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Abstract

In this paper, we propose a novel optimization algorithm for training machine learning mod-
els called Input Normalized Stochastic Gradient Descent (INSGD), inspired by the Normal-
ized Least Mean Squares (NLMS) algorithm used in adaptive filtering. When training com-
plex models on large datasets, choosing optimizer parameters, particularly the learning rate,
is crucial to avoid divergence. Our algorithm updates the network weights using stochastic
gradient descent with ℓ1 and ℓ2-based normalizations applied to the learning rate, similar
to NLMS. However, unlike existing normalization methods, we exclude the error term from
the normalization process and instead normalize the update term using the input vector to
the neuron. Our experiments demonstrate that our optimization algorithm achieves higher
accuracy levels compared to different initialization settings. We evaluate the efficiency of
our training algorithm on benchmark datasets using a toy neural network and several ma-
ture modern deep networks including ResNet-20, ResNet-50, MobileNetV3, WResNet-18,
and Vision Transformer. Our INSGD algorithm improves ResNet-20’s CIFAR-10 test ac-
curacy from 92.57% to 92.67%, MobileNetV3’s CIFAR-10 test accuracy from 90.83% to
91.13%, WResNet-18 on CIFAR-100 from 78.24% to 78.47%, and ResNet-50’s accuracy on
ImageNet-1K validation dataset from 75.60% to 75.92%.

1 Introduction

Deep Neural Networks (DNNs) have gained immense popularity and have been extensively applied across
various research fields due to their convenience and ease of use in many machine learning tasks LeCun
et al. (1995); He et al. (2016); Krizhevsky et al. (2017); Simonyan & Zisserman (2014); Long et al. (2015).
Researchers from different domains can readily utilize DNN models for their work, as these models can adapt
their parameters to find the best possible solutions for a wide range of problems, particularly in supervised
learning scenarios. The parameters of a DNN model are updated using various optimization algorithms, and
researchers have proposed different algorithms that offer fresh perspectives and address different conditions
Ruder (2016). It is important to note that different optimization algorithms can yield different results in a
given problem depending on the task at hand.

Stochastic Gradient Descent (SGD) is a widely adopted optimization algorithm for supervised learning in
DNN models. It is a simple, efficient, and parallelizable algorithm that can produce very accurate results
on large-scale datasets appropriate initial conditions Bottou (2010). Another popular algorithm Adam can
outperform the SGD in some cases Kingma & Ba (2014). However, its initial learning rate is crucial. A
relatively high value can lead to divergence. Optimization algorithms always play a significant role in training
DNN models, but ensuring convergence of weights and finding the optimal solution for a given problem is
not always guaranteed. Therefore, the evaluation of an optimization algorithm should also consider its
limitations. Robustness to variability is a crucial attribute expected from any optimization algorithm.
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Given the inherent ability of the Normalized Least Mean Squares (NLMS) algorithm to exhibit resilience
to environmental fluctuations, it is plausible to anticipate that an optimization algorithm derived from
NLMS principles would demonstrate favorable performance characteristics in dynamic settings or uncertain
conditions. In this paper, we propose a novel optimization algorithm called Input Normalized Stochastic
Gradient Descent (INSGD), which draws inspiration from the Normalized Least Mean Squares (NLMS)
algorithm used in adaptive filtering Mathews & Xie (1993); Chan & Zhou (2010). Our study focuses on
demonstrating the innovation from NLMS to INSGD and the effectiveness of INSGD over various tasks.

The organization of the paper is as follows. Sections 1.1 and 1.2 review the SGD and NLMS, respectively.
Section 2 introduces the proposed Input Normalized Stochastic Gradient Descent (INSGD) algorithm. Sec-
tion 3 presents simulation examples. Section 4 draws our conclusion.

1.1 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is an iterative optimization method commonly used in machine learning
to update the weights of a neural network model. It calculates the gradient of the weights based on the
objective function defined to measure the error in the training phase and estimates the new set of weights
using the gradients with a predefined step size. The SGD with a convex loss function can converge to the
optimal or sub-optimal set of weights with the correct initial settings Li & Orabona (2019). The gradual
convergence provided by gradient descent boosts optimizing the weights for any type of machine learning
model.

Assume a pair of (x,y) composed of an arbitrary input x and an output y. Given a set of weights w ∈ W
where W stands for the space of possible weights, a machine learning model predicts the output using a non-
linear function f(x,w) and the optimal weights, w∗, to minimize the objective (loss) function L(y, f(x,w)):

w∗ = arg min
w∈W

L(y, f(x,w)). (1)

Due to the highly complex and non-linear nature of machine learning models, it is impossible to find a
closed-form solution for the optimization problem given in Eq. (1) ada (2008). The stochastic gradient
descent algorithm is introduced to avoid extensive computation and give an iterative method to estimate the
optimal weights. The formula for SGD is given as:

w(k + 1) = w(k)− λ∇w(k)L(yi, f(xi,w)), (2)

where w(j) represents the weights at jth step, ∇w(k)L is the gradient of the objective function calculated
using a single training example (xi,yi), and λ is determined by the step size and the learning rate.

