
IE
EE P

ro
of

1 SmartVM: A Smart Contract Virtual Machine

2 for Fast On-Chain DNN Computations
3 Tao Li , Yaozheng Fang , Ye Lu , Jinni Yang, Zhaolong Jian, Zhiguo Wan, and Yusen Li

4 Abstract—Blockchain-based artificial intelligence (BC-AI) has been applied for protecting deep neural network (DNN) data from being

5 tamperedwith, which is expected to further boost trusted distributed AI applications inmany fields. However, due to smart contract

6 execution environment architectural defects, it is challenging for previous BC-AI systems to support computing-intensive tasks on-chain

7 performing such asDNNconvolution operations. They have to offload computations and a large amount of data fromblockchain to off-chain

8 platforms to execute smart contracts as native code. This failure to take advantage of data locality has become one of themajor critical

9 performance bottlenecks in BC-AI system. To this end, in this article, we propose SmartVMwith optimizationmethods to support on-chain

10 DNN inference for BC-AI system. The key idea is to design and optimize the computingmechanism and storage structure of smart contract

11 execution environment according to the characteristics of DNN such as high computational parallelism and large data volume.We

12 decompose SmartVM into three components: 1) a compact DNN-oriented instruction set to describe computations in a short number of

13 instructions to reduce interpretation time. 2) amemorymanagementmechanism tomake SmartVMmemory dynamic free/allocated

14 according to the size of DNN featuremaps. 3) a block-basedweight prefetching and parallel computingmethod to organize each layer’s

15 computing andweights prefetching in a pipelinedmanner.We perform the typical image classification in a private Ethereum blockchain

16 testbed to evaluate SmartVMperformance. Experimental results highlight that SmartVM can support DNN inference on-chainwith roughly

17 the same efficiency against the native code execution. Compared with the traditional off-chain computing, SmartVM can speed up the

18 overall execution by 70�, 16�, 11�, and 12� over LeNet5, AlexNet, ResNet18, andMobileNet, respectively. Thememory footprint can be

19 reduced by 84%, 90.8%, 94.3%, and 93.7% over the above fourmodels, while offering the same levelmodel accuracy. This article sheds

20 light on the design space of the smart contract virtualmachine for DNN computation and is promising to further boost BC-AI applications.Q1

21 Index Terms—Deep neural network, smart contract, virtual machine, architectural support technology

Ç

22 1 INTRODUCTION

23 BLOCKCHAIN-BASED artificial intelligence (BC-AI) has been a
24 new researching hotspot [1], [2], [3], expected to boost
25 trusted distributed AI training and inference [4], [5], [6], such
26 as protecting deep neural network (DNN) data from being
27 tampered [7], [8]. Smart contract is a piece of codewhich can be
28 deployed on blockchain for executing application logic [9],
29 [10]. Various blockchains have provided execution

30environment or virtual machine, such as Ethereum Virtual

31Machine (EVM) [11], [12], for interpreting and executing smart

32contract. The execution on virtual machine of the smart con-

33tract deployed on the blockchain is called on-chain computing

34and conducting the smart contract out of the virtual machine is

35correspondingly called off-chain computing [13], [14], [15].
36The existing main stream smart contract virtual
37machines have limited BC-AI application scope and further

� Tao Li is with the College of Computer Science, Nankai University, Tianjin 300071, China, with the College of Cyber Science, Nankai University, Tianjin
300071, China, with the State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100045,
China, and also with the Tianjin Key Laboratory of Network and Data Science Technology, Tianjin 300071, China. E-mail: litao@nankai.edu.cn.

� Yaozheng Fang and Zhaolong Jian are with the College of Computer Science, Nankai University, Tianjin 300071, China, and also with the Tianjin Key Labo-
ratory of Network and Data Science Technology, Tianjin 300071, China. E-mail: {fyz, jianzhaolong}@mail.nankai.edu.cn.

� Ye Lu is with the College of Computer Science, Nankai University, Tianjin 300071, China, with the College of Cyber Science, Nankai University, Tianjin
300071, China, with the Information Security Evaluation Center of Civil Aviation, Civil Aviation University of China, Tianjin 300300, China, with the State
Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100045, China, and also with the Tian-
jin Key Laboratory of Network and Data Science Technology, Tianjin 300071, China. E-mail: luye@nankai.edu.cn.

� Jinni Yang is with the College of Cyber Science, Nankai University, Tianjin 300071, China, and also with the Tianjin Key Laboratory of Network and Data
Science Technology, Tianjin 300071, China. E-mail: tol2020_nk@foxmail.com.

� Zhiguo Wan is with Zhejiang Lab, Hangzhou, Zhejiang 311121, China. E-mail: zhiguo_wan@163.com.
� Yusen Li is with the College of Computer Science, Nankai University, Tianjin 300071, China. E-mail: liyusen@nbjl.nankai.edu.cn.

Manuscript received 1 Dec. 2021; revised 19 May 2022; accepted 20 May 2022. Date of publication 0 . 2022; date of current version 0 . 2022.
Thisworkwas supported in part byCCF-AFSGResearch Fund underGrant CCF-AFSGRF20210031, in part by the Special Funding for Excellent Enterprise Technology
Correspondent of Tianjin under Grant 21YDTPJC00380, in part by National Natural Science Foundation under Grant 62002175, in part by the Open Project Fund of
State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences under Grant CARCHB202016, in part by the Key
Research Project of Zhejiang Lab under Grant 2021KF0AB04, in part by the Natural Science Foundation of Tianjin under Grant 20JCZDJC00610, in part by the Open
Project Foundation of Information Security Evaluation Center of Civil Aviation, Civil AviationUniversity of China under Grant ISECCA-202102, in part by the People’s
Republic of Chinaministry of education science and technology development center under Grant 2019J02019, and in part by Tianjin Graduate Scientific Research Innova-
tion Project under Grant 2021YJSB014.
(Corresponding author: Ye Lu.)
Recommended for acceptance by J. Zhai.
Digital Object Identifier no. 10.1109/TPDS.2022.3177405

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

1045-9219 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0003-1697-8022
https://orcid.org/0000-0003-1697-8022
https://orcid.org/0000-0003-1697-8022
https://orcid.org/0000-0003-1697-8022
https://orcid.org/0000-0003-1697-8022
https://orcid.org/0000-0003-3244-0812
https://orcid.org/0000-0003-3244-0812
https://orcid.org/0000-0003-3244-0812
https://orcid.org/0000-0003-3244-0812
https://orcid.org/0000-0003-3244-0812
https://orcid.org/0000-0003-0805-6394
https://orcid.org/0000-0003-0805-6394
https://orcid.org/0000-0003-0805-6394
https://orcid.org/0000-0003-0805-6394
https://orcid.org/0000-0003-0805-6394
https://orcid.org/0000-0001-6623-350X
https://orcid.org/0000-0001-6623-350X
https://orcid.org/0000-0001-6623-350X
https://orcid.org/0000-0001-6623-350X
https://orcid.org/0000-0001-6623-350X
mailto:litao@nankai.edu.cn
mailto:fyz@mail.nankai.edu.cn
mailto:jianzhaolong@mail.nankai.edu.cn
mailto:luye@nankai.edu.cn
mailto:tol2020_nk@foxmail.com
mailto:zhiguo_wan@163.com
mailto:liyusen@nbjl.nankai.edu.cn

IE
EE P

ro
of

38 development, since previous they cannot process complex
39 tasks. For example, although the smart contract virtual
40 machines such as EVM sustain more than 3,200 kinds of
41 Dapps [15], there is no DNN application that can run on the
42 blockchain [16]. DNN inference as yet cannot be directly and
43 efficiently performed on blockchain by smart contract [17],
44 [18]. The primary reason is that the smart contract execution
45 environment in previous BC-AI system lacks operators,
46 instructions and corresponding mechanism to support
47 redundant complex DNN operations with high computa-
48 tional andmemory complexity.
49 These issues lead to the existing BC-AI applications on
50 blockchain that can only simply store a large amount of
51 DNN weight data as a database. Computing-intensive tasks
52 such as DNN convolutions have to be offloaded to the off-
53 chain platform, executed as native code, and still need to
54 download weight data from the blockchain. Unfortunately,
55 downloading data is one of the most critical performance
56 bottlenecks in traditional blockchain-based AI systems,
57 which usually requires tens of thousands interface invoking
58 and large latency.
59 In view of the above problems, on-chain computing turns
60 out to be a convenient alternative and can lead to several ben-
61 efits in terms of close to data source, avoiding data download
62 latency and trusted execution, etc. Many previous related
63 works in other areas have pointed out that, the better design
64 for distributed systems is to move computation tasks to
65 where the data is [19], [20]. Therefore, to take advantage of
66 data locality, on-chain computing as the move computation to
67 data paradigm ismore natural for DNN inference.
68 Both academia and industry have paid attention to DNN
69 inference on smart contract virtual machine [21]. They make
70 explorations that allow sustaining the computational burden
71 of DNN inference on the blockchain. The explorations aim at
72 providing trusted computing processes, fueling intelligent
73 applications without high latency, and conducting complex
74 computations for BC-AI systems. For instance, Kim et al. [22]
75 have processed DNN inference on-chain, but they utilize the
76 mature JavaScript VirtualMachine rather than themost com-
77 monly used smart contract engine EVM for blockchain. Kon-
78 stantin Kladko gives a hypothetical example in Ethresearch1

79 and he describes a decentralized, trusted, fair and automatic
80 Uber which runs a neural network based on driver history
81 behaviors with smart contracts, to explain the advantages of
82 running DNN on EVM. Nonetheless, these two examples
83 have not been implemented in reality, since they both cannot
84 meet the challenges that in order to perform convolution
85 operations, DNN usually requires high computing power
86 and an amount of memory space to store lots of immediate
87 results.
88 In fact, introducing DNN computing to previous EVM on
89 the blockchain can pose several difficult systemic challenges.
90 First, there are no specific operation instructions, meanwhile,
91 the general EVM instruction set will generate tens of millions
92 of instructions for DNN inference. Interpreting and execut-
93 ing so many instructions will take a lot of time, which cannot
94 satisfy the requirements of real applications. Second, all the
95 operations on EVM are executed serially and the serial

96execution will also bring higher latency [23], [24], [25]. A
97large number of convolution computations andweight fetch-
98ing from EVM storage in serial are so time-consuming with-
99out a parallel computing mechanism. For example, a single
100image inference over LeNet-5 on EVM can take more than
1012.5 seconds, while the most common DNN applications only
102need dozens of milliseconds [26]. Third, the existing virtual
103machine EVM architecture designed for running small-scale
104programs has no runtimememory spacemanagementmech-
105anism during smart contract execution [23]. DNN (e.g., Alex-
106Net, ResNet) inference cannot run on the EVM solidly
107without memory overflow, because the inference will cause
108a high memory footprint, and lead to the Out-of-Memory
109exception in common resource-limited devices. To meet
110these challenges, fast on-chain DNN computation requires
111fine-grained architecture level design and corresponding
112mechanism support.
113To this end, we present SmartVM, a new smart contract
114virtual machine for fast on-chain DNN computations.
115SmartVM can also enable smart contract execution on het-
116erogeneous devices such as GPU, and offer roughly the
117same executing performance compared with CPU/GPU.
118The key idea is to provide specific instructions and multiple
119optimization mechanisms and techniques for the complex
120inference process of DNN. Our novel contributions in this
121paper can be summarized as follows:

