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Abstract

Taxonomies provide structural representations001
of knowledge and are crucial in various ap-002
plications. The task of taxonomy expansion003
involves integrating emerging entities into ex-004
isting taxonomies by identifying appropriate005
parent entities for these new query entities.006
Previous methods rely on self-supervised tech-007
niques that generate annotation data from ex-008
isting taxonomies but are less effective with009
small taxonomies (fewer than 100 entities). In010
this work, we introduce CODETAXO, a novel011
approach that leverages large language models012
through code language prompts to capture the013
taxonomic structure. Extensive experiments014
on five real-world benchmarks from different015
domains demonstrate that CODETAXO consis-016
tently achieves superior performance across all017
evaluation metrics, significantly outperforming018
previous state-of-the-art methods. The code019
and data are available at https://anonymous.020
4open.science/r/CodeTaxo4Review-47DB.021

1 Introduction022

Taxonomies are hierarchical structures encoding023

hypernym–hyponym (i.e., “is-A”) relations be-024

tween concepts or entities. Relational knowl-025

edge derived from taxonomies has been widely026

leveraged to identify semantic relevance for web027

search (Yin and Shah, 2010; Liu et al., 2020; Kang028

et al., 2024), personalized recommendation (Zhang029

et al., 2014; Tan et al., 2022; Huang et al., 2019),030

and question answering (Yang et al., 2017). How-031

ever, existing taxonomies are mainly constructed032

by experts or through crowd-sourcing, making the033

process time-consuming, labor-intensive, and re-034

stricted in coverage (Bordea et al., 2016; Jurgens035

and Pilehvar, 2016). As new entities emerge, con-036

tinually enriching taxonomies with these additions037

becomes vital. To address these challenges, taxon-038

omy expansion aims to integrate new entities into039

existing taxonomies automatically.040
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(a) Discriminative Methods: A trained scoring function
selects the most appropriate parent entity from the taxon-
omy for a given query entity.
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(b) Generative Methods: LLMs generate the parent entity
from the taxonomy based on the query entity.

Figure 1: Two Types Taxonomy Expansion Methods

As shown in Figure 1a, recent taxonomy ex- 041

pansion methods mainly rely on discriminative 042

methods that model hierarchical structures through 043

techniques like Egonets (Shen et al., 2020), mini- 044

paths (Yu et al., 2020), and Ego-Trees (Wang et al., 045

2021). Although pre-trained language models 046

(PLMs) enhance these methods by encoding enti- 047

ties’ textual descriptions (Wang et al., 2021, 2022; 048

Liu et al., 2021b; Xu et al., 2022), their reliance on 049

limited self-supervised annotations often restricts 050

performance. In contrast, Generative Large Lan- 051

guage Models (LLMs) such as GPT-4 (Achiam 052

et al., 2023) and Llama family (Touvron et al., 053

2023; Dubey et al., 2024) have recently shown re- 054

markable capabilities in text comprehension and 055

generation, making them highly effective for tasks 056

aimed at generating structural knowledge (Ye et al., 057

2022; Bi et al., 2024; Sun et al., 2024a,b). Increas- 058

ing LLM parameters boosts generalization, surpass- 059

ing smaller models and enabling superior few-shot 060

or zero-shot performance. Even with limited anno- 061

tations, LLMs effectively leverage extensive knowl- 062

edge embedded within their parameters, acquired 063

from large-scale pre-training corpora. In Figure 1b, 064

we illustrate the pipeline to how generative meth- 065

ods are applied to the taxonomy expansion task. 066

1

https://anonymous.4open.science/r/CodeTaxo4Review-47DB
https://anonymous.4open.science/r/CodeTaxo4Review-47DB
https://anonymous.4open.science/r/CodeTaxo4Review-47DB


...

# creating query node

organic_chemistry = Entity(name='...', 
                           description='...',
                           parent=None, 
                           child=[])

# finding the parent of the query node

# then generating a comment to explain
why it is the parent of the given query
node (optional)

science

chemistry

class Entity:
    def __init__(self, name: str, description: str, 
                parent: str, child: List['Entity']):

<Other Selected Entity Instances>

chemistry = Entity(name='chemistry', 
   description='chemistry is ... ', 
   parent='science', 

           child=['thermochemistry',...,])

<Other Selected Entity Instances>

thermo-
chemistry

electro-
chemistry

organic
chemistry

organic_chemistry.add_parent(chemistry)

physics biology

Term: 

Definition: 

SimCSE

Top n%
Similarity # creating query node

thermochemistry = Entity(name='thermochemistry', 
                         description='...',
                         parent=None, child=[])

# Finding the parent of query node

thermochemistry.add_parent(chemistry)

# creating query node

thermochemistry = Entity(name='thermochemistry', 
                         description='...',
                         parent=None, child=[])

# Finding the parent of query node

thermochemistry.add_parent(chemistry)

# creating query node

thermochemistry = Entity(name='thermochemistry', 
                         description='...',
                         parent=None, child=[])

# Finding the parent of query node

thermochemistry.add_parent(chemistry)

# creating query node

thermochemistry = Entity(name='thermochemistry', 
                         description='...',
                         parent=None, child=[])

# Finding the parent of query node

thermochemistry.add_parent(chemistry)

# creating query node

thermochemistry = Entity(name='thermochemistry', 
                         description='...',
                         parent=None, child=[])

# finding the parent of query node

thermochemistry.add_parent(chemistry)

Taxonomy Code Representation

Few-shot Demo. Construction

Code Completion Prompt

Output Format 
&

Optional Natural Language
ExplanationSemantic Similarity Filter

Input Taxonomy 
& 

Query Entity

Figure 2: The overview of the pipeline for CODETAXO: CODETAXO reformulates the task of integrating a query
entity q into an existing taxonomy T0 as a code completion task using code-based prompts for LLMs.

