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ABSTRACT

Pre-trained foundation models (PTMs) that undergo standard pre-training can be
efficiently finetuned for downstream tasks using parameter-efficient fine-tuning
(PEFT) methods. However, these models remain highly vulnerable to adversarial
perturbations. Existing studies often distribute PEFT parameters uniformly across
layers, which overlooks the varying importance of each layer. In this work, we
systematically analyze the adversarial robustness of PEFT strategies and intro-
duce a novel vulnerability score, a computationally efficient gradient-based mea-
sure that identifies which layers and components are most susceptible to adver-
sarial attacks. Guided by this score, we design robustness-aware PEFT methods:
LoRA High, which concentrates parameters in the most vulnerable layers, and
LoRA+Adapter, which assigns LoRA to the attention component and adapters to
the feed-forward component. Extensive adversarial-training experiments across
four real-world image classification datasets show that these targeted PEFT de-
signs consistently outperform vanilla PEFT methods. Post-adversarial finetuning
analysis with pruning-style attribution score confirms that strategically protecting
vulnerable parts of the backbone is key to robustness in PEFT.

1 INTRODUCTION

Deep Learning models have achieved great success in diverse application domains, including com-
puter vision He et al. (2016), natural language processing Devlin (2018), and robotics Lenz et al.
(2015). Recently, with the emergence of foundation models, parameter-efficient fine-tuning has
gained popularity because of the cost-effective way to adapt the large model to downstream tasks,
achieving good performance. Parameter-efficient fine-tuning methods (PEFT) introduce additional
lightweight parameters to the networks that can be trained by keeping the backbone fixed. There
have been various PEFT methods introduced: Prompt Lester et al. (2021); Jia et al. (2022), LoRA
Hu et al. (2022), Adapter Houlsby et al. (2019); Pfeiffer et al. (2020b;a), Bias Cai et al. (2020);
Zaken et al. (2021), and Linear Probe Chen et al. (2021). Although these methods can be used
to achieve good performance on downstream tasks, adapting the model using these methods also
makes the model more susceptible to adversarial attacks.

Understanding the robustness of PTM-based models is essential to developing reliable models that
can be deployed in safety-critical environments. Starting from the study of adversarial robustness for
Convolutional Neural Networks (CNNs) Cui et al. (2021); Wang et al. (2023); Liu et al. (2023), ear-
lier works have also studied the adversarial robustness for fine-tuning foundation models Mahmood
et al. (2021). However, these methods mainly focus on adversarial pretraining or full fine-tuning of
the pre-trained models, which is computationally expensive. Thus, recent works have started study-
ing the robustness of using PEFT methods to fine-tune the pretrained foundation models Xu et al.
(2024); Lv et al. (2024); Yuan et al. (2025); Hua et al. (2024); Li et al. (2025). Yuan et al. (2025)
found that introducing additional normalization in LoRA and using LoRA in different parts of the
transformer block improves the adversarial robustness compared to using LoRA only in multi-head
attention (MHA) and multilayer perceptron (MLP) layers. Hua et al. (2024) studied the robustness
of different PEFT methods, including LoRA, Prompt, Adapter, and Linear Probe, and observed that
robust fine-tuning is better than standard fine-tuning using PEFT; however, full fine-tuning is often
more robust than PEFT. Despite this progress, existing studies largely distribute PEFT parameters
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uniformly across the transformer layers, without identifying which parts of the frozen backbone
are most vulnerable to adversarial perturbations. Such parts refer to either different layers or com-
ponents within each layer of the network. Moreover, past works assume access to PTMs that are
pre-trained to be robust, which are expensive and not always available. We argue that not every
part of the network is equally important for adversarial robustness, and the strength of the PEFT
parameters in different parts of the network should be allocated based on the importance of that part
for adversarial robustness.

We hypothesize that standard PTMs without robust pre-training can freely rely on shortcut but pre-
dictive patterns in a small region of the input image. Thus, an attacker can easily break the model
by exploiting such patterns to make a small but visually undetectable change in the input. However,
we hypothesize that not all parts of the model are vulnerable to such shortcut patterns. Therefore,
we seek to identify the vulnerable parts in the network and adjust the PEFT capacity accordingly to
protect such vulnerable parts. To identify the vulnerable parts of the network, we introduce a novel
score-based metric: vulnerability score, associated with each parameter of the network. For each
parameter, this score is obtained by evaluating the average gradient norm across the adversarial sam-
ples. This is further verified by the vulnerability score of the clean model for the CIFAR10 dataset
before adversarial finetuning in Figure 1, where layers 0, 1, and 4 are the 3 most vulnerable layers as
they rank the highest in vulnerability score; similarly, layers 9, 10, and 11 are the 3 least vulnerable
layers. This provides evidence that not all layers are equally vulnerable. Additionally, the com-
putation cost of the vulnerability score is cheaper as it is computed before performing adversarial
training and using a model finetuned with linear PEFT on clean samples.