Although SGD is a simple algorithm that can be applied to various tasks, it faces challenges related to
tuning and scalability, which hinder its ability to converge quickly in deep learning algorithms. If the initial
weights are not properly defined, or without preconditioned gradients that consider curvature information,
the algorithm can get trapped in a local minima Le et al. (2011); Hinton & Salakhutdinov (2006). To
estimate the minimum of the objective function more effectively, a deeper understanding of the error surface
is required. In addition to using gradients, the exploitation of second-order derivatives can lead to faster
convergence. However, this requires calculating the Hessian matrix of the objective function. Calculating the
second derivative with respect to each weight is computationally expensive and can lead to memory issues in
deep networks. The Hessian matrix and its approximations are also utilized in the Normalized Least Mean
Squares (NLMS)-type methods, which will be discussed in the following subsection.

1.2 Normalized Least Mean Squares (NLMS)

As pointed out above, the NLMS is widely used to estimate the weights of an adaptive filter, which is a
basic linear neuron. In minimum mean square error filtering, assume u, the input to a system, is a 1 ×M
random vector with zero mean and a positive-definite covariance matrix Ru and d, the desired output of the
system, is a scalar random variable with zero mean and a finite variance σ2

d. The linear estimation problem
is defined as the solution of

min
w

E |d− uw|2 , (3)
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where w is a vector containing the filter coefficients to be optimized. The linear estimation problem declares
the cost function as the mean-square error and it is defined as:

J(w) = E |d− uw|2 = E(d− uw)(d− uw)T , (4)

where (.)T denotes a transpose. If we expand Eq. (4), it is straightforward to obtain the cost function J(w)
in terms of the covariance and cross-covariance matrices:

J(w) = σ2
d −RT

duw−wT Rdu + wT Rduw, (5)

where Rdu = E[du] is the cross-covariance matrix of d and u. The closed-form solution to such a problem
in (3) can be found using the linear estimation theory as Ruwo = Rdu; however, it may not be possible to
obtain a closed-form solution for problems with criteria other than the mean-square-error criterion.

The Least Mean Squares (LMS) algorithm Widrow et al. (1960) computes the stochastic gradient and updates
the weight vector iteratively to find a solution for the problem in Eq. (3). The weight vector can be updated
using the following iterative process:

w(j) = w(j − 1) + λuT (j)e(j), (6)

where u(j) is j-th observation of the random vector u and e(j) = d(j)− uT w(j − 1) is the error vector at
time j. The updating term is obtained as the negative of the stochastic gradient of the mean squared error
function defined in Eq. (4) with respect to the weights.

The NLMS algorithm has been shown to achieve a better convergence rate compared to LMS by incorporating
a different step-size parameter for each component ui of the vector u Sayed (2008). The LMS algorithm
can encounter scalability issues when the input signal is large or when the step-size parameter is too large.
Since the LMS algorithm uses a gradient-based approach to update the filter coefficients, and if the step-size
parameter is too large, the filter coefficients can diverge. To address this, normalization is introduced to the
update term:

w(j) = w(j − 1) + λ
e(j)
||u(j)||22

u(j), (7)

and the NLMS converges to the Wiener filter solution of the optimization problem in (3) as long as 0 < λ < 2
Theodoridis et al. (2010); Yamada et al. (2002).

Another interpretation of the NLMS algorithm is based on the fact that the error e(j) = d(j)−uT w should
be minimized by selecting an appropriate weight vector w. The equation d(j) = uT w is a hyperplane in
the M dimensional weight space w ∈ RM . When the vector w(j − 1) is projected onto the hyperplane
e(j) = d(j)− uT w, we obtain the update equation:

w(j) = w(j − 1) + e(j)
||u(j)||22

u(j). (8)

As shown in Fig. 1, the error is minimized by selecting the next weight vector on the hyperplane d(j) = uT w.
The orthogonal projection operation described in Eq. (8) minimizes the Euclidean distance between the vector
w(j − 1) and the hyperplane d(j) = uT w Combettes (1993); Trussell & Civanlar (1984); Cetin et al. (1997;
2013) The weights converge to the intersection of the hyperplanes as shown in Fig. 1, provided that the
intersection of the hyperplanes is non-empty Combettes (1993); Cetin et al. (2013).

Other distance measures lead to different update equations such as the ℓ1-norm-based updates:

w(j) = w(j − 1) + e(j)
||u(j)||1

u(j), (9)

where ||u(j)||1 is the ℓ1 norm of the vector uj Gunay et al. (2012); Sayin et al. (2014); Arikan et al. (1994;
1995); Aydin et al. (1999). The ℓ1-norm-based method is usually more robust to outliers in input.

This paper describes a new optimization algorithm inspired by Normalized LMS. It is called Input
Normalized-SGD (INSGD) and utilizes the same approach as in NLMS. INSGD provides a better solu-
tion to the variability issue that may cause divergence or inconsistent results and obtains better accuracy
results on benchmark datasets. By adapting the concepts of NLMS to deep learning, we can potentially
improve the convergence behavior and overall performance of DNN models.
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Figure 1: Geometric description of the NLMS projection in R2.