Two key challenges arise when applying LLMs067

to taxonomy expansion. First, unlike traditional068

text-to-text NLP tasks such as question answer-069

ing and machine translation, representing the tax-070

onomic structure for this task in natural language071

is inherently challenging. Specifically, the process072

requires "flattening" the taxonomy into a sequence073

of parent-child entity pairs (Madaan et al., 2022),074

effectively serializing a hierarchical structure into075

linear text. This serialized format is notably differ-076

ent from the unstructured text that LLMs primarily077

encounter during pre-training. Furthermore, while078

semantically related words in natural language are079

usually located near each other, linearizing a tax-080

onomy can separate conceptually related entities081

by significant distances within the sequence. This082

disparity adds to the difficulty of aligning LLM083

outputs with the desired structured representation.084

Second, scaling to large taxonomies amplifies the085

problem, as including every entity from the existing086

taxonomy in the prompt is infeasible. The limited087

contextual window size of current LLMs and the088

associated computational overhead imposes strict089

constraints. Even if it were possible to include090

thousands of entities within a prompt, the resulting091

structural information loss would impair the clarity092

of entity-specific distinctions, reducing the model’s093

capacity to effectively utilize the taxonomy.094

To overcome these challenges, we propose095

CODETAXO, a novel taxonomy expansion ap-096

proach that leverages code language as prompts.097

Code-based representations have shown promise098

in structure prediction tasks (Madaan et al., 2022;099

Li et al., 2023; Wang et al., 2023; Li et al., 2024;100

Bi et al., 2024), as code languages provide a more101

natural format for structural data. In CODETAXO,102

we frame taxonomy expansion as a code comple-103

tion task. We introduce a base Entity class to104

store entity surface names, definitions, parent refer-105

ences, and child lists, along with two methods for 106

modifying the taxonomic relations between entities. 107

Each existing taxonomy entity is instantiated as a 108

corresponding Entity object. Due to constraints 109

of contextual window size, we apply a similarity- 110

based filter, using SimCSE (Gao et al., 2021) to 111

encode textual description for entities, to include 112

only the most relevant entities in the prompt 113

We evaluate CODETAXO through extensive ex- 114

periments on two sets of small-scale WordNet and 115

Graphine sub-taxonomies (Bansal et al., 2014; Liu 116

et al., 2021a), as well as three large-scale SemEval- 117

2016 taxonomies (Bordea et al., 2016). Our one- 118

shot CODETAXO surpasses all self-supervised base- 119

lines trained on large-scale SemEval-2016 annota- 120

tions, achieving relative accuracy improvements 121

of 10.26%, 8.89%, and 9.21% on SemEval-Sci, 122

SemEval-Env, and SemEval-Food, respectively. 123

Additionally, we evaluated CODETAXO using vari- 124

ous open-source LLMs, revealing several interest- 125

ing observations discussed in this work. 126

In summary, our main contributions include: 127

• We introduce CODETAXO, an innovative in- 128

context learning method that utilizes code lan- 129

guage prompts to represent taxonomic rela- 130

tionships between entities, thereby improving 131

the effectiveness of taxonomy expansion. 132

• We develop a similarity-based filter, which 133

employs a small pre-trained model to encode 134

the textual descriptions of entities, ensuring 135

that only highly relevant entities are included 136

in the prompt concerning the query entity. 137

• Extensive experiments demonstrate that 138

CODETAXO significantly enhances the per- 139

formance of taxonomy expansion across two 140

sets of small-scale sub-taxonomies and three 141

large-scale taxonomies. 142
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Task Instruction

Taxonomy Code Representation

Few-shot Demo.

Code Completion Prompt & Output

Complete the next line of code according to the comments and the given code
snippet. You need to find the parent of the query node in the given current
taxonomy and use the add_parent function.                                                        (a)

The parent of the given query node always exists in the given current taxonomy,
so do NOT generate a node that is NOT in the given current taxonomy. Note that
you only need to complete the next ONE line of code a one-line explanation to
explain why it is the parent node of the given query node, DO NOT generate any
additional content.                                                                                               (b)

Demo.

 = Entity(name=      , description=      ,  parent=None, child=[])

# creating query node

# Finding the parent of query node

<Entity class defined in Section 3.2>

.add_parent(   )

   = Entity(name=      , description=      , parent=     , child=     )

where the textual description of     is                           ,      is the parent of    ,
and                                      is the list of children of    .

:FOR EACH             

Figure 3: Prompt Overview of CODETAXO

2 Problem Definition143

Definition 1 (Taxonomy) We follow the definition144

of taxonomy in (Jiang et al., 2023). A taxonomy145

T = (E ,H) is a tree-like structure, where each146

entity e ∈ E is a conceptual entity, and each edge147

h ∈ H represents the hypernymy-hyponymy rela-148

tion between the two entities connected by it. Each149

entity e is associated with a set of textual descrip-150

tion Xe = {Xt
e, X

d
e }, where Xt

e is its term and Xd
e151

is its definition. Meanwhile, each directed edge152

h = ⟨p, c⟩ ∈ H represents a parent-child relation-153

ship that points to a child entity c from its most154

exact hypernymy entity p.155

Definition 2 (Taxonomy Expansion) Given a set156

of emerging conceptual entities E ′, taxonomy ex-157

pansion aims to incorporate these entities into an158

existing seed taxonomy T0 = (E0,H0). The goal159

is to expand T0 to be a larger taxonomy T =160

(E0 ∪ E ′,H′). To insert each query entity q ∈ E ′,161

we identify an appropriate anchor entity a ∈ E0,162

and introduce a new edge ⟨q, a⟩. Consequently, the163

updated edge set is H′ = H0∪q∈E ′{⟨q, a⟩}.164

3 Methodology165

In this section, we provide a comprehensive166

overview of our proposed CODETAXO designed for167

addressing the taxonomy expansion task. Specifi-168

cally, CODETAXO expands the existing taxonomy169

by prompting LLMs with code language. The170

pipeline of CODETAXO is shown in Figure 2. Our171

CODETAXO consists of three parts: Task Instruc-172

from typing import List

class Entity:
    def __init__(
                self, 
                name: str, 
                description: str, 
                parent: 'Entity', 
                child: List['Entity']
    ):
        self.name = name
        self.description = description
        self.parent = parent
        self.child = child

    def add_parent(self, parent: 'Entity'):
        self.parent = parent
        parent.add_child(self)

    def add_child(self, child: 'Entity'):
        self.child.append(child)

