segBench: A Tunable Benchmark to Quantify Sequential Reasoning Limits
of LLMs

Anonymous ACL submission

Abstract

We introduce segBench, a parametrized bench-
mark for probing sequential reasoning limits
in Large Language Models (LLMs) through
precise, multi-dimensional control over several
key complexity dimensions. seqBench allows
systematic variation of (1) the logical depth,
defined as the number of sequential actions re-
quired to solve the task; (2) the number of back-
tracking steps along the optimal path, quantify-
ing how often the agent must revisit prior states
to satisfy deferred preconditions (e.g., retriev-
ing a key after encountering a locked door); and
(3) the noise ratio, defined as the ratio between
supporting and distracting facts about the en-
vironment. Our evaluations on state-of-the-art
LLMs reveal a universal failure pattern: accu-
racy collapses exponentially beyond a model-
specific logical depth. Unlike existing bench-
marks, seqBench’s fine-grained control facili-
tates targeted analyses of these reasoning fail-
ures, illuminating universal scaling laws and
statistical limits, as detailed in this paper along-
side its generation methodology and evalua-
tion metrics. We find that even top-performing
models systematically fail on seqBench’s struc-
tured reasoning tasks despite minimal search
complexity, underscoring key limitations in
their commonsense reasoning capabilities. De-
signed for future evolution to keep pace with
advancing models, the seqBench datasets are
publicly released to spur deeper scientific in-
quiry into LLM reasoning, aiming to establish
a clearer understanding of their true potential
and current boundaries for robust real-world
application.

Large Language Models (LLMs) have shown
remarkable performance (Vaswani et al., 2017;
Brown et al., 2020; Lieber et al., 2021; Rae et al.,
2021; Smith et al., 2022; Thoppilan et al., 2022;
Hoffmann et al., 2022; Du et al., 2021; Fedus et al.,
2022; Zoph et al., 2022) on a wide range of tasks
and benchmarks spanning diverse human-like capa-
bilities; however, these successes can obscure fun-

damental limitations in sequential reasoning that
still persist. Arguably, reasoning captures a more
pure form of intelligence, going beyond mere pat-
tern matching or fact memorization, and is thus a
critical capability to understand and enhance in Al
systems. Recent studies show that state-of-the-art
LLMs (OpenAl, 2025; Google DeepMind, 2025;
Meta Al 2025; Mistral Al, 2024; Anthropic, 2025)
excel at complex benchmarks, yet stumble upon
simple common-sense inferences trivial for an adult
human (Nezhurina et al., 2025; Han et al., 2024;
Sharma, 2024; Berglund et al., 2024; Yang et al.,
2019). Most existing benchmarks saturate quickly,
leaving little room for fine-grained attribution stud-
ies to perform systemic probes of LLM failure
modes. Consequently, a robust understanding of
why and under what circumstances these models
fail, especially on problems requiring sequential
reasoning, remains elusive.

This gap, we argue, stems from the lack of
evaluation benchmarks allowing systematic, multi-
dimensional control over key independent factors
that influence a task’s overall reasoning difficulty.
Most benchmarks (Cobbe et al., 2021; Hendrycks
et al., 2021; Srivastava et al., 2023; Weston et al.,
2015; Clark et al., 2018; Dua et al., 2019; Rein
et al., 2023), despite their evaluation merits, of-
ten do not support a systematic variation of cru-
cial complexity dimensions. This makes it diffi-
cult to isolate the specific conditions under which
reasoning in LLMs falter. For instance, discern-
ing whether a failure is due to the length of the
required reasoning chain, the necessity to revise
intermediate conclusions, or the density of distract-
ing information is often not quantitatively possible.
While prompting strategies like chain-of-thought
(CoT) and model scaling have boosted aggregate
performance, they often obscure sharp performance
cliffs that can emerge when these underlying com-
plexity dimensions are varied independently (Wei
et al., 2023; Kojima et al., 2022). Without such

systematic control, disentangling inherent architec-
tural limitations from those addressable via scal-
ing (model size, data, or compute), fine-tuning,
or prompting techniques is challenging. A fine-
grained understanding of these performance bound-
aries is crucial for developing more robust and reli-
able reasoning systems.

To complement recent efforts (Sprague et al.,
2024; Tyagi et al., 2024; Kuratov et al., 2024; Tang
and Kejriwal, 2025; Mirzaee et al., 2021; Tikhonov,
2024; Mirzaee and Kordjamshidi, 2022; Shi et al.,
2022) in evaluating reasoning, and to address the
need for more controlled analysis, we introduce
segBench, a tunable benchmark designed explic-
itly to probe and analyze sequential reasoning capa-
bilities in language models. The dataset comprises
synthetic yet linguistically grounded pathfinding
task configurations on two-dimensional grids. Solv-
ing each problem requires sequential inference over
relevant and distracting structured facts. Each in-
stance is automatically verifiable and parameter-
ized by controllable factors that directly address
the previously identified gaps: (1) logical depth
(total number of actions in the ground-truth solu-
tion, reflecting the length of the reasoning chain);
(2) backtracking count (number of locked-door de-
tours on the optimal path, requiring revision of
tentative solution paths); and (3) noise ratio (pro-
portion of distracting vs. supporting facts, testing
robustness to irrelevant information). Performance
against these dimensions can be quantified with
fine-grained metrics (e.g., via progress ratio as we
define here). We observe that beyond a certain
logical depth, Pass@1 success collapses to near
zero for all models (see Figure 1). These features
enable precise attribution studies of model failure
modes, offering insights into the brittle boundaries
of current LLM generalization.

Furthermore, the seqBench benchmark is built
upon a scalable data generation framework, allow-
ing it to evolve alongside increasingly capable mod-
els to help with both model training and evaluation.
Through evaluations on popular LLMs, we reveal
that top-performing LLMs exhibit steep universal
declines as either of the three complexity dimen-
sions increases, while remaining comparatively ro-
bust to fact shuffle, despite the underlying logical

structure being unchanged.
Contributions. Our main contributions are:

1. seqBench: A Tunable Benchmark for Se-
quential Reasoning. We introduce an open-

10| 4 Fit: ~exp(—L/Lo)
1 h-preview-04-17
1

08| |

Llama-3.3-70B-Instruct-Turbo

a —@- Llama-3.2-3B-Instruct-Turbo
(Fit): Ly =10.2

(Fit): Ly = 1.6

o
>

Success Rate

S
IS

Success Rate (Log Scale)

0 50 100 150 200 250 300
Number of Actions (L)

Figure 1: Performance collapse of various models
with increasing logical depth L for a pathfinding task
(N, M = 40, B = 2 keys). Success rates (Pass@1) are
shown on linear (top panel) and logarithmic (bottom
panel) y-axes, averaged from 5 runs/problem across 40
problems per unit L-bin. All evaluations used Tem-
perature=1.0 and top-p=0.95 (Gemini-2.5-flash: ’auto’
thinking). The displayed fits employ a Weighted Least
Squares (WLS) (Carroll and Ruppert, 2017) method
on log-success rates. Weights are derived from in-
verse squared residuals of a preliminary Ordinary Least
Squares (OLS) fit.

source framework for generating pathfinding
tasks with fine-grained, orthogonal control
over logical depth, backtracking steps, and
noise ratio. We also evaluate secondary fac-
tors like fact ordering (shuffle ratio; See sup-
plementary material for details).

2. Comprehensive LLM Attribution Study.
Using segBench, we demonstrate the signifi-
cant impact of these controlled complexities
on LLM performance, revealing sharp perfor-
mance cliffs in state-of-the-art models even
when search complexity is minimal.

The seqBench dataset is publicly available' under
the CC BY 4.0 license to facilitate benchmarking.

1h'ctps: //huggingface.co/datasets/emnlp-submi
ssion/seqgBench

https://huggingface.co/datasets/emnlp-submission/seqBench
https://huggingface.co/datasets/emnlp-submission/seqBench

=@~ Llama-4-Maverick-17B-128E-Instruct-FP8
0.6 1 o exp(—L/Ly), Ly=16.7
2
&
=041
3 |
3
=
[72]
0.2 1
- - - -
50 100 150 200 250 300
Number of actions
1.0
M & @~ Precision
® & ¢ 4 Recall
0.8 1 ! @~ Progress ratio
0.6 1
0444
®
&
0.21 L' I
& 3 P -
0.0 T T — T
0 100 200 300 400

Number of actions

Figure 2: On the left: Llama-4 Maverick-17B-128E-
Instruct Model’s performance (pass@1 success rate)
versus number of actions in the ground truth path of the
pathfinding problems is shown. This Pass@]1 success
rate across 5 runs per problem is averaged over the
problem instances sampled from different actions count
bins of width equal to 1. On the right: The mean of
progress ratio as well as precision and recall is shown
to highlight models gradually increasing struggle in
completing the path. The Temperature is set to 1.0 and
the top-p is set to 0.95 in all runs.

1 Methods

1.1 Dataset Generation

The seqgBench dataset consists of spatial pathfind-
ing tasks. Task instance generation, detailed below
(Algorithm 1; See Appendix A for details), is pred-
icated on the precise independent control of the
three key complexity dimensions introduced ear-
lier: Logical Depth (L), Backtracking Count (5),
and Noise Ratio (V). This allows the creation of
instances with specific values for these parameters,
enabling targeted studies of their impact on LLM
reasoning.

