locked door and a
corresponding key.

EXAMPLE:
INPUT:
Maze Structure: Room A1 and A2 are connected by an open door. Room A2 and B2 are

connected by an open door. Room B1 and B2 are connected by an open door.
Room B1 and C1 are connected by an open door. Room C1 and C2 are connected
by a closed and locked door. Door between C1 and C2 requires key 1. Key 1 is
in room A2. Bob is in room A1. Alice is in room C2.

OUTPUT:
Solution: [('start ', 'A1 '), ('move_to ', 'A2 '), ('pick_up_key ', '1'), ('move_to ',

'B2 '), ('move_to ', 'B1 '), ('move_to ', 'C1 '), ('use_key ', '1'), ('
unlock_and_open_door_to ', 'C2 '), ('move_to ', 'C2 '), ('rescue ', 'Alice ')]

3. Example 3 (Multi-Key Backtracking): This example presents a more complex scenario with
multiple locked doors and keys, requiring more extensive backtracking.

EXAMPLE:
INPUT:
Maze Structure: Room B5 and B4 are connected by a closed and locked door. The

locked door between B5 and B4 requires key 3. Key 3 is in room B5. Room B5
and C5 are connected by a closed and locked door. The locked door between B5
and C5 requires key 16. Key 16 is in room C5. Room B4 and C4 are connected

by an open door. Room C4 and C3 are connected by an open door. Room C3 and
D3 are connected by a closed and locked door. The locked door between C3 and
D3 requires key 10. Key 10 is in room C4. Room D5 and D4 are connected by

an open door. Room D4 and D3 are connected by an open door. Room A5 and B5
are connected by an open door. Bob is in room C5. Alice is in room D5.

OUTPUT:
Solution: [('start ', 'C5 '), ('pick_up_key ', '16'), ('use_key ', '16'), ('

unlock_and_open_door_to ', 'B5 '), ('move_to ', 'B5 '), ('pick_up_key ', '3'), ('
use_key ', '3'), ('unlock_and_open_door_to ', 'B4 '), ('move_to ', 'B4 '), ('
move_to ', 'C4 '), ('pick_up_key ', '10'), ('move_to ', 'C3 '), ('use_key ', '10')
, ('unlock_and_open_door_to ', 'D3 '), ('move_to ', 'D3 '), ('move_to ', 'D4 '),
('move_to ', 'D5 '), ('rescue ', 'Alice ')]

Figure 7: Few-shot examples provided to guide the LLMs in the maze-solving task. These examples demonstrate
simple navigation, single-key backtracking, and multi-key backtracking scenarios. The three examples illustrate
increasing levels of complexity.

sary steps and locked doors. This exemplifies a1088

breakdown in multi-step planning. Additionally,1089

Figure 9 shows another common ’adjacency error,’ 1090

where a model attempts to jump between uncon- 1091
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nected rooms. This type of error reveals a critical1092

