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Abstract
Leveraging high-quality joint representations
from multimodal data can greatly enhance model
performance in various machine-learning based
applications. Recent multimodal learning meth-
ods, based on the multimodal information bot-
tleneck (MIB) principle, aim to generate opti-
mal MIB with maximal task-relevant information
and minimal superfluous information via regu-
larization. However, these methods often set ad
hoc regularization weights and overlook imbal-
anced task-relevant information across modali-
ties, limiting their ability to achieve optimal MIB.
To address this gap, we propose a novel multi-
modal learning framework, Optimal Multimodal
Information Bottleneck (OMIB), whose optimiza-
tion objective guarantees the achievability of op-
timal MIB by setting the regularization weight
within a theoretically derived bound. OMIB
further addresses imbalanced task-relevant infor-
mation by dynamically adjusting regularization
weights per modality, promoting the inclusion of
all task-relevant information. Moreover, we es-
tablish a solid information-theoretical foundation
for OMIB’s optimization and implement it un-
der the variational approximation framework for
computational efficiency. Finally, we empirically
validate the OMIB’s theoretical properties on syn-
thetic data and demonstrate its superiority over
the state-of-the-art benchmark methods in various
downstream tasks.

1. Introduction
In the parable ”Blind men and an elephant”, a group of blind
men attempts to perceive the elephant’s shape through touch,
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Figure 1: a) Venn diagrams for two data modalities (v1 and
v2). The gridded area represents consistent information,
while the non-gridded area denotes modality-specific infor-
mation. Task-relevant information is highlighted in green,
whereas superfluous information is shown in blue. b) An
optimal MIB should exclusively contain task-relevant, non-
superfluous information (i.e., a0, a1 and a2) to be utilized
in downstream tasks for enhanced performance.

but each inspects only a single, distinct part (e.g., tusk, leg).
Consequently, they deliver conflicting descriptions, as their
judgments are based solely on the part they touch.

In the context of machine learning, this parable underscores
the significance of multimodal learning, which integrates
and leverages multimodal data (akin to the elephant’s body
parts) to grasp a holistic understanding, thereby enhancing
inference and prediction accuracy. In multimodal learning,
unimodal features are extracted from each modalities and
fused with various fusion strategies, such as tensor-based
(Zadeh et al., 2017; Liu et al., 2018), attention-based (Guo
et al., 2020; Xiao et al., 2020; Zhang et al., 2023), and graph-
based (Arun et al., 2022; Huang et al., 2021), to generate
multimodal embeddings. However, a major limitation of
these methods is their potential to include superfluous and
redundant information from each modality, increasing em-
bedding complexity and the risk of overfitting (Mai et al.,
2023; Wan et al., 2021).

From an information theory perspective, a comprehensive
multimodal learning method should account for five fac-
tors: consistency (Tian et al., 2021), specificity (Liu et al.,
2024), complementarity (Wan et al., 2021), sufficiency
(Federici et al., 2020), and conciseness (a.k.a. nonredun-
dacy) (Wang et al., 2019). As illustrated in Figure 1a, on
the input side, consistency describes information shared
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Figure 2: OMIB Framework. Here, ’C’ represents the con-
catenation operation. For the definitions of other notations,
refer to the Section 4 and Table 1.

across input modalities (gridded area), while specificity
refers to the information unique to individual modalities
(non-gridded area). Both consistent and modality-specific
information may contain task-relevant (green area) or su-
perfluous (gray area) components. Complementarity per-
tains to modality-specific, task-relevant information (a1 and
a2), enabling multimodal embeddings to surpass unimodal
ones in downstream tasks. On the output side, an opti-
mal multimodal embedding (as shown in Figure 1b and
Definition 5.4 below) must be sufficient, capturing max-
imal task-relevant information—both consistent (a0) and
complementary (a1, a2)—across modalities. Meanwhile, it
should be concise, minimizing both cross-modality (b0) and
modality-specific superfluous information (b1, b2) to reduce
complexity. This optimal multimodal embedding can then
be applied to various downstream tasks, such as multimodal
sentiment analysis (Mai et al., 2023) and pathological tis-
sue detection using histology and gene expression data (Xu
et al., 2024b)), for enhanced performance.

To this end, multimodal learning methods based on the Mul-
timodal Information Bottleneck (MIB) principle have been
developed, which generally follow a common paradigm:
modality-specific representations are extracted and fused
into MIB via deep networks. The MIB is then optimized
to balance two objectives: maximizing mutual information
between the embeddings and task-relevant labels for suf-
ficiency; and minimizing mutual information between the
embeddings and the raw input to purge superfluous informa-
tion and ensure conciseness (Wang et al., 2019; Wan et al.,
2021; Zhang et al., 2023; Fang et al., 2024). This process is
formalized as:

xi = Ei(vi),

z = F (x1, x2, ...),

O(vi, z, y) := max
z

I(y; z)−
∑
i

βiI(vi; z),
(1)

where Ei, F, I , and O represent the modality-specific en-
coder, multimodal fusion function, mutual information func-
tion, and optimization objective, respectively. vi, xi, z, and
y denote the raw data of the i-th modality, its extracted rep-
resentation, the MIB, and task labels. Particularly, βi serves
as the regularization parameter for constraining superfluous
information between the MIB and the i-th modality.

Despite their promising performance, these methods face
three major limitations. First, the achievability of optimal
MIB is not guaranteed. Since the regularization parame-
ters (e.g., βs in Equation (1)) control the trade-off between
sufficiency and conciseness, their values are critical for
optimizing MIB (Tian et al., 2021). If the value is too
small, superfluous information may be retained, leading
to suboptimal MIB. Conversely, if too large, task-relevant
information may be excluded due to an overemphasis on
conciseness, compromising MIB’s sufficiency. However,
existing MIB methods determine these parameter values
in an ad hoc manner, limiting their ability to achieve an
optimal MIB. Second, an ideal MIB method should dynami-
cally adjust regularization weights based on the remaining
task-relevant information in each modality. Specifically, a
modality should receive a lower regularization weight if a
significant portion of its task-relevant information is left out
of the MIB, and vice versa. However, existing MIB methods
typically assign fixed, ad hoc regularization weights to each
modality during training. When task-relevant information is
imbalanced across modalities, some modalities may contain
minor but crucial task-relevant information (e.g., a2 in v2 in
Figure 1). If such a modality is assigned an excessively large
regularization weight, its task-relevant information may be
inadvertently excluded from the MIB (Fan et al., 2023). Fi-
nally, these methods lack theoretical comprehensiveness, as
they either fail to incorporate all five aforementioned fac-
tors into the optimization objective or do not acknowledge
their distinct roles in guiding optimization. For instance,
the study in (Tian et al., 2021) overlooks complementarity,
while CMIB-Nets (Wan et al., 2021) does not account for
consistent, superfluous information. Additionally, in the
theoretical analyses of methods such as (Fang et al., 2024;
Wan et al., 2021), the two types of task relevant informa-
tion—consistent (e.g., a0 in Figure 1) and modality-specific
(e.g., a1, a2)— are not distinguished, despite their differing
impacts on the optimization objective.

To address these issues, we propose a novel MIB-based mul-
timodal learning framework, termed Optimal Multimodal
Information Bottleneck (OMIB), to learn task-relevant
optimal MIB representations from multi-modal data for
enhanced downstream task performance. OMIB features
theoretically grounded optimization objectives, explicitly
linked to the dynamics of all five information-theoretical
factors during optimization, ensuring a holistic and rigor-
ous optimization framework. As illustrated in Figure 2,
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OMIB comprises two components, including task relevance
branches (TRBs) that extract sufficient representations from
individual modalities, and an optimal multimodal fusion
block (OMF), where modality-specific representations are
fused by a cross-attention network (CAN) into MIB and
optimized using a computationally efficient variational ap-
proximation (Alemi et al., 2017). Adhering to the MIB
principle, the OMF block maximizes sufficiency while min-
imizing redundancy in the MIB. Particularly, by setting the
redundancy regularization parameter in OMIB’s objective
function within a theoretically derived bound, OMIB guar-
antees the achievability of optimal MIB upon convergence
of the OMF block training. Furthermore, our approach dy-
namically refines regularization weights per modality as per
the distribution of their remaining task-relevant information.
In summary, our contributions include:

• We propose OMIB, a novel framework for learning
optimal MIB representations from multimodal data,
with an explicit solution to address imbalanced task-
relevant information across modalities.

• We provide a rigorous theoretical foundation that un-
derpins OMIB’s optimization procedure, establishing a
clear connection between its objectives and the five
information-theoretical factors: sufficiency, consis-
tency, redundancy, complementarity, and specificity.

• We mathematically derive the conditions for achieving
optimal MIB, marking, to our knowledge, the first
endeavor in proving its achievability under the MIB
principle.

• We validate OMIB’s effectiveness on synthetic data
and demonstrate its superiority over state-of-the-art
MIB methods in downstream tasks such as sentiment
analysis, emotion recognition, and anomalous tissue
detection across diverse real-world datasets.

2. Related Work
2.1. Multimodal Fusion

Multimodal fusion methods can be categorized according
to the fusion stage and techniques. Architecturally, fu-
sion can happen at three stages: (1) Early fusion, which
combines data at the feature level (Snoek et al., 2005), (2)
Late fusion, integrating data at the decision level (Morvant
et al., 2014), and (3) Middle fusion, where data is fused
at intermediate layers to allow early layers to specialize in
learning unimodal patterns (Nagrani et al., 2021). From
the technique perspective, fusion approaches include: (1)
Operation-based, combining features through arithmetic
operations (El-Sappagh et al., 2020; Lu et al., 2021), (2)
Attention-based, using cross-modal attention to learn inter-
action weights (Schulz et al., 2021; Cai et al., 2023), (3)

Tensor-based, modeling high-order interactions (Chen et al.,
2020; Zadeh et al., 2017), (4) Subspace-based, projecting
modalities into shared latent spaces (Yao et al., 2017; Zhou
et al., 2021), and (5) Graph-based, representing modalities
as graph nodes and edges (Parisot et al., 2018; Cao et al.,
2021). In addition, recent studies also discuss the issue of
modality imbalance, where strong modalities tend to domi-
nate the learning process, while weak modalities are often
suppressed (Peng et al., 2022; Zhang et al., 2024). Though
effective, these methods typically fail to account for super-
fluous information and thus are prone to overfitting and
sensitive to noisy modalities, limiting their practical robust-
ness (Fang et al., 2024). MIB addresses these challenges
by preserving task-relevant information while minimizing
redundant content in the generated multimodal representa-
tions.

2.2. Multimodal Information Bottleneck

The Information Bottleneck (IB) framework (Tishby et al.,
2000) provides a principled approach for learning com-
pressed, task-relevant representations. It was first applied
to deep learning by (Tishby & Zaslavsky, 2015) and later
extended through the Variational Information Bottleneck
(VIB) (Alemi et al., 2017), which employs stochastic vari-
ational inference for efficient approximations. Recently,
IB has been adapted to more complex settings, such as
multi-view (Wang et al., 2019; Federici et al., 2020) and
multimodal learning (Tian et al., 2021). For example, L-
MIB, E-MIB, and C-MIB (Mai et al., 2023) aim to learn
effective multimodal representations by maximizing task-
relevant mutual information, eliminating redundancy, and
filtering noise, while exploring how MIB performs at dif-
ferent fusion stages. Secondly, MMIB-Zhang (Zhang et al.,
2022) improves multimodal representation learning by im-
posing mutual information constraints between modality
pairs, enhancing the model’s ability to retain relevant infor-
mation. Additionally, DISENTANGLEDSSL (Wang et al.,
2024) relaxes the restrictions on achieving minimal suffi-
cient information, thereby enabling the disentanglement of
modality-shared and modality-specific information and en-
hancing interpretability. Lastly, DMIB (Fang et al., 2024)
filters irrelevant information and noise, employing a suffi-
ciency loss to preserve task-relevant data, ensuring robust-
ness in noisy and redundant environments.

However, these methods often rely on ad hoc regulariza-
tion weights and overlook the imbalance of task-relevant
information across modalities, limiting their ability to fully
optimize the MIB framework.

3. Notations
Here, we list the mathematical notations (Table 1) used in
this study.
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Table 1: Summary of notation.

Notation Description
y Task-relevant label.
vi The i-th modality.
zi The sufficient encoding of vi for y.
ξ MIB encoding.
N The total number of observations.
H(∗) The entropy of variable ∗.
F (∗) The information set inherent to variable * (i.e., F (x) = H(x)).
I The mutual information function.

4. Method
To clearly illustrate OMIB’s framework, we start with the
case of two data modalities (e.g., v1 and v2 in Figure 2),
which can be readily extended to multiple modalities by
adding additional modality branches (see Appendix D.1).
We also provide a rigorous theoretical foundation for our
methodology in Section 5.

Warm-up training. This phase consists of two task rele-
vance branches (TRB) corresponding to v1 and v2, respec-
tively. In the i-th TRB, vi is first encoded into a sufficient
representation zi ∈ Rd for task-relevant labels y:

zi = Enci(vi; θEnci), s.t.I(zi; y) = I(vi; y), (2)

where Enci is an encoder, θEnci denotes its parameters.
To ensure maximal sufficiency of zi for y, we concatenate
it with a stochastic Gaussian noise, ei ∈ Rk = N(0, I),
before feeding it to a task-relevant prediction head Deci
(see Appendix H) to yield the predicted output ŷi:

ŷi = Deci([zi, ei]) (3)

Via this step, Enci is optimized to extract maximal task-
relevant information from vi, as it requires a higher signal-
to-noise ratio in zi to yield accurate prediction from its
corrupted version. The loss function for updating Enci and
Deci is:

LTRBi
= Evi [− log p(ŷi|zi, ei)]

= − 1

N

N∑
n=1

log p(ŷni |zni , eni ).
(4)

Note that the implementation of log p(ŷi|zi, ei) is task-
specific. For classification tasks, it is implemented as
CE(ŷi||y), where CE is the cross-entropy function; for
SVDD-based anomaly detection (Ruff et al., 2018), it is
||ŷi−c||, where c is the unit sphere center of normal observa-
tions (see Appendix H); for regression tasks, it is −||ŷi−y||.
The algorithmic workflow of the warm-up training is de-
scribed in Appendix L.