2 Related Works

Machine learning models commonly utilize the backpropagation method for optimization Rumelhart et al.
(1986); LeCun et al. (1988). Stochastic Gradient Descent (SGD) is a widely used optimization algorithm with
various modifications in the machine learning community. While SGD can provide convergence with proper
initialization, researchers have identified both positive and negative aspects of SGD and have attempted to
enhance it according to their specific objectives Ruder (2016). One issue with SGD is that it updates weights
based solely on the instantaneous gradient, which may lead to a lack of global information and oscillations.
Another challenge is using a constant learning rate for all weights in the model. As training progresses, certain
weights become more important than others, requiring different step sizes to ensure effective learning.

In recent years, the Adaptive Gradient (AdaGrad) algorithm aims to enhance optimization by adaptively
adjusting the learning rate for each weight based on the cumulative sum of past and current squared gradi-
ents Duchi et al. (2011). This adaptive approach allows for finer adjustments of the learning rate, ensuring
larger updates for weights with smaller gradients and vice versa. AdaGrad’s formulas are:

w(k + 1)← w(k)− γ√
v(k) + ϵ

∇w(k)L, (10)

v(k)← v(k − 1) +
[
∇w(k)L

]2
, (11)

where v represents the weighted moving average of squared gradients, γ is the learning rate, and v(−1) = 0.

Later, RMSProp builds upon AdaGrad by incorporating momentum through an exponentially weighted
moving average of squared gradients Hinton et al. (2012). This modification addresses AdaGrad’s issue of
diminishing learning rates, ensuring a smoother and more stable update process. RMSProp’s formulas are:

w(k + 1)← w(k)− γ√
v(k) + ϵ

∇w(k)L, (12)

v(k)← βv(k − 1) + (1− β)
[
∇w(k)L

]2
, (13)

where β represents the momentum parameter. RMSProp strikes a balance between AdaGrad’s adaptability
and momentum’s stability, leading to improved optimization performance.

Another widely used optimization algorithm is Adaptive Moment Estimation (Adam) Kingma & Ba (2014).
It builds upon the concepts of momentum and the divisor factor used in RMSProp. In addition to maintaining
an exponentially weighted moving average of the squared gradients like RMSProp, Adam also incorporates
the notion of momentum by keeping track of an exponentially weighted moving average of the gradients
themselves. This combination of momentum and the divisor factor makes Adam more adaptive and robust
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compared to RMSProp and AdaGrad. By considering both the first and second moments of the gradients,
Adam adjusts the learning rate for each parameter individually, taking into account both the magnitude and
direction of the gradients. This enables Adam to converge faster and handle a wider range of optimization
scenarios. The algorithm is implemented as:

w(k + 1)← w(k)− γ√
v(k) + ϵ

m(k), (14)

v(k)← βv(k − 1) + (1− β)
[
∇w(k)L

]2
, (15)

m(k)← βm(k − 1) + (1− β)∇w(k)L, (16)

where m is the momentum and m(−1) = 0.

Layer-wise Adaptive Rate Scaling (LARS) is an optimization algorithm designed to improve the training of
deep neural networks by dynamically adjusting the learning rates for each layer based on the norm of the
gradients and the norm of the weights You et al. (2017):

w(k + 1)← w(k)− η · ∥w(k)∥
∥∇w(k)L∥+ ϵ

· ∇w(k)L (17)

where θt is the parameter vector at time step t, η is the base learning rate, ∇L(θt) is the gradient of the
loss function with respect to θt, ϵ is a small constant to prevent division by zero. The limitation is the
performance of LARS compared to other adaptive methods can vary and is influenced by factors such as the
dataset, model architecture, and hyperparameters.

Another adaptive learning algorithm proposed by Singh et al. (2015) presented a Layer-Specific Adaptive
Learning Rate (LSALR), where the parameters in the same layer share similar gradients. Therefore, the
learning rate of the entire layer should be similar but different layers should have different learning rates.
The work is described to adjust the learning rate to escape from the saddle points and it uses the ℓ2 norm
in gradients:

w(k + 1)← w(k)− γ
(

1 + log
(

1 + 1
||∇w(k)L||2

))
∇w(k)L. (18)

Eq. (18) allows the learning rate increases when the gradients are small. The aim is to correct the update
term when the gradients are small in the high error low curvature saddle points. Therefore, the algorithm
escapes from saddle points with a large learning rate. Similarly, it scales the learning rate to stability if the
gradients are too large. The use of the log function provides the scaling under different conditions.

In summary, Adam, AdaGrad, and RMSProp are optimization algorithms that address the limitations of
standard stochastic gradient descent (SGD). These algorithms improve the convergence speed in various
scenarios. While they incorporate normalization parameters, the update terms in these algorithms are still
input-dependent and gradually decrease over iterations. On the other hand, our approach uses a normaliza-
tion term based on the layer’s input. its details will be presented in the following section.

3 Methodology

3.1 Input Normalized Stochastic Gradient Descent Algorithm

Input Normalized Stochastic Gradient Descent (INSGD) utilizes a similar approach as NLMS. We focus
on enhancing the robustness to variability and real-time processing capabilities of the INSGD optimizer,
addressing challenges related to various training settings.

In deep learning, we minimize the cost function:

F (W) = 1
N

N∑
k=1

Fk(W),
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where W represents the parameters of the network, N is the number of training samples, and Fk(W) is the
loss due to the k-th training data. Let us first assume that there are linear neurons in the last layers of the
network and di is the desired value of the i-th neuron. Furthermore, let wi,0 be the initial weights of the
i-th neuron. We want the neuron to satisfy

di = w · x,

where x denotes the input vector to the neuron. During training, we have wi,0 · xk ̸= di where xk is the
input vector due to the k-th training pattern. We select the new set of weights of the neuron by solving

arg min
w
||wi,0 −w||2, (19)

s.t. w · xk = di.