Figure 4: Python code in CODETAXO defining a Entity
class for managing parent-child relations.

tion, Taxonomy Code Representation, and Few- 173

shot Demonstrations Construction. 174

3.1 Task Instruction 175

To enhance the effectiveness and accuracy of LLMs 176

in completing the taxonomy expansion task, we 177

propose a detailed task description along with a set 178

of fundamental rules, denoted as R, for expanding 179

the existing taxonomy via the query entity. As illus- 180

trated in Figure 3, component (a) outlines the objec- 181

tives of the taxonomy expansion task, framing it as 182

a code completion task and specifying add_parent 183

function should be employed. In component (b), 184

we emphasize a set of fundamental rules R for 185

the taxonomy expansion task. These rules include 186

the following: 1. Do not use entities that are not 187

covered in the existing taxonomy T0 = (E0,H0) 188

(r1); 2. Maintain the output generation format by 189

LLMs, consisting of one line of code followed by 190

one line explaining why the model made that pre- 191

diction (r2); 3. Refrain from generating additional 192

content (r3). Additionally, the rule for generating 193

an explanation for the prediction in r2 is optional 194

for future analysis. In CODETAXO, this rule is 195

omitted as generating explanations is not required. 196

3.2 Taxonomy Code Representation 197

To represent the existing taxonomy T0 = (V0, E0) 198

as code language, we concatenate the entity class 199

definition, representation of existing taxonomic re- 200

lations, and the code completion prompt. We use 201

Python as the programming language for the code 202

prompt due to its widespread popularity. 203

3.2.1 Entity Class Definition 204

First, we define a base type Entity to be inherited 205

by each entity mentioned in the taxonomy expan- 206
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sion. In Figure 4, we define a Python class named207

Entity that models a taxonomic structure with208

parent-child relations. The first line imports the209

List type from the typing module, which is used210

for type hinting. This allows the child attribute to211

be explicitly declared as a list of Entity objects.212

The Entity class encapsulates the attributes and213

methods for managing hierarchical entities. The214

__init__ method initializes an instance of the215

Entity class with the following parameters:216

• name: A string storing the term of the entity.217

• description: A string storing the textual de-218

scription of the entity219

• parent: An instance of the Entity class, de-220

noting the parent entity within the taxonomy.221

• child: A list of entities, each an instance of222

the Entity class, storing the entity’s children.223

These instance attributes are assigned as follows:224

self.name, self.description, self.parent,225

and self.child. Additionally, since we consider226

that each entity in the taxonomy should only have227

one parent entity, we do not use the List type for228

the parent attribute, unlike the child attribute.229

The Entity class includes two methods for mod-230

ifying the parent-child relations between entities.231

The first method, add_parent, assigns a parent en-232

tity to the current entity. It takes one parameter,233

parent, which is an instance of the Entity class.234

The second method, add_child, appends the child235

entity to the self.child list of the current entity.236

This method also requires one parameter, child,237

which is an instance of the Entity class.238

3.2.2 Representing the Existing Taxonomy239

To facilitate the taxonomy expansion, the initial240

taxonomy T0 is encoded using a programming lan-241

guage. Instances of the Entity class, as defined in242

Section 3.2.1, are created for each entity e in the243

set E0 of T0. The taxonomy T0 is traversed from244

top to bottom, and for each entry, an entity e ∈ E0245

is instantiated as follows:246

e = Entity(name = Xt
e, description = Xd

e ,247

parent = pe, child = Ce)248

where pe is the parent entity of e, and Ce =249

[c1e, c
2
e, . . . , c

n
e ] is the list of its child entities.250

3.2.3 Semantic Similarity Filter251

Including all entity e ∈ E0 to represent the ex-252

isting taxonomy T0 presents two problems. First,253

large-scale taxonomies overload the LLM’s limited254

context window. Second, it unnecessarily expands 255

the search space, introducing irrelevant entities and 256

redundant information. To mitigate these issues, 257

we propose a Semantic Similarity Filter that selects 258

only entities relevant to the query q for inclusion in 259

the prompt context. 260

To compute the similarity between a query en- 261

tity q with its descriptive text X q = {Xt
q, X

d
q } 262

and an entity ei ∈ E0 with its descriptive text 263

X ei = {Xt
ei , X

d
ei}, we employ the pre-trained 264

language model (PLM) as textual encoder. We 265

concatenate the query entity q and the i-th entity 266

ei with special tokens [CLS] and [SEP], then en- 267

code the sequence using a pre-trained SimCSE 268

model (Gao et al., 2021). SimCSE converts them 269

into m-dimensional representation q, ei ∈ Rm: 270

q = PLM([CLS] ⊕Xt
q ⊕Xd

q ⊕ [SEP]) 271

ei = PLM([CLS] ⊕Xt
ei ⊕Xd

ei ⊕ [SEP]) 272

The semantic relevance is calculated using co- 273

sine similarity between {ei}ni=1 and q. We select 274

the Top-k entities most similar to query entity q 275

from the entity set E0 in T0 as follow: 276

I = argmax
I⊆{1,2,...,n},

|I|=k

∑
i∈I

cos_sim(ei,q) 277

where I is the index set of the selected entities 278

Esel = {ei|i ∈ I} that represents the existing tax- 279

onomy. k is set to 50% of the entities in E0. 280

3.2.4 Code Completion Prompt. 281

The code completion prompt involves the instantia- 282

tion of a query entity q as an instance of the Entity 283

class, as defined in Section 3.2.1. Since the query 284

entity q lacks information about its parent and child 285

entities, it is instantiated as follows: 286

q = Entity(name = Xt
q, description = Xd

q , 287

parent = None, child = []) 288

Here, Xt
q and Xd

q define the query’s name and de- 289

scription, while None and [] indicate the absence 290

of parent and child entities. 291

We include the requirement “Find the parent of 292

the query node” as a comment to guide LLMs in 293

selecting an anchor entity a ∈ Esel as the parent 294

entity for entity q. The output is the query q, an 295

instance of the Entity class, which invokes the 296

predefined method add_parent() to assign a as 297

its parent entity like q.add_parent(a). 298
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Dataset SemEval-Sci SemEval-Env SemEval-Food WordNet Graphine