Main Training. After the warm-up training, the model
proceeds to main training, which includes an optimal multi-
modal fusion (OMF) block in addition to the TRBs. In the
OMF, zi,∀i ∈ {1, 2}, is used to generate the mean µi ∈ Rk

and variance Σi ∈ Rk×k of a Gaussian distribution using a
variational autoencoder (V AEi):

µi,Σi = V AEi(zi, θV AEi
), (5)

where θV AEi represents the parameters of V AEi. For effi-
cient training and direct gradient backpropagation, the repa-
rameterization trick (Kingma, 2013) is applied to generate
ζi ∈ Rk:

ζi = µi +Σi × ϵi, where ϵi ∼ N(0, I). (6)

ζ1 and ζ2 are fused using a Cross-Attention Network (CAN)
(Vaswani et al., 2017), whose architecture is detailed in
Appendix H:

ξ = CAN(ζ1, ζ2, θCAN ), (7)

where ξ is the post-fusion embedding, which is then passed
to a task-relevant prediction head D̂ec to generate the final
prediction ŷ:

ŷ = D̂ec(ξ, θ
D̂ec

). (8)

Meanwhile, ξ replaces the stochastic noise ei in vi’s TRB to
fuse with zi, yielding ŷi for computing LTRBi

and updating
Enci and Deci:

ŷi = Deci([zi, ξ]). (9)

As established in Proposition 5.1, the loss function for up-
dating the components in OMF (i.e., V AEi, CAN , and
D̂ec) to achieve optimal MIB, ξ, is given by:

LOMF =
1

N

N∑
n=1

Eϵ1Eϵ2 [− log q(yn|ξn)]

+ β (KL [p(ζn1 |zn1 )||N (0, I)]

+rKL [p(ζn2 |zn2 )||N (0, I)]) .

(10)

where β is a hyper-parameter constraining redundancy be-
tween ζi and zi, and r is a dynamically adjusted weight
balancing the regularization of v2 relative to v1. The im-
plementation of −log q(y|ξ) is task-specific, as previously
stated. KL[p(ζi|zi)||N (0, I)] represents the KL-divergence
between ζi and the standard normal distribution. As shown
in Proposition 5.2, r is explicitly computed during training
as:

r = 1−tanh
(
ln

1

N

N∑
n=1

Eϵ1Eϵ2

[KL(p(ŷn
2 |ξn, zn2 )||p(ŷn|ξn))

KL(p(ŷn
1 |ξn, zn1 )||p(ŷn|ξn))

])
(11)

Furthermore, Proposition 5.7 provides a theoretical upper
bound for setting β, ensuring that our methodology achieves
optimal MIB. The algorithmic workflow of the main training
procedure is detailed in Appendix L.
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Inference. During inference, the TRBs are disabled, and
the trained modality-specific encoder (Enci) and OMF gen-
erate optimal MIBs for test data to be used in downstream
tasks.

5. Theoretical Foundation
Due to space constraints, we focus on the theoretical anal-
ysis of two data modalities in this section and defer the
analysis of multiple data modalities (≥ 3) to Appendix D.2.

5.1. Optimal Information Bottleneck for Multimodal
Data with Imbalanced Task-Relevant Information

As proposed in (Alemi et al., 2017; Federici et al., 2020; Mai
et al., 2023; Wang et al., 2019), the Information Bottleneck
(IB) principle aims to optimize two key objectives:

(1) maximize I(y; z) and (2) minimize I(v; z) (12)

where y represents task-relevant labels, v the input data,
z the IB encoding. The first objective maximizes z’s ex-
pressiveness for y, while the second objective enforces z’s
conciseness. These objectives can be formulated as:

max
z

I(y; z) s.t. I(v; z) ≤ Ic, (13)

where Ic is the information constraint that limits the amount
of retained input information. Introducing a Langrange
multiplier β > 0, the objective function is reformulated as:

max
z

I(y; z)− βI(v; z). (14)

For two data modalities, we propose a modified objective
function to account for imbalanced task-relevant informa-
tion across modalities:

min
ξ

ℓ(ξ) = min
ξ

−I(ξ; y)+ β(I(ξ; v1)+ rI(ξ; v2)), (15)

where r > 0 is a dynamically adjusted parameter control-
ling the relative regularization of v2 with respect to v1. In
Equation (15), vi can be replaced with zi. To see this point,
let v̄1 denote the information in v1 that is not encoded in z1.
Then, we have:

I(ξ; v1) = I(ξ; z1, v̄1) = I(ξ; z1) + I(ξ; v̄1|z1)︸ ︷︷ ︸
=0 ∵ F (ξ) ∩F (v̄1) =∅

= I(ξ; z1).

(16)

Similarly, I(ξ; v2) = I(ξ; z2). Thus, the objective function
in Equation (15) can be rewritten as:

min
ξ

ℓ(ξ) = min
ξ

−I(ξ; y) + β(I(ξ; z1) + rI(ξ; z2)). (17)

Proposition 5.1 (Variational upper bound of OMIB’s
objective function). The loss function LOMF in Equa-
tion (10) provides a variational upper bound for optimizing
the objective function in Equation (17) and can be explicitly
calculated during training.

Proof. See Appendix B.

Moreover, when a substantial portion of task-relevant infor-
mation remains in v2 relative to v1, the value of r should be
small to encourage incorporating more information from v2
in subsequent training iterations. Simultaneously, r should
be bounded to prevent over-regularizing information from
v2. Thus, r can be mathematically expressed as:

r ∝ I(y; v1|ξ)
I(y; v2|ξ)

, r ∈ (0, u), (18)

where I(y; vi|ξ) represents the amount of task-relevant in-
formation in vi not encoded in ξ, and u is an upper bound.
In this study, u is set to 2, as it is implemented using a
tahn function as in Equation (11), which is justified by the
following proposition.

Proposition 5.2 (Explicit formula for r). Equation (11)
satisfies Equation (18), providing an explicit formula for
computing r during training.

Proof. See Appendix B.

In the next section, we establish a theoretical bound for β,
ensuring that ξ attains optimality during the optimization of
the objective function in Equation (17).

5.2. Achievability of Optimal Multimodal Information
Bottleneck

Assumption 5.3. As illustrated in Figure 1, given two
modalities, v1 and v2, the task-relevant information set {a}
consists of three components: a0, a1, and a2. Specifically,
a0 is shared between both modalities, while a1 and a2 are
specific to v1 and v2, respectively. The task-relevant la-
bels y are determined by {a}. Moreover, v1 and v2 contain
modality-specific superfluous information b1 and b2, respec-
tively, in addition to shared superfluous information b0.

Definition 5.4 (Optimal multimodal information bottle-
neck). Under Assumption 5.3, the optimal MIB, ξopt, for
v1 and v2 satisfies:

F (ξopt) = {a0, a1, a2}, (19)

ensuring that ξopt encompasses all task-relevant information
(a0, a1, and a2) while exempting from superfluous informa-
tion (b0, b1, and b2).
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Figure 3: The impact of β values on classification accuracy on synthetic data. v1 and v2 represent sample vectors of two
modalities, respectively. Frel(·) denotes task-relevant information. “a” sub-vectors denote task-relevant information, while
“b” superfluous information. d11 and d21 denote the dimensions of modality-specific a1 and a2. Mu is the computed β upper
bound.

.

Lemma 5.5 (Inclusiveness of task-relevant information).
Under Assumption 5.3, the objective function in Equa-
tion (17) guarantees:

F (ξ) ⊇ {a0, a1, a2}, (20)

provided that β ∈ (0,Mu], where Mu :=
1

(1+r)(H(v1)+H(v2)−I(v1;v2))
.

Proof. See Appendix C

Note that H(v1) + H(v2) − I(v1; v2) represents the to-
tal information encompassed by the two data modalities.
Intuitively, a larger total information content requires incor-
porating more information from each modality into the MIB.
This is achieved by setting a lower Mu, ensuring that all
task-relevant information is included in the MIB.

Lemma 5.6 (Exclusiveness of superfluous information).
Under Assumption 5.3, the objective function in Equa-
tion (17) ensures:

F (ξ) ⊆ {a0, a1, a2} (21)

Proof. See Appendix C

Proposition 5.7 (Achievability of optimal MIB). Under
Assumption 5.3, the optimal MIB ξopt is achievable through
optimization of Equation (17) with β ∈ (0,Mu].

Proof. Lemma 5.5 and Lemma 5.6 jointly demonstrate that
F (ξ) ⊇ {a0, a1, a2} and F (ξ) ⊆ {a0, a1, a2}, given β ∈
(0,Mu]. Thus, F (ξ) = {a0, a1, a2}, which corresponds to
ξopt in Definition 5.4. This completes the proof.

In this study, we set Mu := 1
3(H(v1)+H(v2)−I(v1;v2))

<
1

(1+r)(H(v1)+H(v2)−I(v1;v2))
as a tighter upper bound for β

given that r ∈ (0, 2), and Ml := 1
3(H(v1)+H(v2))

≤ Mu

as a lower bound for β to accelerate training. Importantly,
both Ml and Mu can be computed a priori from the training
data using the Mutual Information Neural Estimator (MINE,
(Belghazi et al., 2018)) to estimate H(·) and I(·; ·) (see
Appendix E).

6. Experiment
Due to space constraints, we defer detailed task-specific
experimental settings to Appendix I and implementations of
network architectures to Appendix H. Detailed descriptions
of the benchmark methods and evaluation metrics are pro-
vided in Appendix J and Appendix K respectively. The best
and second-best performing methods in each experiment are
bolded and underlined, respectively.

Table 2: Classification accuracy of synthetic features vs.
OMIB-generated MIB on simulated datasets.

Datasets Imbalanced (SIM-I) balanced(SIM-III)
Consistent& relevant 0.707 0.686

Modality-specific& relevant 0.737 0.744
Unimodal 0.748 / 0.82 0.792 / 0.78

Authentic optimal MIB 0.909 0.908
Union of two modalities 0.858 0.866
OMIB-generated MIB 0.892 0.890

6.1. Datasets

To facilitate the analysis of OMIB’s performance and
validate Proposition 5.7, we simulate three Gaussian-
based two-modality dataset, SIM-{I-III}, for classifica-
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Table 3: Comparison of multimodal fusion methods for emotion recognition on the CREMA-D.

Methods
non-MIB-based MIB-based

OMIB
Concat BiGated MISA deep IB MMIB-Cui MMIB-Zhang E-MIB L-MIB C-MIB

Acc 53.2 58.4 57.7 54.1 57.3 56.7 61.4 58.1 57.0 63.6

tion (see Appendix F). Each dataset contains all four
types of information ({consistent,modality-specific} ×
{task-relevant, superfluous}). Moreover, they are synthe-
sized with varying distributions of task-relevant information
across modalities.

The emotion recognition experiment is conducted on
CREMA-D (Cao et al., 2014), an audio-visual dataset in
which actors express six basic emotions—happy, sad, anger,
fear, disgust, and neutral—through both facial expressions
and speech. The MSA experiment utilizes CMU-MOSI
(Zadeh et al., 2016), which encompasses visual, acoustic,
and textual modalities, with sentiment intensity annotated on
a scale from -3 to 3. The pathological tissue detection exper-
iment involves eight datasets derived from healthy human
breast tissues (10x-hNB-{A-H}) and human breast cancer
tissues (10x-hBC-{A-H}) (Xu et al., 2024b), where each
dataset comprises gene expression and histology modalities.
OMIB is trained on the healthy datasets and applied to the
cancer datasets for pathological tissue detection. Detailed
descriptions of these datasets are provided in Appendix G
and Table 7.

Table 4: Comparison of multimodal fusion methods for
sentiment analysis on the CMU-MOSI dataset.

Method Acc7 (↑) Acc2 (↑) F1(↑) MAE(↓) Corr(↑)
Concat 41.5 81.1 82.0 0.797 0.745

BiGated 41.8 82.1 83.2 0.787 0.738
MISA 42.3 83.4 83.6 0.783 0.761

deep IB 45.3 83.2 83.3 0.747 0.785
MMIB-Cui 45.7 84.3 84.4 0.726 0.782

MMIB-Zhang 46.3 85.0 85.0 0.713 0.788
DMIB 40.4 83.2 83.3 0.810 0.784
E-MIB 48.6 85.3 85.3 0.711 0.798
L-MIB 45.8 84.6 84.6 0.732 0.790
C-MIB 48.2 85.2 85.2 0.728 0.793
OMIB 48.6 86.9 87.1 0.709 0.802

6.2. Empirical Analysis of OMIB Performance Using
Synthetic Data

To empirically validate the effectiveness of our proposed β’s
upper bound in achieving optimal MIB, we simulate three
two-modality datasets (SIM-{I-III}) corresponding to three
experimental cases (case i-iii) (see Appendix F). Regarding
task-relevant information, Modality I dominates Modality II
in SIM-I, Modality II dominates Modality I in SIM-II, and
both modalities contribute equally in SIM-III, thereby cover-
ing the three primary cross-modal task-relevant information

distributions observed in practice. Each dataset is designed
for a binary classification task with labels y ∈ {0, 1}. In
each experimental case, β is gradually increased from 10−6

to 10, well exceeding the proposed upper bound Mu. The
generated MIBs are fed into the trained OMF prediction
head to predict y during testing. As shown in Figure 3, the
prediction accuracy consistently peaks across all cases when
using MIBs generated with β near or below Mu, but rapidly
declines as β further increases. This observation aligns with
our theoretical analysis, empirically confirming that optimal
MIB is achievable when β ≤ Mu. Notably, since Mu is a
tight upper bound, peak performance may still be observed
for β values slightly above Mu.

As detailed in Appendix F, let x1 = [a0; b0; a1; b1] and
x2 = [a0; b0; a2; b2] denote feature vectors of two obser-
vations in Modality I and II, respectively. Here, a0 and b0
correspond to the task-relevant and superfluous sub-vectors
shared by both modalities. a1, a2 are modality-specific,
task-relevant sub-vectors, while b1, b2 are modality-specific,
superfluous sub-vectors. By design, the authentic optimal
MIB is [a0; a1; a2], which is used to predict y and com-
pared against the prediction using OMIB-generated MIB.
Additionally, we evaluate prediction accuracy using other
feature sub-vectors, including unimodal information (x1

or x2), consistent task-relevant information ([a0]), modal-
specific task-relevant information ([a1; a2]), and complete
information ([a0; b0; a1; b1; a2; b2]). This experiment is con-
ducted using SIM-I and SIM-II, corresponding to the cases
of imbalanced and balanced task-relevant information, re-
spectively. Table 2 demonstrates that OMIB-generated MIB
achieves prediction accuracy most comparable to the au-
thentic optimal MIB, surpassing all other feature sub-vector
configurations that either omit task-relevant information
or include superfluous information. These results further
validate the optimality of OMIB-generated MIB.