One can easily obtain the solution using the Lagrange multiplier method, and the solution to the optimization
problem is the orthogonal projection onto the hyperplane w · xk = di. Solving Eq.(19) gives us an update
equation

wi,1 = wi,0 + λ
ei

ϵ+ ||xk||2
xk, (20)

where the error ei = di−wi,0 ·xk, the update parameter λ = 1, and ϵ is a small number to avoid the division
by 0. This selection of weights reduces Fk(W) and it is the same as the gradient descent with a new step size
determined by the length of the input vector. It is also the well-known NLMS algorithm used in adaptive
filtering and signal processing as shown in Sec 1.2, Eq. (7). The NLMS algorithm converges for 0 < λ < 2
when the input is a wide-sense stationary random process. Inspired by the NLMS algorithm we can continue
updating the neurons of the inner layers of the network in the same manner.

When the i-th neuron is not linear, we have

ψ(w · x) = di, (21)

where ψ(·) is the activation function. In this case, we solve the following problem to update the neuron
weights:

arg min
w
||wi,0 −w||2, (22)

s.t. ψ(w · xk) = di,

or
arg min

w
||wi,0 −w||2, (23)

s.t. w · xk = ϕ(di),

where ϕ(·) is the inverse of the ψ(·) function. When ψ(·) is the sigmoid, leaky-RELU, or tanh, ψ(·) has a
well-defined inverse. If the activation function is ReLU, the negative values in the inverse are set to 0s. In
this case, the weight update equation will be

wi,1 = wi,0 + λ
(ϕ(di)−wi,0 · xk)

ϵ+ ||xk||2
xk. (24)

By employing the solution described in Eq. (24), the NLMS algorithm can be adapted to optimize the weights
in the final layer to minimize various cost functions. However, extending the INSGD algorithm to deeper
networks with multiple layers poses a challenge in its derivation. We adopt similar assumptions to those
used in the backpropagation algorithm to derive the INSGD algorithm for each weight in a deep-learning
model. These assumptions provide a foundation for developing the INSGD algorithm, allowing effectively
optimizing the weights across the layers of the deep learning model.

In addition to the final layer, we incorporate the input feature maps of each layer to apply the gradient
term with normalization to the neurons using the backpropagation algorithm. This enables the optimizer
to propagate the gradients and update the weights layer-wisely throughout the network. By leveraging the
information from the input feature maps, we enhance the training process by ensuring that the gradients are
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appropriately scaled and normalized at each layer. This approach allows for effective gradient propagation
and weight updates, ultimately contributing to improved optimization and performance of the deep learning
model:

wk+1 = wk − µ
∇wk

L(e)
ϵ+ ||xk||22

, (25)

where xk is the vector of inputs to the neuron and wk are the weights of the neurons. Note that we drop
i in the weight notation that represents the neuron since the algorithm is applicable to every neuron. For
convenience, we also change the notation for the learning rate from λ to µ. A description of how the INSGD
optimizer algorithm works for any layer of a typical deep network is shown in Fig. 2.

Figure 2: INSGD algorithm for different layers. It utilizes the input to each layer to update the weights.

Power normalization in NLMS is used to introduce a memory into the recursion so that the input power
is estimated using the input data in the remote past. In the INSGD algorithm, we introduce an input
momentum term to estimate the power of the dataset, enabling power normalization. By replacing the
denominator term with the estimated input power, we emphasize the significance of power estimation in our
algorithm. Furthermore, the utilization of input momentum allows capturing the norm of all the inputs.
Denoted as P , the input momentum term accumulates the squared ℓ2 norm of the input instances:

Pk = βPk−1 + (1− β)||xk||22. (26)

While estimating the input power is crucial, the normalization factor can grow excessively, resulting in
infinitesimally small updates. To address this, we draw inspiration from the Layer Specific Adaptive Learning
Rate (LSALR) approach Singh et al. (2015) and employ the logarithm function and moving-average method
to stabilize the normalization factor. However, the use of the logarithm function introduces the risk of
negative values. If the power is too low, the function could yield a negative value, reversing the direction of
the update. To mitigate this, we employ a function with the rectified linear unit, which avoids the issue of
negative values. Adding a regularizer may not be sufficient to resolve this problem, hence the choice of the
rectified linear unit function. The function is designed as follows:

fϵ(u) =
{
u if u ≥ ϵ,
ϵ if u < ϵ,

(27)

where ϵ is a regularizer to avoid the division by 0. After devising the function in Eq. (27) and the logarithm
approach for Eq. (26), the optimization algorithm for any weight in any layer in a network becomes

wk+1 = wk −
µ

fϵ(log(Pk))∇wk
L(e), (28)
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where Pk is defined in Eq. (26), and it is the estimate of the input power that is updated with every instance
of x and the proposed ϵ = 0.01. Therefore, it makes sure that the update term is always positive and stable.
The iterative algorithm defined in Eq. (28) is the Input Normalized SGD algorithm.