Metric Acc Wu&P Acc Wu&P Acc Wu&P Acc Wu&P Acc Wu&P

Self-supervised Setting
TaxoExpan 27.8 57.6 11.1 54.8 27.6 54.2 19.8 64.8 24.5 65.9
STEAM 36.5 68.2 36.1 69.6 34.2 67.0 23.2 62.4 20.3 63.1
HEF 53.6 75.6 55.3 71.4 47.9 73.5 16.4 60.3 25.5 66.5
Musubu 44.9 76.2 45.3 65.4 42.3 72.4 28.5 64.0 35.4 75.2
TEMP 57.8 85.3 49.2 77.7 47.6 81.0 29.4 65.7 35.9 73.8
BoxTaxo 31.8 64.7 38.1 75.4 31.4 66.8 26.4 63.9 29.2 68.2
TaxoPrompt 61.4 85.6 57.4 83.6 53.2 83.1 40.3 71.5 33.9 74.4
TaxoInstruct 45.9 76.2 48.8 77.2 34.3 70.2 43.3 71.8 31.8 69.0

1-shot Setting
NL (GPT-4o) 54.8 88.3 52.5 81.3 55.5 85.6 72.2 90.7 69.8 89.1
CODETAXO (GPT-4o) 67.7 89.2 62.5 86.1 58.1 85.3 74.5 91.3 72.9 91.0
NL (GPT-4o-mini) 50.0 83.0 35.0 76.1 55.1 87.2 60.1 86.0 58.3 85.2
CODETAXO (GPT-4o-mini) 58.1 85.6 42.5 76.0 55.9 85.3 68.8 89.2 61.5 85.1

5-shot Setting
NL (GPT-4o) 56.5 84.3 60.0 85.5 52.5 86.9 72.2 90.1 69.3 90.0
CODETAXO (GPT-4o) 66.1 88.0 67.5 87.0 60.2 85.7 76.5 91.9 77.6 93.4
NL (GPT-4o-mini) 53.2 84.8 42.5 80.2 57.2 87.6 63.4 87.3 63.5 88.6
CODETAXO (GPT-4o-mini) 59.7 84.8 47.5 78.3 58.9 87.9 66.8 88.6 70.3 89.1

Table 1: Performance on taxonomy expansion across two small-scale taxonomies (WordNet and Graphine) and three
large-scale taxonomies (SemEval2016: science, environment, food). Bold indicates the highest score; underlined
indicates the second-highest. All metrics are in percentages (%).

We propose incorporating an optional feature299

in the code completion prompt: “then generating300

a comment to explain why it is the parent of the301

given query node”. This feature allows the LLM to302

simultaneously generate both the prediction and its303

rationale, improving explainability and revealing304

interesting insights, as discussed in Section 4.5.305

3.3 Few-shot Demonstration Construction306

To enhance LLMs’ ability to expand our existing307

taxonomy, we propose a method for constructing308

demonstrations using the initial taxonomy T0. Our309

demonstration selection strategy focuses on the se-310

mantic similarity between the query entity q and311

entities e ∈ E0 in the existing taxonomy. Specifi-312

cally, we use SimCSE encoding to calculate these313

similarities, selecting the top-5 entities from the314

existing set E0 based on their similarity to q:315

Id = argmax
Id⊆{1,2,...,n},

|Id|=5

∑
i∈Id

cos_sim(ei,q)316

Here, Id represents the indices of entities selected317

for the demonstration set Edemo = {ei|i ∈ Id}.318

For each demonstration di, we treat each entity319

ei ∈ Edemo as a query entity and, following the320

procedure outlined in Section 3.2.4, add its parent321

entity using the add_parent method.322

4 Experiments 323

4.1 Experimental Settings 324

Datasets. We evaluate taxonomy expansion on 325

small-scale WordNet sub-taxonomies (Bansal et al., 326

2014) and Graphine taxonomies (Liu et al., 2021a). 327

Additionally, we evaluate three large-scale tax- 328

onomies from SemEval-2016 (Bordea et al., 2016) 329

across science, environment, and food domains. 330

For all benchmarks, 20% of leaf entities are re- 331

served for testing, with the remaining entities used 332

for training. See App. A.1 for details. 333

Baselines. We evaluate CODETAXO, using 334

both GPT-4O and GPT-4O-MINI, against self- 335

supervised baselines including TaxoExpan (Shen 336

et al., 2020), STEAM (Yu et al., 2020), HEF (Wang 337

et al., 2022), Musubu (Takeoka et al., 2021), 338

TEMP (Liu et al., 2021b), BoxTaxo (Jiang et al., 339

2023), TaxoPrompt (Xu et al., 2022), and TaxoIn- 340

struct (Shen et al., 2024), and prompting LLMs 341

through natural language. See details in App. A.2. 342

Evaluation Metrics: We use two Accuracy 343

(ACC) and Wu & Palmer similarity (Wu&P) to 344

evaluate the performance of CODETAXO and base- 345

lines. See details in App. A.3 346
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Method Def. SemEval-Sci SemEval-Env SemEval-Food WordNet Graphine

Acc Wu&P Acc Wu&P Acc Wu&P Acc Wu&P Acc Wu&P
1-shot Setting
NL (GPT-4o) ✓ 54.8 88.3 52.5 81.3 55.5 85.6 72.2 90.7 69.8 89.1

× 59.7 89.0 57.5 82.8 56.4 87.0 68.1 89.1 68.8 90.1
CODETAXO (GPT-4o) ✓ 67.7 89.2 62.5 86.1 58.1 85.3 74.5 91.3 72.9 91.0

× 56.5 84.5 55.0 85.1 56.8 86.1 66.4 88.4 69.8 88.8

5-shot Setting
NL (GPT-4o) ✓ 56.5 84.3 60.0 85.5 52.5 86.9 72.2 90.1 69.3 90.0

× 59.7 89.6 50.0 79.3 55.5 87.6 70.5 89.9 68.8 88.9
CODETAXO (GPT-4o) ✓ 66.1 88.0 67.5 87.0 60.2 85.7 76.5 91.9 77.6 93.4

× 51.6 80.6 65.0 86.7 57.6 86.1 67.8 88.8 68.8 89.7

Table 2: Impact of Definition Sentences (Def.) on CODETAXO and NL Performance in 1-Shot and 5-Shot Settings.
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Figure 5: Performance comparison of NL and CODE-
TAXO (CT) across Llama trained on Code and Natural
Language domains. Due to limited contextual window
sizes, evaluations were conducted on small-scale sub-
taxonomies from WordNet (WN) and Graphine (G).