6.3. Emotion Recognition

Here, we compare the accuracy of classifying actors’ emo-
tion types in the CREMA-D dataset using OMIB and ten
benchmark methods, including three non-MIB-based fusion
methods (concatenation, FiLM (Perez et al., 2018), and
BiGated (Kiela et al., 2018)) and seven MIB-based state-of-
the-art (SOTA) methods (E-MIB, L-MIB, and C-MIB (Mai
et al., 2023) ). The classification accuracy of each method is
reported in Table 3. OMIB outperforms all other methods,
achieving improvements of 8.9% and 3.6% over the best-
performing non-MIB-based (concatenation) and MIB-based
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Table 5: Comparison of multimodal fusion methods for anomalous tissue detection performance on the 10x-hBC-{A-D}
datasets

Target
Dataset Metric non-MIB-based MIB-based OMIBConcat BiGated MISA deep IB MMIB-Cui MMIB-Zhang DMIB E-MIB L-MIB C-MIB

10x-hBC-A AUC 0.537 0.489 0.498 0.522 0.623 0.626 0.423 0.511 0.598 0.496 0.728
F1 0.884 0.821 0.873 0.878 0.894 0.897 0.865 0.877 0.891 0.881 0.904

10x-hBC-B AUC 0.866 0.518 0.499 0.379 0.818 0.817 0.849 0.643 0.770 0.481 0.903
F1 0.654 0.352 0.213 0.102 0.559 0.583 0.607 0.330 0.483 0.213 0.663

10x-hBC-C AUC 0.638 0.563 0.586 0.433 0.765 0.662 0.743 0.598 0.659 0.511 0.743
F1 0.750 0.727 0.754 0.693 0.822 0.783 0.827 0.759 0.786 0.723 0.820

10x-hBC-D AUC 0.555 0.540 0.495 0.484 0.501 0.604 0.642 0.530 0.652 0.503 0.640
F1 0.509 0.494 0.450 0.443 0.465 0.524 0.540 0.483 0.564 0.465 0.561

Mean AUC 0.649 0.528 0.520 0.455 0.677 0.677 0.664 0.571 0.602 0.498 0.754
F1 0.699 0.599 0.573 0.529 0.685 0.697 0.710 0.612 0.681 0.571 0.737

(E-MIB) fusion methods, respectively. These results under-
score OMIB’s superiority in enhancing emotion recognition
performance.

6.4. Multimodal Sentiment Analysis

To evaluate OMIB’s effectiveness in improving downstream
tasks involving three modalities, we conduct MSA on the
CMU-MOSI dataset, which includes visual, acoustic, and
textual modalities. Specifically, OMIB and the same bench-
mark methods from Section 6.3 are used to predict a real-
valued sentiment intensity score for each utterance, ranging
from -3 to 3. Evaluation metrics for this experiment are
mentioned in Appendix K. Additionally, OMIB consistently
outperforms all benchmark methods across all evaluation
metrics, highlighting its ability to generate high-quality MIB
in a three-modal setting for enhanced regression tasks such
as the MSA.

6.5. Anomalous Tissue Detection

In this experiment, we aim to identify anomalous tissue
regions from the eight human breast cancer datasets (10x-
hBC-{A-D}), which include gene expression and histology
modalities. Due to the scarcity of tissue region annotations,
we adopt the SVDD strategy (Ruff et al., 2018) for anomaly
detection. Specifically, the model is trained exclusively
on the eight healthy datasets (10x-hNB-{A-H}) to learn
a compact hypersphere in the latent space, confining the
multimodal representations of inliers. The trained model is
then applied to the four breast cancer target datasets, gen-
erating multimodal representations whose distances to the
center of the hypersphere serve as anomaly scores, based
on which anomalous regions are identified. The benchmark
methods are the same as those in Section 6.3 and modified
to accommodate the SVDD strategy. The implementation
details of OMIB for this task, are provided in Appendix H.
The detection results are evaluated using the AUC and F1
scores, calculated based on the anomalous scores (see Ap-

pendix K). Table 5 demonstrates that OMIB consistently
surpasses the best-performing benchmark method by an av-
erage leap of 11.4% in AUC and 3.8% in F1-score across
the target datasets, confirming its superiority in anomaly
detection in a multi-modal setting.

Table 6: Ablation studies on the CREMA-D dataset.

w/o Warm-up w/o cross-attn w/o OMF w/o r Full
Acc 60.3 61.5 59.5 62.2 63.6

6.6. Ablation Study

To gain deeper insight into the key components of OMIB, we
conduct a series of ablation experiments on the CREMA-D
dataset (Table 6). First, we examine the effect of removing
the warm-up training (’w/o warm-up’), which leads to a
5.5% decline in accuracy. Next, we replace the CAN with
simple concatenation fusion (’w/o cross-attn’), resulting in
a 3.4% drop in accuracy. We also evaluate the effect of
replacing the entire OMF block with simple concatenation
fusion (’w/o OMF’), which significantly degrades model
performance by 6.9% in accuracy. Finally, we assign equal
regularization weights to I(ξ; z1) and I(ξ; z2) by omitting
r (’w/o r’) and observe a performance decline of 2.3% in
accuracy. In a nutshell, the degraded performance observed
after removing OMIB’s key components highlights their
critical roles in ensuring model performance.

6.7. Complexity Analysis

We first provide a theoretical analysis of OMIB’s complex-
ity. OMIB’s modality-specific encoder (Enc), task-relevant
prediction head (Dec and D̂ec), and VAEs are implemented
as Multilayer Perceptron (MLP), convolutional network, or
graph convolutional network, each with a complexity of
O(N), where N denotes the number of samples (He & Sun,
2015; LeCun et al., 2002; Wu et al., 2020). For the CAN
network, our implementation (see Appendix H) has a time
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Figure 4: Runtime per epoch during warm-up and main
training phase on synthetic data.

complexity of O(N ·M2) (Vaswani et al., 2017), where M
represents the number of modalities. Since M is typically
small, M2 can be treated as a constant. Thus, OMIB’s over-
all theoretical complexity is O(N). We also empirically
evaluate OMIB’s scalability to input size using the SIM-
III dataset. Explicitly, we sample six datasets with sizes:
1× 105, 2× 105, 4× 105, 6× 105, 8× 105, and 1× 106,
while keeping the experimental settings identical to those
of case iii in Section 6.2. We conduct separate analyses
for the warm-up and main training phases, both of which
demonstrate scalability to input size, as shown in Figure 4.

7. Conclusion
We have proposed the OMIB framework, designed to learn
optimal MIB representations that effectively capture all
task-relevant information. Through theoretical analysis, we
demonstrate that adjusting the weights of the IB loss across
different modalities facilitates the achievement of optimal
MIB. Our experimental results show that OMIB outperforms
existing MIB-based methods. Furthermore, our approach
is robust, successfully achieving optimal MIB regardless
of whether the SNRs between modalities are balanced or
imbalanced.

Impact Statement
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Appendix
A. Proofs of Mutual Information Properties
Properties A.1. Properties of mutual information and entropy:

i) I(x; y) ≥ 0, I(x; y|z) ≥ 0.

ii) I(x; y, z) = I(x; y) + I(x; z|y).

iii) I(x1;x2; · · · ;xn+1) = I(x1; · · · ;xn)

− I(x1; · · · ;xn|xn+1).

iv) If F (x1) ∩ F (x2) = ∅ −→ I(x1;x3|x2) = I(x1;x3)

v) If F (v2) ⊆ F (v1) −→ I(v1; v2) = H(v2),

H(v1, v2) = F (v1) ∪ F (v2) = F (v1) = H(v1)

vi) If H(v2) ∩H(v1) ̸= ∅ −→ H(v1, v2) = H(v1) +H(v2)

− I(v1; v2)

vii) If H(v2) ∩H(v1) = ∅ −→ H(v1, v2) = H(v1) +H(v2)

= F (v1) ∪ F (v2)

Proof. The proofs of properties i, ii, and iii can be found in (Cover, 1999). For property iv, we first observe that:

F (y) ∩ F (z) = ∅ −→ p(y, z) = p(y)p(z) (22)

This implies that y and z are statistically independent. Consequently, we have

I(y; z) =
∑
y,z

p(y, z)log
p(y, z)

p(y)p(z)

=
∑
y,z

p(y, z)log
p(y)p(z)

p(y)p(z)

=
∑
y,z

p(y, z)log 1

= 0

(23)

Given that I(y; z) = I(x; y; z) + I(x; z|y), and noting that I(x; y; z) ≥ 0 and I(x; z|y) ≥ 0, it follows that:

I(y; z) = 0 −→ I(x; y; z) = 0 and I(x; z|y) = 0 (24)

Therefore, we obtain that:

I(x; y|z) = I(x; y)−
=0︷ ︸︸ ︷

I(x; y; z) = I(x; y)
(25)

13
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For property v:

H(v1; v2) =
x

v1,v2

p(v1, v2)log(
p(v1, v2)

p(v1)p(v2)
)

=
x

v1,v2

p(v1, v2)log(

=1 as F (v2)⊆F (v1)︷ ︸︸ ︷
p(v2|v1) p(v1)

p(v1)p(v2)
)

=

∫
v2

− p(v2)log(p(v2)) = H(v2).

(26)

In addition, for I(v1, v2), we have:

H(v1, v2) = F (v1) ∪ F (v2)

=
x

v1,v2

− p(v1, v2)log(p(v1, v2))

=
x

v1,v2

− p(v1, v2)log(p(v2|v1)p(v1))

=

∫
v1

− p(v1)log(p(v1)) = H(v1) = F (v1).

(27)

For property vi, we have:

H(v1) ∩H(v2) ̸= ∅ −→ p(v1, v2) ̸= p(v1)p(v2). (28)

The mutual information I(v1; v2) is defined as:

I(v1; v2) =
x

p(v1, v2) log
p(v1, v2)

p(v1)p(v2)
dv1 dv2 ̸= 0

=
x

p(v1, v2) log p(v1, v2) dv1 dv2 −
x

p(v1, v2) log p(v1) dv1 dv2

−
x

p(v1, v2) log p(v2) dv1 dv2

= −
x

p(v1, v2) log p(v1) dv1 dv2 −
x

p(v1, v2) log p(v2) dv1 dv2

+
x

p(v1, v2) log p(v1, v2) dv1 dv2

= −
∫

p(v1) log p(v1) dv1 −
∫

p(v2) log p(v2) dv2

+
x

p(v1, v2) log p(v1, v2) dv1 dv2

= H(v1) +H(v2)−H(v1, v2)

(29)

Since H(v1) ∩H(v2) ̸= ∅ −→ I(v1; v2) ̸= 0, we have H(v1, v2) = H(v1) +H(v2)− I(v1; v2).

For property vii, we first clarified that:

F (v2) ∩ F (v1) = ∅ −→ p(v1, v2) = p(v1)p(v2) (30)

14
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Therefore, we have:

H(v1, v2) =
x

v1,v2

− p(v1, v2)log(p(v1, v2))

=
x

v1,v2

− p(v1)p(v2)log(p(v1)p(v2))

=

∫
v1

− p(v1)log(p(v1)) +

∫
v2

− p(v2)log(p(v2))

= H(v1) +H(v2)

(31)

B. Proofs of Proposition 5.1 and Proposition 5.2
For convenient reading, the equations used in the proofs are copied from the main text:

LOMF =
1

N

N∑
n=1

Eϵ1Eϵ2 [− log q(yn|ξn)] + β (KL [p(ζn1 |zn1 )||N (0, I)] + rKL [p(ζn2 |zn2 )||N (0, I)]) . (32)

which is copied from Equation (10).

r = 1− tanh
(
ln

1

N

N∑
n=1

Eϵ1Eϵ2

[KL(p(ŷn2 |ξn, zn2 )||p(ŷn|ξn))
KL(p(ŷn1 |ξn, zn1 )||p(ŷn|ξn))

])
, (33)

which is copied from Equation (11).

min
ξ

ℓ(ξ) = min
ξ

−I(ξ; y) + β(I(ξ; z1) + rI(ξ; z2)), (34)

which is copied from Equation (17)

r ∝ I(y; v1|ξ)
I(y; v2|ξ)

, (35)

which is copied from Equation (18).
Proposition B.1 (Proposition 5.1 restated). The loss function, LOMF , in Equation (32) provides a variational upper
bound for optimizing the objective function in Equation (34), and can be explicitly calculated during training.

Proof. For I(ξ; y), we have:

I(ξ; y) =

∫
dydξp(y, ξ)log

p(y, ξ)

p(y)p(ξ)

=

∫
dydξp(y, ξ)log

p(y|ξ)
p(y)

(36)

Let q(y|ξ) be a variational approximation to p(y|ξ), and we have:

KL[p(y|ξ)||q(y|ξ)] ≥ 0 ⇒
∫

dyp(y|ξ) log p(y|ξ) ≥
∫

dyp(y|ξ) log q(y|ξ) (37)

Based on the above inequality, we have (Alemi et al., 2017):

I(ξ; y) ≥
∫

dydξp(y, ξ)log
q(y|ξ)
p(y)

=

∫
dydξp(y, ξ)log q(y|ξ)−

∫
dydξp(y, ξ)log p(y)

=

∫
dydξp(y, ξ)log q(y|ξ) +H(Y )

(38)

15
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H(Y ) can be ignored as it is fixed during training. Therefore:

I(ξ; y) ≥
∫

dydξp(y, ξ)log q(y|ξ)

=

∫
dydξdζ1dζ2dz1dz2p(z1, z2, y, ζ1, ζ2, ξ)log q(y|ξ)

(39)

Furthermore, because ξ is a function of ζ1 and ζ2 (i.e., ξ = CAN(ζ1, ζ2)), we have I(ξ; z1) ≤ I(ζ1, ζ2; z1) and I(ξ; z2) ≤
I(ζ1, ζ2; z2). Using the Markov property, we have ζ1 ⊥ z2 and ζ2 ⊥ z1, which leads to:

I(ξ; z1) ≤ I(ζ1, ζ2; z1) = I(ζ1; z1) +

ζ2⊥z1︷ ︸︸ ︷
I(ζ2; z1|ζ1) = I(ζ1; z1)

(40)

Similarly, I(ξ; z2) ≤ I(ζ2; z2). Therefore:

I(ξ; zi) ≤ I(ζi; zi) =

∫
dζidzip(ζi, zi)log

p(ζi|zi)
p(ζi)

,∀i ∈ {1, 2} (41)

Let r(ζi) ∼ N (0, I) be a variational approximation to p(ζi), we have:

I(ξ; zi) ≤ I(ζi; zi) =

∫
dζidzip(ζi, zi)log p(ζi|zi)−

∫
p(ζi) log p(ζi)dζi

≤
∫

dζidzip(ζi, zi)log p(ζi|zi)−
∫

p(ζi) log r(ζi)dζi

=

∫
dζidzip(ζi, zi)log

p(ζi|zi)
N (0, I)

,∀i ∈ {1, 2}.