Task instances are produced in a multi-stage
process. Initially, primary generation parame-
ters—maze dimensions (IV, M), target backtracks
(Btarger)> and target noise ratio (N’target)—are speci-
fied. An acyclic maze graph ()M,) is formed on an
N x M grid using Kruskal’s algorithm (Kleinberg
and Tardos, 2006). Our "Rewind Construction"

method (Algorithm 1) then embeds Biager back-
tracking maneuvers by working backward from a
goal to strategically place keys and locked doors,
yielding the instance’s actual backtracking count
B. Finally, a natural language fact list (F) is
derived from the maze, and distracting facts are
added according to /\ftarget to achieve the final
noise ratio V. The logical depth L (optimal path
length) emerges from these generative steps, influ-
enced by IV, M, Biarger, and construction stochas-
ticity. While L is not a direct input to the gener-
ation algorithm, the process is designed to yield
a wide spectrum of logical depths. Each gener-
ated instance is then precisely annotated with its
emergent L value, alongside its effective B and
N values. This annotation effectively makes L a
key, selectable parameter for users of the seqBench
dataset, enabling them to choose or filter tasks by
their desired logical depth. Our rewind construc-
tion method guarantees task solvability. The full
seqgBench benchmark is constructed by systemat-
ically applying this instance generation process
(detailed in Algorithm 1) across a wide range of
initial parameters. This includes varied grid sizes
(e.g., N € {5..50}, M ~ N) and target backtracks
(Biarget € {0..7}), yielding a large and diverse data
pool. For each (N, M, Biarger) configuration, mul-
tiple unique base mazes are generated, to which
different noise ratios (e.g., Marget € {0..1}) are
subsequently applied. The creation of this com-
prehensive data pool was computationally efficient,
requiring approximately an hour of computation
on a standard laptop while using minimal mem-
ory. The publicly released benchmark comprises a
substantial collection of these generated instances,
each annotated with its specific emergent logical
depth L, effective backtracking count 3, and noise
ratio \. This rich annotation is key, enabling re-
searchers to readily select or filter task subsets by
these dimensions for targeted studies (e.g., as done
for Figure 1, where instances were sampled into
L-bins with other parameters fixed). For the ex-
periments presented in this paper, specific subsets
were drawn from this benchmark pool, often in-
volving further filtering or parameter adjustments
tailored to the objectives of each study; precise
details for each experiment are provided in the rel-
evant sections and figure captions. Full details
on path derivation, fact compilation, and overall
dataset generation parameters are provided in the
Appendix A.

1.2 Prompt Construction and Model
Configuration

Our evaluation uses a standardized prompt tem-
plate with four components: (i) task instructions
and action schema, (ii) three few-shot examples of
increasing complexity (simple navigation, single-
key, and multi-key backtracking), (iii) optional rea-
soning guidance, and (iv) the problem’s natural-
language facts. All models are queried using tem-
perature 7'=1.0, nucleus sampling p=0.95, and
maximum allowed setting in terms of output token
limits on a per model basis. For each instance, we
compute 5 independent runs to establish robust per-
formance statistics. The complete prompt structure,
shown in Figure 6, is provided in the Appendix B.

Algorithm 1: Rewind Construction of Path
Skeleton
Input :Grid N x M, Target backtracks 15
Output :Maze graph M, Locked doors Dy,
Key info /C;, Path skeleton Ilg

1 My < Acyclic graph on grid (Kruskal’s);
2 2 < Cyoqr < Random goal cell in M;
3 DL,IC[< @,@;b(— 0;
4 HS — [(Cgoal,GOAL)];
s while b < B do
6 Ckey < Random cell in M, accessible
from z (path avoids Dy, for this step);
7 Tseg < Unique path in M, from x to
Ckeys
8 if Je € 7yeq such that e ¢ Dy, then
9 d < Randomly select such an edge
€;
10 D+ Dr U {d},
11 K4 <+ New unique key ID;
12 KC1[K;q) < {opens : d,1oc : cpey};
13 IIg.prepend((cyey, PICKUP Kjq4),
(d,UNLOCK K,q),
(Tseg; MOVE));
14 X 4= Cheys b b+ 1;
15 end
16 else
17 ‘ Break
18 end
19 end

20 IIg.prepend((x, START));
21 return Mg, Dy, Ky, Ig;

1.3 Evaluation Metrics

To analyze not just success but also ~ow models fail,
we employ several complementary metrics. Suc-
cess Rate (Pass@1) measures the proportion of

runs where the predicted action sequence exactly
matches the ground truth. The Progress Ratio
(Tyagi et al., 2024), calculated as k/n (where n is
the total ground-truth actions and k is the number
correctly executed before the first error), pinpoints
the breakdown position in reasoning. We also use
Precision and Recall. Precision is the proportion
of predicted actions that are correct, while Recall
is the proportion of ground-truth actions that were
correctly predicted. Low precision indicates hallu-
cinated actions, while low recall signifies missed
necessary actions. Additionally, we visualize error
locations via a Violation Map. This multi-faceted
approach reveals each model’s effective "reasoning
horizon"—the maximum sequence length it can
reliably traverse. Further details on all metrics and
visualizations are provided in the supplementary
material.

2 Benchmarking Results
2.1 Evaluated Models

We evaluate a diverse set of transformer-based
LLMs across different model families and param-
eter scales. Our analysis includes Gemini models
(2.5-flash-preview, 2.0-flash), Meta’s Llama fam-
ily (4-Maverick-17B, 3.3-70B, 3.2-3B), Google’s
Gemma-2-27b, and Qwen models (2.5-Coder-32B,
2.5-7B). Access to some open-weight models and
benchmarking infrastructure was facilitated by plat-
forms such as Together AI? and Google Al Studio®.
Problem instances for varying logical depths (L)
were generated by sampling 40 problems for each
L, using a fixed maze size of 40 x 40 and 2 keys,
unless otherwise specified for specific experiments
(e.g., when varying the number of keys for back-
tracking analysis). All models were evaluated using
the standardized prompt template (see Figure 6),
the inference settings detailed in Section 1.2, and a
common response parsing methodology. For each
task instance, we perform 5 independent runs to
establish robust performance statistics, primarily
analyzing Pass@1 success rates.

2.2 Universal Performance Collapse with
Increasing Logical Depth

A central finding of our study is the universal col-
lapse in reasoning performance observed across
all evaluated LLMs when confronted with tasks
requiring increasing sequential inference steps. As

2https://www.together.ai/
Shttps://aistudio.google.com/

https://www.together.ai/
https://aistudio.google.com/

N o
e [=
Success rate

Progress ratio mean

=}
S}
=}
&)

1 2 3 4 5 00 0 1

Number of backtracking steps

e
=
=)

1750 ‘—_./.——.__./'
0.8 \/\ 1500
1250

Number of backtracking steps

1000

-
%3
=1

Number of tokens

e
et

3 4 5 0 1 2 3 4 5
Number of backtracking steps

(%3
=3
=3

)
193
(=3

Figure 3: Performance as a function of the number of required backtracking steps, operationalized via the number of
locked doors with distributed keys along the optimal path. Holding all other complexity factors constant, all models
exhibit a clear decline in both progress ratio and success rate as backtracking demands increase. Additionally,
we report the corresponding rise in output token counts per model, highlighting the increased reasoning burden

associated with longer dependency chains.

illustrated in Figure 1, Pass@1 success rates ex-
hibit a consistent and sharp exponential decay as
the ground-truth path length (L) increases. Perfor-
mance rapidly approaches near-zero past a model-
specific point in this decay. To quantify and com-
pare this exponential decay, we fit an exponential
decay curve P(L) = exp(—L/Lyg) to the success
rates, deriving a characteristic path length Lg. This
Ly value, representing the path length at which
performance drops by a factor of e~!, serves as
a robust metric for each model’s sequential rea-
soning horizon. Plotting success rates on a semi-
logarithmic (log-y) scale against L reveals an ap-
proximately linear decay trend across the evalu-
ated regime. This log-linear relationship suggests
that errors may accumulate with a degree of inde-
pendence at each reasoning step, eventually over-
whelming the model’s capacity for coherent infer-
ence. The observed L(values vary significantly,
from 85.7 for Gemini-2.5-Flash down to 1.6 for
Llama-3.2-3B (Figure 1), underscoring a funda-
mental bottleneck in current transformer architec-
tures for extended multi-step reasoning.

2.3 Impact of Independently Controlled
Complexity Dimensions

Beyond the universal impact of logical depth (L)
discussed in Section 2.2, our benchmark’s ability
to independently vary key complexity dimensions
allows for targeted analysis of their distinct impacts
on LLM reasoning performance. We highlight the
effects of noise, backtracking, and fact ordering,
primarily focusing on Pass@1 success rates, mean
progress ratios, and response token counts.