122� We design DNN-oriented domain-specific instruc-
123tions having a strong descriptive capability for DNN.
124Compared with running under EVM, the DNN infer-
125ence efficiency in SmartVMwith the proposed instruc-
126tions can be accelerated by up to 38�.
127� We propose a dynamic memory management
128method by designing the Buffer technique on EVM
129memory at runtime. The proposed mechanism real-
130izes the physical RAM space multiplexing, since the
131Buffer can adjust size flexibly to store only one layer’s
132feature maps rather than all layers’ feature maps.
133This mechanism can significantly reduce the RAM
134footprint by 90.7% on average.
135� We propose the block-based weight prefetching
136method and parallel computing mechanism. The
137weight data can be prefetched and loaded in block-
138wised rather than a single value, and the times of
139memory access can also be reduced. These approaches
140can hide the executionwaiting time and improve com-
141puting efficiency by 13.1% on average.
142� We implement SmartVM by embedding it as a block-
143ing component into Ethereum as a smart contract
144virtual machine, and we evaluate SmartVM by con-
145ducting typical image classification tasks in a real
146private Ethereum platform. Compared with DNN
147inference on CPU, the experimental results highlight
148that SmartVM can support DNN inference on-chain
149with roughly the same efficiency against the native
150code execution.

1512 BACKGROUND AND MOTIVATION

152In this section, we draw our motivations and key idea about
153SmartVM design from two aspects. First, we give some1. https://ethresear.ch/

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

IE
EE P

ro
of154 preliminary concepts of DNN (in the particular, convolu-

155 tional neural network, CNN) and its main characteristics. In
156 this paper, we use one of the representative DNN, CNN, to
157 show the characteristics of DNN, because CNN is one of the
158 most widely used DNNs, and the previous works also use
159 CNN to represent DNN such as [27]. Second, we give the
160 scenarios of on-chain CNN computing to show the motiva-
161 tion of SmartVM from the application respect. Third, we
162 analyze the CNN inference process performance under the
163 traditional typical BC-AI architecture to point out the disad-
164 vantages and shortcomings of off-chain computing. Lastly,
165 we elaborate on the existing limitations and challenges of
166 the complex computing on Ethereum Virtual Machine
167 (EVM). In order to explain the details, we take LeNet-5 [28]
168 as an example to conduct a breaking down analysis about
169 the performance of on-chain CNN inference.

170 2.1 Convolutional Neural Network

171 Convolutional neural network (CNN) is a kind of DNN,
172 which is widely applied in image recognition and classifica-
173 tion [29], [30], [31]. As shown in Fig. 1, CNN architecture
174 contains three types of layers: convolutional layer, pooling
175 layer, and fully-connected layer. The input and output of
176 each layer are called feature maps [32], [33]. The simple
177 introduction of each kind of layer is as follows:

178 � The convolutional layer uses some weights (convolu-
179 tional kernel) to perform enormous repetitive convo-
180 lution operations to its input feature map. This layer
181 extracts the high-level features of the input feature
182 map. Convolution operations account for more than
183 90% of CNN computations which are also massive.
184 � The pooling layer usually appears after the convolu-
185 tional layer. The pooling layer is responsible for
186 reducing the size of input feature map to decrease
187 the computational power required to process the
188 image.
189 � The fully-connected layer multiplies its input feature
190 map by a weight matrix and then adds a bias vector.
191 This layer is used for learning non-linear combina-
192 tions of the high-level features as represented by the
193 output of the convolutional layer.
194 It is widely known that a well-trained CNN usually has a
195 large number of weights [34], for example, VGG-16 has 130
196 million weights [35]. Using such CNNs to conduct image

197recognition task requires high memory space (16GB). The
198CNNs are getting explosively deeper (i.e., more layers) and
199wider (i.e., more parameters per layer) for higher modeling
200capacities. The number of weights can be increased rapidly
201such as the ViT network [36] with about 2,000 million
202weights presented in October 2020.
203From the above preliminary explanation, we can obtain
204three main observations about CNN computing. Firstly, the
205size of feature maps is different before and after a layer’s
206computing. In LeNet-5, the size of the feature map is
207increased after Conv1, Conv2, and FC1, while decreased
208after Pooling1, Pooling2, and FC2. Secondly, there are many
209identical convolutions with each other in each convolution
210layer in CNN. Thirdly, for a specific layer, the convolution
211operations and weight fetching are data-independent, thus
212fetching the next output channel’s weight can be executed
213in advance when computing the current layer of CNN.

2142.2 Problems of Off-Chain Computing

215We give the typical BC-AI architecture in Fig. 2 to ease
216understanding the problems of CNN computing off-chain.
217The BC-AI architecture adopts on-chain weight storage and
218off-chain inference.
219In typical blockchains such as Ethereum, each smart con-
220tract maintains a storage trie to record the CNN weights.
221Each weight is stored as a leaf node in storage trie. Each leaf
222node is stored in a key-value database as a single item [23].
223Each variable is a leaf node in the storage trie, so the weights
224will be recorded to the storage trie as leaf nodes. The storage
225trie is a data structure logically living in RAM. When a
226smart contract is invoked, the storage trie will be loaded
227from the key-value database (in hard disk) to RAM.
228Although there are some researches ongoing to deploy
229optimizations on hardware accelerator to execute smart con-
230tract off-chain, the approaches cannot match the bytecode
231execution mode and need rewriting a large number of smart
232contracts by native code [17]. In addition, the CNN weights
233have to be downloaded from the database in RAM as usual
234by invoking the corresponding smart contract [37]. As shown
235in Fig. 2, weight fetching will invoke the get() function (�1)
236and the function is compiled down to more than 50 instruc-
237tions, including SLOAD and other instructions for reading
238the weights from the database (�2). Then the weights are
239returned to the off-chain platforms (�3). Note that the
240weights have to be fetched by EVM instructions with a single

Fig. 1. LeNet-5 architecture of inference. Fig. 2. CNN Computing Process in Typical BC-AI.

LI ET AL.: SMARTVM: A SMART CONTRACT VIRTUAL MACHINE FOR FAST ON-CHAIN DNN COMPUTATIONS 3

IE
EE P

ro
of

241 thread one by one because they are stored discontinuously
242 and independently with each other in database. Therefore,
243 this small-grained way of fetching weights creates a bottle-
244 neck, and it is more than thousands of times that a smart con-
245 tract with so many EVM instructions invokes get()

246 function and accesses the database to fetch weights. Such
247 invocations and access can cause high latency and make the
248 data fetching incredibly time-consuming.
249 We have deployed experiments before to observe fetch-
250 ing DNN data from the Ethereum blockchain to off-chain
251 platforms. For instance, regarding the LeNet-5, fetching
252 weight needs about 65,000 times invocation of database
253 interface, the latency is more than 3,000ms. For the AlexNet,
254 the same process invokes data reading interfaces about
255 62,000,000 times and the latency is up to 3,480,000ms. In
256 addition, CNN weight should be often updated along with
257 the changes in AI applications in practice, so the weight
258 downloading which takes so long time is frequent and inev-
259 itable. And even worse, all the data is computed outside the
260 trusted computing environment, which is insecure and vul-
261 nerable to be tampered with [38], and also deviates from
262 BC-AI original design intention about trusted computing.
263 Consequently, the time-consuming weight downloading
264 is one of the most critical performance bottlenecks in BC-AI
265 systems. With the fast increase of CNN model size, the
266 weight downloading time is gradually longer and longer.
267 Due to the single-thread design of EVM, the operations for
268 fetching weights are executed serially which also has a seri-
269 ous negative effect on EVM performance.

270 2.3 Scenarios of On-Chain CNN Computing

271 The typical BC-AI systems are applied in many applications
272 such as healthcare, model exchange, and smart transporta-
273 tion. But the previous works apply blockchain as a database
274 to store data. All the typical applications in BC-AI can be
275 supported by on-chain CNN computing. The typical appli-
276 cations in BC-AI includes but are not limited the digital
277 asset evaluation, distributed AI model trade, and distrib-
278 uted computation above privacy data.
279 Firstly, on-chain NN computing can support secure dis-
280 tributed computing to enable blockchain-based AI model
281 trade like Algorithmia DanKu.2 The smart contract can be
282 used for storing, executing, and validating the AI models.
283 The smart contract-based model trade is more reliable and
284 secure. Secondly, the on-chain NN computing can achieve
285 trusted distributed computation above medical privacy
286 data, the computation is performed in smart contract and
287 achieves consensus of results among multi parts [39].
288 Besides, the traditional application such as UBER can also
289 be deployed in on-chain computing environment. The driv-
290 ers upload the driving data to blockchain, the smart contract
291 can pay the drivers according to the drivers’ behaviors
292 based on trained model.
293 Previous work also considers that encoding the trained
294 neural network inside a zkSNARK circuit to protect data
295 security and computation security.3 However, such method
296 requires complex circuit experiences and preliminaries. The
297 on-chain NN computing can be implemented by human-

298friendly programming languages and achieves the same
299effect as the circuit-based method.
300Though the typical BC-AI applications are trusted and
301secure, the execution engine and environment of smart con-
302tract are low-performance, which limits more applications
303deployed on-chain. The proposed SmartVM provides a
304smart contract virtual machine to support on-chain CNN
305computing in high performance.
306The CNN computation includes training and inference.
307This paper focuses on the CNN inference, because in the tra-
308ditional BC-AI systems, the trained model needs to be
309deployed in blockchain. However, the on-chain inference
310based on the deployed model is low-performance. There-
311fore, from the application respect, we focus on CNN infer-
312ence, as the existing blockchain and smart contract
313architecture can not support inference in high-performance.
314The model training includes forward propagation and back
315propagation, the performance bottleneck of training mainly
316appeared in back propagation. Specifically, the gradient
317and temporary data communication and storage bring high
318latency. The training is usually performed on high-perfor-
319mance platforms (e.g., cloud server), so the training is per-
320formed offline and off-chain based on local data. Blockchain
321is often used as a database and data source, when the block-
322chain is applied in model training, the blockchain can pro-
323tect data from tampering, but can not improve training
324accuracy. Besides, the training mainly focuses on the net-
325work architecture, Big Data movement, and model accu-
326racy. But the SmartVM is designed to support high-
327performance on-chain CNN computing through architec-
328tural design. In the future, the SmartVM can support train-
329ing through communication optimization for Big Data.
330Therefore, we focus on the inference, and the training is out
331of the scope of our work.