(42)

Put Equation (39) and Equation (42) together, we have:

L =− I(ξ; y) + β
(
I(ξ; z1) + rI(ξ; z2)

)
≤ −

∫
dydz1dz2p(y, z1, z2)

∫
dξdζ1dζ2p(ξ|ζ1, ζ2)p(ζ1|z1)p(ζ2|z2)log q(y|ξ)

+ β
(∫

dz1p(z1)

∫
dζ1p(ζ1|z1)log

p(ζ1|z1)
N (0, I)

+ r

∫
dz2p(z2)

∫
dζ2p(ζ2|z2)log

p(ζ2|z2)
N (0, I)

) (43)

Note that p(z1, z2, y), p(z1), and p(z2) can be approximated using the empirical data distribution (Alemi et al., 2017; Wang
et al., 2019), which leads to the objective function:

L ≈ 1

N

N∑
n=1

[
−
∫

dξdζ1dζ2 p(ξ
n|ζn1 , ζn2 )p(ζn1 |zn1 )p(ζn2 |zn2 )log q(yn|ξn)

+ β
(∫

dζ1p(ζ
n
1 |zn1 )log

p(ζn1 |zn1 )
N (0, I)

+ r

∫
dζ2p(ζ

n
2 |zn2 )log

p(ζn2 |zn2 )
N (0, I)

)] (44)

Given ζi = µi +Σi × ϵi in Equation (6), we have:

L =
1

N

N∑
n=1

Eϵ1Eϵ2 [− log q(yn|ξn)] + β
(
KL [p(ζn1 |zn1 )||N (0, I)] + rKL [p(ζn2 |zn2 )||N (0, I)]

)
= LOMF

(45)

This completes the proof.

Proposition B.2 (Proposition 5.2 restated). Equation (33) satisfies Equation (35), thus providing an explicit formula for
computing r during training.
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Proof. Firstly, z1 and z2 are sufficient encodings of modalities v1 and v2 for y, respectively. Let v̄i represent the superfluous
information in vi that is not encoded in zi. Then, we have:

I(y; vi|ξ) = I(y; zi, v̄i|ξ)
= I(y; zi|ξ) + I(y; v̄i|zi, ξ)︸ ︷︷ ︸

=0 ∵ F (y)∩F (v̄i)=∅

= I(y; zi|ξ),∀i ∈ {1, 2}.

(46)

Let z4 = {z1, ξ} and z5 = {z2, ξ}, then we have:

I(y; v1|ξ) = I(y; z1|ξ) = I(z1, ξ; y)− I(ξ; y) = I(z4; y)− I(ξ; y),

I(y; v2|ξ) = I(y; z2|ξ) = I(z2, ξ; y)− I(ξ; y) = I(z5; y)− I(ξ; y).
(47)

Then I(y; z1|ξ) can be expressed as:

I(y; z1|ξ) = I(z4; y)− I(ξ; y)

= H(y)−H(y|z4)−H(y) +H(y|ξ)
= H(y|ξ)−H(y|z4)

= −
∫

p(ξ)dξ

∫
p(y|ξ)log p(y|ξ)dy +

∫
p(z4)dz4

∫
p(y|z4)log p(y|z4)dy

= −
x

p(ξ)p(y|ξ)log [p(y|z4)
p(y|ξ)
p(y|z4)

]dξdy

+
x

p(z4)p(y|z4)log [p(y|ξ)
p(y|z4)
p(y|ξ)

]dz4dy

= −
x

p(ξ)p(y|ξ)log p(y|ξ)
p(y|z4)

dξdy −
x

p(ξ)p(y|ξ)log p(y|z4)dξdy

+
x

p(z4)p(y|z4)log
p(y|z4)
p(y|ξ)

dz4dy +
x

p(z4)p(y|z4)log p(y|ξ)dz4dy

= −
∫

p(ξ)KL(p(y|ξ)||p(y|z4))dξ −
∫

p(y)log p(y|z4)dy

+

∫
p(z4)KL(p(y|z4)||p(y|ξ))dz4 +

∫
p(y)log p(y|ξ)dy

=

∫
p(z4)KL(p(y|z4)||p(y|ξ))dz4 +

∫
p(y)log

p(y|ξ)
p(y|z4)

dy

−
∫

p(ξ)KL(p(y|ξ)||p(y|z4))dξ

=

∫
p(z4)KL(p(y|z4)||p(y|ξ))dz4 +

∫
p(ξ)p(y|ξ)log p(y|ξ)

p(y|z4)
dydξ

−
∫

p(ξ)KL(p(y|ξ)||p(y|z4))dξ

=

∫
p(z4)KL(p(y|z4)||p(y|ξ))dz4 +

∫
p(ξ)KL(p(y|ξ)||p(y|z4))dξ

−
∫

p(ξ)KL(p(y|ξ)||p(y|z4))dξ

=

∫
p(z4)KL(p(y|z4)||p(y|ξ))dz4

= Ez4 [KL(p(y|z4)||p(y|ξ))]

(48)

17



Learning Optimal Multimodal Information Bottleneck Representations

Similarly, I(y; z2|ξ) = Ez5 [KL(p(y|z5)||p(y|ξ))], and I(y;v1|ξ)
I(y;v2|ξ) can be calculated as:

I(y; v2|ξ)
I(y; v1|ξ)

=
Ez5 [KL(p(y|z5) ∥ p(y|ξ))]
Ez4 [KL(p(y|z4) ∥ p(y|ξ))]

=
1

N

N∑
n=1

Eϵ1Eϵ2

[KL(p(ŷn2 |ξn, zn2 )||p(ŷn|ξn))
KL(p(ŷn1 |ξn, zn1 )||p(ŷn|ξn))

] (49)

Finally, we have:

r = 1− tanh
(
ln

1

N

N∑
n=1

Eϵ1Eϵ2

[KL(p(ŷn2 |ξn, zn2 )||p(ŷn|ξn))
KL(p(ŷn1 |ξn, zn1 )||p(ŷn|ξn))

])
= 1− tanh(ln

I(y; v2|ξ)
I(y; v1|ξ)

) ∝ I(y; v1|ξ)
I(y; v2|ξ)

(50)

This completes the proof.

C. Proofs of Lemma 5.5 and Lemma 5.6
As proposed in Section 5.1, the objective function of MIB can be written as:

min
ξ

ℓ(ξ) = min
ξ

−I(ξ; y) + β(I(ξ; z1) + rI(ξ; z2)) (17)

Based on Assumption 5.3 in Section 5.2, we have:

F (y) = {a} = {a0, a1, a2},
F (v1) = {a0, a1, b1, b0}, F (v2) = {a0, a2, b2, b0},
{a0} ∩ {a1} = ∅, {a0} ∩ {a2} = ∅, {a1} ∩ {a2} = ∅,
{bi} ∩ {a0} = ∅, {bi} ∩ {a1} = ∅, {bi} ∩ {a2} = ∅,∀i ∈ {0, 1, 2}
I(y; v1) = {a} ∩ F (v1) = {a0, a1},
I(y; v2) = {a} ∩ F (v2) = {a0, a2}.

Definition C.1. The relative mutual information between encoding z and task-relevant label y is defined as the ratio of their
mutual information to their total information:

Î(z; y) =
I(z; y)

F (z) ∪ F (y)
=

I(z; y)

F (z, y)
=

I(z; y)

H(z) +H(y)− I(z; y)

Compared to mutual information, relative mutual information more accurately reflects the amount of task-relevant informa-
tion (i.e., I(ξ; y)) in total information (i.e., F (ξ) ∪ F (y)), which aligns more with the objective of maximizing task-relevant
information in MIB. Consequently, we replace I(ξ; y) with Î(ξ; y) in Equation (17) in the following analysis.

Lemma C.2 (Lemma 5.5 restated). Under Assumption 5.3, the objective function in Equation (17) ensures:

F (ξ) ⊇ {a0, a1, a2}, (51)

when β ≤ Mu, where Mu := 1
(1+r)(H(v1)+H(v2)−I(v1;v2))

.

Proof. Let {ξ̌1} = ({a0, a1, a2}/({a0, a1, a2} ∩ F (ξ))) ∩ {a1} represent the task-relevant information in a1 that is not
included in ξ. It is obvious:

{ξ̌1} ⊂ F (y), {ξ̌1} ∩ F (ξ) = ∅,
{ξ̌1} ∩ {a0} = ∅, {ξ̌1} ∩ {a2} = ∅,
{ξ̌1} ∩ F (v2) = ∅, {ξ̌1} ∩ F (z2) = ∅.

(52)
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If {ξ̌1} ≠ ∅, let ξ′ = {ξ, ξ̌1}. Using properties in Appendix A, we have:

I(ξ; v1)− I(ξ′; v1) = I(ξ; v1)− I(ξ, ξ̌1; v1)

= I(ξ; v1)− I(ξ; v1)−

{ξ̌1}∩F (ξ)=∅(52)︷ ︸︸ ︷
I(v1; ξ̌1|ξ)

= −I(v1; ξ̌1) < 0

I(ξ; v2)− I(ξ′; v2) = I(ξ; v2)− I(ξ, ξ̌1; v2)

= I(ξ; v2)− I(ξ; v2)−

∵{ξ̌1}∩F (v2)=∅(52)
∴I(v2;ξ̌1|ξ)=0︷ ︸︸ ︷
I(v2; ξ̌1 | ξ)

= 0

Î(ξ′; y)− Î(ξ; y) =
I(ξ, ξ̌1; y)

F (ξ, ξ̌1, y)
− I(ξ; y)

F (ξ, y)

=
I(ξ, ξ̌1; y)

F (ξ, ξ̌1, y)
− I(ξ; y)

F (ξ, y) ∪ F (ξ̌1)︸ ︷︷ ︸
=F (ξ,y) as {ξ̌1}⊂F (y)(52)

=

{ξ̌1}∩F (ξ)=∅ (52)︷ ︸︸ ︷
I(y; ξ̌1|ξ)
F (ξ, ξ̌1, y)

=
I(y; ξ̌1)

F (ξ, ξ̌1, y)
> 0

For ℓ(ξ)− ℓ(ξ′), we have:

ℓ(ξ)− ℓ(ξ′) = Î(ξ′; y)− Î(ξ; y) + β(I(ξ; v1)− I(ξ′; v1) + rI(ξ; v2)− rI(ξ′; v2))

=
I(y; ξ̌1)

F (ξ, ξ̌1, y)
− βI(v1; ξ̌1)

When β < I(y;ξ̌1)

I(v1;ξ̌1)F (ξ,ξ̌1,y)
, ℓ(ξ) − ℓ(ξ′) > 0, so optimizing the loss function will drive ξ toward ξ′ until {ξ̌1} = ∅,

namely F (ξ) ⊇ {a1}. We further suppose {ξ̌2} = ({a0, a1, a2}/({a0, a1, a2} ∩ F (ξ))) ∩ {a2} represent the task-relevant
information in a2 that is not included in ξ. Similarly, if {ξ̌2} ≠ ∅ and β < I(y;ξ̌2)

rI(v2;ξ̌2)F (ξ,ξ̌2,y)
, the optimization will update ξ

until {ξ̌2} = ∅, namely F (ξ) ⊇ {a2}.

Moreover, let {ξ̌0} = ({a0, a1, a2}/({a0, a1, a2} ∩ F (ξ))) ∩ {a0} represent the task-relevant information in a0 that is not
included in ξ. If {ξ̌0} ≠ ∅, let ξ′ = {ξ, ξ̌0}. Then we have:

I(ξ; vi)− I(ξ′; vi) = I(ξ; vi)− I(ξ, ξ̌0; vi)

= I(ξ; vi)− I(ξ; vi)−

{ξ̌0}∩F (ξ)=∅︷ ︸︸ ︷
I(vi; ξ̌0|ξ)

= −I(vi; ξ̌0) < 0,∀i ∈ {1, 2}.
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Î(ξ′; y)− Î(ξ; y) =
I(ξ, ξ̌0; y)

F (ξ, ξ̌0, y)
− I(ξ; y)

F (ξ, y)

=
I(ξ, ξ̌0; y)

F (ξ, ξ̌0, y)
− I(ξ; y)

F (ξ, y) ∪ F (ξ̌0)︸ ︷︷ ︸
=F (ξ,y) as {ξ̌0}⊂F (y)

=

{ξ̌0}∩F (ξ)=∅︷ ︸︸ ︷
I(y; ξ̌0|ξ)
F (ξ, ξ̌0, y)

=
I(y; ξ̌0)

F (ξ, ξ̌0, y)
> 0

For ℓ(ξ)− ℓ(ξ′), we have:

ℓ(ξ)− ℓ(ξ′) = Î(ξ′; y)− Î(ξ; y) + β(I(ξ; v1)− I(ξ′; v1) + rI(ξ; v2)− rI(ξ′; v2))

=
I(y; ξ̌0)

F (ξ, ξ̌0, y)
− β(I(v1; ξ̌0) + rI(v2; ξ̌0))

Therefore, when β < I(y;ξ̌0)

F (ξ,ξ̌0,y)(I(v1;ξ̌0)+rI(v2;ξ̌0))
, the optimization will update ξ until {ξ̌0} = ∅, namelyF (ξ) ⊇ {a0} .

Put together, the optimization procedure ensures F (ξ) ⊇ {a0, a1, a2} when:

β < UBβ = min
( I(y; ξ̌1)

I(v1; ξ̌1)F (ξ, ξ̌1, y)
,

I(y; ξ̌2)

rI(v2; ξ̌2)F (ξ, ξ̌2, y)
,

I(y; ξ̌0)

F (ξ, ξ̌0, y)(I(v1; ξ̌0) + rI(v2; ξ̌0))

)
. (53)

Finally, we prove in Lemma C.3 below that Mu = 1
(1+r)(H(v1)+H(v2)−I(v1;v2))

is a lower bound of UBβ . When β < Mu,
the optimization procedure guarantees F (ξ) ⊇ {a0, a1, a2}. This completes the proof.

Lemma C.3. UBβ in Equation (53) satisfies: UBβ > Mu, where Mu = 1
(1+r)(H(v1)+H(v2)−I(v1;v2))

.

H(·) and I(·; ·) can be estimated using MINE (Belghazi et al., 2018) (see Appendix E).