One can explore different norms, such as the l1 or l∞ norm, as alternatives to the l2 norm. In our experiments,
we also investigated using the l1 norm to assess its impact on performance. NLMS algorithms based on the
l1 norm are known to be more robust against outliers in the input, which suggests potential benefits in
deep neural network training. In this study, we examined both the l2 and l1 norms and their implications.
Since NLMS is based on the l2 norm, the algorithm presented in Eq. (26) utilizes the l2 norm. However, for
broader applicability, we can adapt the power estimation as follows:

Pk = βPk−1 + (1− β)||xk||pp (29)

where ||.||pp is the p power of the p-norm. Extension of the INSGD to convolutional layers is straightforward.
The pseudocode algorithm of INSGD is given in Algorithm 1.

Algorithm 1 Input Normalized Gradient Descent with Momentum
for t← 1 to ... do

gt ← ∇θft(θt−1) ▷ Denote the gradient
if β ̸= 0 then ▷ If input momentum is not 0

if t > 1 then
Pt ← βPt−1 + (1− β)||xt,θ||22 ▷ Accumulate the power of input norm

else
Pt ← ||xt,θ||22

end if
end if
gt ←

gt

f(log(Pt)) ▷ Division by input norm
if λ ̸= 0 then ▷ Weight Decay

gt ← gt + λθt−1

end if
if γ ̸= 0 then ▷ Gradient with Momentum

if t > 1 then
bt ← γbt−1 + (1− τ)gt

else
bt ← gt

end if
gt ← bt

end if
θt ← θt−1 − µgt ▷ Update the Weights

end for

3.2 Models Architecture

In this study, we conduct experiments using six different networks to evaluate the performance of the INSGD
algorithm in the classification tasks of CIFAR-10, CIFAR-100, and ImageNet-1K. We make modifications
to the network architectures and initialization settings to assess the impact of the INSGD algorithm. In
this study, we employ several networks for the classification tasks. Specifically, we utilize ResNet-20 He
et al. (2016), MobileNetV3 Howard et al. (2019) and Vision Transformer (ViT) Dosovitskiy et al. (2020) for
CIFAR-10, WResNet-18 Zagoruyko & Komodakis (2016) for CIFAR-100, ResNet-50 and MobileNetV3 for
ImageNet-1K. Additionally, we design a custom CNN architecture specifically for CIFAR-10, which consists
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of four convolutional layers, each followed by a batch normalization layer. These networks are chosen to
provide a diverse set of architectures and enable a comprehensive evaluation of the INSGD algorithm’s
performance across different datasets. The structures of ResNet-20 and custom-designed CNN in this study
are shown in Tables 1 and 2, respectively.In addition, we choose a patch size of 4, a linear layer dimension of
512, a depth of 6, and 8 heads in designing the Vision Transformer (ViT). We train it using warm restarts
with Cosine annealing Loshchilov & Hutter (2016).

Table 1: ResNet-20 Structure for CIFAR-10 classification task. Building blocks are shown in brackets, with
the numbers of blocks stacked.

Layer Output Shape Implementation Details

Conv1 16× 32× 32 3× 3, 16

Conv2_x 16× 32× 32
[

3× 3, 16
3× 3, 16

]
× 3

Conv3_x 32× 16× 16
[

3× 3, 32
3× 3, 32

]
× 3

Conv4_x 64× 8× 8
[

3× 3, 32
3× 3, 64

]
× 3

GAP 64 Global Average Pooling
Output 10 Linear

Table 2: Structure of the custom network with 4 conv layers for the CIFAR-10 classification task.

Layer Output Shape Implementation Details

Conv1 8× 32× 32 3× 3, 8
Conv2 16× 16× 16 3× 3, 16, stride = 2
Conv3 32× 8× 8 3× 3, 32, stride = 2
Conv4 64× 4× 4 3× 3, 64, stride = 2
Dropout 64× 4× 4 p = 0.2
Flatten 1024 -
Output 10 Linear

On large benchmark datasets, traditional optimization algorithms often struggle to find the optimum results
if the learning rate is not properly chosen. In such cases, these algorithms may diverge and fail to converge
to the desired solution. However, the INSGD algorithm offers a solution by providing flexibility in learning
rate selection, thereby improving the chances of reaching the global optimum. By adapting the learning rate
dynamically based on the input and gradient information, INSGD enhances the optimization process and
increases the likelihood of achieving superior results on large-scale datasets.

4 Experimental Results

Our experiments are carried out on a workstation with an NVIDIA GeForce GTX 1660 Ti GPU for the
CIFAR-10 and a workstation with an NVIDIA RTX A6000 GPU for the CIFAR-100 and ImageNet-1K.

4.1 CIFAR-10 Classification

We conduct a series of experiments using the CIFAR-10 dataset which consists of 10 classes, initially em-
ploying the custom-designed CNN and ResNet-20 models for training. In certain experiments, we make
modifications to the custom network to explore the algorithm’s capabilities. All the experiments are re-
peated 7 times with different seeds to verify the results. These experiments aim to assess the algorithm’s
performance under various conditions.
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The base setting employed the SGD optimizer with a weight decay of 0.0005 and a momentum of 0.9. The
models are trained using a mini-batch size of 128 for 200 epochs, with an initial learning rate ranging from
0.5 to 0.01. The learning rate is reduced at multiple steps with varying rates. To augment the data, we
perform padding of 4 pixels on the training images, followed by random crops to obtain 32x32 images.
Random horizontal flips are also applied to the images with a probability of 0.5. Normalization is performed
on the images using a mean of [0.4914, 0.4822, 0.4465] and a standard deviation of [0.2023, 0.1994, 0.2010].
Throughout the training process, the best models are saved based on their accuracy on the CIFAR-10 test
dataset. These settings are adopted from He et al. (2016).