lapse in grounding its generated actions within the1093

spatial adjacencies explicitly stated by the task’s1094

input facts.1095

B.4 Quantitative Analysis of Error Patterns1096

To understand how and when models begin to fail1097

within a reasoning sequence, we analyze the dis-1098

tribution of the first violation step. We record the1099

time step at which the initial violation occurs in1100

a model’s generated path. Aggregating this step-1101

indexed data across multiple instances allows us1102

to create temporal distributions of errors. These1103

distributions help determine whether errors tend1104

to cluster early in the reasoning process (poten-1105

tially indicating issues with initial planning or un-1106

derstanding of the overall problem complexity) or1107

accumulate later (suggesting difficulties in main-1108

taining long chains of inference or context). This1109

analysis complements the discussion in the main1110

paper (Section 2.4, "Path-Length Dependent First1111

Errors: The Burden of Anticipated Complexity").1112

Figure 10 shows how the distribution of these1113

first-error positions shifts with the overall problem1114

complexity, represented by logical depth (L). As1115

detailed in the main paper, an increase in L tends to1116

cause errors to occur earlier in the reasoning chain.1117

Similarly, Figure 11 illustrates how the introduc-1118

tion of contextual noise (distracting facts) affects1119

the point of failure. Increased noise also tends to1120

precipitate earlier errors in the reasoning sequence,1121

as discussed in the main paper in relation to sensi-1122

tivity to noise (Section 2.3) and its impact on error1123

patterns (Section 2.4).1124

C Supplementary Figures1125

This appendix provides supplementary figures that1126

offer further visual support for analyses presented1127

in the main paper. These figures illustrate the im-1128

pact of various complexity dimensions and provide1129

comparative views of model performance, elaborat-1130

ing on points made throughout Section 2 (Bench-1131

marking Results) of the main paper.1132

Figure 12 details the performance of Llama-41133

Maverick-17B-128E-Instruct under varying levels1134

of noise and fact shuffling. This supports the discus-1135

sion in the main paper (Section 2.3, on how these1136

factors, especially in combination, affect success1137

rates, with noise being a dominant factor.1138

To illustrate the performance consistency and1139

disparities across different models, as detailed in1140

Section 2.6, Figure 13 presents scatter and density 1141

plots of mean progress ratios. These plots clearly 1142

demonstrate that model performance hierarchies 1143

are not strictly linear. They reveal ’performance 1144

inversions’—instances, also noted in Section 2.6, 1145

where models with typically lower overall perfor- 1146

mance (e.g., lower average L0) occasionally solve 1147

specific complex problems that models with higher 1148

average L0 values fail on. 1149

Figure 14 isolates the impact of shuffle ratio on 1150

model performance when other factors like noise 1151

are controlled. This visualization corresponds to 1152

the findings discussed in the main paper (Sec- 1153

tion 2.3, "Fact Ordering (Shuffle Ratio)") that sim- 1154

ple reordering of facts has a minimal impact on the 1155

performance of the evaluated models under low- 1156

noise conditions. 1157
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Figure 8: Illustrative failure case for Gemini-2.5-Flash on a 40x40 task. Left: Optimal path (yellow). Right: Model’s
generated path showing an illegal adjacency jump (red arrow), bypassing multiple rooms and a locked door, despite
only supporting facts being provided. This highlights a breakdown in multi-step planning.

Figure 9: Illustrative failure case of an ’adjacency error’ in model-generated pathfinding. The left panel displays the
optimal path (yellow) to the target (triangle). The right panel shows a suboptimal path (purple) generated by the
model. This example highlights a common error where, after a sequence of actions (in this scenario, following a key
acquisition), the model fails to navigate through valid connections. Instead, it attempts to ’jump’ directly between
two unconnected rooms. This violation of room adjacency constraints is a key challenge in model performance.
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Figure 10: Distribution of first-violation steps for Gemini-2.5-Flash across varying logical depths (L). As L (total
required path length) increases, the distribution of first errors tends to shift leftward, indicating that models are more
likely to fail at earlier steps in longer problems. This suggests that anticipated global complexity impacts reasoning
from the outset.
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Figure 11: Impact of increasing noise ratio on the distribution of failure steps for Gemini 2.5 Flash. As noise
(proportion of distracting facts) increases, failures tend to occur earlier in the reasoning chain. This reflects increased
difficulty in isolating relevant information and maintaining focus.
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Figure 12: Pass@1 success rate for Llama-4 Maverick-17B-128E-Instruct versus solution length (L) under different
noise and shuffle ratios. Left: Linear scale. Right: Log-linear scale. Performance degrades with increased noise but
is less affected by shuffle ratios.

Figure 13: Scatter and density plots of progress ratios per task instance, comparing model pairs on the tasks.
These plots illustrate performance agreement and disparities on the same instances of pathfinding tasks. Notably,
Gemini-2.5-Flash (example) often succeeds on instances where other models achieve near-zero progress. Data from
experiments in Figure 1 (main paper).
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Figure 14: Impact of shuffle ratio on Pass@1 success rate. Varying the degree of mixing (shuffle) between supporting
and distracting facts shows minimal impact on performance for Gemini 2.5 Flash and Llama-4 Maverick, suggesting
robustness to fact order when noise is controlled. The generation and sampling of maze instances for these tasks
follow the same methodology detailed for experiments in the main paper (Figures 3 and 4).
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