Impact of Backtracking Requirements. In-
creasing the number of required backtrack-

ing steps—operationalized via key-door mecha-
nisms—also leads to a clear and significant decline
in Pass@]1 success rates and mean progress ratios
across all evaluated models (LLlama-4 Maverick,
Qwen 2.5-Code, Llama-3.2 Nemotron, Gemini 2.0
Flash, and Gemini 2.5 Flash-preview), as shown
in Figure 3. Gemini 2.5 Flash-preview maintains
the highest performance but still exhibits a notable
drop as backtracking count increases from O to 5.
This decline in reasoning accuracy is generally ac-
companied by an increase or sustained high level
in the mean number of response tokens (Figure 3,
right panel). For example, models like Llama-4
Maverick and Gemini 2.5 Flash-preview show a
clear upward trend or maintain high token counts
as backtracking complexity rises, reflecting the in-
creased reasoning effort or path length articulated
by the models when managing more complex se-
quential dependencies.

Sensitivity to Noise Ratio. Model performance
is highly sensitive to the noise ratio—the propor-
tion of distracting versus supporting facts. As
demonstrated in Figure 4 for Gemini 2.5 Flash
and Llama-4 Maverick, increasing the proportion
of irrelevant facts consistently and significantly
degrades both Pass@1 success rates and mean
progress ratios. For instance, Gemini 2.5 Flash’s
Pass@1 success rate drops from over 0.7 at zero
noise to approximately 0.2 at a noise ratio of
1.0. Llama-4 Maverick, starting with lower per-
formance, also shows a consistent decline. Inter-
estingly, for these two models, the number of CoT
(output) tokens remains relatively stable despite
the increasing noise and degrading performance
(Figure 4, right panel), suggesting that models do
not necessarily "work harder” (in terms of output

1.0 1.0
=@-= (Llama-4-maverick-17b-128e-instruct-fp8) 1750
(Gemini-2.5-flash-preview-04-17) —
.08 ®0.8 1500
.2 2
g g
= S v 12
% 0.6 g 0.6 g 1230
<] 3
g 2 £ 1000
Q
20.4 304 3
151 7 750
= g
0.2 0.2
‘\‘\._._. > 500
0.0 00— . . 3
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Noise ratio Noise ratio Noise ratio

Figure 4: Performance as a function of contextual noise for Gemini 2.5 flash and Llama-4 Maverick-17B-128E-
Instruct models. As noise increases through the inclusion of distracting or irrelevant facts, both models exhibit a

clear and consistent decline in performance.

length) when faced with more distractors, but their
accuracy suffers.

Fact Ordering (Shuffle Ratio). In contrast to the
strong effects of noise and backtracking, shuffle ra-
tio (entropy of fact presentation order) within the
prompt appears to play a secondary role when var-
ied in isolation. Our experiments, exemplified by
the performance of Gemini 2.5 Flash and Llama-4
Maverick (see Appendix C Figure 14 for details),
show that complete shuffling of facts (randomiz-
ing their presentation order without adding or re-
moving any information) has a minimal impact on
Pass@1 success rates and mean progress ratios.
Output token counts also remain stable. This sug-
gests a relative robustness to presentation order as
long as all necessary information is present and
distinguishable. However, as details provided in
supplementary material, when high noise and high
shuffle co-occur, the combined effect can be more
detrimental than either factor alone, though noise
remains the dominant degrading factor.

2.4 Characterizing Key Failure Modes and
Error Patterns

A Key Failure Mode: Omission of Critical Steps.
Beyond simply taking illegal shortcuts, detailed
analysis reveals that LLMs often fail by omit-
ting critical sub-goals necessary for task comple-
tion. Figure 2 (bottom panel) provides a quantita-
tive view for Llama-4 Maverick (Meta Al, 2025),
showing that while precision generally remains
high (models infrequently hallucinate non-existent
rooms or facts), recall and progress ratio plum-
met with increasing path length (L). This indi-
cates that models predominantly fail by missing

necessary actions or entire crucial sub-sequences.
For a qualitative example, even capable models
like Gemini-2.5-Flash can neglect essential detours,
such as collecting a required key, thereby violat-
ing sequential dependencies and rendering the task
unsolvable (illustrative examples are provided in
the Appendix B.4; see Figures 8 and 9). This pat-
tern highlights a fundamental breakdown in robust
multi-step planning and execution.

Path-Length Dependent First Errors: The Bur-
den of Anticipated Complexity. The propensity
for models to make critical errors is not uniformly
distributed across the reasoning process, nor is it
solely a feature of late-stage reasoning fatigue. Ex-
amining the distribution of steps at which the first
constraint violations occur reveals a counterintu-
itive pattern: as the total required path length (L) of
a problem increases, models tend to fail more fre-
quently even at the earliest steps of the reasoning
chain. This leftward shift in the first-error distri-
bution also observed under increasing noise, (Ap-
pendix B.4; Figures 10 and 11) contradicts a sim-
ple cumulative error model where each step carries
a fixed, independent failure probability. Instead, an
error at an early step (e.g., step 5) becomes sub-
stantially more likely when the model is attempting
to solve an 80-step problem versus a 20-step prob-
lem. This suggests that the overall anticipated com-
plexity of the full problem influences reasoning
quality from the very outset, indicating a struggle
with global planning or maintaining coherence over
longer horizons, rather than just an accumulation
of local errors. This phenomenon may help explain
why prompting techniques that decompose long
problems into smaller, manageable sub-problems

often succeed.

2.5 Disparity: Information Retention vs.
Reasoning Capacity

On seqgBench tasks, this disparity is quantitatively
striking. While modern LLMs boast million-token
contexts, their effective sequential reasoning depth
typically remains on the order of hundreds of ac-
tions (Figure 1). This functional limit, even at sev-
eral hundred actions (e.g., 300 actions, with each
like (’move_to’, ’A12’) being 5-7 tokens, to-
taling 1.5k-2.1k tokens), still consumes a minute
fraction of their nominal context. Consequently,
the ratio of context capacity to reasoning tokens
often spans from several hundred-fold (e.g., 500:1
for 300 actions consuming 2k tokens within a 1M
context) to potentially higher values given fewer
limiting actions or larger model contexts. This
striking gap suggests that while transformers can
store and retrieve vast information, their ability to
reliably chain it for coherent, multi-step inference
appears surprisingly constrained.

2.6 Challenging the Conventional
Performance Hierarchy

While metrics like average Lg provide a general
ranking of model capabilities, our fine-grained anal-
ysis reveals instances that challenge a simple linear
performance hierarchy. Scatter plots of progress
ratios across different models on identical tasks
(see Appendix C Figure 13) show intriguing cases
where models with lower overall Ly values (i.e.,
typically weaker models) occasionally solve spe-
cific complex problems perfectly, while models
with higher average Lg values fail on those same
instances. These performance inversions suggest
that sequential reasoning failures may not solely
stem from insufficient scale (parameters or general
training) but could also arise from more nuanced
reasoning limitations.

3 Related Work

Recent advancements in benchmarks evaluating
sequential reasoning capabilities of LLMs have il-
luminated various strengths and limitations across
different dimensions of complexity. These bench-
marks typically differ in how they isolate and quan-
tify reasoning challenges, such as logical deduction,
retrieval difficulty, combinatorial complexity, and
sensitivity to irrelevant information. Zebral.ogic
(Lin et al., 2025), for instance, targets formal deduc-
tive inference through logic-grid puzzles framed as

constraint-satisfaction problems (csp, 2008). While
valuable for probing deduction, its core methodol-
ogy leads to a search space that grows factorially
with puzzle size (Sempolinski, 2009). This makes
it challenging to disentangle intrinsic reasoning
failures from the sheer combinatorial complexity
of the search. As the Zebral.ogic authors them-
selves acknowledge: “solving Zebralogic puzzles
for large instances may become intractable... the
required number of reasoning tokens may increase
exponentially with the size of the puzzle.” This in-
herent characteristic means that for larger puzzles,
performance is primarily dictated by the manage-
ability of the search space rather than the limits
of sequential reasoning depth. GridPuzzle (Tyagi
et al., 2024) complements this by providing a de-
tailed error taxonomy for grid puzzles, focusing
on what kinds of reasoning mistakes LL.Ms make.
However, like Zebral.ogic, it doesn’t offer indepen-
dent control over key complexity dimensions such
as logical depth, backtracking needs, or noise, sep-
arate from the puzzle’s inherent search complexity.

Other benchmarks conflate reasoning with differ-
ent cognitive demands. BABILong (Kuratov et al.,
2024) tests models on extremely long contexts (up
to 50M tokens), primarily assessing the ability to re-
trieve "needles” (facts) from a "haystack" (distract-
ing text that does not contribute to solving the task).
While valuable for evaluating long-context process-
ing, this design makes it hard to disentangle re-
trieval failures from reasoning breakdowns, as per-
formance is often dictated by finding the relevant
information rather than reasoning over it. MuSR
(Sprague et al., 2024) embeds reasoning tasks
within lengthy narratives (e.g., murder mysteries),
mixing information extraction challenges with com-
plex, domain-specific reasoning structures. This
realism obscures which specific aspect—extraction
or reasoning depth—causes model failures. Dyna-
bADI (Tamari et al., 2021) offers a dynamic frame-
work for compositional generalization but focuses
on qualitative combinations rather than system-
atically varying quantitative complexity metrics
needed to find precise failure points.