In the initial experiment, we employ the ResNet-20 model as our baseline. The batch size is fixed at 128. We
compare the accuracy results of our algorithm against those of other commonly used optimization algorithms,
which are discussed in Section 2. The detailed accuracy results are presented in Table 3.

Table 3: Accuracy results of ResNet-20 on the CIFAR-10 dataset with different initial learning rates using
different optimization algorithms.

Optimizer Initial Learning Rate Test Accuracy

SGD 0.1 92.57±0.11%
Adam 0.001 91.34±0.01%

Adagrad 0.1 89.41±0.01%
Adadelta 0.1 89.24±0.01%
INSGD-ℓ1 0.1 92.67±0.13%
INSGD-ℓ2 0.1 92.60±0.11%

In addition to showcasing the testing accuracy results, understanding the behavior of each optimizer through-
out the training process is crucial. Figure 4 visually represents the progression of testing set errors for each
optimizer over 200 epochs. By training the ResNet-20 model with each optimizer, we can observe the corre-
sponding testing set error depicted in the plot. This visualization offers valuable insights into the convergence
speed and overall behavior of each optimizer, enabling a comprehensive analysis of their performance and
effectiveness.

As depicted in Figure 4, the INSGD algorithm with both norms consistently exhibits lower error rates in
the testing set, which indicates the superior performance and effectiveness of INSGD in optimizing the
model’s parameters and minimizing the testing set errors. The ability of INSGD to adaptively adjust the
learning rates for each individual parameter contributes to its remarkable performance in achieving lower
errors during the training process. We can also observe that the behavior of INSGD closely aligns with that
of SGD, indicating their compatibility and similarity in optimization behavior.

As seen in Table 3, only SGD closely matches the performance of our optimizer in this training scenario.
Therefore, we concentrate on comparing INSGD with SGD for training ResNet-20 on CIFAR-10. We explore
the impact of varying batch sizes on the normalization factor to understand how input size affects the training
process. Analyzing the results across different batch sizes is crucial due to the trade-off between time and
memory usage. While larger datasets may benefit from larger batch sizes to expedite training time, it is
important to consider the increased memory requirements. Table 4 presents the accuracy results of other
algorithms and INSGD when training the model with different batch sizes. To accommodate the increased
batch size, we adjust the learning rate similar to the linear scaling rule described in Goyal et al. (2017).

Table 4 demonstrates that the INSGD optimizer maintains high performance across different batch sizes.
Similar to NLMS, we anticipate that INSGD will be effective for real-time processing (online learning),
highlighting its potential for superior performance in online learning scenarios.

To enhance the diversity of models utilized in our experiments, we incorporate the MobileNetV3 model for
comparative analysis. A batch size of 256 is used in MobileNetV3 training. The mean and standard deviation
of 7 experiments with different seeds are shown in Table 5. As depicted, the results clearly demonstrate that
the INSGD algorithm outperforms other conventional optimization algorithms in terms of performance. This
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Figure 3: Optimizer performance over 200 epochs: Comparing test loss convergence across different
optimizers.

Table 4: Accuracy results of the ResNet-20 on the CIFAR-10 dataset with different batch sizes.

Optimizer Batch Learning Rate Test Accuracy

SGD 128 0.1 92.57±0.11%
INSGD-ℓ1 128 0.1 92.67±0.13%
INSGD-ℓ2 128 0.1 92.60±0.11%

SGD 256 0.1 92.43±0.23%
INSGD-ℓ1 256 0.1 92.46±0.24%
INSGD-ℓ2 256 0.1 92.44±0.23%

SGD 512 0.2 92.25±0.26%
INSGD-ℓ1 512 0.2 92.38±0.21%
INSGD-ℓ2 512 0.2 92.32±0.26%
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finding highlights the superior capabilities of INSGD in achieving improved outcomes across the evaluated
metrics.

Table 5: Accuracy results of MobileNetV3 on the CIFAR-10 dataset with different initial learning rates using
different optimization algorithms.

Optimizer Initial Learning Rate Test Accuracy

Adam 0.001 91.75±0.09%
Adagrad 0.05 87.24±0.01%
Adadelta 0.05 84.78±0.29%

SGD 0.05 93.06±0.11%
INSGD-ℓ1 0.05 93.04±0.16%
INSGD-ℓ2 0.05 93.10±0.01%

We also conduct experiments using the custom network for the CIFAR-10 training to validate our algorithm.
We employed similar settings to those used in ResNet-20. The accuracy results of the custom network with
different initial learning rates are presented in Table 6.

Table 6: Accuracy results of the custom-designed CNN on the CIFAR-10 dataset with different initial learning
rates and reduction rates.