3322.4 Limitations and Challenges of On-Chain
333Computing

334The traditional process of on-chain inference in detail sum-
335marized is shown in Fig. 3. The LeNet-5 neural network
336model is programmed by high-level contract-oriented lan-
337guage (e.g., Solidity), which can be compiled down to byte-
338code. The bytecode is executed in EVM interpreter, and the
339temporary data is stored in EVM Stack and EVM Memory.
340The LeNet-5 weights are stored in key-value database as
341described in Section 2.2. Before bytecode execution, the
342weights are organized as a trie and loaded into EVM Stor-
343age and each weight is stored as a node leaf of this trie. Stor-
344age is a specific block of physical RAM. When LeNet-5
345inference, the Storage needs to be also accessed more than
346thousands of times. We pick EVM as our on-chain comput-
347ing baseline, because the EVM is the most widely used con-
348tract execution environment. The original EVM is designed
349for simple financial functions and normal operations, which
350is not fit the CNN inference. Based on these preliminaries,
351we explain the limitations of on-chain CNN inference and
352central challenges of SmartVM design as follows:
353First, since the EVM is Turing-complete, which means its
354smart contracts can solve any type of problem and perform
355any logical step of a computational function at least hypo-
356thetically [40], we consider running CNN on-chain can be
357realized both theoretically and technologically. However,

2. https://github.com/algorithmiaio/danku
3. https://github.com/ethereum/research/issues/3

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

IE
EE P

ro
of358 existing EVM architecture has no instructions to support

359 highly efficient CNN inference. EVM instruction set is
360 designed for general computing operations rather than the
361 complex CNN computing operations, which cannot be
362 described by a short number of instructions. As a result, as
363 aforementioned, tens of millions of redundant instructions
364 are generated and will affect smart contract performance
365 according to our profiling. For instance, as shown in Figs. 4a
366 and 4b, more instructions bring higher latency in the same
367 kind of layer. And nearly 40% time in each LeNet-5 layer is
368 used for fetching weights (SLOAD and MLOAD). Besides, the
369 large number of instructions are limited by the gas mecha-
370 nism of Ethereum [41].Moreover, although the interpretation
371 mechanism of EVM can be optimized indirectly such as
372 EVMONE,4 by precomputing the gas cost and stack require-
373 ments of the instructions, the performance improvements for
374 complex computations are not sufficient and enough. There-
375 fore, the first challenge of on-chain inference is to encounter
376 the contradiction between CNN-oriented operator instruc-
377 tion lacking and general original instruction explosion in the
378 previous smart contract execution virtualmachine.
379 Second, EVM lacks memory management mechanism for
380 processing the massive input data and immediate results
381 during CNN computing. Specifically, the useless data in
382 EVM memory is never freed, which causes high memory
383 footprint and can not perform DNN solidly. For example,
384 EVM always places new objects at the free EVM Memory
385 pointer and these occupations will always be resident in the
386 memory not be released .5 In practice, the traditional mem-
387 ory management strategies like rolling array cannot satisfy
388 the requirements of on-chain CNN inference. The tradi-
389 tional strategies are high-level solutions, and the compiled
390 results are static. However, the memory required during
391 CNN inference is variable and dynamic. Moreover, the
392 memory management needs not only space compression or
393 multiplexing, but also needs space scheduling, address con-
394 version, and so on. The complex functions can not be real-
395 ized by high-level solutions such as rolling array.
396 Although we can use MSTORE to malloc new EVM Mem-
397 ory space, it may cause unexpected errors (e.g., EVM Mem-
398 ory overlap) [42]. Even the LeNet-5 on-chain inference needs
399 up to 90MB RAM (see Fig. 4c), but EVMmemory supporting

400common smart contracts (e.g., ERC20) to perform is usually
401about one megabyte. The larger-scale neural networks can
402directly cause memory overflow exceptions. Furthermore,
403the number of CNN weight has been increased from 60,000
404to 2,000,000,000 over the last 10 years. Running CNN
405requires more and more memory. Consequently, on-chain
406inference comes at a heavymemory burden challenge.
407Third, in traditional EVM execution mechanism design
408such as single-thread, all the operations on EVM execute in
409serial mode. This implies that the CNN operation has to
410wait for the end of the weight fetching before it can be calcu-
411lated. In fact, the structural feature of CNN is actually pro-
412vided with high parallelism, the serial execution mode will
413obviously slow down inference performance. Moreover, the
414existing EVM lacks heterogeneous accelerating platforms
415such as GPUs supporting technology. It is worth noting that
416CNN inference requires yet data loading from EVM Storage
417or key-value database to EVM Stack, which needs thou-
418sands of times of accessing physical RAM memory to read
419data. Therefore, these time-consuming serial processes and
420technical defects strangle CNN computing on-chain. In
421summary, fast on-chain CNN computing is in desperate
422need of fine-grained architecture level design and corre-
423sponding mechanism support.

4243 BASIC DESIGN OF SMARTVM

425The key to applying SmartVM to achieve fast on-chain DNN
426computations is to efficiently interpret and execute the
427smart contract utilized for DNN computing. As mentioned
428before, on-chain CNN computing is challenging, consider-
429ing the systemic limitations of operator instruction, memory
430footprint, and execution mechanism. Therefore, in this sec-
431tion, we propose SmartVM, to our best knowledge, the first
432architectural support technology aiming at speeding up on-
433chain CNN inference. Here, we first elaborate on the archi-
434tecture overview of SmartVM. Then, we design the novel
435CNN-oriented specific instruction set for performing CNN
436operations in SmartVM. Next, we propose the dynamic
437memory space mechanism to reduce memory footprint dur-
438ing smart contract runtime. In the end, we present the opti-
439mization mechanism of block-based weight prefetching and
440computing towards making better use of smart contract par-
441allel executing potentials, in order to further improve on-
442chain computing efficiency.

4433.1 Architecture Overview

444The overview of SmartVM is shown in Fig. 5. The
445SmartVM consists of the core, hardware interface, and
446data segment. Besides, SmartVMprovides an extendedCNN-
447oriented instruction set. The core is used for interpreting and

Fig. 3. On-chain LeNet-5 inference process.

Fig. 4. The performance of LeNet-5 on-chain inference.

4. https://github.com/ethereum/evmone
5. https://docs.soliditylang.org/en/latest/

LI ET AL.: SMARTVM: A SMART CONTRACT VIRTUAL MACHINE FOR FAST ON-CHAIN DNN COMPUTATIONS 5

IE
EE P

ro
of

448 dispatching instruction during CNN inference. The runtime
449 data of inference is stored in the data segment.
450 A typical CNN network can be divided into two parts:
451 CNN architecture and CNN weights (e.g., convolution ker-
452 nel). The CNN architecture describes the number and the
453 order of each kind of layer. The CNN architecture is imple-
454 mented by a high-level smart contract, which is usually pro-
455 grammed by Turing-complete languages (e.g., Solidity). In
456 SmartVM, the high-level smart contract will be compiled
457 down to bytecode before inference. There are two types of
458 instructions in the bytecode: the proposed CNN-oriented
459 instruction and basic instruction (e.g., ADD, MUL, etc.). The
460 CNN weights are stored in the blockchain’s persistent key-
461 value database. At contract runtime, the CNN weights will
462 be loaded into memory as a cache. In SmartVM, weight
463 fetching time can be reduced by decreasing the times of
464 reading cache by the proposed block-based weight storage
465 method.
466 The core of SmartVM has three parts: bytecode inter-
467 preter, instruction validator, and computing platform dis-
468 patcher. The bytecode interpreter fetches the instruction
469 from a given bytecode by the program counter. Before exe-
470 cution, the instruction validator checks the execution con-
471 text (e.g., stack overflow). Once the context satisfies the
472 condition of the instruction execution, the interpreter dis-
473 patches the instruction. The dispatching refers to jumping
474 to the corresponding native code segment that implements
475 the instruction.
476 The computing platform dispatcher can assign different
477 kinds of instructions to different hardware to enable hetero-
478 geneous computation: by default, in SmartVM, the CNN-
479 oriented instructions are assigned to GPU, while other
480 instructions are assigned to CPU. Furthermore, other hard-
481 ware (like FPGA) can be also supported through the shared
482 libraries. In SmartVM, we have implemented three types of
483 hardware interfaces to support the dispatcher transmitting
484 instructions to the target platform.
485 Temporary data during contract execution is stored in
486 the data segment. The Stack stores instruction operands, the
487 Memory stores complex type data (e.g., array), and the Stor-
488 age is used for storing CNN weights. According to the char-
489 acteristics of CNN computing (see Section 2.1), in SmartVM,
490 we design a dynamic memory management method, which
491 provides space multiplexing for feature maps during CNN

492inference, to reduce the memory footprint by defining an
493elastic Buffer space in SmartVMMemory.
494In this section, the CNN is an example to show the design
495of SmartVM. The SmartVM can also be extended to support
496other kinds of DNN such as recurrent neural network
497(RNN), which only needs to implement corresponding
498instructions and operations. The SmartVM is designed as a
499common architecture with general optimization methods.
500The proposed instruction set can be extended through con-
501figuration interfaces, and the storage scheme can also be
502costumed according to the characteristics of DNN.

5033.2 CNN-Oriented Instructions

504In SmartVM, we divide CNN-oriented instructions into two
505types: computational and data transfer instruction. CNN
506computational operations should be described succinctly and
507efficiently. The computational instruction encapsulates and
508fuses common CNN operators. The data transfer instructions
509support moving data from/to an area (such as SmartVM
510Buffer, EVMMemory) to/from another area.
511Computational instruction can describe mainly three
512granular computation operations in CNN inference: a whole
513CNN architecture, a specific layer in CNN (e.g., convolu-
514tional layer, pooling layer), and atomic operations (e.g.,
515matrix multiplication). It is obvious that the finer the granu-
516larity of a computational instruction, the better description
517capability it is. In SmartVM, in particular, packaging a
518layer’s computation into one instruction can achieve rela-
519tively high computational efficiency. Besides, the common
520usage operators in AI frameworks such as BatchMatmul,
521Broadcast, and Transpose are all can be extended to the pro-
522posed instruction set through pre-defined interfaces.
523The data transfer instructions are designed to support data
524moving operations about the Buffer. When invoking a smart
525contract for CNN inference, the input feature map data is
526stored initially in Memory, then the data can be moved from
527Memory to Buffer through the instructions. Once the whole
528CNNnetwork inference is completed, the final output feature
529map data which is stored in Buffer should be moved to Stack
530as the return value of the invocation.
531As shown in Table 1, we list some representative CNN-
532oriented instructions. Each instruction has a mnemonic and
533a unique hexadecimal opcode. Each instruction’s function is
534given in the description column. For example, Conv_TPD

Fig. 5. SmartVM architecture overview.