4.2 Experimental Results347

4.2.1 Can CODETAXO expand taxonomy348

better than other baselines?349

We evaluate CodeTaxo against baseline methods350

for taxonomy expansion in Table 1, including self-351

supervised and in-context learning approaches. On352

WordNet and Graphine, both NL and CODETAXO353

significantly outperform self-supervised baselines.354

In one-shot settings, CODETAXO improves accu-355

racy by 72.06% and 103.06% over the best self-356

supervised methods, demonstrating that minimal357

annotated data effectively unlocks LLMs’ internal358

knowledge, while self-supervised methods strug-359

gle with limited-scale taxonomies. On large-scale360

SemEval-2016 taxonomies, CODETAXO surpasses361

the best self-supervised baseline, TaxoPrompt,362

by 10.26%, 8.89%, and 9.21% on SemEval-Sci,363

SemEval-Env, and SemEval-Food, respectively.364

While the NL prompt underperforms TaxoPrompt365

on SemEval-Sci and SemEval-Env, it exceeds Tax-366

oPrompt on SemEval-Food but still trails Code-367

Taxo by 4.68%, highlighting CODETAXO’s supe-368

rior ability to capture taxonomic structures. Perfor-369

mance depends on LLM capability and demonstra-370

tion count, with GPT-4o outperforming GPT-4o-371

mini and more demonstrations improving accuracy372

Setting Config. SemEval-Sci SemEval-Env SemEval-Food

Demo. Filter Acc Wu&P Acc Wu&P Acc Wu&P

1-shot

× × 50.0 84.0 47.5 81.1 56.4 85.3
× ✓ 61.3 84.4 55.0 83.2 54.2 84.6
✓ × 61.3 85.9 47.5 79.0 57.2 86.7
✓ ✓ 67.7 89.2 62.5 86.1 58.1 85.3

5-shot

× × 58.1 86.0 55.0 82.8 56.4 86.5
× ✓ 59.7 84.7 57.5 83.7 58.5 85.8
✓ × 61.3 88.5 55.0 85.3 57.6 86.5
✓ ✓ 66.1 88.0 67.5 87.02 60.2 85.7

Table 3: Ablation Study of two major modules in the
CODETAXO: All metrics are presented in percentages
(%). Configurations indicate whether Demonstration Se-
lection (Demo.) and Semantic Similarity Filter (Filter)
were employed.

across benchmarks, underscoring the value of high- 373

quality demonstrations for taxonomy expansion. 374

375

4.2.2 How does CODETAXO perform across 376

different large language models? 377

We evaluate CODETAXO, a prompting method 378

specifically designed for programming languages, 379

by comparing its effectiveness against natural lan- 380

guage prompting on both general-purpose LLMs 381

and Code-LLMs. We used Llama-family models, 382

including LLaMa-3-70B-instruct, CodeLLaMA- 383

70B-instruct, and the smaller CodeLLaMA-34B- 384

instruct, to evaluate how model size affects perfor- 385

mance. Given the limited contextual capacity of 386

these models, we focused our evaluation on Word- 387

Net and Graphine, as shown in Figure 5. The re- 388

sults highlight CODETAXO’s superior accuracy and 389

Wu&P scores across all tested models, outperform- 390

ing natural language prompts in representing taxo- 391

nomic structures for black-box LLMs like GPT-4 392

and open-source LLMs. The analysis further re- 393

veals that CODETAXO benefits more significantly 394

from Code-LLMs, with a 13.33% accuracy im- 395

provement on WordNet compared to 6.51% for 396

natural language prompts when transitioning to 397
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Figure 6: Effect of Top-K relevant entities selected
through SimCSE-based Semantic Similarity Filter.