Spatial reasoning benchmarks, while relevant,
also target different aspects. GRASP (Tang and
Kejriwal, 2025) assesses practical spatial planning
efficiency (like obstacle avoidance) in 2D grids,
a different skill than the abstract sequential rea-
soning segBench isolates. SPARTQA (Mirzaee
et al., 2021) focuses on specialized spatial rela-
tional complexity (transitivity, symmetry) using

coupled dimensions, preventing independent analy-
sis of factors like path length. SpaRTUN (Mirzaee
and Kordjamshidi, 2022) uses synthetic data pri-
marily for transfer learning in Spatial Question
Answering (SQA), aiming to improve model per-
formance rather than serve as a diagnostic tool with
controllable complexity. Similarly, StepGame (Shi
et al., 2022) demonstrates performance decay with
more reasoning steps in SQA but lacks the fine-
grained, orthogonal controls over distinct complex-
ity factors provided by segBench.

In contrast, segBench takes a targeted diagnos-
tic approach. By deliberately simplifying the spa-
tial environment to minimize search complexity,
it isolates sequential reasoning. Its core contribu-
tion lies in the independent, fine-grained control
over (1) logical depth (the number of sequential
actions required to solve the task), (2) backtrack-
ing count (the number of backtracking steps along
the optimal path), and (3) noise ratio (the ratio of
supporting to distracting facts). This orthogonal
parameterization allows us to precisely pinpoint
when and why sequential reasoning capabilities de-
grade, revealing fundamental performance cliffs
even when search and retrieval demands are triv-
ial. segBench thus offers a complementary tool for
understanding the specific limitations of sequential
inference in LL.Ms.

4 Conclusion

We introduced seqBench, a novel benchmark
framework designed for the precise attribution of
sequential reasoning failures in Large Language
Models. segBench’s core strength lies in its unique
capability for fine-grained, independent control
over fundamental complexity dimensions; most no-
tably, logical depth (L), backtracking requirements,
and noise ratio, its provision of automatically verifi-
able solutions, and critically minimizing confound-
ing factors like search complexity. This design
allows segBench to isolate and rigorously evaluate
the sequential inference capabilities of LLMs, en-
abling the automatic quantification of fine-grained
performance metrics (such as progress ratio) and
providing a clear lens into mechanisms often ob-
scured in most other benchmarks. The framework’s
inherent scalability and open-source nature posi-
tion it as a durable tool for assessing and driving
progress in current and future generations of mod-
els, ultimately aiming to enhance their utility for
complex, real-world problems that often span multi-

ple domains. Our comprehensive evaluations using
segBench reveal that reasoning accuracy consis-
tently collapses exponentially with increasing logi-
cal depth across a diverse range of state-of-the-art
LLMs. This collapse is characterized by a model-
specific parameter Lq (Section 2.2), indicating an
inherent architectural bottleneck in maintaining co-
herent multi-step inference. In alignment with the
goal of advancing NLP’s reach and fostering its
responsible application in other fields by offering
this precise analysis, seqBench provides a valuable
resource. It encourages a shift beyond aggregate
benchmark scores towards a more nuanced under-
standing of model capabilities, an essential step
for rigorously assessing the true impact and poten-
tial risks of applying LLMs in new domains. The
insights gleaned from segBench can inform both
NLP developers in building more robust models,
and experts in other disciplines in setting realistic
expectations and co-designing NLP solutions that
are genuinely fit for purpose. Targeted improve-
ments, guided by such fundamental understanding,
are key to enhancing the robustness of sequential
reasoning, making LLMs more reliable partners in
interdisciplinary endeavors. Future work should
leverage these insights to develop models that can
overcome the observed performance cliffs and ex-
tend their effective reasoning horizons, thereby un-
locking their transformative potential in diverse
interdisciplinary applications—such as navigating
complex scientific literature, supporting intricate
legal analysis, or enabling robust multi-step plan-
ning in critical autonomous systems. Focusing on
commonsense reasoning is paramount for NLP to
achieve transformative societal impact, moving be-
yond incremental improvements to genuine break-
throughs.

5 Limitations

While seqgBench offers precise control over key
reasoning complexities, our study has limitations
that open avenues for future research:

1. Generalizability and Task Design Fidelity:
Our current findings are rooted in synthetic
spatial pathfinding tasks. While this allows for
controlled experimentation, future work must
extend seqBench’s methodology to more di-
verse reasoning domains (e.g., mathematical
proofs) and incorporate greater linguistic di-
versity (e.g., ambiguity) to assess the broader
applicability of the observed phenomena of

performance collapse (quantified by Lg) and
failure patterns.

2. Model Scope and Understanding Deeper
Failure Dynamics: Our current evalua-
tion, while covering diverse public mod-
els, should be expanded to a wider ar-
ray of LLMs—including recent proprietary
and newer open-source variants (e.g., GPT,
Claude, DeepSeek series)—to rigorously as-
sess the universality of our findings on
the characteristic length L and failure pat-
terns. Furthermore, while seqBench effec-
tively characterizes how reasoning perfor-
mance degrades with logical depth (i.e., by de-
termining Lg), two complementary research
thrusts are crucial for understanding why.
First, systematic investigation is needed to
disentangle how Ly is influenced by factors
such as model architecture, scale (parameters,
training data, compute), fine-tuning strategies,
and inference-time computation (e.g., chain-
of-thought depth). Second, deeper analysis is
required to explain the precise mechanisms
underlying the observed exponential perfor-
mance collapse characterized by L and to
account for other non-trivial error patterns,
such as path-length dependent first errors.

3. Impact of Prompting: Our current study em-
ployed standardized prompts and inference
settings. A crucial next step is a robust sen-
sitivity analysis to determine overall decay
behavior are influenced by different prompt-
ing strategies (e.g., zero-shot vs. few-shot,
decomposition techniques), varied decoding
parameters (temperature, top-p), and interac-
tive mechanisms such as self-verification or
self-correction. Investigating the potential of
these techniques to mitigate the observed se-
quential inference failures, particularly given
segBench’s minimal search complexity, re-
mains a key avenue for future research.

Addressing these points by leveraging frameworks
like segBench will be vital for developing LLMs
with more robust and generalizable sequential rea-
soning capabilities, and for understanding their fun-
damental performance limits.

References

2008. Rina dechter , constraint processing, mor-
gan kaufmann publisher (2003) isbn 1-55860-890-7,
francesca rossi, peter van beek and toby walsh, edi-
tors, handbook of constraint programming, elsevier
(2006) isbn 978-0-444-52726-4. Computer Science
Review, 2:123-130.

Anthropic. 2025. Claude 3.7 sonnet. https://www.an
thropic.com/news/claude-3-7-sonnet.

Lukas Berglund, Meg Tong, Max Kaufmann, Mikita
Balesni, Asa Cooper Stickland, Tomasz Korbak,
and Owain Evans. 2024. The reversal curse: Llms
trained on "a is b" fail to learn "b is a". Preprint,
arXiv:2309.12288.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, and 1 others. 2020. Language models are
few-shot learners. Advances in neural information
processing systems, 33:1877-1901.

Raymond J Carroll and David Ruppert. 2017. Transfor-
mation and weighting in regression. Chapman and

Hall/CRC.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question
answering? try arc, the ai2 reasoning challenge.
Preprint, arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong,
Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun,
Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret
Zoph, Liam Fedus, Maarten Bosma, Zongwei Zhou,
Tao Wang, Yu Emma Wang, Kellie Webster, Marie
Pellat, Kevin Robinson, and 8 others. 2021. Glam:
Efficient scaling of language models with mixture-
of-experts. In International Conference on Machine
Learning.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
Drop: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. Preprint,
arXiv:1903.00161.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of
Machine Learning Research, 23(120):1-39.

Google DeepMind. 2025. Gemini 2.5 pro experimental.
https://blog.google/technology/google-dee
pmind/gemini-model-thinking-updates-march
-2025/.

10

Pengrui Han, Peiyang Song, Haofei Yu, and Jiaxuan
You. 2024. In-context learning may not elicit trust-
worthy reasoning: A-not-b errors in pretrained lan-
guage models. Preprint, arXiv:2409.15454.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. Preprint, arXiv:2009.03300.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, and 3 others. 2022. Training
compute-optimal large language models. Preprint,
arXiv:2203.15556.

Jon Kleinberg and Eva Tardos. 2006. Algorithm Design.
Pearson/Addison-Wesley, Boston.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances in
Neural Information Processing Systems, volume 35,
pages 22199-22213. Curran Associates, Inc.

Yury Kuratov, Aydar Bulatov, Petr Anokhin, Ivan Rod-
kin, Dmitry Sorokin, Artyom Sorokin, and Mikhail
Burtsev. 2024. Babilong: Testing the limits of
IIms with long context reasoning-in-a-haystack. Ad-

vances in Neural Information Processing Systems,
37:106519-106554.

Opher Lieber, Or Sharir, Barak Lenz, and Yoav Shoham.
2021. Jurassic-1: Technical details and evaluation.
https://www.ai21.com/blog/jurassic-1-tec
hnical-details-and-evaluation. White Paper.

Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson,
Ashish Sabharwal, Radha Poovendran, Peter Clark,
and Yejin Choi. 2025. Zebralogic: On the scal-
ing limits of llms for logical reasoning. Preprint,
arXiv:2502.01100.