Proof. As shown in Equation (53)

UBβ = min
( I(y; ξ̌1)

I(v1; ξ̌1)F (ξ, ξ̌1, y)
,

I(y; ξ̌2)

rI(v2; ξ̌2)F (ξ, ξ̌2, y)
,

I(y; ξ̌0)

F (ξ, ξ̌0, y)(I(v1; ξ̌0) + rI(v2; ξ̌0))

)
∵ {ξ̌1} ⊆ F (ξ, y), we have F (ξ, ξ̌1, y) = F (ξ, y) so that:

I(y; ξ̌1)

I(v1; ξ̌1)F (ξ, ξ̌1, y)
=

I(y; ξ̌1)

I(v1; ξ̌1)F (ξ, y)

∵ {ξ̌1} ⊆ {a1}, {a1} ⊆ {v1}, and {a1} ⊆ {y}, ∴ {ξ̌1} ⊆ {v1} and {ξ̌1} ⊆ {y}. Then, according to property v in
Properties A.1, I(y; ξ̌1) = H(ξ̌1) and I(v1; ξ̌1) = H(ξ̌1), which leads to:

I(y; ξ̌1)

I(v1; ξ̌1)F (ξ, y)
=

H(ξ̌1)

H(ξ̌1)F (ξ, y)

=
1

F (ξ, y)

Similarly, I(y;ξ̌2)

rI(v2;ξ̌2)F (ξ,ξ̌2,y)
is simplify to 1

rF (ξ,y) . Moreover, F (ξ, ξ̌0, y) = F (ξ, y) since {ξ̌0} ⊆ F (ξ, y). Then, it follows
that:

I(y; ξ̌0)

F (ξ, ξ̌0, y)(I(v1; ξ̌0) + rI(v2; ξ̌0))
=

I(y; ξ̌0)

F (ξ, y)(I(v1; ξ̌0) + rI(v2; ξ̌0))
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∵ {ξ̌0} ⊆ {a0}, {a0} ⊆ {v1}, {a0} ⊆ {v2}, and {a0} ⊆ {y}, ∴ {ξ̌0} ⊆ {v1}, {ξ̌0} ⊆ {v2}, and {ξ̌0} ⊆ {y}. Thus, by
property v in Properties A.1, I(y; ξ̌0) = H(ξ̌0), I(v1; ξ̌0) = H(ξ̌0), and I(v2; ξ̌0) = H(ξ̌0), which collectively lead to:

I(y; ξ̌0)

F (ξ, y)(I(v1; ξ̌0) + rI(v2; ξ̌0))
=

H(ξ̌0)

F (ξ, y)(H(ξ̌0) + rH(ξ̌0))

=
1

(1 + r)F (ξ, y)

< min
( 1

F (ξ, y)
,

1

rF (ξ, y)

)
,∀r > 0

= min
( I(y; ξ̌1)

I(v1; ξ̌1)F (ξ, ξ̌1, y)
,

I(y; ξ̌2)

rI(v2; ξ̌2)F (ξ, ξ̌2, y)

)
.

Thus, we have:

UBβ =
I(y; ξ̌0)

F (ξ, y)(I(v1; ξ̌0) + rI(v2; ξ̌0))

=
1

(1 + r)F (ξ, y)

>
1

(1 + r) F (v1, v2)︸ ︷︷ ︸
∵F (ξ,y)⊂F (v1,v2)

=
1

(1 + r)(H(v1) +H(v2)− I(v1; v2))

= Mu

This completes the proof.

Lemma C.4 (Lemma 5.6 restated). Under Assumption 5.3, the objective function in Equation (34) is optimized when:

F (ξ) ⊆ {a0, a1, a2} (54)

Proof. Let ẑ1 represent superfluous information that is specific to v1 and not incorporated into ξ. Then, we have:

ẑ1 /∈ {a0, a1, a2}, {ẑ1} ⊂ F (v1), I(ẑ1; v1) > 0,

I(ẑ1; y) = 0, {ξ} ∩ {ẑ1} = ∅, {v2} ∩ {ẑ1} = ∅.
(55)

Let ξ̈ = {ξ, ẑ1}. The objective function becomes:

ℓ(ξ̈) = −Î(ξ̈; y) + β(I(ξ̈; v1) + rI(ξ̈; v2))

= −Î(ξ, ẑ1; y) + β(I(ξ, ẑ1; v1) + rI(ξ, ẑ1; v2))
(56)

Then we have the following equations:

I(ξ, ẑ1; v1)− I(ξ; v1) =

{ẑ1}∩{ξ}=∅︷ ︸︸ ︷
I(v1; ẑ1|ξ)

= I(v1; ẑ1) > 0

(57)

I(ξ, ẑ1; v2)− I(ξ; v2) =

{ẑ1}∩{v2}=∅︷ ︸︸ ︷
I(v2; ẑ1|ξ)

= 0

(58)
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Î(ξ; y)− Î(ξ, ẑ1; y) =
I(ξ; y)

F (ξ, y)
− I(ẑ1, ξ; y)

F (ẑ1, ξ, y)

=
I(ξ; y) +

=0 ∵I(ẑ1;y)=0︷ ︸︸ ︷
I(y; ẑ1|ξ)

F (ξ, y)
− I(ẑ1, ξ; y)

F (ẑ1, ξ, y)

=
I(ẑ1, ξ; y)

F (ξ, y)
− I(ẑ1, ξ; y)

F (ẑ1, ξ, y)

=
I(ẑ1, ξ; y)

F (ξ, y)
− I(ẑ1, ξ; y)

F (ẑ1) + F (ξ, y)︸ ︷︷ ︸
∵ẑ1⊥{ξ,y}

> 0

(59)

Put together, we have:

ℓ(ξ̈)− ℓ(ξ)

= (Î(ξ; y)− Î(ξ, ẑ1; y)) + β
(
(Î(ẑ1, ξ; v1)− Î(ξ; v1)) + r(Î(ẑ1, ξ; v2)− Î(ξ; v2))

)
> 0, if {ẑ1} ≠ ∅.

(60)

For superfluous information ẑ2 specific to v2, we arrive at the same conclusion. Finally, let ẑ0 represent superfluous
information that is shared by the two modalities and not encoded in ξ. Then, we have:

ẑ0 /∈ {a0, a1, a2}, {ẑ0} ⊂ F (v1), {ẑ0} ⊂ F (v2),

I(ẑ0; v1) > 0, I(ẑ0; v2) > 0,

I(ẑ0; y) = 0, {ξ} ∩ {ẑ0} = ∅
(61)

Let ξ̈ = {ξ, ẑ0}. The objective function becomes:

ℓ(ξ̈) = −Î(ξ̈; y) + β(I(ξ̈; v1) + rI(ξ̈; v2))

= −Î(ξ, ẑ0; y) + β(I(ξ, ẑ0; v1) + rI(ξ, ẑ0; v2))
(62)

Then we have the following equations:

Î(ξ; y)− Î(ξ, ẑ0; y) =
I(ξ; y)

F (ξ, y)
− I(ẑ0, ξ; y)

F (ẑ0, ξ, y)

=
I(ξ; y) +

=0 ∵I(ẑ0;y)=0︷ ︸︸ ︷
I(y; ẑ0|ξ)

F (ξ, y)
− I(ẑ0, ξ; y)

F (ẑ0, ξ, y)

=
I(ẑ0, ξ; y)

F (ξ, y)
− I(ẑ0, ξ; y)

F (ẑ0, ξ, y)

=
I(ẑ0, ξ; y)

F (ξ, y)
− I(ẑ0, ξ; y)

F (ẑ0) + F (ξ, y)︸ ︷︷ ︸
∵ẑ0⊥{ξ,y}

> 0

(63)

I(ξ, ẑ0; v1)− I(ξ; v1) =

{ẑ0}∩{ξ}=∅︷ ︸︸ ︷
I(v1; ẑ0|ξ)

= I(v1; ẑ0) > 0

(64)
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Similarly, we have I(ξ, ẑ0; v2)− I(ξ; v2) = I(v2; ẑ0) > 0.

Put together, we have:

ℓ(ξ̈)− ℓ(ξ)

= (Î(ξ; y)− Î(ξ, ẑ0; y)) + β
(
(Î(ẑ0, ξ; v1)− Î(ξ; v1)) + r(Î(ẑ0, ξ; v2)− Î(ξ; v2))

)
> 0, if {ẑ0} ≠ ∅.

(65)

In a nutshell, the optimization procedure continues until ξ does not encompass superfluous information, shared or modality
specific, from v1, v2. That is, F (ξ) ⊆ {a0, a1, a2}. This completes the proof.

D. Extension to Multiple Modalities
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Figure 5: Venn diagrams for three data modalities (v1, v2, and v3). The gridded area represents consistent information, while
the non-gridded area denotes modality-specific information. Task-relevant information is highlighted in green, whereas
superfluous information is shown in blue.

The theoretical analysis of multiple modalities (≥ 3) is exemplified using three modalities, v1, v2, and v3, which yet can be
readily extended to more modalities. All mathematical notations remain consistent with those in Table 1 in Section 3.
Assumption D.1. Given three modalities, v1, v2, and v3, the task-relevant information set {a} consists of seven
parts—a00, a11, a22, a33, a12, a13, a23, as illustrated in Figure 5. Specifically, a00 is shared by all three modalities, while aij
is shared between modality pairs (vi, vj), ∀i, j ∈ {1, 2, 3}, i < j. Meanwhile, aii is specific to vi, ∀i ∈ {1, 2, 3}.
The task-relevant labels y are determined by {a}. On the other hand, superfluous information is represented by
{b} = {b00, b11, b22, b33, b12, b13, b23}. Here, b00 is shared by all three modalities, while bij is shared between modality
pairs (vi, vj), ∀i, j ∈ {1, 2, 3}, i < j. Meanwhile, bii is specific to vi, ∀i ∈ {1, 2, 3}.

Based on the above assumption, the optimal MIB has the following definition:
Definition D.2 (Optimal multimodal information bottleneck for three modalities). The optimal MIB for three modalities
is defined as the MIB that encompasses all task-relevant information and free of superfluous information. Let ξopt−three
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denote the optimal MIB, and it can be explicitly expressed as:

F (ξopt−three) = {a00, a11, a22, a33, a12, a13, a23}. (66)

In the following sections, we first demonstrate the method for achieving the optimal MIB, followed by a theoretical analysis
to establish its theoretical foundation.

D.1. Method

The warm-up and main training phases follow those for two modalities in Section 4, except for an additional modality v3.
The loss function LTRB remains the same for each modality as in Equation (4), while the loss function LOMF becomes:

LOMF =
1

N

N∑
n=1

Eϵ1Eϵ2Eϵ3 [−log q(yn|ξn)] + β
(
KL(p(ζn1 |zn1 ) ∥ N (0, I)

+ r1KL(p(ζn2 |zn2 ) ∥ N (0, I)) + r2KL(p(ζn3 |zn3 ) ∥ N (0, I)
)
,

(67)

where ξ = CAN(ζ1, ζ2, ζ3, θCAN ). Analogous to Equation (11) proved by Proposition 5.2 in Section 5.1, r1 and r2 are
dynamic during training and explicitly calculated as:

r1 = 1− tanh
(
ln

1

N

N∑
n=1

Eϵ1Eϵ2

[KL(p(ŷn
2 |ξn, zn2 )||p(ŷn|ξn))

KL(p(ŷn
1 |ξn, zn1 )||p(ŷn|ξn))

])
,

r2 = 1− tanh
(
ln

1

N

N∑
n=1

Eϵ1Eϵ3

[KL(p(ŷn
3 |ξn, zn3 )||p(ŷn|ξn))

KL(p(ŷn
1 |ξn, zn1 )||p(ŷn|ξn))

])
.

(68)

Moreover, as proposed in Lemma D.4 in Appendix D.2, when β in Equation (67) is upper-bounded by M2
u :=

1
(1+r1+r2)(

∑3
i=1 H(vi)− 2

3

∑
1≤i<j≤3 I(vi;vj))

, the optimization of LOMF ensures the achievability of ξopt.

D.2. Theoretical Foundation

Under Assumption D.1, we have:

F (y) = {a} = {a00, a11, a22, a33, a12, a13, a23},
F (v1) = {a00, a11, a12, a13, b1, b12, b13, b0},
F (v2) = {a00, a22, a12, a23, b2, b12, b23, b0},
F (v3) = {a00, a33, a13, a23, b3, b13, b23, b0},
{aij} ∩ {auv} = ∅, ∀aij , auv ∈ {a},where aij ̸= auv

{bij} ∩ {auv} = ∅, ∀bij ∈ {b}, auv ∈ {a}
I(y; v1) = {a} ∩ F (v1) = {a00, a11, a12, a13},
I(y; v2) = {a} ∩ F (v2) = {a00, a22, a12, a23}.
I(y; v3) = {a} ∩ F (v3) = {a00, a33, a13, a23}.

Analogous to the analysis in Section 5.1, the objective function for obtaining optimal MIB can be formulated as:

max
ξ

ℓ(ξ) = max
ξ

I(ξ; y)− β(I(ξ; v1) + r1I(ξ; v2) + r2I(ξ; v3)), (69)

which is equivalent to:
min
ξ

ℓ(ξ) = min
ξ

−I(ξ; y) + β(I(ξ; z1) + r1I(ξ; z2) + r2I(ξ; z3)). (70)

The Proposition 5.1 in Section 5.1 can be trivially modified by adding the r2I(ξ; z3) term and applied here to establish
LOMF in Equation (67) as a variational upper bound for Equation (70).
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D.2.1. ACHIEVABILITY OF OPTIMA INFORMATION BOTTLENECK FOR THREE MODALITIES

Lemma D.3 (Inclusiveness of task-relevant information for three modalities). Under Assumption D.1, the objective
function in Equation (69) ensures:

F (ξ) ⊇ {a00, a11, a22, a33, a12, a13, a23}, (71)

when β ≤ M2
u , where M2

u := 1
(1+r1+r2)(

∑3
i=1 H(vi)− 2

3

∑
1≤i<j≤3 I(vi;vj))

.