Optimizer Initial Learning Rate Test Accuracy

SGD 0.1 79.24±0.39%
INSGD-ℓ1 0.1 79.41±0.37%
INSGD-ℓ2 0.1 79.30±0.38%

SGD 0.25 65.92±1.32%
INSGD-ℓ1 0.25 73.24±1.17%
INSGD-ℓ2 0.25 74.68±0.85%

SGD 0.01 79.08±0.34%
INSGD-ℓ1 0.01 78.83±0.43%
INSGD-ℓ2 0.01 78.92±0.31%

The toy network, used as a simplified representation of the model, plays a crucial role in evaluating the
effectiveness of our algorithm. The results obtained from training the toy network confirm the robustness of
INSGD to variability, as it shows consistent accuracy results regardless of the network architecture or the
learning rate used. Given the overlap in the experiments conducted with the custom network and ResNet-20,
we opted not to replicate the ResNet-20 experiments using the toy network. This decision was made to avoid
redundancy in our findings and to focus on exploring the direct impact of INSGD.

We conducted experiments on a modified network architecture to explore the impact of INSGD’s input
normalization. Given that INSGD normalizes the input, we hypothesized that the batch normalization layer
might become redundant. To test this hypothesis, we implemented it on a toy network, as its smaller scale
allows for easier amplification and verification of this claim and on a ResNet-20. Table 7 shows the accuracy
results of networks trained without the batch normalization layer.

From Table 7, it is evident that the absence of a batch normalization layer can be managed effectively by
the optimization offered by INSGD. In particular, SGD diverges during training of the toy network without
batch normalization, whereas INSGD achieves performance levels close to optimal settings.

Normalization layers, such as Batch Normalization, are used during forward propagation and are trainable
components of neural networks. While they help stabilize the learning process and improve convergence by
normalizing the input to each layer, they do not directly influence the update terms of the convolutional
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Table 7: Accuracy results of the custom-designed CNN on the CIFAR-10 dataset with no batch normalization
layer.

Model Optimizer Initial Learning Rate Test Accuracy

Custom CNN
SGD 0.1 11.07±2.74%

INSGD-ℓ1 0.1 64.85±10.98%
INSGD-ℓ2 0.1 74.78±7.84%

ResNet-20
SGD 0.1 90.14±0.18%

INSGD-ℓ1 0.1 90.55±0.26%
INSGD-ℓ2 0.1 90.70±0.15%

layers. Consequently, the use of INSGD allows for normalization during backpropagation as well, further
stabilizing the optimization process and potentially enhancing model performance and training efficiency.

Beyond CNNs, we trained a Vision Transformer (ViT) model on CIFAR-10 using different optimizers and
settings. We hypothesized that the partitioning of an image into patches could influence how the optimizer
converges during training. Table 8 presents the results of the ViT under various training configurations. To
facilitate a warm startup, we employed Cosine Annealing for learning rate scheduling and trained the model
for 300 epochs. The base setting utilized a batch size of 256. Additionally, we evaluated the performance of
optimizers without the layer normalization layer.

Table 8: Accuracy results of the ViT on the CIFAR-10 dataset with different initial learning rates and
reduction rates.

Optimizer LayerNorm Learning Rate Test Accuracy

SGD 0.05 82.79±0.40%
Adam 0.0005 85.38±0.44%

INSGD-ℓ1 0.05 84.52±0.43%
INSGD-ℓ2 0.05 84.49±0.53%

SGD

×

0.01 79.90±0.21%
Adam 0.0005 85.13±0.45%

INSGD-ℓ1 0.05 83.50±0.18%
INSGD-ℓ2 0.05 83.32±0.48%

We observed that the INSGD optimizer can achieve convergence and results close to optimal when training
the Vision Transformer (ViT). However, when trained with a warm startup, Adam outperforms both INSGD
and SGD. This suggests that while INSGD can effectively handle the training of ViT models and achieve
competitive results, Adam may offer superior performance under certain conditions, particularly when the
learning rate is scheduled with a warm restart. Further investigation into the interplay between optimizer
choice, warm startup strategies, and model architecture could provide deeper insights into the optimal
training procedures for ViT models.

4.2 CIFAR-100 Experiment

We further extend our research by conducting experiments on the CIFAR-100 dataset. CIFAR-100 is a more
challenging dataset compared to CIFAR-10 as it contains 100 classes instead of 10, requiring models to have
a higher level of discrimination and classification capability. The increased class diversity in CIFAR-100
poses additional difficulty in achieving high accuracy and generalization performance. To ensure adequate
representation of each class in the training process, we opted to increase the batch size to 256 for this
particular experiment. Before our study, Wide ResNet-18 was recognized for its convergence capabilities and
satisfactory results Zagoruyko & Komodakis (2016). In alignment with the settings outlined in the Wide
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ResNet paper, we replaced the optimizer algorithm with INSGD. Similar to our CIFAR-10 experiment, the
model was trained for 200 epochs, and we report the highest accuracy achieved on the testing data.

Table 9: Accuracy results of the Wide ResNet-18 on the CIFAR-100 dataset.

Optimizer LR Batch Top-1 Acc. Top-5 Acc.