0 1 2 3 4 5 6 7 8 9 10 11
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20
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40
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Clean Model
LoRA Low
LoRA High

Figure 1: Layer-level vulnerability
score before and after robust finetuning.

We analyze the vulnerability at two levels: (i) Layer
Level: for a given layer, the vulnerability scores of the
selected parameters are summed to get the vulnerability
score of that layer. The layers with the largest vulnera-
bility score should be given more importance. Guided by
this, we propose LoRA High PEFT, which concentrates
LoRA parameters on top-k vulnerable layers. In con-
trast, we further propose and compare with LoRA Low
PEFT, which focuses LoRA parameters on the least-k
vulnerable layers, keeping the total number of parame-
ters the same as LoRA High. The results verify that LoRA
High consistently outperforms LoRA Low in adversarial
robustness evaluation. (ii) Component Level: Within
each transformer layer (block), we find that on average,
the MHA component tends to rank higher in vulnerabil-
ity score compared to the MLP component. However, the
vulnerability score of MLP is also non-negligible and is
competitive with the score of MHA for some layers. To
cover both components, we propose a simple LoRA+Adapter PEFT design that assigns LoRA to the
MHA component and adapter to the MLP component, yielding complementary robustness gains.

After adversarial finetuning with the proposed PEFT methods, we observe that the vulnerability
scores of the targeted part of the backbone drop the most compared to adversarial finetuning with
vanilla PEFT methods, indicating the importance of correcting the right vulnerable parts. This is
supported by the evidence in Figure 1 that LoRA High reduces the vulnerability scores across the
layers better than LoRA Low after robust finetuning. To further explain why these placements are
effective, we also make use of pruning-style neuron attribution (e.g., SNIP Lee et al. (2018)) scores.
We find that the PEFT methods that concentrate importance on fewer, more vulnerable parts can
tolerate higher pruning ratios with smaller robustness degradation than vanilla PEFT methods.

Our key contributions are summarized as follows:

• We identify the most vulnerable parts of the network by introducing a novel and compu-
tationally efficient vulnerability score which is an adversarial gradient measure computed
from a model finetuned using the linear PEFT on clean samples without any adversarial
pretraining.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• We provide a layer-level and component-level analysis of vulnerability, which led us to
design the LoRA High and LoRA+Adapter PEFT method that focuses on allocating more
PEFT parameters for the most vulnerable parts of the model.

• We carry out extensive adversarial training experiments across CIFAR10, CIFAR100,
CUB, and ImgNetR datasets, where the proposed PEFT methods achieve strong robust-
ness, demonstrating their effectiveness.

• To the best of our knowledge, our work is the first to leverage the neuron attribute score,
such as the SNIP score, to explain why certain PEFT methods in ViTs show better adver-
sarial robustness than others

2 RELATED WORKS

PEFT Methods Adapter Houlsby et al. (2019); Pfeiffer et al. (2020b;a) introduce lightweight
down-projection and up-projection parameters to either introduce them in sequential or parallel
manner to the MLP layer of the transformer block. Prompt Lester et al. (2021); Jia et al. (2022)
introduce trainable parameter on the input side and append it into the patch embedding of the input
before passing to the transformer blocks. LoRA Hu et al. (2022) introduces trainable lightweight
projection matrices in the MHA layer of the transformer blocks. Bias Cai et al. (2020); Zaken et al.
(2021) unfreezes the bias parameters of the pre-trained backbone. Linear Probe Chen et al. (2021)
only adapts the classifier head by keeping the rest of the weights fixed.