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

IE
EE P

ro
of

535 instruction is used for transposed convolutional computa-
536 tion. The stack required column defines the number of stack
537 items that the instruction requires. For example, Conv

538 requires eight items to store the arguments of convolutional
539 computation, such as input channel number. During instruc-
540 tion execution, once the reminder stack space is less than
541 required, the on-chain CNN inference will be interrupted
542 and an exceptionwill be thrown.
543 Note that the SmartVM supports all the operations in
544 smart contract, including CNN-related and non CNN-
545 related. In SmartVM, the CNN inference can be realized by
546 only normal instructions, only CNN-oriented instructions,
547 or the both. The CNN-oriented instructions are compiled to
548 high-performance bytecode, the SmartVM will not compul-
549 sorily change the developers’ preference, which also means
550 that the SmartVM will not bother developers. The proposed
551 CNN-oriented instructions coexist with native EVM instruc-
552 tion set in SmartVM compiler. The developers can program
553 CNN programs both with and without CNN-oriented
554 instructions. All the operations in user’s smart contract can
555 be recognized by SmartVM’s compiler. When compiling the
556 smart contract, the CNN-related operations in SmartVM are
557 compiled down to high-performance bytecode. The high-
558 performance bytecode includes the CNN-oriented instruc-
559 tions. And the normal operations are compiled down to
560 normal bytecode (non high-performance). In conclusion,
561 the SmartVM can support any kind of operators.
562 As shown in Fig. 6, we give an example to show the
563 usage and workflow of proposed CNN-oriented instruc-
564 tions. A LeNet-5 architecture can be programmed by
565 CNN-oriented instructions through the in-line assembly
566 programming method in a high-level based smart contract.

567Then the smart contract is compiled down to bytecode. For
568example, Conv(...) represents the first convolutional
569layer, and it is compiled down to eight PUSH operations for
570pushing arguments to Stack, and one Conv operation for

TABLE 1
CNN-Oriented Instructions in SmartVM

Type Name Opcode Description Stack required (Key arguments)

Computation CONV_SING 0x21 Implement single channel convolution 8 (Kernel, Output channel, Stride)
(Convolution) CONV_MUL 0x22 Implement multi-channel convolution 8 (Kernel, Output channel, Stride)

CONV_3D 0x23 Implement 3D convolution 8 (Kernel, Output channel, Stride)
CONV_TPD 0x24 Implement transposed convolution 8 (Kernel, Output channel, Stride)

(Pooling) POOL_MAX 0x25 Implement max pooling 5 (Stride, Input channel)
POOL_AVG 0x26 Implement average pooling 5 (Stride, Input channel)
POOL_OL 0x27 Implement overlapping pooling 5 (Stride, Input channel)

(Full connected) FULL_CON 0x28 Implement full connected layer 5 (Input channel, Output channel)
MAT_MUL 0x29 Implement matmul 2 (Addresses of two matrix)

(Active) ACT_SM0 0x2a Implement softmax function 1 (Value)
ACT_SM1 0x2b Implement Sigmoid function 1 (Value)
ACT_RL 0x2c Implement ReLU function 1 (Value)
ACT_TANH 0x2d Implement Tanh function 1 (Value)

(Buffer) BUF_SCL0 0x2e Increase Buffer’s data with specific times 1 (Specific times)
BUF_SCL1 0x2f Reduce Buffer’s data with specific times 1 (Specific times)
BUF_BIAS 0x30 Add Buffer’s data and bias 1 (Base address of bias)

Data transfer MTOB 0x31 Transfer data fromMemory to Buffer 2 (Data offset)
BTOM 0x32 Transfer data from Buffer to Memory 2 (Data offset)
BTOS0 0x33 Transfer data from Buffer to Stack 2 (Data offset, Size)
BTOS1 0x34 Transfer data from Buffer to Storage 2 (Data offset, Size)

(Buffer set) BUF_CLS 0x35 Clean Buffer’s data 1 (Clean number)
BUF_FIL 0x36 Fill Buffer’s data with specific data 1 (Specific filled data)
BUF_INIT 0x37 Initial Buffer with specific size 1 (Specific size)
BUF_ALLO 0x38 Allocate specific size to Buffer 1 (Specific size)
BUF_FREE 0x39 Free specific size from Buffer 1 (Specific size)
BUF_COPY 0x3a Copy a same Buffer 2 (Start and end pointers)

Fig. 6. The workflow of CNN-oriented instructions.

LI ET AL.: SMARTVM: A SMART CONTRACT VIRTUAL MACHINE FOR FAST ON-CHAIN DNN COMPUTATIONS 7

IE
EE P

ro
of

571 convolutional computation. In smart contract runtime, the
572 parameters of the first convolutional layer are pushed onto
573 Stack. In the native code wise, Conv instruction execution
574 can be divided into five steps: 1) pop the arguments from
575 Stack 2) fetch input feature map data from Buffer 3) fetch
576 weights from Storage 4) perform convolutional computation
577 5) write back the output featuremap back to Buffer.
578 In SmartVM design, from high-level smart contract to
579 bytecode, a SmartVM compiler is provided for generating
580 the CNN-oriented instructions. The compiler keeps an
581 instruction table, which is the same as instruction set of
582 smart contract virtual machine. Once the instruction set
583 changes, the table should also be updated. As shown in
584 Fig. 7, the compiler compiles high-level smart contract
585 according to the instruction set. The source code is first
586 parsed to abstract syntax tree (AST) by lexical and syntax
587 analysis. Secondly, the AST is converted to Yul-based pro-
588 gram (Yul is an intermediate language that can be compiled
589 to bytecode for different backends). Then the Yul-based pro-
590 gram is compiled to low-level bytecode according to the
591 instruction table. For example, the code sstore(v, zero)

592 in Yul is compiled down to PUSH v, PUSH zero, SSTORE.
593 In the above steps, the exception handle part handles the
594 exceptions during compilation. In SmartVM, the table in
595 SmartVM compiler includes CNN-oriented instructions,
596 and the CNN operations in high-level language can be cor-
597 responding compiled down to high-performance bytecode,
598 while the normal compiler (e.g., Solc compiler) will give
599 poor-performance bytecode (because the table has no CNN-
600 oriented instructions).

601 3.3 Dynamic Memory Management Method

602 As aforementioned, although the EVMMemory can be used
603 for storing runtime data, it will never be released dynami-
604 cally during the contract execution which can cause a high
605 memory footprint. This implies that to store CNN input and
606 output feature maps, all the data are RAM-resident during
607 the on-chain inference. Therefore, in SmartVM, in order to
608 reduce the memory footprint, we propose a memory man-
609 agement method to provide dynamic memory allocation
610 and release function in accordance with the feature map
611 size of each CNN layer. As mentioned in Sec 2.3, the high-
612 level smart contract language provides no library functions
613 to manage memory in an automatic or manual manner. To

614make up for the defect, we partition a block from the mem-
615ory and define it named as Buffer to store feature maps for
616each layer dynamically, and each Buffer item is set to 256
617bits by default.
618As shown in Fig. 8, we still take LeNet-5 inference as an
619example to explain the corresponding design details in
620SmartVM. The input feature map is stored in the partitioned
621Buffer and its size is 1024 (1*32*32), so the total size of Buffer
622at the present equals 1024. After the first convolutional layer
623computations, the output feature map size becomes 3456
624(6 � 24 � 24). The Buffer in consequence should be changed
625to be bigger by memory allocation. Then, the output feature
626map size becomes 864 (6 � 12 � 12) after the computation of
627the first pooling layer, so the Buffer should be smaller by
628space release. According to the size of the intermediate
629results, we should dynamically change the corresponding
630memory size to prevent exceptions caused by the continu-
631ous growth of memory. In SmartVM, during CNN infer-
632ence, the Buffer size upper and lower limits are decided by
633the output feature map size. The proposed memory man-
634agement has two main insights: first, SmartVM can manage
635memory automatically and is compatible with all CNNs,
636because the Buffer is elastic according to the size of feature
637maps. Secondly, for some of the traditional high-level lan-
638guages (e.g., C, C++), the developers may manage memory
639manually, our automatic method eases the developers and
640bring no extra burden to the developers. The pre-allocation
641and remapping approach is implemented by append()

642function, malloc() function, and free() function. Some
643high-level solutions (e.g., rolling array) are not fit the CNN
644inference, because the compiled results are static for the
645memory space, which can not fit the dynamic space require-
646ments in CNN inference.

6473.4 CNN Weight Prefetching and Parallel
648Computation

649In CNN network, convolution computing can account for
650about 90% of the total processing work [43], [44]. In order to
651calculate convolution, each convolution operation should
652fetch weight from RAM to multiply the feature map data.
653This process will produce a large number of weight fetching
654operations. In the previous smart contract execution envi-
655ronment, the fetching process is in serial mode and so time-
656consuming. Therefore, we propose a block-based weight
657prefetching method in SmartVM to obtain more data once
658time to reduce the fetching time for CNN convolution calcu-
659lation. Furthermore, because convolution operations when
660CNN inferences are repetitive and data-independent with

Fig. 7. The SmartVM compiler.

Fig. 8. The dynamic memory management method.

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

IE
EE P

ro
of661 weight fetching at layer-wised, we also design a parallel

662 computing mechanism to conduct weight fetching and con-
663 volution calculation at the same, in order to overcome the
664 serial execution defect.
665 Block-Based Weight Fetching. Since reading data fast or
666 slowly depends on the storage and organization of data to a
667 certain extent, we first design how to store data reasonably.
668 The block-based weight storage method is designed to
669 reduce the number of reading data from physical memory,
670 thereby speeding up the fetching process. To ease under-
671 standing about SmartVM design and previous blockchain
672 storage structure, we take Ethereum as an example.
673 Before contract execution, the runtime EVM will load
674 four tries from the persistent key-value database (e.g.,
675 Level-DB) on the hard disk into physical memory. The four
676 tries are world state trie, receipt trie, transaction trie, and
677 storage trie and are responsible for describing account infor-
678 mation, transaction receipt, transaction information, and
679 contract-related data, respectively. The storage trie stores
680 the global variables of a smart contract, and each global var-
681 iable is a leaf node of the trie. The CNN weights in a smart
682 contract should be defined by global variables, so each
683 weight data is a leaf node in the storage trie. As a result,
684 when performing CNN inference within a smart contract,
685 especially in convolutional and fully-connected layer’s com-
686 putation, it needs more than thousands of times to read the
687 database to fetch weight data.
688 In SmartVM, we cluster and store weight data(e.g., a
689 convolutional kernel) as a block rather than a single
690 weight data in the leaf node of the storage trie (see Fig. 9).
691 These weight blocks are indexed by a unique identifier in
692 the corresponding smart contract data table in the data-
693 base. Note that the number and the size of the weight
694 block are not fixed and can be changed on demand. In a
695 convolutional layer, a weight block may represent a con-
696 volutional kernel, while in the fully-connected layer it
697 may represent a fully-connected matrix. For convolution
698 computing which needs the whole convolutional kernel,
699 SmartVM can fetch the convolutional kernel completely in
700 the form of a block, and reduce the number of data reading
701 thousands of times.
702 Parallel Computation. In the previous subsection, we
703 explain how we design a block-based storage approach and
704 enable it to process weight data fetching. Here, we further
705 extend our design to explore more parallelism.