Meta AL 2025. Llama 4: Open and efficient multimodal
language models. https://github.com/meta-11la
ma/llama-models.

Roshanak Mirzaee, Hossein Rajaby Faghihi, Qiang
Ning, and Parisa Kordjmashidi. 2021. Spartqa: :
A textual question answering benchmark for spatial
reasoning. Preprint, arXiv:2104.05832.

Roshanak Mirzaee and Parisa Kordjamshidi. 2022.
Transfer learning with synthetic corpora for spa-
tial role labeling and reasoning. Preprint,
arXiv:2210.16952.

Mistral AL 2024. Mistral large 2. https://mistral.
ai/news/mistral-large-2407.

https://doi.org/10.1016/j.cosrev.2008.05.001
https://doi.org/10.1016/j.cosrev.2008.05.001
https://doi.org/10.1016/j.cosrev.2008.05.001
https://doi.org/10.1016/j.cosrev.2008.05.001
https://doi.org/10.1016/j.cosrev.2008.05.001
https://doi.org/10.1016/j.cosrev.2008.05.001
https://doi.org/10.1016/j.cosrev.2008.05.001
https://doi.org/10.1016/j.cosrev.2008.05.001
https://doi.org/10.1016/j.cosrev.2008.05.001
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://arxiv.org/abs/2309.12288
https://arxiv.org/abs/2309.12288
https://arxiv.org/abs/2309.12288
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://api.semanticscholar.org/CorpusID:245124124
https://api.semanticscholar.org/CorpusID:245124124
https://api.semanticscholar.org/CorpusID:245124124
https://api.semanticscholar.org/CorpusID:245124124
https://api.semanticscholar.org/CorpusID:245124124
https://arxiv.org/abs/1903.00161
https://arxiv.org/abs/1903.00161
https://arxiv.org/abs/1903.00161
http://jmlr.org/papers/v23/21-0998.html
http://jmlr.org/papers/v23/21-0998.html
http://jmlr.org/papers/v23/21-0998.html
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://arxiv.org/abs/2409.15454
https://arxiv.org/abs/2409.15454
https://arxiv.org/abs/2409.15454
https://arxiv.org/abs/2409.15454
https://arxiv.org/abs/2409.15454
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://www.ai21.com/blog/jurassic-1-technical-details-and-evaluation
https://www.ai21.com/blog/jurassic-1-technical-details-and-evaluation
https://www.ai21.com/blog/jurassic-1-technical-details-and-evaluation
https://arxiv.org/abs/2502.01100
https://arxiv.org/abs/2502.01100
https://arxiv.org/abs/2502.01100
https://github.com/meta-llama/llama-models
https://github.com/meta-llama/llama-models
https://github.com/meta-llama/llama-models
https://arxiv.org/abs/2104.05832
https://arxiv.org/abs/2104.05832
https://arxiv.org/abs/2104.05832
https://arxiv.org/abs/2104.05832
https://arxiv.org/abs/2104.05832
https://arxiv.org/abs/2210.16952
https://arxiv.org/abs/2210.16952
https://arxiv.org/abs/2210.16952
https://mistral.ai/news/mistral-large-2407
https://mistral.ai/news/mistral-large-2407
https://mistral.ai/news/mistral-large-2407

Marianna Nezhurina, Lucia Cipolina-Kun, Mehdi
Cherti, and Jenia Jitsev. 2025. Alice in wonderland:
Simple tasks showing complete reasoning breakdown
in state-of-the-art large language models. Preprint,
arXiv:2406.02061.

OpenAl. 2025. Openai 03 and o4-mini. https://open
ai.com/index/introducing-o3-and-o4-mini/.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, Eliza Rutherford, Tom Hennigan, Ja-
cob Menick, Albin Cassirer, Richard Powell, George
van den Driessche, Lisa Anne Hendricks, Matthias
Rauh, Po-Sen Huang, and 58 others. 2021. Scaling
language models: Methods, analysis & insights from
training Gopher. Preprint, arXiv:2112.11446.

David Rein, Betty Li Hou, Asa Cooper Stickland,
Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R. Bowman. 2023.
Gpqga: A graduate-level google-proof ga benchmark.
Preprint, arXiv:2311.12022.

Peter Sempolinski. 2009. Automatic solutions of logic
puzzles.

Manasi Sharma. 2024. Exploring and improving the
spatial reasoning abilities of large language models.
In 1 Can’t Believe It’s Not Better Workshop: Failure
Modes in the Age of Foundation Models.

Zhengxiang Shi, Qiang Zhang, and Aldo Lipani. 2022.
Stepgame: A new benchmark for robust multi-hop
spatial reasoning in texts. In Proceedings of the
AAAI conference on artificial intelligence, volume 36,
pages 11321-11329.

Samuel Smith, Mostofa Patwary, Brian Norick, Patrick
LeGresley, Samyam Rajbhandari, Jared Casper,
Zhenhao Liu, Shrimai Prabhumoye, Georgios
Zerveas, Vikas Korthikanti, Eric Zhang, Rewon
Child, Reza Yazdani Aminabadi, Jared Bernauer,
Xia Song Song, Mohammad Shoeybi, Yuxin He,
Michael Houston, Shishir Tiwary, and Bryan Catan-
zaro. 2022. Using deepspeed and megatron to train
megatron-turing nlg 530b, a large-scale generative
language model. Preprint, arXiv:2201.11990.

Zayne Sprague, Xi Ye, Kaj Bostrom, Swarat Chaudhuri,
and Greg Durrett. 2024. Musr: Testing the limits
of chain-of-thought with multistep soft reasoning.
Preprint, arXiv:2310.16049.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R. Brown, Adam Santoro, Aditya Gupta,
Adria Garriga-Alonso, Agnieszka Kluska, Aitor
Lewkowycz, Akshat Agarwal, Alethea Power, Alex
Ray, Alex Warstadt, Alexander W. Kocurek, Ali
Safaya, Ali Tazarv, and 432 others. 2023. Be-
yond the imitation game: Quantifying and extrap-
olating the capabilities of language models. Preprint,
arXiv:2206.04615.

11

Ronen Tamari, Kyle Richardson, Aviad Sar-Shalom,
Noam Kahlon, Nelson Liu, Reut Tsarfaty, and Dafna
Shahaf. 2021. Dyna-babi: unlocking babi’s poten-
tial with dynamic synthetic benchmarking. Preprint,
arXiv:2112.00086.

Zhisheng Tang and Mayank Kejriwal. 2025. Grasp: A
grid-based benchmark for evaluating commonsense
spatial reasoning. Preprint, arXiv:2407.01892.

Rami Thoppilan, Daniel De Freitas, Jamie Hall, Noam
Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng,
Alicia Jin, Taylor Bos, Leslie Baker, Yi Du, Yan-
ping Li, Hongrae Lee, Huaixiu Steven Zheng, Amin
Ghafouri, Marcelo Menegali, Yanping Huang, Max
Krikun, Dmitry Lepikhin, James Qin, and 38 others.
2022. Lamda: Language models for dialog appli-
cations. arXiv preprint. Technical report, Google
Research.

Alexey Tikhonov. 2024. Plugh: A benchmark for spa-
tial understanding and reasoning in large language
models. Preprint, arXiv:2408.04648.

Nemika Tyagi, Mihir Parmar, Mohith Kulkarni, Aswin
RRYV, Nisarg Patel, Mutsumi Nakamura, Arindam Mi-
tra, and Chitta Baral. 2024. Step-by-step reasoning
to solve grid puzzles: Where do llms falter? Preprint,
arXiv:2407.14790.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models. Preprint,
arXiv:2201.11903.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexan-
der M. Rush, Bart van Merriénboer, Armand Joulin,
and Tomas Mikolov. 2015. Towards ai-complete
question answering: A set of prerequisite toy tasks.
Preprint, arXiv:1502.05698.

Kaiyu Yang, Olga Russakovsky, and Jia Deng. 2019.
SpatialSense: An adversarially crowdsourced bench-
mark for spatial relation recognition. In International
Conference on Computer Vision (ICCV).

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du,
Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. 2022. St-moe: Designing stable
and transferable sparse expert models. Preprint,
arXiv:2202.08906.

https://arxiv.org/abs/2406.02061
https://arxiv.org/abs/2406.02061
https://arxiv.org/abs/2406.02061
https://arxiv.org/abs/2406.02061
https://arxiv.org/abs/2406.02061
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2311.12022
https://api.semanticscholar.org/CorpusID:125304065
https://api.semanticscholar.org/CorpusID:125304065
https://api.semanticscholar.org/CorpusID:125304065
https://openreview.net/forum?id=lJWTOSxWgd
https://openreview.net/forum?id=lJWTOSxWgd
https://openreview.net/forum?id=lJWTOSxWgd
https://arxiv.org/abs/2201.11990
https://arxiv.org/abs/2201.11990
https://arxiv.org/abs/2201.11990
https://arxiv.org/abs/2201.11990
https://arxiv.org/abs/2201.11990
https://arxiv.org/abs/2310.16049
https://arxiv.org/abs/2310.16049
https://arxiv.org/abs/2310.16049
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2112.00086
https://arxiv.org/abs/2112.00086
https://arxiv.org/abs/2112.00086
https://arxiv.org/abs/2407.01892
https://arxiv.org/abs/2407.01892
https://arxiv.org/abs/2407.01892
https://arxiv.org/abs/2407.01892
https://arxiv.org/abs/2407.01892
https://arxiv.org/abs/2408.04648
https://arxiv.org/abs/2408.04648
https://arxiv.org/abs/2408.04648
https://arxiv.org/abs/2408.04648
https://arxiv.org/abs/2408.04648
https://arxiv.org/abs/2407.14790
https://arxiv.org/abs/2407.14790
https://arxiv.org/abs/2407.14790
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/1502.05698
https://arxiv.org/abs/1502.05698
https://arxiv.org/abs/1502.05698
https://arxiv.org/abs/2202.08906
https://arxiv.org/abs/2202.08906
https://arxiv.org/abs/2202.08906

Appendices
A Dataset Generation Details

The segBench benchmark generates pathfinding
tasks by systematically controlling several com-
plexity dimensions. As described in Section 1
(main paper), Algorithm 1 is central to this pro-
cess. This appendix provides further details on the
generation phases, natural language encoding of
tasks, and specific dataset parameters.