Adversarial Robustness Earlier works focus on adversarial robustness when performing full fine-
tuning or robust pre-training. Mahmood et al. (2021) studies the robustness of Vision Transformers
(ViT) and checks whether adversarial samples generated from CNNs or ViT transfer to each other.
Cui et al. (2021) works on adversarial robustness of CNNs to prevent the drop of clean accuracy by
leveraging the logits from the clean model. Wang et al. (2023) combines multiple types of adversar-
ial attacks during robustness training to improve the robustness of CNNs. Liu et al. (2023) focuses
on transferring the robustness of a pretrained robust model to downstream tasks while maintaining
the learned robustness of the pre-trained model. Xu et al. (2024) found that gradients for standard
and adversarial objectives are conflicting, which leads to poor adversarial robustness and introduces
a method that combines different training objectives in the loss function. They both focus on ad-
versarially pre-trained ResNet models. Lv et al. (2024) performs an ensemble of different LoRA
parameters corresponding to different adversarial training tasks. Yuan et al. (2025) introduces a new
normalization method on top of the original LoRA and uses the modified LoRA in different layers
of the transformer block in ViT. Hua et al. (2024) focuses on adversarially finetuning a robust model
using different PEFT techniques and introduces a novel initialization method that further improves
the robustness. Li et al. (2025) studies the trade-off between clean accuracy and robustness and
whether we can maintain the trade-off after performing finetuning using different PEFT methods.
Apart from starting with non-robust and standard PTMs, our method differs from the existing closely
related works in the following ways: 1) Instead of allocating the PEFT parameters uniformly across
different parts of the network, we introduce a vulnerability score metric to identify the most vul-
nerable parts of the network and concentrate the PEFT parameters more on the vulnerable parts. 2)
Our method is the first to provide post-adversarial finetuning analysis of why certain PEFT methods
are more robust with the help of neuron attribution scores, such as the SNIP score, along with our
proposed vulnerability score.

Neuron Attribution Neuron attribution scores are used to determine the neurons and parameters
most responsible for the performance of the model. Lee et al. (2018) introduces a simple way to
compute such a score (SNIP score) that is used to prune parameters in a model, making it sparse and
efficient to train. This score focused on the global loss function and the specific weight to prune.
Sun et al. (2023) introduces the WANDA score, which focuses on the local region of the model by
using the input activation and weights to prune parameters in a given layer. Wei et al. (2024) makes
use of these scores to explain the robustness of Large Language Models towards safety-alignment.
However, to the best of our knowledge, our work is the first to explain the adversarial robustness of
different PEFT methods using SNIP scores for vision tasks using ViT.
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Figure 2: Figure shows the location of different PEFT techniques across the ViT architecture. The
Prompt, LoRA, Bias, and Adapter are highlighted in color.

3 PRELIMINARIES

Problem setup Consider a classification task where the input data D = {(xn, yn)}Nn=1 contains
N number of training samples. Here xn ∈ X and yn ∈ Y are the individual inputs and the corre-
sponding label from the input set X and label set Y . Let θ correspond to the model we want to be
adversarially robust.

We aim to study the robustness of existing pre-trained models with a focus on the impact of the
choice of PEFT on the effectiveness of adversarial robustness. We want to fine-tune the foundation
model using different PEFT methods such that robustness is learned during fine-tuning. We also call
this robust fine-tuning. To this end, we consider a popular transformer architecture and PEFT-based
robust fine-tuning as shown in Figure 2. We consider the most popular PEFT methods, including
Prompt Jia et al. (2022), Bias Zaken et al. (2021), Adapter Zaken et al. (2021), and LoRA Hu et al.
(2022). Prompt introduces additional learnable prompt parameters that are concatenated with the
input embedding; Bias unfreezes all the bias parameters of the pre-trained model; Adapter introduces
additional learnable adapter modules; and LoRA introduces learnable low-rank matrices. During
adversarial robustness training, the backbone is frozen and only the PEFT parameters are trained.

Generating Adversarial Samples We consider norm-bounded adversaries that craft examples
within an ℓp ball of radius ε around an input x that maximizes the loss:

xa = x+ δ : δ = argmax
∥δ∥p≤ε

L(θ; x+ δ,y), (1)

Here, L is cross-entropy loss, xa is the adversarial sample, and ℓp is commonly ℓ∞ or ℓ2. We
mainly use adversarial attacks based on Projected Gradient Descent (PGD) Madry (2017), which
approximates equation 1 with an iterative objective where the attack starts from a clean sample
xt=0 = x for T total iterations and at each iteration t:

xt+1 ← ΠBp(x,ε)

(
xt + α stepp(∇xL(θ;xt,y))

)
, (2)

Where step∞(g) = sign(g), step2(g) = g/∥g∥2, α is the step size, and ΠBϵ(x)(·) denotes the
projection operator that ensures the perturbed example remains within an ϵ-ball Bϵ(x) around the
original input x under a specified norm.

Adversarial Training with PEFT Pre-trained foundation models (PTMs) are trained to achieve
good generalization performance. Explicitly training the PTMs to be adversarial robust is compu-
tationally expensive, and most PTMs are trained without considering adversarial robustness. Such
training is likely to guide the PTMs to learn spurious correlations that can ingrain adversarial vul-
nerabilities in the model. The robustness of a model θ can be improved with the help of adversarial
training, where the model is trained on adversarial samples Madry (2017); Goodfellow et al. (2014).
However, due to long training time, high memory requirements, and expensive data costs, it is not
feasible to train the foundation models from scratch with the adversarial training objective. An ef-
fective adversarial PEFT technique is required that can ensure both robustness and efficiency. To this
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end, we use an approach where the PEFT parameters of the model are learned using the adversarial
samples. We formulate Adversarial Training Madry (2017) (AT) as :

min
θ

E(x,y)∼D

[
L(θ,xa,y)

]
(3)

where L(·) is the loss function, such as cross-entropy loss, xa is an adversarially attacked sam-
ple corresponding to the clean sample x, and the PEFT parameters are updated during adversarial
training.