706In the existing contract runtime, the serial mode during
707contract execution has limited complex computing poten-
708tial, and will seriously degrade on-chain CNN inference
709performance. We have observed that the computing time in
710CNN inference is longer than the weight fetching time, and
711these two process tasks are data-independent in fact. We
712thus can perform fetching weight and CNN inference in the
713same instant. We reorganize the weights fetching process
714and the convolution computation of each channel in each
715layer in the pipeline manner. In a convolutional layer, the
716number of convolutional kernels equals the number of out-
717put feature maps. Concretely, we can prefetch the next out-
718put channel’s convolutional kernel weight data when
719computing the CNN current output channel feature map.
720As shown in Fig. 10, we define computing one single out-
721put channel’s feature map time as Tc, and label fetching an
722output channel’s convolutional kernel time as Tk. Tc and Tk

723are not constant in different convolutional layers and differ-
724ent CNNs, and normally, Tk is less than Tc in the convolu-
725tional layer. To initial parameters of Tc and Tk, we record
726the time for fetching the first output channel’s kernel and
727the time for the first output channel’s convolutional compu-
728tation. After that, we can calculate bTc=Tkc and define it as
729N , implying the number of output channels’ convolutional
730kernel weight that can be prefetched maximally when com-
731puting convolution at the same time. When implementing
732SmartVM, we utilize two threads to conduct the two tasks
733in parallel. In this way, the weight fetching time can be cov-
734ered by convolution computing time and thus further
735improving CNN inference performance on SmartVM.

7364 EVALUATION

737To validate the design point of SmartVM and demonstrate its
738performance benefits, we have deployed experiments to build
739the BC-AI prototype system on the private Ethereum block-
740chain at CPU and GPU platform, which performing LeNet-5
741over MNIST dataset, and AlexNet, ResNet18, and MobileNet
742over ImageNet [45] dataset, respectively. Besides, to prove the
743scalability of SmartVM, we perform experiments on the RNN
744(Recurrent Neural Network). The RNN used in this evalua-
745tion is LSTM (Long Short-Term Memory) with 28 cells and
74655,296 weights. The objectives of the evaluation are fourfold:
747(1) testing the performance improvement of SmartVM com-
748pared with the offloading CNN weight data and computa-
749tions as native code paradigm; (2) testing the performance
750improvement of SmartVM compared with traditional smart
751contract architecture regarding CNN inference; (3) providing

Fig. 9. The block-based weight storage.

Fig. 10. The weights prefetching and parallel computation model in Conv

instruction.

LI ET AL.: SMARTVM: A SMART CONTRACT VIRTUAL MACHINE FOR FAST ON-CHAIN DNN COMPUTATIONS 9

IE
EE P

ro
of752 insights of SmartVM’s outperforming its peers; and (4) study-

753 ing the impact of SmartVMon the original BC-AI system.

754 4.1 Experimental Setup

755 Hardware. We deploy eight servers equipped with Xeon E5-
756 2630 CPU (2.3GHz, 6 Cores) and 96GB memory to construct
757 a private Ethereum network. The servers are connected
758 with each other via a local area network by 1000Mb band-
759 width. The GPU we utilized is NVIDIA GeForce 2080Ti.
760 Metrics. We compare SmartVM with traditional off-chain
761 CNN inference in three aspects: inference latency, the RAM
762 footprint, and the code length. Most CNN applications
763 require low latency to achieve real-time inference with low
764 computing resource overhead.
765 Prototype. Most of the existing work provides system
766 model, but rarely provides source code (e.g., [22]). So we
767 use the on-chain storage and off-chain computation model
768 to represent existing works. The SmartVM baseline is off-
769 chain model and Ethereum Virtual Machine. The private
770 Ethereum network is implemented by Golang-based Ether-
771 eum (v1.7), and the smart contract execution environments
772 are Ethereum Virtual Machine (v1.7) and SmartVM. The
773 CNN smart contract is programmed by Solidity, and the
774 corresponding compiler is based on Solc (v0.5.1). The CNN
775 in native code is implemented by Golang (v1.14.2) and
776 PyTorch (v1.10.0).
777 Experimental Steps. We deploy experiments for CNN
778 inference on both off-chain and on-chain platforms. Per-
779 forming off-chain CNN inference we need (1) Download
780 CNN weights from Ethereum to the off-chain platform. (2)
781 Performing CNN computation by CPU and GPU at local.
782 Performing on-chain CNN inference we need (1) Fetching
783 CNN weights from Storage. (2) Performing CNN computa-
784 tion by CPU and GPU in the corresponding smart contract
785 (on-chain computing).
786 We give a fair comparison of performance between off-
787 chain CNN inference and inference in SmartVM. We also
788 analyze the reasons for the improvement of performance in
789 detail.

790 4.2 Code Length

791 In the evaluation, the code length is picked as a metric for
792 two reasons: the source code length is related to the conve-
793 nience for development, and the bytecode length is related
794 to the execution latency. Chen et al. point out that the code
795 length is a meaningful metric only when the ISA is flexible
796 enough to cover a broad range of applications in the target
797 domain [46]. Note that in our evaluation for the code length,

798the comments are not included in our source file, and the
799lines of comments are not counted.
800In this subsection, we focus on the comparison results
801between SmartVM instruction set and EVM instruction set
802in two aspects: the source code length (i.e., the number of
803Solidity smart contract source code) to show that the pro-
804posed CNN-oriented instructions can facilitate the pro-
805gramming, and the compiled bytecode to show that the
806CNN-oriented instructions can reduce the number of exe-
807cuted instructions in runtime in SmartVM. In the evaluation
808for code length, in order to keep fair, the language, compiler
809version, and other factors are kept the same. The experimen-
810tal setup obeys the steps in [46]. Besides, we do not use any
811external library in our evaluation. The code length of source
812code refers to the line number (excluding blank lines) of
813source code file (counted manually). The code length of
814bytecode refers to the number of instructions (counted by
815the compiler automatically).
816Fig. 11a shows that compared with the EVM instruction
817set, with the help of CNN-oriented instructions, program-
818ming MobileNet only needs 110 lines of source code in
819SmartVM, while this number is up to 600 in origin Solidity of
820EVM. Fig. 11c shows the number of source code lines for each
821kind of layer on average. Specifically, the SmartVM for pro-
822gramming convolutional layer, pooling layer, and FC layer is
823the same, while the EVMneeds 2� to 3� to program the three
824layers because the computation logic is implemented only in
825a single instruction, and the instruction can be invoked by
826only one in-line assembly sentence (e.g., assembly{conv
827(args)}).
828As shown in Fig. 11b, compared with the origin Solidity
829language which is EVM supported, SmartVM can reduce
830the compiled bytecode numbers by 95.8% on average with
831the proposed CNN-oriented instructions. Specifically, as
832shown in Fig. 11d, the number of bytecode instructions for
833the convolutional layer is eight, including Conv itself and
834seven PUSH for its parameters, while the number of original
835bytecode instructions is more than 840.
836The off-chain Golang-based LSTM inference program is
837nearly 120 lines, and the on-chain Solidity-based smart con-
838tract needs nearly 110 lines. Fortunately, with the help of
839CNN-oriented instructions in SmartVM, the code length of
840the source code can be reduced to 27 lines. Furthermore, the
841compiled bytecode length can be reduced from nearly 4900
842to 170, compared with native Solidity.
843The reduced code length comes from the architectural
844design, the complex logic is achieved by the low-level
845instructions in low layer rather than the high-level program
846code. Though some high-level programming frameworks

Fig. 11. The result of code length.

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

IE
EE P

ro
of

847 and libraries can also reduce the source code length, the com-
848 pilation results are the same. The architectural and low-level
849 instruction set design can support shorter code length with
850 high-performance computation. Specifically, in fact, some-
851 times an implementation needs more lines of codes only due
852 to the lack of abstraction and encapsulations. However, in
853 SmartVM, the reduction of code length is mainly caused by
854 the new low-level instructions rather than high-level lan-
855 guage function library. A function library in high-level lan-
856 guage cannot improve the execution performance, because
857 the compiled bytecode is the same as the bytecode without
858 library. By contrast, the CNN-oriented instruction not only
859 simply provides and encapsulates CNN operations (e.g.,
860 Conv, Pooling, etc.), but also includes the optimized compu-
861 tational and data fetchingmethod.

8624.3 Latency

863We consider the inference latency in three aspects: end-to-
864end latency, weights fetching latency, and inference com-
865puting latency (on CPU and GPU platform). The end-to-end
866latency equals the summary of weights fetching latency and
867inference computing latency. We run the experimental con-
868figuration ten times to avoid random deviation and record
869the average results. Results of the latency of the four CNN
870inference are reported in Figs. 12, 13, 14, and 15.

8714.3.1 End-to-End Latency

872We product end-to-end latency to show the overall perfor-
873mance of on-chain CNN inference in SmartVM. The end-to-
874end latency is composed of weights fetching latency and

Fig. 12. Results for latency of LeNet-5 inference.

Fig. 13. Results for latency of AlexNet inference.

Fig. 14. Results for latency of ResNet-18 inference.

LI ET AL.: SMARTVM: A SMART CONTRACT VIRTUAL MACHINE FOR FAST ON-CHAIN DNN COMPUTATIONS 11

IE
EE P

ro
of

875 inference computational latency. We use this metric to show
876 the effectiveness of SmartVM design. The results are given
877 in each first subfigure from Figs. 12, 13, 14, and 15. As the
878 results show, compared with off-chain CNN inference,
879 SmartVM can significantly shorten the overall inference
880 time by 93.6% on average.
881 The proposed weight prefetching and parallel computa-
882 tion technology also improve the overall performance of
883 SmartVM. The experimental results are given in Table 2.
884 The no pipeline latency is divided into weights fetching
885 latency and computing latency (the total latency equals
886 fetching latency adds computing latency). The pipelined
887 latency is the latency after pipelining the weights fetching
888 and computing. Results show that among the four net-
889 works, the pipelined latency is shorter than the total no
890 pipeline time in SmartVM. The results show that with pipe-
891 line technology, the end-to-end inference latency can be
892 reduced by 17.8%, 13.7%, 6.7%, and 14.2% on each network,
893 respectively.
894 In detail, the on-chain inferencemode reduces theweights
895 fetching latency by 93.7%, comparedwith off-chain inference
896 mode. For the four NNs, compared with on-chain inference
897 based on EVM, the CNN-oriented instructions reduce the
898 inference latency by 97.3%, the block-based weights fetching
899 can reduce the inference latency by 98.7%, andwith the pipe-
900 line computation, the latency can be reduced by 13.1% on

901average. In addition, SmartVM keeps the pure computation
902latency similar between the on-chain and off-chain inference
903on CPU and GPU. As a result, the SmartVM can significantly
904reduce overall latency by 93.6%.
905For the overall latency of LSTM, the weights fetching time
906is 4867ms and 10ms in the baseline and SmartVM (with
907block-based weights fetching), respectively. The results for
908computation time on CPU platform are 7.2ms and 7.4ms by
909native code and SmartVM, respectively.