A.1 Generation Phases

The generation process, guided by Algorithm 1,
involves three main phases:

1. Base Maze Construction: An initial N X
M grid is populated, and an acyclic maze
graph (M,) is formed using Kruskal’s algo-
rithm (Kleinberg and Tardos, 2006). This en-
sures a simply connected environment where
a unique path exists between any two cells if
all internal "walls" (potential door locations)
were open. The overall process results in maze
instances like the one visualized in Figure 5.

Rewind Construction for Path Skeleton
and Key/Door Placement: This phase im-
plements the "Rewind Construction" (Algo-
rithm 1 in the main paper). Starting from a
randomly selected goal cell (Cyoq1), the algo-
rithm works backward to define a solvable
path skeleton (ILg). It iteratively:

(a) Selects a cell cy,,, that would be a preced-
ing point on a path towards the current
cell z (initially Cyoq).

(b) Identifies the unique path segment 7,
in M, from z to Cgey.

(c) Randomly selects an edge d on this seg-
ment 7,4 to become a locked door. This
edge d is added to the set of locked doors
Dr.

(d) A new unique key K;; is conceptu-
ally placed at c.,, and its information
(which door it opens, its location) is
stored in Kj.

(e) The conceptual steps (moving along s,
unlocking door d with K4, picking up
K;q at cpe,) are prepended (in reverse
logical order) to the path skeleton Ilg.

(f) The current cell x is updated to cj.,, and
the process repeats until the target num-

12

ber of backtracks (B) is achieved or no
valid placements remain.

This backward construction ensures solvabil-
ity and controlled backtracking complexity.
The final agent starting position is the cell
at the end of this phase.

. Fact Compilation and Noise Injec-
tion: Based on the final maze structure
(My,Dr,,Kp), a set of natural language
facts F is compiled. This includes facts
describing room connections, key locations,
and door states. Distracting facts are then
introduced based on the target noise ratio N
These distractors might describe non-existent
connections, spurious keys, or misleading
adjacencies, chosen to be plausible yet
incorrect.

A.2 Natural Language Encoding

Each task instance is translated into a set of atomic
natural language facts. We use a consistent tem-
plating approach:

¢ Room Connections: "Room A1l and B1 are
connected by an open door."

* Locked Connections: "Room C3 and D3 are
connected by a closed and locked door."

* Key Requirements: "The locked door be-
tween C3 and D3 requires key 5." (Key IDs
are simple integers).

* Key Placements: "Key 5 is in room E4."
(Room IDs use spreadsheet-like notation, e.g.,
Al, B2).

* Starting Position: "Bob is in room A2."
¢ Goal Position: "Alice is in room D5."

The full set of facts for a given problem constitutes
its description.

A.3 Dataset Parameters and Scope

The seqBench dataset was generated using the fol-
lowing parameter ranges based on the generation
configuration:

* Grid Sizes (N x M): N x M where N and
M range from 5 to 50 (e.g., [5,5], [6,6], ...,
[50,50]), with M = N for all configurations.

 Target Backtracking Steps (55): Values from
0 to 7. This controls the number of key-door
mechanisms deliberately placed on the opti-
mal path.

» Noise Ratio (N): Values from 0.0 (no dis-
tracting facts) to 1.0 (equal number of sup-
porting and distracting facts), typically in in-
crements of 0.2.

* Instances per Configuration: For each pri-
mary configuration, defined by a specific grid
size (N, M) and a specific target backtrack-
ing step count (B € {0..7}), 400 unique base
maze instances were generated.

* Logical Depth (L): As an emergent prop-
erty, L varies. Experiments typically se-
lect problems from these generated instances
that fall into specific L bins (e.g., L €
[10,11),[11,12),...).

This generation pipeline, leveraging the described
parameter ranges and variations, can produce a vast
and diverse set of problem instances. The publicly
released segBench dataset, used for the analyses
in this paper (see main paper for access link), com-
prises 7,079 such curated instances. This collection
offers a rich resource for studying the combined
effects of the controlled complexity dimensions.

B Prompt Design and Model
Configuration Details

This appendix provides the complete details of the
prompt structure and model configurations used
for evaluating LLMs on the seqBench benchmark.
The overall prompt, illustrated in Figure 6, con-
catenates four main components which are detailed
below.

B.1 Overall Prompt Components

The prompt presented to the LLMs consists of the
following components:

1. System Instructions and Task Definition
(Component 1): Outlines the agent’s task,
the structure of the maze description, valid
actions and their syntax, key operational con-
straints, and the required output format.

Few-Shot Examples (Component 2): Three
examples are provided to illustrate the task,
ranging in complexity. One of these examples

13

o o o o oo
i i i
o o e WO e e
i 0
° oo ° ® 4
0 0 Il Il
@ o1& e [o[
S R
A o o o e e
I‘l 0 0 Il Il
o—f—eo oo) °

Figure 5: Example visualization of a 6 x 6 seqBench
maze instance. Red rectangles denote locked doors,
dashed lines indicate the locations of keys correspond-
ing to those doors, and triangles mark the start (upward-
pointing) and goal (downward-pointing) positions. This
illustrates the spatial nature of the tasks.

(a simple navigation task) is detailed in Fig-
ure 6. The verbatim text for all three examples
is provided in Figure 7 for completeness.

Reasoning Guidance and Self-Assessment
(Component 3): Offers step-by-step algorith-
mic tips for solving the task and requests the
model to provide a self-assessment of its con-
fidence and the perceived difficulty of the in-
stance.

Problem Instance Facts (Component 4):
The specific natural language facts describ-
ing the current maze configuration for the task
instance. As illustrated in Figure 6, these facts
are appended after the preceding components
and are followed by the line "YOUR SOLU-
TION:" to prompt the model. These facts are
generated using the templates described in Ap-
pendix A.

B.2 Evaluation Metrics and Error Analysis
Details

This section provides further details on specific as-
pects of our evaluation metrics and observed error
categories, complementing the overview of metrics

Prompt Template

You are a problem solving agent that thinks carefully step by step based on provided facts and follows TO COMPLETE THIS TASK FOLLOW THESE STEPS:
instructions closely. 1) Find the shortest path from Bob to Alice.
TASK: 2) Identify any locked doors on this path.
Help Bob navigate through a maze of connected rooms to rescue Alice. Bob starts in a specified room and 3) For each locked door, find its required key. (D)
needs to find the optimal path to reach Alice's location, following the maze's rules about room connections 4) Plan key collection order to ensure you have each key before o
and door locks. reaching its door. =
MAZE DESCRIPTION CONTAINS: 5) Track all actions while following the rules 3,
1. Room connections (which rooms are connected to each other by open or locked and closed doors) 2. Door || 6) Avoid unnecessary steps that increase the total path length. || @
_ | information (open or locked) 3. Key information (where they are located and which doors they unlock) 4. IF THE PATH SEEMS COMPLEX: g)
g Starting location: Where Bob is at the start 5. Target location: Where Alice is at the start - Where Bob needs to || - Break it into smaller segments §
'«g_ get to to complete the rescue - Solve each segment separately, g
g Valid actions: start, move_to, pick_up_key, use_key, unlock_and_open_door_to, rescue - Combine the solutions while maintaining optimality iy
& || Action & parameter syntax: Room IDs: Column-Row (e.g., 'AT), Key IDs: positive integers (e.g., '1), Remember to think step by step and verify each move. -
QO || start/move_to: room ID, pick_up_key/use_key: key ID, unlock_and_open_door_to: room ID, rescue: 'Alice’ Proceed to provide your solution as a list of tuples in
5 || KEY CONSTRAINTS: chronological order.
\&, 1. Each move must be between adjacent and connected rooms 2. Keys must be picked up before use 3.
" | Locked doors require use of their specific key to unlock 4. Optimal path minimizes actions/distance 5. use_key PROBLEM:
action always come right before unlock_and_open_door_to 6. If the response is missing any intermediate FACTS:
action it is invalid - so it should include all the details necessary IMPORTANT: Use only provided IDs.)
OUTPUT FORMAT REQUIREMENT: Room A6 and A5 are connected by an open door. Room A6 and
Your solution must be formatted as a Python list of tuples representing each action in chronological order: EIDER GEEEEE] 57 €N ERen Css Rodin B el Ed e
. o W o oy N A R connected by an open door. Room C6 and D6 are connected by
[(‘start’, 'RoomID'), ('move_to', 'RoomID'), ('pick_up_key', 'KeyID'), ...]
Example format: [('start’, "AT), ('move_to, 'BT), ('pick_up_key", ‘3", (‘use_key", '3, an open door. Room C5 and C4 are connected by an open door. P
(‘unlock_and_open_door_to’, 'C1), (‘rescue’, "Alice")] Room C4 and D4 are connected by an open door. Room D6 and =
D5 are connected by a closed and locked door. The locked o
EXAMPLES: door between D6 and D5 requires key 10. Key 10 is in room A5. %
INPUT: Room D6 and E6 are connected by an open door. Room D5 and || 3
FACTS: Room C4 and C3 are connected by an open door. Room C3 and D3 are connected by an open door. D4 are connected by an open door. Room E6 and F6 are &
w\ Room D5 and E5 are connected by an open door. Room A2 and A1 are connected by an open door. Room A3 angi connected by an open door. Room A4 and A3 are connected by %
O || B3 are connected by an open door. Room A1 and B1are connected by an open door. Room A4 and A3 are an open door. Bob is in room F6. Alice is in room C5. NI
g' connected by an open door. Room E5 and E4 are connected by an open door. Room D4 and D3 are connected || YOUR SOLUTION:
& || by an open door. Room A5 and BS5 are connected by an open door. Room D4 and E4 are connected by an open
\‘-‘-'/ door. Bob is in room DS. Alice is in room C4.
| ouTPUT:
[('start’, 'D5"), ('move_to', 'E5'), ('move_to', 'E4'), ('move_to', 'D4'), ('move_to', 'D3'), ('move_to', 'C3'),
(‘move_to', 'C4'), (‘rescue’, 'Alice')]
END OF EXAMPLES