4 VULNERABILITY AWARE ROBUST PEFT

As the adversarial attack exploits the gradient direction where the model is most sensitive to the
predictions, we hypothesize that the success of adversarial attacks hinges on vulnerable pathways in
the network that locally amplify small, structured input changes into large loss increases. Standard
PTMs, not trained for invariance to small perturbations, can rely on shortcut patterns that are pre-
dictive but not robust. The adversarial attacks can easily exploit the network paths that rely on such
shortcut features. However, not all parameters of the network are responsible for amplifying the
shortcut features. Thus, in the following section, we attempt to identify the vulnerable parameters
in the network that amplify the shortcut features.

Identification of Vulnerability with Vulnerability Score Let ∂L
∂x denote the sensitivity of loss

with change in the input. We are interested in finding the vulnerability of a parameter W which
measures the amplification of loss sensitivity for an input x. The vulnerability score thus can be
obtained by the approximation of the following mixed partials:

V (W,x) =
∂

∂W

∂L(θ,x,y)
∂x

=
∂

∂x

∂L(θ,x,y)
∂W

≈ ∇WL(θ,x+∆x,y)−∇WL(θ,x,y)
∆x

∝ ∥∇WL(θ,x+∆x,y)∥ (4)

Where we use the first order approximation of f(x) = ∂L(θ,x,y)
∂w and assume |∇WL(θ,x +

∆x,y)| ≫ |∇WL(θ,x,y)| as θ is optimized for clean sample x. Let Da denote adversarial ex-
amples generated from a clean set D by equation 2. We define the parameter-level vulnerability as
the expected gradient norm on adversarial inputs:

V (W ) ≜ E(xa,y)∼Da

[
∥∇WL(θ;xa,y)∥

]
. (5)

To compare parameters of different sizes/scales, we can use a scale-invariant variant: Ṽ (W ) ≜
V (W )/(∥W∥+ σ) where σ is a small positive value added to prevent division by zero.

Addressing Vulnerability We attempt to address the vulnerability at two levels: (1) Layer Level
and (2) Component Level. For layer-level vulnerability, we identify the transformer blocks (layers)
that are more vulnerable than others. For a transformer layer l with disjoint blocks W ∈ Wl, we
define the layer-level vulnerability score as: Vl ≜

∑
W∈Wl

Ṽ (W ) where Wl is the set of weights
for layer l. Thus, we choose the top-k most vulnerable layers with the largest Vl and modify the
PEFT associated with that layer. The PEFT can be modified to concentrate more PEFT parameters
toward the most vulnerable layers than other layers. For example, for LoRA, we can increase the
LoRA rank and scale hyperparameter for those vulnerable layers. To demonstrate the effectiveness
of our method, we propose LoRA High and LoRA Low, which increase the strength of LoRA for
the most vulnerable layers and the least vulnerable layers, respectively.

For component-level vulnerability, we make an attempt to first analyze the importance of the MHA
and MLP components within each transformer block (layer). For component c ∈ {MHA,MLP}
within layer l the component level vulnerability score is given by: Vl,c ≜

∑
W∈Wl,c

Ṽ (W ) where

5
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Wl,c is the set of weights for component c within layer l. Figure 3 shows that MHA components,
on average, are more vulnerable than MLP layers. However, we noticed that MLP components are
also vulnerable, and the vulnerability is not too far compared to MHA layers. Thus, we realize that
just focusing on the MHA component does not solve the robustness problem, and focusing on the
MLP component is also important. To this end, we propose LoRA+Adapter PEFT, where the LoRA
PEFT takes care of the MHA component and Adapter PEFT takes care of the MLP component.

Connection with low-level features learning Previous work Raghu et al. (2021) explores the
similarity of ViTs with CNNs and found that in CNNs, the early layers are more focused on de-
tecting the low-level features such as colors and textures, while the later layers focus on high-level
features, such as objects. However, in ViT, the low-level features can be learned throughout the
ViT layers, where learning low-level features early on is also important. As the adversarial attacks
make small changes, we hypothesize that they mostly focus on the low-level features. Therefore, the
vulnerability score can help detect which layers focus on these low-level features the most, as those
layers could be most vulnerable. Further, our results also show that, on average, earlier layers are
more vulnerable than later layers; however, the middle layers are also vulnerable, which supports
the claim of Raghu et al. (2021) that low-level feature learning is spread across transformer layers
in ViT with slightly higher concentration in the earlier layers.