code language prompting. Notably, CodeLLaMA-398

34B-instruct, despite being smaller, showed better399

performance on WordNet and Graphine, emphasiz-400

ing CODETAXO’s efficiency and robustness.401

4.3 Hyperparmeter Analysis of CODETAXO402

This section explores the impact of selecting Top-403

K entities using the Semantic Similarity Filter404

on model performance, with experiments con-405

ducted using GPT-4o-mini across three SemEval406

taxonomies. As shown in Figure 6, increasing the407

number of Top-K entities generally enhances per-408

formance by retaining more entities, thereby reduc-409

ing the likelihood of filtering out the ground truth410

and boosting prediction accuracy. However, this411

improvement involves a trade-off: a smaller search412

space sharpens the model’s focus but increases the413

risk of excluding the ground truth. For instance,414

in the SemEval-Sci taxonomy, the model achieved415

optimal performance with a Hit@25 score of 78%416

by retaining the top 25 entities, demonstrating the417

filter’s ability to balance search space and coverage.418

To further refine this balance, we retained the top419

50% of entities in our experiments, ensuring that420

Hit@n exceeded 90% across all benchmarks.421

4.4 Ablation Study422

4.4.1 Insight of Definition Sentences423

We performed an ablation study on definition sen-424

tences, a vital data source for taxonomy expan-425

sion tasks, using two prompting methods: NL426

and CODETAXO. Our results in Table 2 show427

that without definition sentences, CODETAXO suf-428

fers a substantial drop in accuracy and Wu&P429

across all benchmarks in both 1-shot and 5-shot430

settings, highlighting its reliance on semantic in-431

formation from definitions to establish taxonomic432

relationships. Interestingly, NL performed bet-433

ter without definition sentences in specific bench-434

marks (SemEval-Sci, SemEval-Env, SemEval-435

Food) in the 1-shot setting, and in SemEval-Sci and436

SemEval-Food in the 5-shot setting. This suggests437

that NL struggles to process definition information438

effectively, potentially leading to incorrect predic- 439

tions when overloaded with definitional content. 440

4.4.2 Effevtiveness of Demo. Selection and 441

Semantic Similarity Filter 442

We performed an ablation study on the three Se- 443

mEval2016 benchmarks mentioned above to as- 444

sess the effectiveness of the two primary modules 445

in CODETAXO: Demonstration Selection (Demo.) 446

and the Semantic Similarity Filter (Filter). Due to 447

the relatively small size of the taxonomies in Word- 448

Net and Graphine, filtering redundant entities from 449

the existing taxonomies was unnecessary. The re- 450

sults, presented in Table 3, indicate that selecting 451

demonstrations related to the query entity and filter- 452

ing out unrelated entities in the existing taxonomy 453

significantly improves taxonomy expansion. This 454

finding suggests that incorporating more relevant 455

contextual information and reducing redundant in- 456

formation to narrow the search space is beneficial 457

for both accuracy and the Wu&P score across all 458

SemEval2016 benchmarks. 459

4.5 Case Study 460

This section presents a case study demonstrat- 461

ing the effectiveness of our CODETAXO frame- 462

work by comparing its outputs to those of the 463

natural language (NL) prompt, alongside model 464

predictions and corresponding definitions in Ta- 465

ble 4. Notably, CODETAXO aligns closely with 466

the ground truth and generates explanations us- 467

ing the prompt from Section 3.2.4 to facilitate in- 468

sightful discussions. For instance, in the query 469

functional genomics, CODETAXO accurately clas- 470

sifies it under genomics, emphasizing its focus on 471

the “functions and interactions of genes within the 472

genome”, whereas the NL model incorrectly se- 473

lects the broader term genetics. Similarly, CODE- 474

TAXO identifies geopolitics as the parent entity 475

of geostrategy, highlighting its emphasis on geo- 476

graphic factors, while the NL model selects the 477

more general category of politics. These cases 478

showcase CODETAXO’s ability to leverage defini- 479

tion information for a comprehensive understand- 480

ing of taxonomy structures, resulting in more pre- 481

cise predictions. 482

5 Related Works 483

5.1 Taxonomy Expansion 484

In taxonomy expansion, various approaches have 485

been developed to integrate emerging entities into 486
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Query NL Output CodeTaxo Output CodeTaxo Exp.

functional genomics
Def. functional genomics
is a field of molecular bi-
ology that attempts to de-
scribe gene functions and

interactions

genetics
Def. genetics is a
branch of biology con-
cerned with the study of
genes, genetic variation,

and heredity in organisms.

genomics
Def. genomics is an interdis-
ciplinary field of biology fo-
cusing on the structure, func-
tion, evolution, mapping,
and editing of genomes

genomics
Exp. Functional ge-
nomics is a subfield
of genomics that fo-
cuses on understanding
the functions and inter-
actions of genes within

the genome.

geostrategy
Def. geostrategy, a sub-
field of geopolitics, is
a type of foreign policy
guided principally by
geographical factors as

they inform, constrain, or
affect political and military
planning

politics
Def. politics is the set of
activities that are associated
with making decisions in
groups, or other forms of
power relations between in-
dividuals, such as the distri-
bution of resources or status

geopolitics
Def. geopolitics on politics
and international relations

geopolitics
Exp. : Geostrategy is
a subfield of geopoli-
tics, which focuses on
geographic factors influ-

encing political and military
planning.

Table 4: Case study comparing the outputs of the CODETAXO and NL prompt using the SemEval-Sci benchmarks.
The table presents the definitions (Def.) of each model’s prediction, additionally with the CODETAXO explanations
(Exp.) provided in the last column (CodeTaxo Exp.). Yellow highlights emphasize the specific focus of the query
within its definition, as correctly captured by CODETAXO, while green highlights indicate broader, less precise
concepts used by the NL model.

existing taxonomies. Aly et al. (Aly et al., 2019)487

and Ma et al. utilized hyperbolic embeddings488

to capture taxonomic relations, while Jiang et489

al. (Jiang et al., 2023) and Xu et al. (Xu et al.,490

2024) employed box embedding and fuse embed-491

ding instead of single vector embedding to en-492

code taxonomic relations respectively. Manzoor493

et al. (Manzoor et al., 2020) introduced implicit494

edge semantics to enhance entity representations.495

Self-supervised methods, such as Egonet (Shen496

et al., 2020), mini-path (Yu et al., 2020), and Ego-497

Tree (Wang et al., 2021), have also been explored498

to model structural information within taxonomies.499

To leverage more semantic information from the500

textural description of entities, Liu et al. (Liu et al.,501

2021b), Takeoka et al. (Takeoka et al., 2021) and502

Xu et al. (Xu et al., 2022) fine-tuned BERT-based503

models to leverage textual descriptions of entities.504

Zhu et al. (Zhu et al., 2023) integrates textual and505

visual semantics to capture the hierarchical relation506

between entities. Shen et al. (Shen et al., 2024) and507

Moskvoretskii et al. (Moskvoretskii et al., 2024)508

unified framework combining various taxonomy509

construction tasks for instruction tuning. To our510

knowledge, CODETAXO is the first work to per-511

form taxonomy expansion via prompting LLMs.512

5.2 Code-LLMs for Structured Tasks513

Recent studies have demonstrated the strong per-514

formance of Code-LLMs in complex reasoning515

tasks (Yang et al.; MA et al.), including symbolic516

reasoning (Madaan et al., 2022; Cheng et al.), graph 517

reasoning (Cai et al., 2024), event structure predic- 518

tion (Wang et al., 2023; Chen et al., 2023), math- 519

ematical reasoning (Gao et al., 2023), and knowl- 520

edge graph construction (Li et al., 2023; Bi et al., 521

2024). These works highlight Code-LLMs’ ability 522

to transform unstructured text into structured repre- 523

sentations, enabling advanced reasoning tasks. In 524

this paper, we focus on enhancing Code-LLMs’ 525

ability to comprehend and expand existing tax- 526

onomies through emerging query entities. 527

6 Conclusion 528

In this paper, we introduce CODETAXO, a novel ap- 529

proach to taxonomy expansion that leverages code- 530

based prompts to effectively utilize the inherent 531

knowledge within LLMs. Our method addresses 532

key challenges in taxonomy expansion by reformu- 533

lating the task as a code completion problem and 534

employing a Semantic Similarity Filtering mecha- 535

nism to optimize the use of LLMs’ contextual ca- 536

pacity. Extensive experiments on small-scale and 537

large-scale taxonomies demonstrate that CODE- 538

TAXO achieves state-of-the-art performance in both 539

one-shot settings and five-shot settings. We envi- 540

sion CODETAXO as a powerful framework for inte- 541

grating emerging entities into existing taxonomies 542

by accurately identifying appropriate parent enti- 543

ties and also providing new insights for leveraging 544

LLMs in structured knowledge tasks. 545
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Limitations546