Proof. We first analyze under which condition ξ can include all the task-relevant information specific to single modality. Let
{ξ̌1} = ({a00, a11, a22, a33, a12, a13, a23}/({a00, a11, a22, a33, a12, a13, a23} ∩ I(ξ))) ∩ {a11} represent the task-relevant
information in a11 that is not included in ξ. It is obvious:

{ξ̌1} ⊂ F (y), {ξ̌1} ∩ F (ξ) = ∅,
{ξ̌1} ∩ {aij} = ∅, ∀aij ∈ {a}/{a11},
{ξ̌1} ∩ F (v2) = ∅, {ξ̌1} ∩ F (z2) = ∅,
{ξ̌1} ∩ F (v3) = ∅, {ξ̌1} ∩ F (z3) = ∅

If {ξ̌1} ≠ ∅, let ξ′ = {ξ, ξ̌1} and we have:

ℓ(ξ) = −Î(ξ; y) + β(I(ξ; v1) + r1I(ξ; v2) + r2I(ξ; v3))

= −Î(ξ; y) + β
(
I(ξ; v1) + r1(I(v2; ξ) +

=0,∵{ξ̌1}∩F (v2)=∅︷ ︸︸ ︷
I(v2; ξ̌1|ξ) ) + r2(I(v3; ξ) +

=0,∵{ξ̌1}∩F (v3)=∅︷ ︸︸ ︷
I(v3; ξ̌1|ξ) )

)
= −Î(ξ; y) + β(I(ξ; v1) + r1I(ξ, ξ̌1; v2) + r2I(ξ, ξ̌1; v3)),

ℓ(ξ)− ℓ(ξ′) = −Î(ξ; y) + β(I(ξ; v1) + r1I(ξ, ξ̌1; v2) + r2I(ξ, ξ̌1; v3))

−
(
−Î(ξ, ξ̌1; y) + β(I(ξ, ξ̌1; v1) + r1I(ξ, ξ̌1; v2) + r2I(ξ, ξ̌1; v3))

)
= Î(ξ, ξ̌1; y)− Î(ξ; y) + β(I(ξ; v1)− I(ξ, ξ̌1; v1))

Using properties in Appendix A, we have:

Î(ξ, ξ̌1; y)− Î(ξ; y) =
I(ξ, ξ̌1; y)

F (ξ) ∪ (F (ξ̌1) ∪ F (y))︸ ︷︷ ︸
=F (y) as {ξ̌1}⊂F (y)

− I(ξ; y)

F (ξ) ∪ F (y)

=
I(ξ, ξ̌1; y)

F (ξ, y)
− I(ξ; y)

F (ξ, y)

=

{ξ̌1}∩{ξ}=∅︷ ︸︸ ︷
I(y; ξ̌1|ξ)
F (ξ, y)

=
I(y; ξ̌1)

F (ξ, y)

I(ξ; v1)− I(ξ, ξ̌1; v1) = −

{ξ̌1}∩{ξ}=∅︷ ︸︸ ︷
I(v1; ξ̌1|ξ)

= −I(v1; ξ̌1)

(72)
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Thus:

ℓ(ξ)− ℓ(ξ′) = Î(ξ, ξ̌1; y)− Î(ξ; y) + βI(ξ; v1)− βI(ξ, ξ̌1; v1)

=
I(y; ξ̌1)

F (ξ, y)
− βI(v1; ξ̌1)

(73)

When β < I(y;ξ̌1)

F (ξ,y)I(v1;ξ̌1)
, ℓ(ξ)−ℓ(ξ′) > 0. Therefore, optimizing the loss function will drive ξ toward ξ′ until {ξ̌1} = ∅, such

that F (ξ) ⊇ {a11}. We further suppose {ξ̌2} = ({a00, a11, a22, a33, a12, a13, a23}/({a00, a11, a22, a33, a12, a13, a23} ∩
I(ξ))) ∩ {a22} represent the task-relevant information in a22 that is not included in ξ, and {ξ̌3} =
({a00, a11, a22, a33, a12, a13, a23}/({a00, a11, a22, a33, a12, a13, a23} ∩ I(ξ))) ∩ {a33} represent the task-relevant infor-
mation in a33 that is not included in ξ. Similarly, if {ξ̌2} ≠ ∅ and β < I(y;ξ̌2)

r1I(v2;ξ̌2)F (ξ,ξ̌2,y)
, the optimization will update ξ

until {ξ̌2} = ∅, leading to F (ξ) ⊇ {a22}; and if {ξ̌3} ≠ ∅ and β < I(y;ξ̌3)

r2I(v3;ξ̌3)F (ξ,ξ̌3,y)
, the optimization will update ξ until

{ξ̌3} = ∅, leading to F (ξ) ⊇ {a33}.

We then analyze under which condition ξ can include all the task-relevant information shared by two modalities. Let
{ξ̌12} = ({a00, a11, a22, a33, a12, a13, a23}/({a00, a11, a22, a33, a12, a13, a23}∩ I(ξ)))∩{a12} represent the task-relevant
information in a12 that is not included in ξ. It is obvious:

{ξ̌12} ⊂ F (y), {ξ̌12} ∩ F (ξ) = ∅,
{ξ̌12} ∩ {aij} = ∅, ∀aij ∈ {a}/{a12},
{ξ̌12} ∩ F (v3) = ∅, {ξ̌12} ∩ F (z3) = ∅

If {ξ̌12} ≠ ∅, let ξ′ = {ξ, ξ̌12}, then we have:

ℓ(ξ) = −Î(ξ; y) + β(I(ξ; v1) + r1I(ξ; v2) + r2I(ξ; v3))

= −Î(ξ; y) + β
(
I(ξ; v1) + r1I(v2; ξ) + r2(I(v3; ξ) +

=0,∵{ξ̌12}∩F (v3)=∅︷ ︸︸ ︷
I(v3; ξ̌12|ξ) )

)
= −Î(ξ; y) + β(I(ξ; v1) + r1I(ξ; v2) + r2I(ξ, ξ̌12; v3))

Therefore, ℓ(ξ)− ℓ(ξ′) can be written as:

ℓ(ξ)− ℓ(ξ′) = −Î(ξ; y) + β(I(ξ; v1) + r1I(ξ; v2) + r2I(ξ, ξ̌12; v3))

−
(
−Î(ξ, ξ̌12; y) + β(I(ξ, ξ̌12; v1) + r1I(ξ, ξ̌12; v2) + r2I(ξ, ξ̌12; v3))

)
= Î(ξ, ξ̌12; y)− Î(ξ; y) + β

(
I(ξ; v1)− I(ξ, ξ̌12; v1) + r1(I(ξ; v2)− I(ξ, ξ̌12; v2))

)
Using properties in Appendix A, we have:

Î(ξ, ξ̌12; y)− Î(ξ; y) =
I(ξ, ξ̌12; y)

F (ξ) ∪ (F (y) ∪ F (ξ̌12))︸ ︷︷ ︸
=F (y) as {ξ̌12}⊂F (y)

− I(ξ; y)

F (ξ) ∪ F (y)

=
I(ξ, ξ̌12; y)

F (ξ, y)
− I(ξ; y)

F (ξ, y)

=

{ξ̌12}∩{ξ}=∅︷ ︸︸ ︷
I(y; ξ̌12|ξ)
F (ξ, y)

=
I(y; ξ̌12)

F (ξ, y)
> 0
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I(ξ; v1)− I(ξ, ξ̌12; v1) = −

{ξ̌12}∩{ξ}=∅︷ ︸︸ ︷
I(v1; ξ̌12|ξ)

= −I(v1; ξ̌12) < 0

(74)

Similarly, we obtain that I(ξ; v2)− I(ξ, ξ̌12; v2) = −I(v2; ξ̌12).

Thus:

ℓ(ξ)− ℓ(ξ′) = Î(ξ, ξ̌12; y)− Î(ξ; y) + β
(
I(ξ; v1)− I(ξ, ξ̌12; v1) + r1(I(ξ; v2)− I(ξ, ξ̌12; v2))

)
=

I(y; ξ̌12)

F (ξ, y)
− β(I(v1; ξ̌12) + r1I(v2; ξ̌12))

(75)

When β < I(y;ξ̌12)

F (ξ,y)(I(v1;ξ̌12)+r1I(v2;ξ̌12))
, ℓ(ξ) − ℓ(ξ′) > 0. Therefore, optimizing the loss function will

drive ξ towards ξ′ until {ξ̌12} = ∅, such that F (ξ) ⊇ {a12}. Similarly, suppose that {ξ̌13} =
({a00, a11, a22, a33, a12, a13, a23}/({a00, a11, a22, a33, a12, a13, a23}∩I(ξ)))∩{a13} represents the task-relevant informa-
tion in a13 that is not included in ξ; and {ξ̌23} = ({a00, a11, a22, a33, a12, a13, a23}/({a00, a11, a22, a33, a12, a13, a23} ∩
I(ξ))) ∩ {a23} represents the task-relevant information in a23 that is not included in ξ. Following the above procedure, we
conclude that if {ξ̌13} ≠ ∅ and β < I(y;ξ̌13)

F (ξ,y)(I(v1;ξ̌13)+r2I(v2;ξ̌13))
, the optimization will update ξ until {ξ̌13} = ∅, leading to

F (ξ) ⊇ {a13}; if {ξ̌23} ̸= ∅ and β < I(y;ξ̌23)

F (ξ,y)(r1I(v1;ξ̌23)+r2I(v2;ξ̌23))
, the optimization will update ξ until {ξ̌23} = ∅, leading

to F (ξ) ⊇ {a23}.

Finally, we analyze under which condition ξ can include all the task-relevant information shared by the three modalities. Let
{ξ̌0} = ({a00, a11, a22, a33, a12, a13, a23}/({a00, a11, a22, a33, a12, a13, a23} ∩ I(ξ))) ∩ {a00} represent the task-relevant
information in a00 that is not included in ξ. It is obvious:

{ξ̌0} ⊂ F (y), {ξ̌0} ∩ F (ξ) = ∅,
{ξ̌0} ∩ {aij} = ∅, ∀aij ∈ {a}/{a00},
{ξ̌0} ∩ F (vl) = ∅, ∀l ∈ {1, 2, 3}

If {ξ̌0} ≠ ∅, let ξ′ = {ξ, ξ̌0}, and ℓ(ξ)− ℓ(ξ′) can be written as:

ℓ(ξ)− ℓ(ξ′) = −Î(ξ; y) + β(I(ξ; v1) + r1I(ξ; v2) + r2I(ξ; v3))

−
(
−Î(ξ, ξ̌0; y) + β(I(ξ, ξ̌0; v1) + r1I(ξ, ξ̌0; v2) + r2I(ξ, ξ̌0; v3))

)
= Î(ξ, ξ̌0; y)− Î(ξ; y) + β

(
I(ξ; v1)− I(ξ, ξ̌0; v1)

+ r1(I(ξ; v2)− I(ξ, ξ̌0; v2)) + r2(I(ξ; v3)− I(ξ, ξ̌0; v3))
)

Using properties in Appendix A, we have:

Î(ξ, ξ̌0; y)− Î(ξ; y) =
I(ξ, ξ̌0; y)

F (ξ) ∪ (F (y) ∪ F (ξ̌0))︸ ︷︷ ︸
=F (y) as {ξ̌0}⊂F (y)

− I(ξ; y)

F (ξ) ∪ F (y)

=
I(ξ, ξ̌0; y)

F (ξ, y)
− I(ξ; y)

F (ξ, y)

=

{ξ̌0}∩{ξ}=∅︷ ︸︸ ︷
I(y; ξ̌0|ξ)
F (ξ, y)

=
I(y; ξ̌0)

F (ξ, y)
> 0
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I(ξ; v1)− I(ξ, ξ̌0; v1) = −

{ξ̌0}∩{ξ}=∅︷ ︸︸ ︷
I(v1; ξ̌0|ξ)

= −I(v1; ξ̌0) < 0

(76)

Similarly, we obtain that I(ξ; v2)− I(ξ, ξ̌0; v2) = −I(v2; ξ̌0) and I(ξ; v3)− I(ξ, ξ̌0; v3) = −I(v3; ξ̌0).

Thus:

ℓ(ξ)− ℓ(ξ′) = Î(ξ, ξ̌0; y)− Î(ξ; y) + β
(
I(ξ; v1)− I(ξ, ξ̌0; v1)

+ r1(I(ξ; v2)− I(ξ, ξ̌0; v2)) + r2(I(ξ; v3)− I(ξ, ξ̌0; v3))
)

=
I(y; ξ̌0)

F (ξ, y)
− β(I(v1; ξ̌0) + r1I(v2; ξ̌0) + r2I(v3; ξ̌0))

(77)

When β < I(y;ξ̌0)

F (ξ,y)(I(v1;ξ̌0)+r1I(v2;ξ̌0)+r2I(v3;ξ̌0))
, ℓ(ξ) − ℓ(ξ′) > 0. Therefore, optimizing the loss function will drive ξ

toward ξ′ until {ξ̌0} = ∅, such that F (ξ) ⊇ {a00}.

Put together, the optimization procedure ensures F (ξ) ⊇ {a00, a11, a22, a33, a12, a13, a23} when:

β < UBβ := min(UB1
β , UB2

β , UB3
β , UB4

β , UB5
β , UB6

β , UB7
β). (78)

where UB1
β = I(y;ξ̌i)

F (ξ,y)I(v1;ξ̌i)
, UB2

β = I(y;ξ̌2)

r1F (ξ,y)I(v2;ξ̌2)
, UB3

β = I(y;ξ̌3)

r2F (ξ,y)I(v3;ξ̌3)
, UB4

β =

I(y;ξ̌12)

F (ξ,y)(I(v1;ξ̌12)+r1I(v2;ξ̌12))
, UB5

β = I(y;ξ̌13)

F (ξ,y)(I(v1;ξ̌13)+r2I(v2;ξ̌13))
, UB6

β = I(y;ξ̌23)

F (ξ,y)(r1I(v1;ξ̌23)+r2I(v2;ξ̌23))
, and

UB7
β = I(y;ξ̌0)

F (ξ,y)(I(v1;ξ̌0)+r1I(v2;ξ̌12)+r2I(v3;ξ̌0))
.

We complete the proof by proving that M2
u = 1

(1+r1+r2)(
∑3

i=1 H(vi)− 2
3

∑
1≤i<j≤3 I(vi;vj))

is a lower bound of UBβ in Lemma

D.4 below. That is, when β < M2
u , the optimization procedure guarantees F (ξ) ⊇ {a00, a11, a22, a33, a12, a13, a23}.

Lemma D.4. UBβ in Equation (78) satisfies: UBβ > M2
u , where M2

u = 1
(1+r1+r2)(

∑3
i=1 H(vi)− 2

3

∑
1≤i<j≤3 I(vi;vj))

.

H(·) and I(·; ·) can be estimated using MINE (Belghazi et al., 2018) (see Appendix E).

Proof. As shown in Equation (78), UB1
β = I(y;ξ̌1)

F (ξ,y)I(v1;ξ̌1)
. By property v in Properties A.1, UB1

β can be simplified as:

UB1
β =

I(y; ξ̌1)

I(v1; ξ̌1)F (ξ, y)

=

=I(y;ξ̌1),∵{ξ̌1}⊆{y}︷ ︸︸ ︷
H(ξ̌1)

H(ξ̌1)︸ ︷︷ ︸
=I(v1;ξ̌1),∵{ξ̌1}⊆{v1}

F (ξ, y)

=
1

F (ξ, y)

Similarly, we have UB2
β = I(y;ξ̌2)

r1F (ξ,y)I(v2;ξ̌2)
= 1

r1F (ξ,y) and UB3
β = I(y;ξ̌3)

r3F (ξ,y)I(v3;ξ̌3)
= 1

r2F (ξ,y) .
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UB4
β can be simplified as:

UB4
β =

I(y; ξ̌12)

F (ξ, y)(I(v1; ξ̌12) + r1I(v2; ξ̌12))

=

=I(y;ξ̌12),∵{ξ̌12}⊆{y}︷ ︸︸ ︷
H(ξ̌12)

F (ξ, y)( H(ξ̌12)︸ ︷︷ ︸
=I(v1;ξ̌12),∵{ξ̌12}⊆{v1}

+r1 H(ξ̌12)︸ ︷︷ ︸
=I(v2;ξ̌12),∵{ξ̌12}⊆{v2}

)

=
1

(1 + r1)F (ξ, y)

(79)

Similarly, we have UB5
β = I(y;ξ̌13)

F (ξ,y)(I(v1;ξ̌13)+r2I(v2;ξ̌13))
= 1

(1+r2)F (ξ,y) , and UB6
β = I(y;ξ̌23)

F (ξ,y)(r1I(v1;ξ̌23)+r2I(v2;ξ̌23))
=

1
(r1+r2)F (ξ,y) .