Post-adversarial finetuning Analysis After performing adversarial finetuning, we check the vul-
nerability score of the parameters that we tried to fix using the vulnerability score. If the vulner-
ability score is reduced after PEFT, it proves the effectiveness of that PEFT method. Further, we
make use of the SNIP score Lee et al. (2018); Wei et al. (2024) to verify the effectiveness of the
PEFT methods, as robust PEFT methods should be able to retain robustness when a larger number
of parameters are pruned. The SNIP score is computed after the robust finetuning of the model using
PEFT and is given by: I(W ) = Ex∼D′ |W∇WL(x)|. Here, W ∈ Rdo×di is the weight matrix of
any linear layer where do and di are the shape of the output layer and input layer, respectively. D′

could be either clean samples or adversarially perturbed samples. The shape of I(W ) is the same as
W , such that I(W ) contains the element-wise importance score of each parameter in W . L refers to
the cross-entropy loss. If D′ contains clean samples, I(W ) represents the importance score of each
parameter w.r.t clean samples; such that parameters with the largest values of I(W ) in W are the
parameters most important to clean samples. Similarly, we can obtain the parameters most impor-
tant to adversarial samples, where such parameters can also be referred to as the most responsible
for adversarial robustness.

5 EXPERIMENTS

We first describe the datasets and the baselines used in the experiments. We then study the impact
of PEFT choice on both the generalization and robustness after the adversarial training. Finally, we
carry out ablation studies on a different adversarial attack. Our source code can be found at this link:
https://anonymous.4open.science/r/padv-8EF5/

Experiment Setup We consider 4 benchmark datasets of CIFAR10, CIFAR100 Krizhevsky et al.
(2009), ImgNetR Hendrycks et al. (2021), and CUB Wah et al. (2011). We select the ViT-B16 trans-
former architecture as our base model. We compare the robustness of 4 vanilla PEFT techniques:
Prompt, LoRA, Adapter, and Bias, and 3 augmented PEFT techniques: LoRA High, LoRA Low,
and LoRA+Adapter. For the main result, we use a cross-entropy loss-based standard PGD attack
where the attack strength (ϵ/255) of the adversarial attack is controlled by ϵ. For robust finetuning,
the attack strength, step size, and number of steps are fixed to 3/255, 0.01, and 2, respectively. For
evaluation, the step size and number of steps are fixed to 0.004 and 20, respectively. For Prompt,
we append a 768-dimensional token of length 5 as a learnable prompt to the input. For the adapter,
we use the bottleneck of size 16 with output dimensions of 768. For LoRA, we use a rank of 4. For
LoRA High (or LoRA Low), we select the top-k (or least-k) most vulnerable layers and increase the
rank to 64 while keeping the rank of the remaining layers as 4. For the result reported in our paper,
we select k = 3. For LoRA+Adapter, we initialize LoRA with the parameters obtained from robust
finetuning using vanilla LoRA.
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Table 1: Adversarial Robustness Comparison of different PEFT Methods After Adversarial Training.

Method Trainable Parameters ϵ CIFAR10 CIFAR100 CUB ImgNetR

Prompt

0 49.30 31.26 69.85 46.00
1 40.88 24.66 46.09 31.85

11520 2 32.94 18.64 22.94 20.80
3 25.19 13.24 08.56 12.63
5 12.50 05.49 01.06 04.77

Adapter

0 36.58 48.46 81.13 74.25
1 40.24 34.19 71.29 60.43

304320 2 27.02 21.30 54.41 45.93
3 13.97 13.79 38.08 32.87
5 01.94 03.94 14.12 15.20

Bias

0 86.01 69.67 82.40 69.20
1 78.49 60.20 71.79 59.05

102912 2 69.44 49.43 57.76 49.35
3 58.13 39.04 42.88 39.67
5 33.87 20.05 19.80 23.07

LoRA

0 89.10 36.72 82.49 73.50
1 83.45 28.89 72.39 62.20

147456 2 75.47 34.99 58.31 49.95
3 65.84 31.50 44.49 37.50
5 42.22 08.57 21.59 19.35

LoRA+Adapter

0 90.50 75.27 80.70 69.80
1 85.14 67.04 70.48 60.73

451776 2 78.14 56.96 56.79 50.83
3 68.84 46.28 43.94 41.72
5 45.91 26.19 22.52 24.62