Figure 6: The complete prompt structure passed to the LLMs. This includes: Component 1 (System Instructions
and Task Definition), one of the three Few-Shot Examples (Component 2, specifically a simple navigation task),
Component 3 (Reasoning Guidance), and an illustration of where the Problem Instance Facts (Component 4) are
inserted. For clarity and completeness, the full verbatim text for all three few-shot examples (Component 2) is

provided in 7.

in Section 1 of the main paper and the discussion
of failure modes in Section 2 of the main paper.

Observed Violation Categories. Failures in
model solutions on segBench tasks can be cate-
gorized into several types. Understanding these
categories is crucial for interpreting model perfor-
mance and failure modes. Key types of violations
observed include:

* Adjacency errors (e.g., attempting to move
between unconnected rooms).

* Locked door errors (e.g., navigating through
locked doors without the correct key or with-
out unlocking them).

» Key usage errors (e.g., attempting to use keys
not yet collected, or using the wrong key for a
door).

* Path inefficiency (e.g., taking unnecessary de-
tours or redundant actions; while not always
a hard violation that stops progress, this con-
tributes to solutions not matching the optimal
path and thus failing Pass@1).

14

* Missed critical actions (e.g., failing to pick up
a necessary key or unlock a required door).
This is a key failure mode discussed in the
main paper (Section 2.4) and is often reflected
in metrics like low recall or a low progress
ratio if the omission occurs early and prevents
further correct steps.

Identifying these distinct categories of errors pro-
vides a more granular understanding of why mod-
els fail on sequential reasoning tasks and helps in
the interpretation of aggregate performance metrics
reported in the main paper.

B.3 Violation Map: Qualitative Examples of
Model Failures

This section provides qualitative examples of char-
acteristic model failures to illustrate common error
types. These examples visually support the dis-
cussion of failure modes in the main paper (Sec-
tion 2.4, "A Key Failure Mode: Omission of Criti-
cal Steps"). Figure 8 illustrates a significant error
by Gemini-2.5-Flash on a complex task, where the
model generates an illegal path, bypassing neces-

1. Example 1 (Simple Navigation): This example, as shown in Figure 6, involves navigating a maze
with only open doors.

EXAMPLE :
INPUT:
Maze Structure: Room C4 and C3 are connected by an open door. Room C3 and D3 are
connected by an open door. Room D5 and E5 are connected by an open door.
Room A2 and A1 are connected by an open door. Room A3 and B3 are connected
by an open door. Room A1 and B1 are connected by an open door. Room A4 and
A3 are connected by an open door. Room E5 and E4 are connected by an open
door. Room D4 and D3 are connected by an open door. Room A5 and B5 are
connected by an open door. Room D4 and E4 are connected by an open door. Bob
is in room D5. Alice is in room C4.

OUTPUT :

Solution: [('start', 'D5'), ('move_to', 'E5'), ('move_to', 'E4'), ('move_to', '
D4'), ('move_to', 'D3'), ('move_to', 'C3'), ('move_to', 'C4'), ('rescue', '
Alice ')]

2. Example 2 (Single-Key Backtracking): This example introduces a single locked door and a
corresponding key.

EXAMPLE :
INPUT:
Maze Structure: Room A1 and A2 are connected by an open door. Room A2 and B2 are
connected by an open door. Room B1 and B2 are connected by an open door.
Room B1 and C1 are connected by an open door. Room C1 and C2 are connected
by a closed and locked door. Door between C1 and C2 requires key 1. Key 1 is
in room A2. Bob is in room Al1. Alice is in room C2.

OUTPUT :
Solution: [('start', 'A1'), ('move_to', 'A2'), ('pick_up_key', '"1'), ('move_to',
'B2'), ('move_to', 'B1'), ('move_to', 'C1'), ('use_key', '"1'), ('
unlock_and_open_door_to', 'C2'), ('move_to', 'C2'), ('rescue', 'Alice')]

3. Example 3 (Multi-Key Backtracking): This example presents a more complex scenario with
multiple locked doors and keys, requiring more extensive backtracking.

EXAMPLE :

INPUT:

Maze Structure: Room B5 and B4 are connected by a closed and locked door. The
locked door between B5 and B4 requires key 3. Key 3 is in room B5. Room B5
and C5 are connected by a closed and locked door. The locked door between B5

and C5 requires key 16. Key 16 is in room C5. Room B4 and C4 are connected
by an open door. Room C4 and C3 are connected by an open door. Room C3 and
D3 are connected by a closed and locked door. The locked door between C3 and
D3 requires key 10. Key 10 is in room C4. Room D5 and D4 are connected by
an open door. Room D4 and D3 are connected by an open door. Room A5 and B5
are connected by an open door. Bob is in room C5. Alice is in room D5.

OUTPUT :

Solution: [('start', 'C5'), ('pick_up_key', '"16'), ('use_key', '16'), ('
unlock_and_open_door_to', 'B5'), ('move_to', 'B5'), ('pick_up_key', '3"), ('
use_key', '3'), ('unlock_and_open_door_to', 'B4'), ('move_to', 'B4'), ('
move_to', 'C4'), ('pick_up_key', '10'), ('move_to', 'C3'), ('use_key', '10')
, ('unlock_and_open_door_to', 'D3'), ('move_to', 'D3'), ('move_to', 'D4'),
('"move_to', 'D5'), ('rescue', 'Alice')]

Figure 7: Few-shot examples provided to guide the LLMs in the maze-solving task. These examples demonstrate
simple navigation, single-key backtracking, and multi-key backtracking scenarios. The three examples illustrate
increasing levels of complexity.

sary steps and locked doors. This exemplifies a Figure 9 shows another common ’adjacency error,
breakdown in multi-step planning. Additionally, = where a model attempts to jump between uncon-

15

nected rooms. This type of error reveals a critical
lapse in grounding its generated actions within the
spatial adjacencies explicitly stated by the task’s
input facts.

B.4 Quantitative Analysis of Error Patterns

To understand how and when models begin to fail
within a reasoning sequence, we analyze the dis-
tribution of the first violation step. We record the
time step at which the initial violation occurs in
a model’s generated path. Aggregating this step-
indexed data across multiple instances allows us
to create temporal distributions of errors. These
distributions help determine whether errors tend
to cluster early in the reasoning process (poten-
tially indicating issues with initial planning or un-
derstanding of the overall problem complexity) or
accumulate later (suggesting difficulties in main-
taining long chains of inference or context). This
analysis complements the discussion in the main
paper (Section 2.4, "Path-Length Dependent First
Errors: The Burden of Anticipated Complexity").

Figure 10 shows how the distribution of these
first-error positions shifts with the overall problem
complexity, represented by logical depth (L). As
detailed in the main paper, an increase in L tends to
cause errors to occur earlier in the reasoning chain.

Similarly, Figure 11 illustrates how the introduc-
tion of contextual noise (distracting facts) affects
the point of failure. Increased noise also tends to
precipitate earlier errors in the reasoning sequence,
as discussed in the main paper in relation to sensi-
tivity to noise (Section 2.3) and its impact on error
patterns (Section 2.4).

C Supplementary Figures

This appendix provides supplementary figures that
offer further visual support for analyses presented
in the main paper. These figures illustrate the im-
pact of various complexity dimensions and provide
comparative views of model performance, elaborat-
ing on points made throughout Section 2 (Bench-
marking Results) of the main paper.