9104.3.2 Weights Fetching Latency

911We give the weights fetching performance evaluation to
912show the effectiveness of block-based weights fetching tech-
913nology. In the off-chain CNN inference, the weight fetching
914refers to invoking smart contract functions to get back all
915the weights. In the on-chain CNN inference (in SmartVM),
916the weight fetching refers to invoking contract data trie
917interface to get weights by CNN-oriented instructions. The
918results are given in each second subfigure from Figs. 12, 13,
91914, and 15. In each figure, the “Non block-based vs. Block-
920based” is just the time for weight fetching.
921As shown, compared with off-chain CNN inference,
922SmartVM can significantly shorten the weight fetching time
923by 93.7% on average. Especially, the weight fetching time
924can be reduced by 98.6% at maximum and 89.6% at mini-
925mum. The SmartVM with block-based weight fetching
926experiment reports a positive time reduction with respect to
927a solution that executes all CNN inferences on-chain with
928the default non-block manner. As shown, the speedups
929with respect to on-chain computing in SmartVM consis-
930tently outperform the inference on EVM on-chain without
931block-based weight fetching depending on the CNN and
932dataset, SmartVM reduces the weight fetching time by up to
93328� (from 57.3ms to 2ms) for LeNet-5 and by up to 210�
934(from 68901ms to 328ms) for ResNet-18.
935With the help of pipeline and parallel computation
936method, as data is shown in Table 2, the inference latency is

Fig. 15. Results for latency of MobileNet inference.

TABLE 2
Pipeline Latency

Network

Latency (ms)

No pipeline Pipelined
Weights fetching Computing Total Total

LeNet 2 10 12 9.87
Alexnet 1228 4370.98 5598.98 4832.68
ResNet18 328 7037 7365 6871
MobileNet 677.7 2826.47 3504.17 3005.52

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

IE
EE P

ro
of

937 reduced by 17.75%, 13.7%, 6.7%, and 14.2% on LeNet-5,
938 AlexNet, ResNet-18, MobileNet, respectively. The average
939 reduction rate is 13.1%, and the maximum reduction rate is
940 14.2% on MobileNet except for LeNet-5 (as the number of
941 LeNet-5 weights is too less). In general, the pipelined over-
942 all time is longer than non-pipelined computation time, as
943 in some fully-connected layers, the weights fetching time is
944 longer than the computation time. In SmartVM, the pro-
945 posed pipelined can increase the computation throughput.
946 With the non-pipelined method, the computation process
947 and weights fetching process share the same thread
948 together. With the pipelined method, the computation pro-
949 cess and weights fetching process run on the different
950 threads that are created by different Goroutines (concur-
951 rency model in Golang). Therefore, the computation time
952 can be reduced with the pipelined method. As a result, in
953 some DNNs with small-scale weights such as LeNet and
954 ResNet, the pipelined overall time is slightly shorter than
955 the pure computation time by 1% to 2%.
956 From the experimental results, compared with the off-
957 chain inference mode of the BC-AI system, the on-chain
958 inference mode can significantly reduce the weight down-
959 loading time, because the function invocation path is
960 shorter. In off-chain mode, downloading one single weight
961 value needs invoking get(), Sload(), getStorage(),
962 and getTrie() in order. In on-chain mode, fetching one
963 weight only needs invoking getStorage() and getTrie

964 (). Moreover, the off-chain mode needs data transmission
965 time from data residence to local platform.

966 4.3.3 Inference Computing Latency

967 We evaluate the CNN inference pure computing latency to
968 show the effectiveness of the proposed CNN-oriented
969 instructions and parallel computation technology. In the
970 off-chain CNN inference, the computation refers to per-
971 forming computation from the first layer to the final layer of
972 CNN. In the on-chain CNN inference (in SmartVM), the
973 computation refers to performing the corresponding com-
974 putation after weights fetching. For example, in Conv, the
975 computation latency is the time for convolutional computa-
976 tions after fetching convolutional kernels. The experimental
977 results on CPU and GPU platform are given in the third and
978 fourth subfigures from Figs. 12, 13, 14, and 15, respectively.
979 According to the computing latency results on CPU and
980 GPU platform, the SmartVM keeps the same latency
981 between native code and on-chain computation. On CPU
982 platform, the computing latency is nearly 10ms, 4.3s, 7s,
983 and 3s for LeNet, AlexNet, ResNet, and MobileNet, respec-
984 tively. On GPU platform, the computing latency is nearly
985 1ms, 52ms, 30ms, and 26.3ms for the four networks, respec-
986 tively. Among the four networks, which are close to the
987 time of CNN inference through the native code.
988 The SmartVM employs two technologies to reduce infer-
989 ence computing time: SmartVM saves the instruction inter-
990 pretation time by proposed CNN-oriented instructions, and
991 the block-based method facilitates covering weight fetching
992 time by CNN computation. Firstly, as aforementioned in the
993 code length subsection, the CNN-oriented instructions can
994 reduce 10000 instructions execution in runtime, because the
995 logic of convolutional computation is implemented in the

996proposed instructions rather than simply putting the original
997instructions together. Secondly, in the block-based method,
998the weights are organized by block, and each block is stored
999in the leaf node of storage trie, while the traditional method
1000stores a single weight in the leaf node of storage trie. Invok-
1001ing getTrie() accesses the trie and returns the value of
1002leave node. So, in order to get all the weights, the getTrie

1003() will be invoked many times (e.g., 34,848 times in the first
1004convolutional layer of AlexNet). In the block-based method,
1005invoking once getTrie() can return a weight block, which
1006includes many weights. Therefore, prefetching weights by
1007blocks can reduce the number of trie interface invoking
1008(from 34,848 to 96), then the time for invoking trie interface
1009can be decreased by more than 80%. For example, for the
1010large weight data CNN such as AlexNet and ResNet-18, the
1011speedup can be 184x and 210x improved by SmartVM,
1012respectively. It is possible to cover fetching time by computa-
1013tion time in the block-basedmethod as the former is less than
1014the latter. For example, in the first convolutional layer of
1015ResNet, fetching weights needs 11ms, while computation
1016needs 400ms (see Fig. 14). In fact, we observe that in the con-
1017volutional layers of four CNNs, the convolutional computa-
1018tion latency can cover weights fetching latency, while in the
1019fully-connected layers, the weights fetching time can cover
1020fully-connected computation latency.

10214.4 Memory Footprint

1022We product memory footprint evaluation to show the effec-
1023tiveness of the proposed dynamic memory management
1024method. We evaluate the physical memory footprint from
1025two aspects: 1) the comparison between the size of EVM
1026Memory and SmartVM Buffer in runtime to show the effi-
1027ciency of the dynamic memory management method, and 2)
1028the comparison between SmartVM and native code during
1029CNN inference to show that the proposed SmartVM can pro-
1030vide a similar performance compared with native code wise.
1031In our evaluation, the size of each item in Buffer is defined as
1032256 b, which equals the size of each item in EVMMemory.
1033The comparison results for EVM Memory and SmartVM
1034Buffer are given in Fig. 16. Results show that with the pro-
1035posed method, the memory footprint for storing feature
1036maps can be reduced by 84%, 90.8%, 94.3%, and 93.7% on
1037average in LeNet, AlexNet, ResNet18, and MobileNet infer-
1038ence, respectively. In LeNet-5, the peak memory used by
1039Buffer is only 4.2KB of a slice, while this number is more
1040than 2� in EVMMemory. In AlexNet, due to a large number
1041of weights, the memory used by EVM Memory is up to
1042nearly 160MB, while the maximummemory required is only
104342MB by SmartVM Buffer. In ResNet18, results show that
1044the minimum and average RAM footprint is 25MB and
104561MB in the EVMMemory, respectively.With the help of the
1046managementmethod in SmartVM, the averagememory foot-
1047print in Buffer can be reduced to only 3.5MB. In MobileNet,
1048the Buffer requires only less than 1MBmemory space to per-
1049form CNN inference, while the EVMMemory requires more
1050than 4MB space.
1051For the CNN with a larger number of weights, the effi-
1052ciency of dynamic memory management method is more
1053significant. For example, in AlexNet, the memory space can
1054be saved by more than 100MB. For the four CNNs, in
1055SmartVM Buffer, the highest memory used is occurred after

LI ET AL.: SMARTVM: A SMART CONTRACT VIRTUAL MACHINE FOR FAST ON-CHAIN DNN COMPUTATIONS 13

IE
EE P

ro
of

1056 the first layer, because the feature map is the largest of the
1057 other layers. In general, the size of EVM Memory is gradu-
1058 ally increased because the feature maps will not be freed,
1059 while the size of Buffer is decreased because the feature
1060 map size is decreased due to the pooling layers.
1061 The memory used results of SmartVM and native code
1062 inference comparison is given in Fig. 17. Experimental results
1063 show that SmartVM can keep the close latency with slightly
1064 higher than native code (6% on average). There are three rea-
1065 sons for the phenomenon: 1) except for trained weights, some
1066 block validation-related information (e.g., hash value) has to
1067 be stored. 2) In order to support heterogeneous computing,
1068 some space for shared libraries (e.g., Cuda) is inevitable, and
1069 some space for the interpretation in stack-based SmartVM is
1070 required. 3) In order to ensure data consistency and reach con-
1071 sensus accurately and quickly, float computation is not con-
1072 sidered in EVM and SmartVM, because the results of float
1073 computation are not always the same on a different kind of
1074 hardware. In this case, all the runtime data (e.g., including
1075 weights, feature maps) are stored as 256 b, while the native
1076 code can pick different data width. In summary, the dynamic
1077 memory management method can keep a similar memory
1078 footprint between SmartVMand native code.

1079 4.5 Discussion

1080 In this subsection, we give the analysis of inference accuracy
1081 and gas usage to illustrate that the SmartVM can be
1082 deployed in intelligent applications and blockchain sys-
1083 tems. Lastly, we discuss the potentially optimization for
1084 storage space in SmartVM.