This study represents an initial effort to utilize547

LLMs for taxonomy expansion. Our primary objec-548

tive is to identify an effective in-context learning549

strategy to leverage the potential of LLMs. We ac-550

knowledge that the performance and scalability of551

CODETAXO are constrained by the inherent knowl-552

edge of LLMs and the limitations of their context553

window size. While this paper does not address554

the challenges of expanding LLM knowledge or555

increasing context window size, we hope that our556

work will inspire further research in these areas.557

Ethics Statement558

Our research addresses taxonomy expansion within559

general knowledge domains, leveraging our pro-560

posed method, CODETAXO, which uses large lan-561

guage models (LLMs) to generate structured knowl-562

edge and overcome the limitations of traditional563

manual taxonomy construction. We exclusively564

utilize publicly available datasets and benchmarks,565

avoiding user-generated, private, or sensitive data566

to ensure compliance with privacy and ethical stan-567

dards. While our datasets do not engage directly568

with ethically sensitive content, LLMs inherently569

carry biases from their pre-training data, which570

may influence the structure and content of the ex-571

panded taxonomies. To address this, we integrate572

mechanisms for generating explanatory outputs,573

enabling detailed scrutiny of the model’s reason-574

ing and identifying potential biases. Additionally,575

we recognize the risks of applying similar method-576

ologies to subjective or sensitive domains, which577

could lead to misrepresentation or bias. To miti-578

gate such risks, we emphasize collaboration with579

domain experts and advocate for responsible appli-580

cation of our methodologies across diverse fields,581

aiming to promote fairness, accuracy, and ethical582

research practices.583
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A Appendix 812

A.1 Datasets 813

We evaluate the performance of taxonomy ex- 814

pansion methods on small-scale taxonomies us- 815

ing WordNet Sub-taxonomies from (Bansal et al., 816

2014), and Graphine taxonomies from (Liu et al., 817

2021a). Specifically, we use 35 Graphine tax- 818

onomies with fewer than 100 entities, selected 819

from a total of 227 taxonomies. For the Graphine 820

dataset, we selected 35 taxonomies with fewer 821

than 100 entities out of 227 total taxonomies. In 822

our experiment with WordNet, we utilized 114 823

sub-taxonomies from the test sets. Additionally, 824

we evaluate three large-scale taxonomies from 825

SemEval-2016 (Bordea et al., 2016) across sci- 826

ence, environment, and food domains. Table 5 827

presents the statistics of these taxonomies, all of 828

which contain entities and definitions curated by 829

human experts. For all benchmarks, 20% of leaf 830

entities are reserved for testing, with the remaining 831

entities used for training. 832

#Concepts #Edges Depth License

WordNet 20.5 19.5 3.0 WordNet
Graphine 48.2 48.2 4.6 None
SemEval-Sci 429.0 451.0 8.0 None
SemEval-Env 261.0 261.0 6.0 None
SemEval-Food 1,486.0 1,576.0 8.0 None

Table 5: Statistics of five taxonomy benchmarks. For
WordNet and Graphine, we report the average for tax-
onomies included in these two benchmarks.

A.2 Baselines 833

We compare our method with the following base- 834

lines for taxonomy expansion, all experiments are 835

implemented in a server with three NVIDIA A6000 836

GPUs: 837

• TaxoExpan (Shen et al., 2020): adopts 838

GNNs to encode local ego-graphs in taxon- 839

omy to enhance entity representation. 840
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• STEAM (Yu et al., 2020): utilizes the mini-841

path information to capture the global struc-842

ture of the taxonomy.843

• HEF (Wang et al., 2022): represents tax-844

onomies as ego-trees to capture hierarchy,845

fully leveraging the hierarchical structure to846

improve taxonomy coherence.847

• Musubu (Takeoka et al., 2021): leverages848

pre-trained models and fine-tunes them as sen-849

tence classifiers using queries generated from850

Hearst patterns.851

• TEMP (Liu et al., 2021b): utilizes a pre-852

trained model to encode text descriptions of853

each concept in the taxonomy. It incorporates854

taxonomic structure information through tax-855

onomy paths.856

• BoxTaxo (Jiang et al., 2023): represent the857

entities via box embeddings instead of single858

vector embeddings to capture the hierarchical859

relation between entities.860

• TaxoPrompt (Xu et al., 2022): adopt prompt861

tuning on the BERT-based encoder model to862

capture the taxonomic structure.863

• TaxoInstruct (Shen et al., 2024): a unified864

framework for taxonomy-related tasks using865

instruction tuning, focused solely on taxon-866

omy expansion for fair comparison.867

To the best of our knowledge, CODETAXO repre-868

sents the first work to address taxonomy expansion869

using an in-context learning approach. To vali-870

date the effectiveness of the code language based871

prompt design, we additionally propose a prompt-872

ing method based on natural language prompts.873

The results obtained using the natural language874

prompt (NL) are presented in Table 1. To ensure875

that the natural language prompt communicates876

the same information as code language prompt in877

CODETAXO, we represent each entity using natural878

language to describe its surface name, definition,879

parent, and children list. The details of the NL880

prompt are provided in Table 7. For a more direct881

comparison, we also demonstrate CODETAXO’s882

predictions on the same example in Table 8.883

A.3 Evaluation Metrics.884

The performance of CODETAXO and the baseline885

models for taxonomy expansion tasks is evaluated886

using commonly adopted metrics, including accu-887

racy (Acc) and Wu & Palmer similarity (Wu&P), as888

established in prior work (Yu et al., 2020; Liu et al.,889

2021b; Wang et al., 2021). Since CODETAXO is890

Dataset 1-shot 5-shot

NL CodeTaxo NL CodeTaxo

SemEval-Sci 15737.2 9701.4 16095.1 10342.6
SemEval-Env 8965.7 5693.6 9325.0 6321.1
SemEval-Food 48908.1 30536.5 49266.4 31176.3
WordNet 948.9 1369.2 1306.4 1962.3
Graphine 2486.0 3223.9 2855.2 3893.3