SGD 0.1 128 78.24±0.43% 94.31±0.09%
INSGD-ℓ1 0.1 128 78.08±0.24% 94.34±0.17%
INSGD-ℓ2 0.1 128 78.47±0.16% 94.39±0.20%

SGD 0.1 256 77.22±0.43% 93.79±0.43%
INSGD-ℓ1 0.1 256 78.15±0.43% 94.54±0.43%
INSGD-ℓ2 0.1 256 77.89±0.43% 93.98±0.43%

The results presented in Table 9 provide compelling evidence of the effectiveness of the INSGD algorithm in
achieving improved convergence on complex datasets. The superior performance of INSGD, as evidenced by
its higher Top-1 and Top-5 accuracy, establishes its utility in training sophisticated models on challenging
datasets. These findings underscore the algorithm’s capability to handle intricate data distributions and
optimize model performance, thereby showcasing its potential for advancing the state-of-the-art in deep
learning.

Figure 4: Optimizer performance over 200 epochs: Comparing test loss convergence across different
optimizers.

4.3 ImageNet-1K Results

In this section, we present the test accuracy results on the ImageNet-1K dataset. We utilize the ResNet-50
model, as discussed in Section 3.2. The training process is conducted using the official PyTorch ImageNet-1K
training code Ima (2022). Specifically, we employ the SGD and INSGD optimizers with a weight decay of
0.0001 and a momentum of 0.9.
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The ImageNet-1K dataset consists of 1.2 million images and is known for its difficulty in training. Due to
the image resolution and resource constraints, adopting larger batch sizes is not feasible in our environment.
As a result, we train the models with a mini-batch size of 256, an initial learning rate of 0.1 for 90 epochs,
and a learning rate reduction of 1/10 after every 30 epochs. Due to resource availability, we repeated the
experiment 3 times with different seeds.

To augment the data, we perform random cropping and horizontal flipping with a probability of 0.5, resulting
in 224 × 224 images. The images are then normalized using a mean of [0.485, 0.456, 0.406] and a standard
deviation of [0.229, 0.224, 0.225].

The accuracy of the best models is presented in Table 10, based on the center-crop top-1 accuracy and top-5
accuracy on the ImageNet-1K validation dataset. These accuracies are obtained from the model with the
highest center-crop top-1 accuracy, providing a comprehensive evaluation of the model’s performance on the
ImageNet-1K dataset.

Table 10: Accuracy results of ResNet-50 on the ImageNet-1K dataset.

Optimizer Learning Rate Top-1 Acc. Top-5 Acc.

Adam 0.001 66.71±0.08% 87.65±0.15%
SGD 0.1 75.60±0.14% 92.67±0.12%

INSGD-ℓ1 0.1 75.92±0.43% 92.75±0.10%
INSGD-ℓ2 0.1 75.90±0.14% 92.81±0.04%

The results presented in Table 10 highlight the improved top-1 accuracy achieved by the INSGD algorithm on
the ImageNet-1K dataset. This improvement is particularly significant considering the scale of the dataset,
demonstrating the effectiveness of INSGD in handling large and complex datasets. By leveraging the input
normalization factor, INSGD enables the model to converge more effectively by aligning the gradient direction
and appropriate magnitude. Using different seeds not only confirms but also strengthens the evidence of
improvement brought by the INSGD algorithm. It is essential to know that Adam may perform better
training ResNet-50 however, it looks like similar settings with the INSGD and SGD, it doesn’t achieve the
same performance.

The power estimation obtained through momentum in INSGD indicates that the optimization algorithm
can benefit from considering the entire input sequence. It suggests that the algorithm can capture long-
term dependencies and utilize them for better optimization performance. Furthermore, it is worth noting
that the batch size used in our experiments is relatively small compared to the number of images in the
dataset. Exploring the algorithm’s behavior with larger batch sizes would be an interesting avenue for future
investigation.

5 Conclusion

In this paper, we proposed a novel neural network training method called INSGD, which incorporates ideas
from the widely used NLMS algorithm in adaptive filtering. INSGD introduces a normalization step to
the weight update term that normalizes the update term using only the input vector to the neurons. The
normalization can be performed using both the l1 and l2 norms.

To evaluate the effectiveness of INSGD, we conducted experiments on various datasets using different mod-
els. Notably, our algorithm consistently demonstrated improvements in testing accuracy across multiple
datasets. For example, on the CIFAR-10 dataset, INSGD achieved a significant boost in accuracy compared
to traditional stochastic gradient algorithms. We observed similar positive outcomes on other datasets, such
as CIFAR-100 and ImageNet-1K, when employing different models like ResNet-20 and ResNet-50.

Traditional optimization algorithms often lack flexibility when it comes to selecting hyperparameters, which
can limit their effectiveness. However, the INSGD (Input Normalized Stochastic Gradient Descent) algorithm
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offers solutions to this limitation by leveraging input normalization. By normalizing the input data, INSGD
enables greater flexibility in tuning hyperparameters, leading to more robust and stable performance.

The promising results obtained across diverse datasets and models validate the effectiveness of INSGD
in enhancing the training process. By incorporating the normalization factor into the stochastic gradient
algorithm, INSGD effectively leverages the benefits of the NLMS algorithm, leading to improved performance
in various object recognition scenarios. The NLMS algorithm is frequently applied in real-time processing
scenarios, where the input signal exhibits temporal variations. An area worthy of exploration involves
investigating the online learning mechanisms of the INSGD algorithm in such dynamic environments.
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