1085 4.5.1 Accuracy Discussion

1086 The pre-trained model we used is the same between native
1087 code and SmartVM, and the experimental results show that

1088the accuracy of image classification in native code and
1089SmartVM can be the same level: 99.98% in LeNet, 57.1% in
1090AlexNet, 69.6% in ResNet18, and 70.9% in MobileNet.
1091In fact, picking a power of two as the scaling factor also
1092can be implemented in SmartVM, and picking a power of
1093two as the scaling factor is a kind of NN compression and
1094quantization methods such as ESB [47] and TSQ [48]. The
1095quantizationmethods can further improve the inference per-
1096formance. The proposed SmartVM focuses on the inference
1097performancewithout any accuracy loss. However, themodel
1098compression and quantization method leads to accuracy
1099loss. Therefore, we pick 1,000 or 10,000 as the scaling factor.
1100Besides, in order to ensure the precision of the computational
1101results and make numerically more stable on different hard-
1102ware, both the EVM and SmartVM can not support opera-
1103tions of Float type data, so we convert the type of CNN
1104weights from Float to Int by multiplying 1,000 or 10,000. Fur-
1105thermore, smart contract are computed across different plat-
1106form and machines, using Int type data for computation can
1107keep a cross platform consistency of results.

11084.5.2 Gas Usage Discussion

1109Gas is the virtual unit used in Ethereum to measure the
1110computational and storage resources required to perform
1111certain actions on the Ethereum [49]. For example, ADD
1112instruction costs 2 units of gas, and MUL instruction costs 3
1113units. We give the on-chain CNN inference gas consump-
1114tion to prove that the computation amount of inference in
1115SmartVM can be accepted not only in private blockchain
1116but also in public blockchain. We take LeNet-5 as an exam-
1117ple, the gas usage during on-chain inference in SmartVM is
1118listed in Table 3. In the three convolutional layers, the
1119results of gas usage are 617556, 222913, and 61146, respec-
1120tively. In the two pooling layers, the results are 911384 and

Fig. 16. RAM footprint comparison between SmartVM Buffer and EVMMemory.

Fig. 17. RAM footprint comparison between SmartVM and native code.

14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

IE
EE P

ro
of1121 208038. And in the two fully-connected layers, the results

1122 are 61359 and 35047. Note that the computation in Conv1 is
1123 larger than in Pool1, but the gas usage is opposite since
1124 Pool1 needs to read from EVM Memory more times than
1125 Conv1. The gas usage of reading EVM Memory is larger
1126 than computation.
1127 In fact, the gas usage can be tolerated in the public Ether-
1128 eum, because the gas usage in many real blocks is bigger
1129 than or similar to the gas usage in the on-chain LeNet-5
1130 inference. Such blocks are also listed in Table 3, the data is
1131 fetched from Etherscan.6

1132 The gas cost for the proposed CNN-oriented instructions
1133 references the Ethereum design. For example, the gas cost
1134 for reading Buffer is similar to the reading Memory because
1135 the resources consumption is the same. And the gas cost for
1136 convolution instruction is generated dynamically according
1137 to the computing amount.

1138 4.5.3 Storage Space Discussion

1139 The SmartVM currently focuses on the latency, program-
1140 ming, and gas usage performance during on-chain CNN
1141 inference. The blockchain’s default storage mechanism,
1142 which not only stores original data, but also stores extra data
1143 for validation. Such storage mechanism brings a heavy stor-
1144 age burden for blockchain. For example, the weights file size
1145 is up to several hundreds of MB, which brings high require-
1146 ments of distributed storage space, especially for embedded
1147 devices. The traditional hash-based data summary needs
1148 extra time to find the original off-chain data, so direct data
1149 processing methods are needed for the blockchain without
1150 data decompression and data decode. It is also difficult to
1151 store the temporary data during on-chain CNN inference
1152 due to frequent writing and reading operations. Potentially,
1153 adopting direct data processing method and text compres-
1154 sion technology such as TADOC [50], POCLib [51] and
1155 Sequitur [52] is promising for storing the computational tem-
1156 porary data to make the computationmore reliable.
1157 In addition to on-chain CNN inference, the blockchain
1158 also requires TB-level storage space on hard disk to store the
1159 block and transaction data. The POCLib can also be consid-
1160 ered to reduce the storage burden of the blockchain itself. In
1161 terms of the Etherscan data, the data size in an Ethereum
1162 Geth full node is up to 709.2GB in May 17, 2022. During the
1163 past three months, the data size increased by about 1GB to
1164 2GB every day. In this case, compressing the blockchain data
1165 by some novel techniques such as POCLib is also promising.

11665 CONCLUSION

1167In this paper, we propose SmartVM, which provides archi-
1168tectural support for fast on-chain CNN inference, and ena-
1169bles heterogeneous computing. We present CNN-oriented
1170instruction set to reduce the latency by decreasing the num-
1171ber of instructions in bytecode during CNN on-chain infer-
1172ence. We propose a memory management mechanism to
1173reduce the memory pressure through dynamically space
1174free and allocation according to the size of the feature map.
1175In addition, the weights are stored in the blockchain as
1176blocks, and we organize weights fetching with blocks and
1177computing in a parallel pipeline manner. Experimental
1178results highlight that the inference latency and memory
1179footprint are significantly reduced. Compared with the tra-
1180ditional off-chain computing, SmartVM can speedup the
1181overall execution by 70�, 16�, 11�, and 12� over Lenet-5,
1182Alexnet, Resnet-18, and MobileNet respectively. The mem-
1183ory footprint can be reduced by 84%, 90.8%, 94.3%, and
118493.7% over the above four models while offering the same
1185level of accuracy. These results strongly show that SmartVM
1186can be used to promote DNN inference on-chain and be
1187promising to further boost BC-AI applications.

1188REFERENCES

1189[1] W. Li, Z. Su, R. Li, K. Zhang, and Y. Wang, “Blockchain-based
1190data security for artificial intelligence applications in 6G
1191networks,” IEEE Netw., vol. 34, no. 6, pp. 31–37, Nov./Dec. 2020.
1192[2] M. Mylrea, “AI enabled blockchain smart contracts: Cyber resil-
1193ient energy infrastructure and IoT,” in Proc. Conf. Assoc. Advance.
1194Artif. Intell. Spring Symp. Ser., 2018 Q2.
1195[3] S. Guo, Y. Qi, Y. Jin, W. Li, X. Qiu, and L. Meng, “Endogenous
1196trusted DRL-based service function chain orchestration for IoT,”
1197IEEE Trans. Comput., vol. 71, no. 2, pp. 397–406, Feb. 2022.
1198[4] S. Alrubei, E. Ball, and J. Rigelsford, “The use of blockchain to sup-
1199port distributed ai implementation in IoT systems,” IEEE Internet
1200Things J., to be published, doi: 10.1109/JIOT.2021.3064176.
1201[5] M. Keshk, B. Turnbull, N. Moustafa, D. Vatsalan, and K.-K. R.
1202Choo, “A privacy-preserving-framework-based blockchain and
1203deep learning for protecting smart power networks,” IEEE Trans.
1204Ind. Informat., vol. 16, no. 8, pp. 5110–5118, Aug. 2020.
1205[6] T. Bui et al., “ARCHANGEL: Tamper-proofing video archives
1206using temporal content hashes on the blockchain,” in Proc. Conf.
1207Comput. Vis. Pattern Recognit. Workshops, 2019, pp. 2793–2801.
1208[7] X. Lin, J. Li, J. Wu, H. Liang, and W. Yang, “Making knowledge
1209tradable in edge-AI enabled IoT: A consortium blockchain-based
1210efficient and incentive approach,” IEEE Trans. Ind. Informat.,
1211vol. 15, no. 12, pp. 6367–6378, Dec. 2019.
1212[8] A. Goel, A. Agarwal, M. Vatsa, R. Singh, and N. Ratha,
1213“DeepRing: Protecting deep neural network with blockchain,”
1214in Proc. Conf. Comput. Vis. Pattern Recognit. Workshops, 2019,
1215pp. 2821–2828.
1216[9] I. Sergey, V. Nagaraj, J. Johannsen, A. Kumar, A. Trunov, and
1217K. C. G. Hao, “Safer smart contract programming with scilla,”
1218Proc. ACM Program. Lang., vol. 3, pp. 1–30, 2019.
1219[10] J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo, and T. Chen, “Defining
1220smart contract defects on ethereum,” IEEE Trans. Softw. Eng.,
1221vol. 48, no. 1, pp. 327–345, Jan. 2022.
1222[11] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and
1223Y. Smaragdakis, “MadMax: Surviving out-of-gas conditions in
1224ethereum smart contracts,” Proc. ACM Program. Lang., vol. 2,
1225pp. 1–27, 2018.
1226[12] T. Li, Y. Fang, Z. Jian, X. Xie, Y. Lu, and G. Wang, “ATOM: Archi-
1227tectural support and optimization mechanism for smart contract
1228fast update and execution in blockchain-based IoT,” IEEE Internet
1229Things J., vol. 9, no. 11, pp. 7959–7971, Jun. 2022.
1230[13] X. Larrucea and C. Pautasso, “Blockchain and smart contract engi-
1231neering,” IEEE Softw., vol. 37, no. 5, pp. 23–29, Sep./Oct. 2020.
1232[14] J. Eberhardt and S. Tai, “On or off the blockchain? Insights on off-
1233chaining computation and data,” in Proc. Eur. Conf. Serv.-Oriented
1234Cloud Comput., 2017, pp. 3–15.