Figure 12 details the performance of Llama-4
Maverick-17B-128E-Instruct under varying levels
of noise and fact shuffling. This supports the discus-
sion in the main paper (Section 2.3, on how these
factors, especially in combination, affect success
rates, with noise being a dominant factor.

To illustrate the performance consistency and
disparities across different models, as detailed in

16

Section 2.6, Figure 13 presents scatter and density
plots of mean progress ratios. These plots clearly
demonstrate that model performance hierarchies
are not strictly linear. They reveal *performance
inversions’—instances, also noted in Section 2.6,
where models with typically lower overall perfor-
mance (e.g., lower average L) occasionally solve
specific complex problems that models with higher
average Lg values fail on.

Figure 14 isolates the impact of shuffle ratio on
model performance when other factors like noise
are controlled. This visualization corresponds to
the findings discussed in the main paper (Sec-
tion 2.3, "Fact Ordering (Shuffle Ratio)") that sim-
ple reordering of facts has a minimal impact on the
performance of the evaluated models under low-
noise conditions.

Optimal Path Model Path

Figure 8: Illustrative failure case for Gemini-2.5-Flash on a 40x40 task. Left: Optimal path (yellow). Right: Model’s
generated path showing an illegal adjacency jump (red arrow), bypassing multiple rooms and a locked door, despite
only supporting facts being provided. This highlights a breakdown in multi-step planning.

Optimal Path Model Path
e eDeDeDe o obDe o0 efQoebele o olobe ois
] 0 [] 0] [
o1 eDels eDeDele oo DeDoeloebelelele o
] 0 00 oo] 0]]
e o DeDe e0e o0eleloelelel eDe o e e sOeDeDoelelos!
] 0 [0]] [| 0]
o e s eDe o e |@ Be o o0 De o ol o 'Y e e
LI T |]]]] 00 [0
o eDenBeDebe o o |ofie eo0enen] o0 i o 0o Do
] 0 oo jof N o] 0 N0
. Gene gebe [of ebene DeDeDele o0ens eny
0 0] [Mo] [Moo
o1 o o enDepenedfe|l one o ene o o o o epoe o ¥ e
] [[[N S R R |] [N |
o o eDe eDe o o7 eDe /eDe o oo o o 0. o0 ¢ Joene o
[[] [0 LI T |] 0]
. . o0 e ep 0 e 0 . L . 0. oD e o0l eie . .
] 0 o]] o o] o 0 1 o)
o0 e 0 e 0o e 0 e . o0 e . o 0 o0 e 0o o0 . . 0o O o0 e .
] [T [I V| [] [] [LB]
o o o Y o epe eDe dOele o o 0e oD epep . v . .
00 o o [] o o0 0 0] 0]]
. . o0 . . o0 e 0 e o e o0 o0 e 0o . o0 0. . 0 o0 e 0 e
0o 0 [] [N T T] 0]]
eDeOele eDelDoele ¢ oOe oO0e o o oDolele o eDels eDelele eneD el
] [0 0 LI | [}
eDelOe o0 o ole/ oQoleloebloele o olole o o o0 oy)
] 0] [0 i T 0
o . 0. o0 . 0 e e 0 e o 0 e 0 . o0 Lo 3 .
LI o0] [T |] 00] 0
. . o0 L] 0 e flenedp . . o 0 e 0 e 0 e 0 e . oD -o fi-eo 0o o0 e D Do e
00 []]]] [T R 0]]] []
¢ ¢ epeDeDeDeDe ole efefep o 0o o e Do . e o O-e0-e .
[I T |] [I T N] oo 0 0 0
¢« e e oo o . . e D e Ge0e o o Ao . o1 A
[[A T | 0 0o [
e o ¢ eODeDGDe el e Deloeleloelelelsle ene
LI T I T |] LI T | 0 0o]
el ele o obDele o ol ole ole olele o .

Figure 9: Illustrative failure case of an ’adjacency error’ in model-generated pathfinding. The left panel displays the
optimal path (yellow) to the target (triangle). The right panel shows a suboptimal path (purple) generated by the
model. This example highlights a common error where, after a sequence of actions (in this scenario, following a key
acquisition), the model fails to navigate through valid connections. Instead, it attempts to ’jump’ directly between
two unconnected rooms. This violation of room adjacency constraints is a key challenge in model performance.

17

Solution steps: 20

Solution steps: 60

Solution steps: 100

Solution steps: 140

Solution steps: 180

\\.

Solution steps: 220

‘I‘ 1

Solution steps: 260

Solution steps: 300

0 50

100 150 200 250 300
max progress step

Figure 10: Distribution of first-violation steps for Gemini-2.5-Flash across varying logical depths (L). As L (total
required path length) increases, the distribution of first errors tends to shift leftward, indicating that models are more
likely to fail at earlier steps in longer problems. This suggests that anticipated global complexity impacts reasoning
from the outset.

18

Noise ratio: 0.0

Noise ratio: 0.2

Noise ratio: 0.4

Noise ratio: 0.6

Noise ratio: 0.8

0.0 0.2 0.4 0.6 0.8 1.0
progress ratio

Figure 11: Impact of increasing noise ratio on the distribution of failure steps for Gemini 2.5 Flash. As noise
(proportion of distracting facts) increases, failures tend to occur earlier in the reasoning chain. This reflects increased
difficulty in isolating relevant information and maintaining focus.

19

1.0 10°
noise = 0, shuffle = 0 =
noise = 0, shuffle = 0.5 e
0.8 noise = 0.2, shuffle = 0 NN
noise = 0.2, shuffle = 0.5
«exp(—x/L), L=24 T ~~
N
] «exp(—x/L), L=14] = S
£ 0.6 p(=x/L) & =
@ 8 10714 <
8 g < N
o o - NN ~<]
3 0.4 a —8— noise = 0, shuffle = 0 AN
N
~®— noise = 0, shuffle = 0.5 SN
—e— noise = 0.2, shuffle = 0 AN
<
0.2 —8— noise = 0.2, shuffle = 0.5 S
\\
—=- «exp(=x/L), L=24 N
~
= —-==- «xexp(—x/L), L=14 \\\
- - - - — - 1072 " " v " - - —
10 20 30 40 50 60 70 10 20 30 40 50 60 70
number of actions number of actions

Figure 12: Pass@]1 success rate for Llama-4 Maverick-17B-128E-Instruct versus solution length (L) under different
noise and shuffle ratios. Left: Linear scale. Right: Log-linear scale. Performance degrades with increased noise but
is less affected by shuffle ratios.

x: DeepSeek-R1 x: DeepSeek-R1 x: gemini-2.0-flash

vs
y:gemini-2.5-flash-preview-04-17

vs vs
y:gemini-2.0-flash y:gemini-2.5-flash-preview-04-17

0.8
0‘2 ﬁ

progress ratio
o
>

o
IS

x: DeepSeek-R1 x: gemini-2.0-flash x: gemini-2.5-flash-preview-04-17
vs
y:Llama-4-Maverick-17B-128E-Instruct-FP8

vs vs
y:Llama-4-Maverick-17B-128E-Instruct-FP8 y:Llama-4-Maverick-17B-128E-Instruct-FP8

progress ratio

0.4 06 X 0.2 0.4 0.6 0.8 0.4 0.6
progress ratio progress ratio progress ratio

Figure 13: Scatter and density plots of progress ratios per task instance, comparing model pairs on the tasks.
These plots illustrate performance agreement and disparities on the same instances of pathfinding tasks. Notably,
Gemini-2.5-Flash (example) often succeeds on instances where other models achieve near-zero progress. Data from
experiments in Figure 1 (main paper).

20

mean progress ratio

Instruct.FP8)
17

W.

04

mean success rate (Pass@1)

0.2

CoT tokens

1600

1400

1200

1000

800

600

0.0 0.2 0.4 0.6 0.8 1.0
shuffle ratio

0.0

0.4 0.6
shuffle ratio

0.0 0.2 0.4 0.6 0.8 1.0
shuffle ratio

Figure 14: Impact of shuffle ratio on Pass@1 success rate. Varying the degree of mixing (shuffle) between supporting
and distracting facts shows minimal impact on performance for Gemini 2.5 Flash and Llama-4 Maverick, suggesting
robustness to fact order when noise is controlled. The generation and sampling of maze instances for these tasks
follow the same methodology detailed for experiments in the main paper (Figures 3 and 4).

21

	Methods
	Dataset Generation
	Prompt Construction and Model Configuration
	Evaluation Metrics

	Benchmarking Results
	Evaluated Models
	Universal Performance Collapse with Increasing Logical Depth
	Impact of Independently Controlled Complexity Dimensions
	Characterizing Key Failure Modes and Error Patterns
	Disparity: Information Retention vs. Reasoning Capacity
	Challenging the Conventional Performance Hierarchy

	Related Work
	Conclusion
	Limitations
	Dataset Generation Details
	Generation Phases
	Natural Language Encoding
	Dataset Parameters and Scope

	Prompt Design and Model Configuration Details
	Overall Prompt Components
	Evaluation Metrics and Error Analysis Details
	Violation Map: Qualitative Examples of Model Failures
	Quantitative Analysis of Error Patterns

	Supplementary Figures