UB7
β can be simplified as:

UB7
β =

I(y; ξ̌0)

F (ξ, y)(I(v1; ξ̌0) + r1I(v2; ξ̌0) + r2I(v3; ξ̌0))

=

=I(y;ξ̌0),∵{ξ̌0}⊆{y}︷ ︸︸ ︷
H(ξ̌0)

F (ξ, y)( H(ξ̌0)︸ ︷︷ ︸
=I(v1;ξ̌0),∵{ξ̌0}⊆{v1}

+r1 H(ξ̌0)︸ ︷︷ ︸
=I(v2;ξ̌0),∵{ξ̌0}⊆{v2}

+r2 H(ξ̌0)︸ ︷︷ ︸
=I(v3;ξ̌0),∵{ξ̌0}⊆{v3}

)

=
1

(1 + r1 + r2)F (ξ, y)

Therefore, for ∀r1, r2 > 0, we have:

1

(1 + r1 + r2)F (ξ, y)
< min(

1

F (ξ, y)
,

1

r1F (ξ, y)
,

1

r2F (ξ, y)
,

1

(1 + r1)F (ξ, y)
,

1

(1 + r2)F (ξ, y)
,

1

(r1 + r2)F (ξ, y)
),

= min(UB1
β , UB2

β , UB3
β , UB4

β , UB5
β , UB6

β , UB7
β)

=⇒ UBβ =
1

(1 + r1 + r2)F (ξ, y)

>
1

(1 + r1 + r2)F (v1, v2, v3)

=
1

(1 + r1 + r2)(H(v1) +H(v2) +H(v3)− I(v1; v2)− I(v1; v3)− I(v2; v3) + I(v1; v2; v3))

For the term I(v1; v2) + I(v1; v3) + I(v2; v3)− I(v1; v2; v3), we have:

I(v1; v2) + I(v1; v3) + I(v2; v3)− I(v1; v2; v3) < I(v1; v2) + I(v1; v3) + I(v2; v3)− I(v1; v2) = I(v1; v3) + I(v2; v3),

I(v1; v2) + I(v1; v3) + I(v2; v3)− I(v1; v2; v3) < I(v1; v2) + I(v1; v3) + I(v2; v3)− I(v1; v3) = I(v1; v2) + I(v2; v3),

I(v1; v2) + I(v1; v3) + I(v2; v3)− I(v1; v2; v3) < I(v1; v2) + I(v1; v3) + I(v2; v3)− I(v2; v3) = I(v1; v2) + I(v1; v3).

To calculate I(v1; v2) + I(v1; v3) + I(v2; v3)− I(v1; v2; v3), we sum up the individual inequalities, yielding:

I(v1; v2) + I(v1; v3) + I(v2; v3)− I(v1; v2; v3) <
1

3
(I(v1; v3) + I(v2; v3) + I(v1; v2) + I(v2; v3) + I(v1; v2) + I(v1; v3))

=
2

3

∑
1≤i<j≤3

I(vi; vj)
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We then have:

UBβ >
1

(1 + r1 + r2)(H(v1) +H(v2) +H(v3)− I(v1; v2)− I(v1; v3)− I(v2; v3) + I(v1; v2; v3))

>
1

(1 + r1 + r2)(
∑3

i=1 H(vi)− 2
3

∑
1≤i<j≤3 I(vi; vj))

= M2
u

This completes the proof.

Lemma D.5 (Exclusiveness of superfluous information for three modalities). Under Assumption D.1, the objective
function in Equation (69) is optimized when:

F (ξ) ⊆ {a00, a11, a22, a33, a12, a13, a23} (80)

Proof. We begin by analyzing the change in the loss function of our optimization after adding modality-specific superfluous
information to ξ. Let ξ̂1 represent v1-specific superfluous information that is not incorporated into ξ. Obviously:

{ξ̂1} /∈ {a00, a11, a22, a33, a12, a13, a23}, {ξ̂1} ⊂ F (v1), I(ξ̂1; v1) > 0,

I(ξ̂1; y) = 0, {ξ} ∩ {ξ̂1} = ∅, {v2} ∩ {ξ̂1} = ∅, {v3} ∩ {ξ̂1} = ∅.
(81)

Let ξ̈ = {ξ, ξ̂1}. The difference in loss function between ξ and ξ̈ is computed as:

ℓ(ξ̈)− ℓ(ξ) = −Î(ξ̈; y) + β(I(ξ̈; v1) + r1I(ξ̈; v2) + r2I(ξ̈; v3))

−
(
−Î(ξ; y) + β(I(ξ; v1) + r1I(ξ; v2) + r2I(ξ; v3))

)
= (Î(ξ; y)− Î(ξ, ξ̂1; y)) + β

(
Î(ξ̂1, ξ; v1)− Î(ξ; v1)

+ r1(Î(ξ̂1, ξ; v2)− Î(ξ; v2)) + r2(Î(ξ̂1, ξ; v3)− Î(ξ; v3))
)
,

(82)

Here we have:

Î(ξ; y)− Î(ξ̂1, ξ; y) =
I(ξ; y)

F (ξ, y)
− I(ξ̂1, ξ; y)

F (ξ̂1, ξ, y)

=
I(ξ; y) +

=0 ∵I(ξ̂1,y)=0︷ ︸︸ ︷
I(y; ξ̂1|ξ)

F (ξ, y)
− I(ξ̂1, ξ; y)

F (ξ̂1, ξ, y)

=
I(ξ̂1, ξ; y)

F (ξ, y)
− I(ξ̂1, ξ; y)

F (ξ̂1, ξ, y)

=
I(ξ̂1, ξ; y)

F (ξ, y)
− I(ξ̂1, ξ; y)

F (ξ̂1) + F (ξ, y)︸ ︷︷ ︸
∵ξ̂1⊥{ξ,y}

> 0

(83)

I(ξ̂1, ξ; v1)− I(ξ; v1) =

{ξ̂1}∩F (ξ)=∅︷ ︸︸ ︷
I(v1; ξ̂1|ξ)

= I(v1; ξ̂1) > 0

(84)
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I(ξ̂1, ξ; v2)− I(ξ; v2) =

{ξ̂1}∩F (v2)=∅︷ ︸︸ ︷
I(v2; ξ̂1|ξ)

= 0

(85)

I(ξ̂1, ξ; v3)− I(ξ; v3) = 0 (86)

Thus, we have ℓ(ξ̈)− ℓ(ξ) > 0, if {ξ̂1} ≠ ∅. For superfluous information ξ̂2 specific to v2 and ξ̂3 specific to v3, we arrive
at the same conclusion. Next, we analyze the change in the loss function of our optimization after adding superfluous
information shared by two modalities to ξ. Specifically, let ξ̂12 represent the superfluous information that is shared between
modalities v1 and v2, and not incorporated into ξ. We have:

ξ̂12 /∈ {a00, a11, a22, a33, a12, a13, a23}, {ξ̂12} ⊂ F (v1), {ξ̂12} ⊂ F (v2),

I(ξ̂12; v1) > 0, I(ξ̂12; v2) > 0,

I(ξ̂12; y) = 0, {ξ} ∩ {ξ̂12} = ∅, {v3} ∩ {ξ̂12} = ∅.

(87)

Let ξ̈ = {ξ, ξ̂12}. The difference in loss function between ξ and ξ̈ is computed as:

ℓ(ξ̈)− ℓ(ξ) = −Î(ξ̈; y) + β(I(ξ̈; v1) + r1I(ξ̈; v2) + r2I(ξ̈; v3))

−
(
−Î(ξ; y) + β(I(ξ; v1) + r1I(ξ; v2) + r2I(ξ; v3))

)
= (Î(ξ; y)− Î(ξ, ξ̂12; y)) + β

(
Î(ξ̂12, ξ; v1)− Î(ξ; v1)

+ r1(Î(ξ̂12, ξ; v2)− Î(ξ; v2)) + r2(Î(ξ̂12, ξ; v3)− Î(ξ; v3))
)

(88)

Here we have:

Î(ξ; y)− Î(ξ̂12, ξ; y) =
I(ξ; y)

F (ξ, y)
− I(ξ̂12, ξ; y)

F (ξ̂12, ξ, y)

=
I(ξ; y) +

=0 ∵I(ξ̂12,y)=0︷ ︸︸ ︷
I(y; ξ̂12|ξ)

F (ξ, y)
− I(ξ̂12, ξ; y)

F (ξ̂12, ξ, y)

=
I(ξ̂12, ξ; y)

F (ξ, y)
− I(ξ̂12, ξ; y)

F (ξ̂12, ξ, y)

=
I(ξ̂12, ξ; y)

F (ξ, y)
− I(ξ̂12, ξ; y)

F (ξ̂12) + F (ξ, y)︸ ︷︷ ︸
∵ξ̂12⊥{ξ,y}

> 0

(89)

I(ξ̂12, ξ; v1)− I(ξ; v1) =

{ξ̂12}∩F (ξ)=∅︷ ︸︸ ︷
I(v1; ξ̂12|ξ)

= I(v1; ξ̂12) > 0

(90)

I(ξ̂12, ξ; v2)− I(ξ; v2) = I(v2; ξ̂12) > 0 (91)
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I(ξ̂12, ξ; v3)− I(ξ; v3) =

{ξ̂12}∩F (v3)=∅︷ ︸︸ ︷
I(v3; ξ̂12|ξ)

= 0

(92)

Thus, we have ℓ(ξ̈)− ℓ(ξ) > 0, if {ξ̂12} ̸= ∅. For superfluous information ξ̂13 shared between modalities v1 and v3, as well
as ξ̂23 shared between modalities v2 and v3 , we arrive at the same conclusion. Finally, we analyze the change in the loss
function of our optimization after adding superfluous information shared by all three modalities to ξ. Let ξ̂0 represent the
superfluous information shared by all three modalities and not incorporated into ξ. Then, we have:

ξ̂0 /∈ {a00, a11, a22, a33, a12, a13, a23},

{ξ̂0} ⊂ F (v1), {ξ̂0} ⊂ F (v2), {ξ̂0} ⊂ F (v3),

I(ξ̂0; v1) > 0, I(ξ̂0; v2) > 0, I(ξ̂0; v3) > 0,

I(ξ̂0; y) = 0, {ξ} ∩ {ξ̂0} = ∅.

(93)

Let ξ̈ = {ξ, ξ̂0}. The difference in loss function between ξ and ξ̈ is computed as:

ℓ(ξ̈)− ℓ(ξ) = −Î(ξ̈; y) + β(I(ξ̈; v1) + r1I(ξ̈; v2) + r2I(ξ̈; v3))

−
(
−Î(ξ; y) + β(I(ξ; v1) + r1I(ξ; v2) + r2I(ξ; v3))

)
= (Î(ξ; y)− Î(ξ, ξ̂0; y)) + β

(
Î(ξ̂0, ξ; v1)− Î(ξ; v1)

+ r1(Î(ξ̂0, ξ; v2)− Î(ξ; v2)) + r2(Î(ξ̂0, ξ; v3)− Î(ξ; v3))
)

(94)

Here we have:

Î(ξ; y)− Î(ξ̂0, ξ; y) =
I(ξ; y)

F (ξ, y)
− I(ξ̂0, ξ; y)

F (ξ̂0, ξ, y)

=
I(ξ; y) +

=0 ∵I(ξ̂0,y)=0︷ ︸︸ ︷
I(y; ξ̂0|ξ)

F (ξ, y)
− I(ξ̂0, ξ; y)

F (ξ̂0, ξ, y)

=
I(ξ̂0, ξ; y)

F (ξ, y)
− I(ξ̂0, ξ; y)

F (ξ̂0, ξ, y)

=
I(ξ̂0, ξ; y)

F (ξ, y)
− I(ξ̂0, ξ; y)

F (ξ̂0) + F (ξ, y)︸ ︷︷ ︸
∵ξ̂0⊥{ξ,y}

> 0

(95)

I(ξ̂0, ξ; v1)− I(ξ; v1) =

{ξ̂0}∩F (ξ)=∅︷ ︸︸ ︷
I(v1; ξ̂0|ξ)

= I(v1; ξ̂0) > 0

(96)

I(ξ̂0, ξ; v2)− I(ξ; v2) = I(v2; ξ̂0) > 0 (97)
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I(ξ̂0, ξ; v3)− I(ξ; v3) = I(v3; ξ̂0) > 0 (98)

Thus ℓ(ξ̈)−ℓ(ξ) > 0, if {ξ̂0} ≠ ∅. Put together, the optimization procedure continues until ξ does not encompass superfluous
information, specific to or shared by v1, v2, and v3. That is, F (ξ) ⊆ {a00, a11, a22, a33, a12, a13, a23}. This completes the
proof.

Proposition D.6 (Achievability of optimal MIB for three modalities). Lemma D.3, and Lemma D.5 jointly demonstrate
that the optimal MIB ξopt−three is achievable through optimization of Equation (69) with β ∈ (0,M2

u ].

Proof. From Lemma D.3 and Lemma D.5, we have F (ξ) ⊇ {a00, a11, a22, a33, a12, a13, a23} if β ∈ (0,M2
u ], and F (ξ) ⊆

{a00, a11, a22, a33, a12, a13, a23}, respectively. Thus, F (ξ) = {a00, a11, a22, a33, a12, a13, a23}, which corresponds to
ξopt−three in Definition D.2.

To expedite the training process, we can also set M2
u = 1

5(
∑3

i=1 H(vi)− 2
3

∑
1≤i<j≤3 I(vi;vj))

as an upper bound and M2
l :=

1
5(

∑3
i=1 H(vi))

as a lower bound for β, resulting in β ∈ [M2
l ,M

2
u ].

E. Estimation of Mutual Information and Information Entropy
We apply the Mutual Information Neural Estimation (MINE) method (Belghazi et al., 2018) to estimate the information
entropy of each data modality and the mutual information between data modalities. Given two modalities X and Z, MINE
employs a neural network, implemented as a two-layer Multi-Layer Perceptron (MLP) network with ReLU activation
function (Belghazi et al., 2018), to learn a set of functions {Tθ}θ∈Θ. Each function Tθ : X × Z → R maps sample pairs to
real values, enabling mutual information estimation as:

I(X;Z) = sup
θ∈Θ

EPXZ
[Tθ]− logEPX⊗PZ

[eTθ ]. (99)

Here, EPXZ
[Tθ] represents the expected value of Tθ calculated using sample pairs from the joint distribution PXZ , and

EPX⊗PZ
[eTθ ] represents the expected value of Tθ calculated using sample pairs from the product of marginal distribution

PX ⊗PZ . The joint distribution PXZ is approximated using matched sample pairs (X,Z), while PX ⊗PZ is approximated
using perturbed pairs (X,Z ′), where Z ′ is obtained by shuffling Z. The information entropy H(X) is computed as the
mutual information of X with itself:

H(X) = I(X;X) (100)

Specifically, in this case, Z and Z ′ are replaced by X and X ′, where X ′ is obtained by shuffling X .