Table 6: Comparison of average tokens used by NL and
CODETAXO across 5 benchmarks in 1-shot and 5-shot
settings.

a generation-based method rather than a ranking- 891

based one, the mean reciprocal rank (MRR) used 892

in the baselines is not applicable to CODETAXO. 893

A.4 Efficiency Analysis of CODETAXO 894

Token Consumption Table 6 compares average 895

token usage across benchmarks and prompt types 896

(CODETAXO vs. NL) in 1-shot and 5-shot set- 897

tings. The findings highlight CODETAXO’s effi- 898

ciency in reducing token usage while maintaining 899

effectiveness. Notably, in SemEval2016, CODE- 900

TAXO cuts token usage by approximately 37.6% in 901

the SemEval-Food task compared to natural lan- 902

guage prompts. However, in the WordNet and 903

Graphine datasets, CODETAXO uses slightly more 904

tokens due to the need to define Entity classes and 905

methods. Overall, the significant reduction in token 906

usage in SemEval2016 underscores CODETAXO’s 907

efficiency, especially in contexts with limited token 908

windows. 909
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Natural Language Prompt

User: Given the current taxonomy, find the parent of the query node. Please note that the query node
may be a new node not in the current taxonomy. The parent of given query node always exists, so do
not generate ’none’ or ’not found’. You only need to answer the entity name and do not generate any
additional content or comments.

lunacy: obsolete terms for legal insanity; parent: insanity; children: [].
irrationality: the state of being irrational; lacking powers of understanding; parent: insanity; children:
[].
dementia: mental deterioration of organic or functional origin; parent: insanity; children: [’presenile
dementia’, ’alcoholic dementia’, ’senile dementia’].
alcoholic dementia: dementia observed during the last stages of severe chronic alcoholism; involves
loss of memory for recent events although long term memory is intact; parent: dementia; children: [].
Pick’s disease: a progressive form of presenile dementia found most often in middle-aged and elderly
women and characterized by degeneration of the frontal and temporal lobes with loss of intellectual
ability and transitory aphasia; parent: presenile dementia; children: [].
derangement: a state of mental disturbance and disorientation; parent: insanity; children: [].
craziness: informal terms for insanity; parent: insanity; children: [].
presenile dementia: dementia with onset before the age of 65; parent: dementia; children: ["Pick’s
disease"].
senile dementia: dementia of the aged; results from degeneration of the brain in the absence of
cerebrovascular disease; parent: dementia; children: [].
insanity: relatively permanent disorder of the mind; parent: None; children: [’irrationality’, ’dementia’,
’craziness’, ’derangement’, ’lunacy’].

Query node: Alzheimer’s disease
The parent of query node:

Assistant: dementia

Ground Truth: presenile dementia

Table 7: Example of Natural Language (NL) Prompt.
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Code Prompt

User: Complete the next line of code according to the comments and the given code snippet. You need to find the parent
of the query node in the given current taxonomy and use the add_parent function. The parent of given query node always
exists in the given current taxonomy, so do NOT generate node that is NOT in the given current taxonomy. Note that you only
need to complete the next ONE line of code, do not generate any additional content or comments.

from typing import List

class Entity:
def __init__(self, name: str, description: str, parent: str, child: List[’Entity’]):
self.name = name
self.description = description
self.parent = parent
self.child = child

def add_parent(self, parent: ’Entity’):
self.parent = parent.name
parent.add_child(self)

def add_child(self, child: ’Entity’):
self.child.append(child)

# Creating entities and establishing parent-child relationship
lunacy = Entity(name=’lunacy’, description=’obsolete terms for legal insanity’, parent=insanity,
child=[])
irrationality = Entity(name=’irrationality’, description=’the state of being irrational; lacking
powers of understanding’, parent=insanity, child=[])
dementia = Entity(name=’dementia’, description=’mental deterioration of organic or functional
origin’, parent=insanity, child=[’presenile dementia’, ’alcoholic dementia’, ’senile dementia’])
alcoholic_dementia = Entity(name=’alcoholic dementia’, description=’dementia observed during the
last stages of severe chronic alcoholism; involves loss of memory for recent events although long
term memory is intact’, parent=dementia, child=[])
Pick’s_disease = Entity(name=’Pick’s disease’, description=’a progressive form of presenile dementia
found most often in middle-aged and elderly women and characterized by degeneration of the frontal and
temporal lobes with loss of intellectual ability and transitory aphasia’, parent=presenile dementia,
child=[])
derangement = Entity(name=’derangement’, description=’a state of mental disturbance and
disorientation’, parent=insanity, child=[])
craziness = Entity(name=’craziness’, description=’informal terms for insanity’, parent=insanity,
child=[])
presenile_dementia = Entity(name=’presenile dementia’, description=’dementia with onset before the
age of 65’, parent=dementia, child=["Pick’s disease"])
senile_dementia = Entity(name=’senile dementia’, description=’dementia of the aged; results from
degeneration of the brain in the absence of cerebrovascular disease’, parent=dementia, child=[])
insanity = Entity(name=’insanity’, description=’relatively permanent disorder of the mind’,
parent=None, child=[’irrationality’, ’dementia’, ’craziness’, ’derangement’, ’lunacy’])

# creating query node
Alzheimer’s_disease = Entity(name=’Alzheimer’s disease’, description=’a progressive form of presenile
dementia that is similar to senile dementia except that it usually starts in the 40s or 50s; first
symptoms are impaired memory which is followed by impaired thought and speech and finally complete
helplessness’, parent=None, child=[])

# Finding the parent of query node

Assistant: Alzheimer’s_disease.add_parent(presenile_dementia)

Ground Truth: presenile dementia

Table 8: Example of Code-based Prompt.
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