LoRA Low

0 90.07 74.56 71.93 70.58
1 75.54 65.87 73.62 61.03

700416 2 56.94 55.71 59.20 50.68
3 40.69 44.57 44.87 41.17
5 27.29 25.24 21.92 24.25

LoRA High

0 90.41 74.53 82.53 70.53
1 84.76 66.55 73.16 62.02

700416 2 77.29 57.12 59.07 52.55
3 67.88 46.49 46.18 42.92
5 44.87 26.86 23.58 26.40

Robustness Evaluation Table 1 shows the robustness of PEFT methods across different attack
strengths (ϵ) for the PGD attack. ϵ = 0 refers to the generalization on clean samples. Among
the PEFT methods, Prompt has the least robustness as it introduces trainable parameters only in
the input layer and the classifier head. Results show that among LoRA, Bias, and Adapter, LoRA
is generally able to achieve better robustness. The robustness of LoRA may be attributed to the
topology of the introduced PEFT parameters. LoRA adds a trainable parameter to the MHA layer,
which seems to be important than the adapter that only adds a trainable parameter to the MLP layer
of the transformer block. The MHA layer may be more important because adversarial attacks make
the model prone to using spurious shortcut features, and thus, it may be more important for the
model to shift the attention to the correct features. We further observe that the robustness of Bias
is also competitive when compared with the robustness of LoRA. This may be because Bias can
enable trainable parameters across multiple layers of a transformer block. This evidence supports
that introducing trainable parameters in multiple layers is better for robustness.

These vanilla PEFT methods distribute the PEFT parameters uniformly across the transformer lay-
ers. However, from our theoretical analysis, not all parts of the network are equally responsible for
the vulnerability towards adversarial attacks. To identify the most important parts of the network,
we first evaluate the component-level vulnerability score of MHA and MLP components as shown
in Figure 3. We should note that the layer-level vulnerability score can be obtained by summing
the score of MHA and MLP components for each layer. Using the vulnerability score, we compare
LoRA High and LoRA Low PEFT in Table 1. We observe that LoRA High consistently shows better
robustness than LoRA Low. This verifies our analysis that concentrating the PEFT parameters in the
vulnerable parts yields better robustness compared to placing them in the least vulnerable parts for

7
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the same parameter size. Further, Figure 3 shows that the MLP component is also vulnerable with
non-negligible vulnerability, which motivates us to combine LoRA and Adapter. We observe that in
Table 1, LoRA+Adapter also has better robustness compared to other vanilla PEFT methods in most
cases. In the case of the CUB dataset, LoRA+Adapter and LoRA High can only beat LoRA Low in
the strongest attack strength (ϵ = 3, 5), whereas the robustness is slightly lower than LoRA Low for
lower ϵ values. This may be because of the nature of the dataset. For instance, the CUB dataset only
contains 5,994 training samples of all bird images, in which LoRA Low may already be performing
best, leaving less room for improvement for weaker attacks.
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Figure 3: The component-level vulnerability scores Vl,c across the layers before robust PEFT.
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Figure 4: The layer-level vulnerability scores Vl across the transformer layers for different methods.

Reduction of Vulnerability After Adversarial Fine-tuning As we propose PEFT methods that
focus on the most vulnerable parts, we are interested in seeing if the vulnerability of those parts
is reduced after adversarial finetuning. Figure 4 shows the layer-level vulnerability score across
the transformer layers. After adversarial finetuning, the vulnerability score drops compared to the
clean model. We further observe that LoRA+Adapter and LoRA High reduce the vulnerability
score of these components the most compared to other PEFT methods. This provides evidence that
selecting the most important layers is important in order to fix the vulnerability and thus improve
the adversarial robustness.
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Figure 5: Adversarial robustness and clean accuracy on CI-
FAR100.

Pruning Unimportant Parameters
Motivated by Wei et al. (2024),

we also perform a pruning analysis
where the parameters least important
to robustness are set to zero. We
evaluate the SNIP score for adver-
sarial samples with attack strength
ϵ = 3 under the PGD attack. The
SNIP score assigns higher scores to
parameters important for adversarial
robustness. Given a pruning ratio r
and any linear weight W ∈ Rdo×di

with SNIP scores I(W ), for each row
(across output neurons) of W , we
replace the value of r% of parame-
ters having the least SNIP scores with
zero. This is performed for all trainable linear parameters for the given PEFT method, excluding the
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classifier head. To compute the SNIP score, we use the adversarial samples generated using ϵ = 3
and also evaluate on ϵ = 3 where other settings are the same as in the main Table 1.