TABLE 3
The Gas Usage of LeNet-5 On-Chain Inference

Layer Gas usage (�104) Blocks # in public Ethereum

Conv1 61.8 #12269695
Pool1 91.1 #12269690
Conv2 22.3 #12269668
Pool2 20.8 #12269670
Conv3 6.1 #12269672
FC1 6.1 #12264715
FC2 3.5 #12264706

6. https://etherscan.io/

LI ET AL.: SMARTVM: A SMART CONTRACT VIRTUAL MACHINE FOR FAST ON-CHAIN DNN COMPUTATIONS 15

http://dx.doi.org/10.1109/JIOT.2021.3064176

IE
EE P

ro
of

1235 [15] L. Su et al., “Evil under the sun: Understanding and discovering
1236 attacks on ethereum decentralized applications,” in Proc. 30th
1237 USENIX Secur. Symp., 2021, pp. 1307–1324.
1238 [16] M. Yano, C. Dai, K. Masuda, and Y. Kishimoto, Blockchain and
1239 Crypto Currency: Building a High Quality Marketplace for Crypt Data.
1240 Berlin, Germany: Springer, 2020.
1241 [17] Z. Zheng et al., “Agatha: Smart contract for DNN computation,”
1242 2021, arXiv:2105.04919.
1243 [18] Y. Yang, “Training massive deep neural networks in a smart con-
1244 tract: A new hope,” 2021, arXiv:2106.14763.
1245 [19] Z. Hu, B. Li, and J. Luo, “Time-and cost-efficient task scheduling
1246 across geo-distributed data centers,” IEEE Trans. Parallel Distrib.
1247 Syst., vol. 29, no. 3, pp. 705–718, Mar. 2018.
1248 [20] A. C. Zhou, Y. Xiao, Y. Gong, B. He, J. Zhai, andR.Mao, “Privacy reg-
1249 ulation aware process mapping in geo-distributed cloud data cen-
1250 ters,” IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 8, pp. 1872–1888,
1251 Aug. 2019.
1252 [21] W. Zou et al., “Smart contract development: Challenges and oppor-
1253 tunities,” IEEE Trans. Softw. Eng., vol. 47, no. 10, pp. 2084–2106,
1254 Oct. 2019.
1255 [22] J.-Y. Kim and S.-M. Moon, “Blockchain-based edge computing for
1256 deep neural network applications,” in Proc. Workshop Intell.
1257 Embedded Syst. Archit. Appl., 2018, pp. 53–55.
1258 [23] G. Wood et al., “Ethereum: A secure decentralised generalised
1259 transaction ledger,” Ethereum Project Yellow Paper, vol. 151,
1260 no. 2014, pp. 1–32, 2014.
1261 [24] T. Dickerson, P. Gazzillo, M. Herlihy, and E. Koskinen, “Adding
1262 concurrency to smart contracts,” Distrib. Comput., vol. 33, no. 3,
1263 pp. 209–225, 2020.
1264 [25] S. Wang, L. Ouyang, Y. Yuan, X. Ni, X. Han, and F.-Y. Wang,
1265 “Blockchain-enabled smart contracts: Architecture, applications,
1266 and future trends,” IEEE Trans. Syst., Man, Cybern. Syst., vol. 49,
1267 no. 11, pp. 2266–2277, Nov. 2019.
1268 [26] Q. Fan, D.-P. Fan, H. Fu, C.-K. Tang, L. Shao, and Y.-W. Tai,
1269 “Group collaborative learning for co-salient object detection,” in
1270 Proc. Conf. Comput. Vis. Pattern Recognit., 2021, pp. 12288–12298.
1271 [27] Y. Chen, J. He, X. Zhang, C. Hao, and D. Chen, “Cloud-DNN: An
1272 open framework for mapping DNNmodels to cloud FPGAs,” in Proc.
1273 ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, 2019, pp. 73–82.
1274 [28] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
1275 learning applied to document recognition,” Proc. IEEE, vol. 86,
1276 no. 11, pp. 2278–2324, Nov. 1998.
1277 [29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
1278 image recognition,” in Proc. Conf. Comput. Vis. Pattern Recognit.,
1279 2016, pp. 770–778.
1280 [30] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
1281 cation with deep convolutional neural networks,” in Proc. Adv.
1282 Neural Inf. Process. Syst., 2012, pp. 1097–1105.
1283 [31] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
1284 “Densely connected convolutional networks,” in Proc. Conf. Com-
1285 put. Vis. Pattern Recognit., 2017, pp. 4700–4708.
1286 [32] M. Lin et al., “HRank: Filter pruning using high-rank feature map,”
1287 inProc. Conf. Comput. Vis. Pattern Recognit., 2020, pp. 1529–1538.
1288 [33] Y. Wang, C. Xu, C. Xu, and D. Tao, “Beyond filters: Compact fea-
1289 ture map for portable deep model,” in Int. Conf. Mach. Learn.,
1290 2017, pp. 3703–3711.
1291 [34] S. Lin et al., “Towards optimal structured cnn pruning via genera-
1292 tive adversarial learning,” in Proc. Conf. Comput. Vis. Pattern Rec-
1293 ognit., 2019, pp. 2790–2799.
1294 [35] K. Simonyan and A. Zisserman, “Very deep convolutional net-
1295 works for large-scale image recognition,” 2014, arXiv:1409.1556.
1296 [36] A. Dosovitskiy et al., “An image is worth 16x16 words: Transform-
1297 ers for image recognition at scale,” in 9th Proc. Int. Conf. Learn. Rep-
1298 resentations, 2021.
1299 [37] P. Tolmach, Y. Li, S.-W. Lin, Y. Liu, and Z. Li, “A survey of smart
1300 contract formal specification and verification,” ACM Comput.
1301 Surv., vol. 54, no. 7, pp. 1–38, 2021.
1302 [38] C. Xu et al., “Making Big Data open in edges: A resource-efficient
1303 blockchain-based approach,” IEEE Trans. Parallel Distrib. Syst.,
1304 vol. 30, no. 4, pp. 870–882, Apr. 2019.
1305 [39] M. Shen, Y. Deng, L. Zhu, X. Du, and N. Guizani, “Privacy-preserv-
1306 ing image retrieval for medical IoT systems: A blockchain-based
1307 approach,” IEEENetw., vol. 33, no. 5, pp. 27–33, Sep./Oct. 2019.
1308 [40] T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh, “sFuzz:
1309 An efficient adaptive fuzzer for solidity smart contracts,” in Proc.
1310 ACM/IEEE 42nd Int. Conf. Softw. Eng., 2020, pp. 778–788.

1311[41] K. W€ust, S. Matetic, S. Egli, K. Kostiainen, and S. Capkun, “ACE:
1312Asynchronous and concurrent execution of complex smart con-
1313tracts,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2020,
1314pp. 587–600.
1315[42] N. He et al., “EOSAFE: Security analysis of EOSIO smart contrac-
1316ts,” in Proc. 30th USENIX Secur. Symp., 2021, pp. 1271–1288.
1317[43] Q. Xiao, Y. Liang, L. Lu, S. Yan, and Y.-W. Tai, “Exploring hetero-
1318geneous algorithms for accelerating deep convolutional neural
1319networks on FPGAs,” in Proc. 54th Annu. Des. Automat. Conf.,
13202017, pp. 1–6.
1321[44] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong,
1322“Optimizing FPGA-based accelerator design for deep convolu-
1323tional neural networks,” in Proc. ACM/SIGDA Int. Symp. Field-Pro-
1324gram. Gate Arrays, 2015, pp. 161–170.
1325[45] J. Deng and W. E. A. Dong, “ImageNet: A large-scale hierarchical
1326image database,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
13272009, pp. 248–255.
1328[46] Y. Chen et al., “An instruction set architecture for machine
1329learning,” ACM Trans. Comput. Syst., vol. 36, no. 3, Aug. 2019.
1330[47] C. Gong, Y. Lu, K. Xie, Z. Jin, T. Li, and Y. Wang, “Elastic signifi-
1331cant bit quantization and acceleration for deep neural networks,”
1332IEEE Trans. Parallel Distrib. Syst., to be published, doi: 10.1109/
1333TPDS.2021.3129615.
1334[48] P. Wang, Q. Hu, Y. Zhang, C. Zhang, Y. Liu, and J. Cheng, “Two-
1335step quantization for low-bit neural networks,” in Proc. IEEE Conf.
1336Comput. Vis. Pattern Recognit., 2018, pp. 4376–4384.
1337[49] X. L. Yu, O. Al-Bataineh, D. Lo, and A. Roychoudhury, “Smart
1338contract repair,” ACM Trans. Softw. Eng. Methodol., vol. 29, no. 4,
1339pp. 1–32, 2020.
1340[50] F. Zhang et al., “TADOC: Text analytics directly on compression,”
1341VLDB J., vol. 30, no. 2, pp. 163–188, 2021.
1342[51] F. Zhang, J. Zhai, X. Shen, O. Mutlu, and X. Du, “POCLib: A high-
1343performance framework for enabling near orthogonal processing
1344on compression,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 2,
1345pp. 459–475, Feb. 2022.
1346[52] C. G. Nevill-Manning and I. H. Witten, “Identifying hierarchical
1347structure in sequences: A linear-time algorithm,” J. Artif. Intell.
1348Res., vol. 7, pp. 67–82, 1997.

1349Tao Li received the PhD degree in computer sci-
1350ence from Nankai University, China in 2007. He
1351currently works with the College of Computer Sci-
1352ence, Nankai University as a professor. He is the
1353member of the IEEE Computer Society and the
1354ACM, and the distinguished member of the CCF.
1355His main research interests include heteroge-
1356neous computing, machine learning, and Internet
1357of Things.

1358Yaozheng Fang received the BS degree from the
1359Hebei University of Technology, Tianjin, China in
13602019. He is currently working toward the PhD
1361degree with the College of Computer Science,
1362Nankai University. His main research interests
1363include blockchain, smart contract, and Internet of
1364Things.

1365

1366Ye Lu received the BS and PhD degrees from
1367Nankai University, Tianjin, China in 2010 and
13682015, respectively. He is currently working as an
1369associate professor with the College of Cyber Sci-
1370ence, Nankai University. His main research inter-
1371ests include DNN FPGA accelerator, blockchian
1372virtual machine, embedded system, Internet of
1373Things.

16 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

http://dx.doi.org/10.1109/TPDS.2021.3129615
http://dx.doi.org/10.1109/TPDS.2021.3129615

IE
EE P

ro
of

1374 Jinni Yang received the BEng degree in Internet
1375 of Things from Nankai University in 2020. She is
1376 currently working toward the master’s degree in
1377 computer science with Nankai University. Her
1378 main research is in blockchain security.

1379

1380 Zhaolong Jian received the BEng degree in
1381 Internet of Things from Nankai University in
1382 2020. He is currently working toward the MSc
1383 degree with the College of Computer Science,
1384 Nankai University. His main research interests
1385 include smart contract virtual machine, block-
1386 chain system security, and Internet of Things.

1387ZhiguoWan received the BS degree in computer
1388science from Tsinghua University, Beijing, China,
1389in 2002, and the PhD degree from the School of
1390Computing, National University of Singapore,
1391Singapore, in 2007. He is currently working as an
1392associate professor with the School of Computer
1393Science and Technology, Shandong University,
1394Jinan, China. He worked as a postdoctoral fellow
1395with the Katholieke University of Leuven, Leuven,
1396Belgium, from 2006 to 2008. His main research
1397interests include security and privacy for Big
1398Data, cryptocurrency, and blockchain.
1399

1400Yusen Li received the PhD degree in computer
1401science from Nanyang Technological University,
1402in 2013. He is currently working as an associate
1403professor with the Department of Computer Sci-
1404ence, Nankai University, China. His research
1405interests include resource allocation and schedul-
1406ing issues in distributed systems and cloud
1407computing.

1408" For more information on this or any other computing topic,
1409please visit our Digital Library at www.computer.org/csdl.

LI ET AL.: SMARTVM: A SMART CONTRACT VIRTUAL MACHINE FOR FAST ON-CHAIN DNN COMPUTATIONS 17

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