F. Synthetic Data
Following (Xue et al., 2023), we simulate pairs of Gaussian observations and task labels, x1 ∈ Rd1 , x2 ∈ Rd2 ;y, where x1

and x2 represent observations from two modalities with dimensionalities d1 and d2, respectively, and y ∈ {0, 1} represents
the corresponding binary label. The feature vectors of x1 and x2 are defined as:

x1 = [b0; b1; a0; a1], x2 = [b0; b2; a0; a2], (101)

where

• a0 ∈ Rd0 ∼ N (0, Id0
) denotes consistent, task-relevant information shared between the modalities;

• a1 ∈ Rd11 ∼ N (0, Id11
) and a2 ∈ Rd21 ∼ N (0, Id21

) represent modality-specific, task-relevant information;

• b0 ∈ Rd′
0 ∼ N (0, Id′

0
) is consistent, superfluous information;

• b1 ∈ Rd12 ∼ N (0, Id12) and b2 ∈ Rd22 ∼ N (0, Id22) are modality-specific, superfluous information.
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Here, N (0, Id) denotes a multivariate Gaussian distribution with mean 0 and identity covariance matrix I of dimensionality
d. The dimensions satisfy:

d1 = d0 + d′0 + d11 + d12, d2 = d0 + d′0 + d21 + d22 (102)

The label y ∈ {0, 1} is generated using a Dirac function ∆, which depends solely on the task-relevant information a0, a1,
and a2:

y := ∆(⟨δ, [a0; a1; a2]⟩ > 0) (103)

where δ ∈ Rd0+d11+d21 ∼ N (0, Id0+d11+d21
) is a randomly sampled vector serving as a separating hyperplane, and ⟨·, ·⟩

denotes the inner product operation.

By adjusting d0, d11, and d21, we can control the distribution of task-relevant information across the two modalities, enabling
the simulation of imbalanced task-relevant information. Specifically, as illustrated in Figure 3, we simulate three SIM
datasets (SIM-{I-III}) to be used in three experimental cases, respectively (see Section 6.2). Firstly, for all cases, we set
d0 = d′0 = 200. For SIM-I used in case i, we set d11(500) ≫ d21(100) so that a1 has a significantly greater impact on
determining y, compared to a2. This configuration implies that Modality I dominates Modality II in terms of task-relevant
information. For SIM-II used in case ii, we switch the setting of d11 and d12, making Modality II dominant over Modality I.
Finally, for SIM-III used in case iii, we set d11 = d12 = 300 to ensure both modalities contribute equally to task-relevant
information.

G. Detailed Dataset Description
SIM. See Appendix F.

CREMA-D. CREMA-D is an audio-visual dataset designed to study multimodal emotional expression and perception (Cao
et al., 2014). It captures actors portraying six basic emotional states—happy, sad, anger, fear, disgust, and neutral—through
facial expressions and speech.

CMU-MOSI. CMU-MOSI (Zadeh et al., 2016) consists of 93 videos, from which 2,199 utterance are generated, each
containing an image, audio, and language component. Each utterance is labeled with sentiment intensity ranging from -3 to
3.

10x-hNB-{A-H}& 10x-hBC-{A-D}. The 10x-hNB-{A-H} datasets comprises eight datasets derived from healthy human
breast tissues, while the 10x-hBC-{A-D} datasets contain four datasets from human breast cancer tissues (Xu et al., 2024b).
As shown in Figure 6, each dataset corresponds to a tissue section and include gene expression and histology modalities.
For each tissue section, gene expression profiles (i.e., gene read counts) are measured at fixed spatial spots across the
section. During data preprocessing, genes detected in fewer than 10 spots are excluded, and raw gene expression counts are
normalized by library size, log-transformed, and reduced to the 3,000 highly variable genes (HVGs) using the SCANPY
package (Wolf et al., 2018; Li et al., 2024; Xu et al., 2024a; Du et al., 2025). The corresponding histology image is segmented
into 32× 32 region patches centered around each spatial spot, from which pathological patches are identified for anomaly
detection. OMIB and baseline models are trained on the 10x-hBC-{A-H} datasets to learn multimodal representations
of normal tissue regions within a compact hypersphere in the latent space. The trained models are then applied to the
10x-hBC-{A-D} datasets during inference.

H. Detailed Network Architecture Implementation
Modality-specific encoder. We implement the encoder as follows:

• The SIM datasets: A two-layer MLP with the GELU activation function, outputting 256-dimensional embeddings.

• The CREMA-D dataset: Both video and audio encoders use ResNet-18, producing 512-dimensional outputs.

• The CMU-MOSI dataset: Conv1D is employed for both the audio and visual modalities, while BERT is utilized for the
textual modality, with all three encoders producing 512-dimensional embeddings.

• The 10x-hNB-{A-H}& 10x-hBC-{A-D} datasets: ResNet-18 and a two-layer graph convolutional network are used for
the histology and gene expression modalities, respectively, with both encoders producing 256-dimensional embeddings.
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Table 7: Overview of the experimental datasets.

Dataset Type Number of samples (Anomaly proportion)

SIM-{I-III} Training 9000

SIM-{I-III} Test 1000

CREMA-D Training 6,698

CREMA-D Test 744

MOSI Training 1281

MOSI Test 685

10x-hNB-A Training 2364

10x-hNB-B Training 2504

10x-hNB-C Training 2224

10x-hNB-D Training 3037

10x-hNB-E Training 2086

10x-hNB-F Training 2801

10x-hNB-G Training 2694

10x-hNB-H Training 2473

10x-hBC-A Test 346 (12.43%)

10x-hBC-B Test 295 (78.64%)

10x-hBC-C Test 176 (27.84%)

10x-hBC-D Test 306 (54.58%)

Task-relevant prediction head. We implement task-relevant prediction head as follows:

• The SIM and CREMA-D datasets: The prediction head is implemented as a single linear layer (input X 512 X 100)
followed by a softmax layer for classification, producing a k-dimensional output, where k is the number of classification
types. The TRB loss LTRB is cross-entropy;

• The CMU-MOSI dataset: The prediction head is implemented as a single linear layer MLP (input X 50 X 1), outputting
a single real value. LTRB is mean squared error;

• The 10x-hNB-{A-H} and 10x-hBC-{A-D} datasets: The prediction head is implemented under the SVDD framework
(Ruff et al., 2018; Xu et al., 2025) as a two-layer MLP (input X 256 X 256) with LeakyReLU activation functions,
producing 256-dimensional latent multimodal representations. LTRB is defined as:

LTRB =
1

N

N∑
i=1

∥ŷ − c∥2 + λ · R(Θ),

c =
1

N

N∑
i=1

ŷ,

(104)

where ŷ denotes the output of the prediction head, c the center of the hypersphere,R(Θ) the function that regularizes
model parameters Θ for reducing model complexity and preventing model collapse, λ is the regularization weight.

Variational Autoencoder. The VAE is implemented as two-layer MLP with two heads, outputting the µ and Σ, respectively.

Cross-Attention Network. For datasets with two modalities, the cross-attention is implemented as:

ξ = Attn ([ζ1∥ζ2];WQ,WK ,WV ) (105)

where Attn represents the standard attention block, WQ, WK , and WV denote learnable projection matrices for queries,
keys, and values respectively. The operator ∥ represents concatenation along the feature dimension.
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For datasets with three modalities, the cross-attention is extended as:

ξ = Attn ([ζ1∥ζ2∥ζ3];WQ,WK ,WV ) (106)

Finally, a Linear layer is applied to map ξ back to the same dimensions as ζ1 and ζ2.

I. Experimental Settings
All experiments are implemented using PyTorch (Paszke et al., 2019), with the following settings:

SIM. We use the Adam optimizer with a learning rate of 1e-4 and train the model for 100 epochs. The dataset consists of
10,000 samples, split into training and test sets with a 9:1 ratio.

CREMA-D. The model is trained using the SGD optimizer with a batch size of 64, momentum of 0.9, and weight decay
of 1e-4. The learning rate is initialized at 1e-3 and decays by a factor of 0.1 every 70 epochs, reaching a final value of 1e-4.
The dataset is divided into a training set containing 6,698 samples and a test set of 744 samples.

CMU-MOSI. We employ the Adam optimizer with a learning rate of 1e-5. All other hyperparameters and settings follow
(Mai et al., 2023). 2,199 utterances are extracted from the dataset, which are split into a training set (1,281 samples) and a
test set (685 samples).

10x-hNB-{A-H}& 10x-hBC-{A-D}. We use the Adam optimizer with a learning rate of 1e-4 and a weight decay of 0.1.
The training batch size is set to 128. The final multimodal representation has a dimensionality of 256.

Gene
expression

vector

···0 1 0

Histology modality Gene expression modality

Abnormal tissue
detection

Detected
pathology region

Figure 6: Genomic multi-modal applications. Genomic data can be divided into two modalities: the histology modality
and the gene expression modality. The histology modality comprises tissue image, while the gene expression modality
consists of gene expression vectors, where each spot corresponds to a vector composed of multiple gene expression values.
These two modalities are spatially aligned through shared spatial information. By integrating and analyzing both modalities,
abnormal regions within the tissue can be effectively detected.

J. Benchmark Methods
Here, we briefly describe the eight benchmark methods used in this study. For non-MIB-based methods:

• Concat refers to simple concatenation of multi-modal features, which yet is the most widely used fusion approach.

• BiGated (Kiela et al., 2018) flexibly integrates information from different modalities through a gating mechanism.

• MISA (Hazarika et al., 2020) decomposes data into modality-invariant and modality-specific representations, using
alignment and divergence constraints for better multimodal representation.
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For MIB-based methods:

• deep IB (Wang et al., 2019) extends VIB to a multi-view setting, maximizing mutual information between labels and
the joint representation while minimizing mutual information between each view’s latent representation and the original
data;

• MMIB-Cui (Cui et al., 2024) addresses the issues of modality noise and modality gap in multimodal named entity
recognition (MNER) and multimodal relation extraction (MRE) by integrating the information bottleneck principle,
thereby enhancing the semantic consistency between textual and visual information;

• MMIB-Zhang (Zhang et al., 2022) effectively controls the learning of multimodal representations by imposing mutual
information constraints between different modality pairs, removing task-irrelevant information within single modalities
while retaining relevant information, significantly improving performance in multimodal sentiment analysis;

• DMIB (Fang et al., 2024) effectively filters out irrelevant information and noise, while introducing a sufficiency loss
to retain task-relevant information, demonstrating significant robustness in the presence of redundant data and noisy
channels.

• E-MIB, L-MIB, and C-MIB (Mai et al., 2023) aim to learn effective multimodal and unimodal representations by
maximizing task-relevant mutual information, eliminating modality redundancy, and filtering noise, while exploring
the effects of applying MIB at different fusion stages.

K. Evaluation Metrics
In Emotion Recognition, we use accuracy (Acc) as the evaluation metric. For Multimodal Sentiment Analysis, we use the
mean absolute error (MAE) and Pearson’s correlation coefficient (Corr) to evaluate the predicted scores against the true
scores. Additionally, as sentiment intensity scores can be divided into positive and negative categories, F1-score and polarity
accuracy (Acc-2) are also utilized to evaluate prediction results as a binary classification task. Additionally, the interval of
[−3, 3] contains seven integer scores to which each predicted score is neared to. This allows the using of categorical accuracy
(Acc-7) to evaluate the prediction results. Finally, for the Anomalous Tissue Detection task, we evaluate performance using
AUC score and F1-score. The AUC score is calculated by varying the anomaly threshold over all tissue regions’ anomalous
scores. To compute the F1-score, a threshold is first identified such that the number of regions exceeding it matches the true
number of anomalous regions, after which the F1-score is computed for regions whose scores are above this threshold.
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L. Algorithmic workflow of OMIB

Algorithm 1 Warm-up training

Input: Modality vk, k ∈ {1, 2}, Maximum epochs Emax, Batch size N .
Notation: Enck: Unimodal encoder for modality vk; Deck: Task-relevant prediction head for modality vk; zk: Latent

representation of modality vk; ek: Stochastic Gaussian noises;
Output: Enck and Deck.

1: Initialize Enck and Deck, ∀k ∈ {1, 2};
2: while epoch < Emax do
3: Sample a batch {vik | i ∈ {1, 2, . . . , N}} from each modality k ∈ {1, 2};
4: for each i ∈ {1, 2, . . . , N} do
5: for each modality k ∈ {1, 2} do
6: zik = Encik(v

i
k);

7: eik ∼ N (0, I);
8: ŷik = Deck([z

i
k, e

i
k]);

9: end for
10: end for
11: Compute LTRBk

as in Equation (4) for each modality k ∈ {1, 2};
12: Update Enck and Deck using gradient descent;
13: end while
14: return Enck and Deck

38



Learning Optimal Multimodal Information Bottleneck Representations

Algorithm 2 Main training

Input: Modality vk, Unimodal encoderEnck, Task-relevant prediction head Deck, ∀k ∈ {1, 2}, Maximum epochs Emax,
Batch size N .

Notation: V AEk: Variational encoder for modality vk; ζk: Latent representation of modality vk after reparameterization;
CAN : Cross-attention network; D̂ec: OMF task-relevant prediction head; MINE: Mutual Information Neural Estima-
tion (MINE); ϵk: Standard Gaussian samples.

Output: Enck, ∀k ∈ {1, 2}, OMF (V AEk, ∀k ∈ {1, 2}, CAN , and D̂ec).
1: for each modality k ∈ {1, 2} do
2: H(vk) = MINE(vk, vk);
3: end for
4: I(v1; v2) = MINE(v1, v2);
5: Sample β from the range [Ml,Mu], where Ml :=

1
3(H(v1)+H(v2))

, Mu := 1
3(H(v1)+H(v2)−I(v1;v2))

;
6: while epoch < Emax do
7: Sample a batch {vik | i ∈ {1, 2, . . . , N}} from each modality k ∈ {1, 2};
8: for each i ∈ {1, 2, . . . , N} do
9: for each modality k ∈ {1, 2} do

10: zik = Enck(v
i
k);

11: µi
k,Σ

i
k = V AEi(z

i
k);

12: ζik = µi
k +Σi

k × ϵi;
13: end for
14: ξi = CAN(ζi1, ζ

i
2);

15: for each modality i ∈ {1, 2} do
16: ŷik = Deci([z

i
k, ξ

i]);
17: end for
18: ŷi = D̂ec(ξi);
19: Adjust r as defined in Equation (11);
20: end for
21: Compute LOMF as in Equation (10), and LTRBk

as in Equation (4) for each modality i ∈ {1, 2};
22: L = LOMF + LTRB1 + LTRB2 ;
23: Update parameters of Enck, V AEk, CAN , Deck, and D̂ec using gradient descent;
24: end while
25: return Enck, ∀k ∈ {1, 2}, OMF (V AEk, ∀k ∈ {1, 2}, CAN , and D̂ec)
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