Figure 5 shows that a good fraction of unimportant parameters can be pruned without the loss
of robustness or clean accuracy. In Figure 5a, the adversarial robustness for LoRA High and
LoRA+Adapter can still be maintained even after pruning around 30% of unimportant parameters.
It shows that a large fraction of parameters from LoRA High and LoRA+Adapter can be pruned
before the adversarial robustness fails. Further, LoRA High is consistently more robust to pruning
compared to other PEFT methods. This also verifies that LoRA High introduces a larger number of
parameters useful for adversarial robustness compared to other PEFT methods. In Figure 5b, as the
pruning ratio increases, the clean accuracy is also maintained for LoRA High and LoRA+Adapter,
whereas for LoRA and Adapter, the clean accuracy improves only when more PEFT parameters
are pruned. We suspect this is because, as the PEFT parameters are gradually removed, the pre-
trained original backbone has more precedence in determining the final output. Since the original
backbone has not gone through adversarial training, it is more suited towards clean samples, which
will thus improve the clean accuracy by sacrificing the adversarial robustness. In contrast, as fewer
parameters are pruned, the robustness improves while sacrificing the clean accuracy.

Ablation Studies In this section, we perform the robustness analysis of LoRA, Adapter,
LoRA+Adapter, LoRA Low, and LoRA High for the auto-PGD Croce & Hein (2020b) attack. For
the adversarial training, we train for 5 steps for CIFAR10 and 2 steps for ImgNetR with ϵ = 3.
For the evaluation, the number of steps is increased to 20 with different values of ϵ. The result in
Table 2 shows that auto-PGD is generally stronger than the PGD attack in Table 1. Nevertheless, we
observe a similar pattern that LoRA is generally better than Adapter in robustness, and the LoRA
High and LoRA+Adapter further improve the robustness. In the case of ImgNetR, the combination
is slightly lower than LoRA in weaker attack strength, but as the attack strength increases, the ro-
bustness is improved for the combination. In the case of CIFAR10 dataset, LoRA+Adapter, LoRA
High and LoRA Low have performance closer to each other, suggesting that there may be less room
for improvement for LoRA High. However, in the ImgNetR dataset, it is clear that LoRA High is
better than LoRA Low for adversarial robustness, supporting the importance of concentrating LoRA
parameters for the most vulnerable layers.

Table 2: Adversarial Robustness Comparison of different PEFT Methods After Adversarial Training
for Auto-PGD attack.

Dataset ϵ Adapter LoRA LoRA+Adapter LoRA Low LoRA High

CIFAR10

0 97.99 92.63 93.34 93.61 93.24
1 64.37 86.09 87.55 87.63 87.17
2 42.61 76.85 78.66 78.51 78.1
3 25.39 63.54 65.77 65.34 65.15
5 04.20 32.05 34.74 33.38 33.68

ImgNetR

0 73.07 72.58 70.93 77.55 73.55
1 59.47 61.03 60.53 56.32 62.03
2 45.57 48.75 48.52 41.45 50.28
3 31.77 36.23 36.90 30.13 38.48
5 13.52 17.17 18.33 14.23 19.55

6 CONCLUSION

We studied the adversarial robustness while robust fine-tuning PTMs using PEFT and showed that
robustness depends not only on the number of trainable parameters but also on where they are placed.
We introduced a novel score-based metric that identifies layers and components most susceptible
to adversarial perturbations. Guided by this score, we designed robustness-aware PEFT strategies:
LoRA High, which allocates capacity to top-k vulnerable layers, and LoRA+Adapter, which comple-
ments MHA with LoRA and MLP with adapters. These methods consistently improve adversarial
robustness over vanilla PEFT across real-world datasets. Our results highlight that robustness in
PEFT improves from strategically protecting the most vulnerable parts of the backbone. Moreover,
post-adversarial finetuning analysis SNIP score confirms that targeting vulnerable parts enables the
model to tolerate pruning with smaller robustness degradation.
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A APPENDIX

The Appendix is organized as follows: first, we provide a table that summarizes the symbols used in
the paper. Next, we include the algorithm for adversarial training and calculating the vulnerability
score. Finally, we include additional training details and additional experiments.

Table 3: Summary of the Symbols and their Definitions

Symbol Definition

D Set of clean dataset
N Size of dataset D
x Single entry of dataset D
y The label for the data point x

θ
The parameters of the model, including
the PEFT parameters and the backbone

xa
The adversarially attacked sample corre-
sponding to the clean sample x.

W Any linear weight

do
Number of output neurons for a given lin-
ear weight W

di
Number of input neurons for a given linear
weight W

I(W ) SNIP scores corresponding to weight W

V (W )
Vulnerability score corresponding to
weight W

ϵ Attack strength
α Attack step size
L Cross entropy loss
L(·) Cost function for attack
Bϵ ϵ ball around x

A.1 SUMMARY OF SYMBOLS

Table 3 summarizes the symbols used throughout the paper.

A.2 ALGORITHM FOR CALCULATION OF VULNERABILITY SCORE

Algorithm 1 provides the algorithm to compute the vulnerability score and to perform the adversarial
robust training.
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Figure 6: Pruning parameters important to robustness for the CIFAR100 dataset.
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Algorithm 1 Parameter Efficient Adversarial Training and Vulnerability Score Calculation
Step 1: Adversarial Training

Input: Dataset D
Output: Learned Model fθ

1: Initialize Model Parameter θ ← θ0
2: Generate Adversarial Samples Da using Equation 2.
3: Train θ on Da using Cross-Entropy loss
4: return θ

Step 2: Vulnerability Score Calculation
Input: Model θ0, Clean samples D chosen weight W
Output: Vulnerability score V (W )

1: Finetune a Linear PEFT model while freezing the backbone to obtain θ on clean samples D.
2: Using the obtained model θ, attack the clean samples D to compute the set of adversarial sam-

ples Da

3: Using the adversarial samples Da compute the gradient of cross-entropy loss wrt the chosen
backbone parameter: ∇WL(x).

4: Compute the vulnerability score V (W ) using equation 5.
5: return V (W )

A.3 ADDITIONAL EXPERIMENT RESULTS

Here we first provide the additional experiment details, followed by additional results.

Additional Experiment Details: For the adversarial training, we only train on the adversarial
samples for 30 epochs with a batch size of 48. We use the SGD optimizer and cosine scheduler
with an initial learning rate of 0.03, weight decay of 0.0005, and a minimum learning rate of 0. For
the combination of LoRA and Adapter, we initialize the LoRA parameters with LoRA parameters
obtained after robust finetuning of LoRA by itself. This is because LoRA generally has stronger
robustness compared to Adapter, and initializing with a strong position helps to further improve the
robustness. We also fix the seed to 1993 across NumPy, PyTorch, and Python.
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Figure 7: Distribution of SNIP score for trainable parameters for CIFAR100 dataset.

Distribution of SNIP score We visualize the overall SNIP score distribution for different PEFT
methods in Figure 7. We observe that the distribution is very sparse, such that there is a lower per-
centage of parameters with higher scores. For example, in Figure 7a, 80% of the adapter parameters
have scores less than 0.19 while the maximum score is 74.82. This suggests that there is a very small
proportion of parameters that help with the adversarial robustness.

Pruning Parameters Important for Robustness: In Figure 6, we prune important parameters
for robustness, but exclude the top 10% important parameters for clean accuracy to compute the set
difference. The robustness of the Adapter falls off quickly, followed by LoRA as more parameters
are pruned. The LoRA+Adapter does not drop significantly because there are more important pa-
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rameters for robustness, as well as some important parameters for robustness that also overlap with
parameters important to clean performance, which is protected by the set difference.
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Figure 8: Relative Importance: difference between the SNIP (importance) score of PEFT parameters
and backbone parameters.

Relative Importance of PEFT Parameters: Figure 8 shows the difference between the SNIP
score of PEFT parameters and backbone parameters across the transformer layers. It shows that the
importance of PEFT parameters with respect to the backbone parameters increased for LoRA High
and LoRA+Adapter compared to other PEFT methods. This is consistently true for the CIFAR10
and CIFAR100 dataset. However, for the CUB and ImgNetR datasets, the pattern is consistent only
for early layers. This may be because the SNIP score is not directly connected to the robustness but
rather the importance of the parameters. It shows that for these datasets, the backbone parameters
are more important in the later layers compared to earlier layers.

Table 4: Adversarial Robustness against different types of Attack for CIFAR10 dataset

Model PGD APGD FAB APGDT

Adapter 13.97 25.39 31.67 13.34
LoRA 65.84 63.54 62.3 61.42

LoRA+Adapter 68.84 65.77 64.52 63.72

Adversarial Robustness Against Different Attacks Table 4 shows the adversarial robustness of
Adapter, LoRA, and LoRA+Adapter across PGD Madry (2017), APGD, APGDT Croce & Hein
(2020b), and FAB Croce & Hein (2020a) for CIFAR10 dataset. The pattern remains consistent that
LoRA has better robustness than the adapter, and LoRA+Adapter is better than LoRA and Adapter
individually. For PGD, the adversarial training and evaluation are the same as the experiment in
Table 1. For adversarial training against APGD, FAB, and APGDT, we use the same setting to
generate the adversarial samples as in Table 2, where the APGD attack with attack strength ϵ = 3
and number of steps of 5 is used. After training on APGD, the model is evaluated on APGD, FAB,
and APGDT attacks with the number of steps of 20.
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