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Abstract

Adapting language models (LMs) to novel do-001
mains is often achieved through fine-tuning a002
pre-trained LM (PLM) on domain-specific data.003
Fine-tuning introduces new knowledge into an004
LM, enabling it to comprehend and efficiently005
perform a target domain task. Fine-tuning can006
however be inadvertently insensitive if it ig-007
nores the wide array of disparities (e.g word008
meaning) between source and target domains.009
For instance, words such as chronic and pres-010
sure can often be treated lightly in social con-011
versations, however, clinically, these words are012
usually a cause of concern. To address insen-013
sitive fine-tuning, we propose Mask Specific014
Language Modeling (MSLM), an approach that015
efficiently acquires target domain knowledge016
by appropriately weighting the importance of017
domain-specific terms (DS-terms) during fine-018
tuning. MSLM jointly masks DS-terms and019
generic words, then learns mask-specific losses020
by ensuring LMs incur larger penalties for in-021
accurately predicting DS-terms compared to022
generic words. Results of our analysis show023
that MSLM improves LMs sensitivity and de-024
tection of DS-terms. We empirically show that025
an optimal masking rate is not only dependant026
on the LM, but also on the dataset and the027
length of sequences too. Our proposed masking028
strategy outperforms advanced masking strate-029
gies such as span- and PMI-based masking.030

1 Introduction031

Fine-tuning is the prevailing practice in adapting032

an LM to a new domain. A plethora of research033

works ranging from task-generalization (Claudino034

et al., 2018; Peters et al., 2019; Peng et al., 2019),035

to few-shot learning (Gao et al., 2020; McCann036

et al., 2018) to in-context tuning (Chen et al., 2021)037

all unanimously credit fine-tuning for the state-of-038

the-art results across a diverse set of NLP tasks.039

Despite all of its remarkable strides, fine-tuning040

has been fairly criticised for its instability and brit-041

tleness by a few pockets of NLP researchers (Mos-042

Social Conversation

Dan: Hi Gary, how was your week?

Gary:
It has ended well but I had a lot of pressure
throughout the week to meet a deadline. I
felt like I would get attacked by colleagues.

Clinical Conversation

Dan: Hi Gary, how was your week?

Gary:
It has ended well but my pressure was high
throughout the week. I felt like I would get
an attack .

Table 1: Comparing the sensitivity of two words in
two different conversations (Social and Clinical setting).
The brighter the colored boxes wrapping the words, the
more concerning for the respective conversation.

bach et al., 2020; Lee et al., 2019; Dodge et al., 043

2020). Lee et al. (2019); Dodge et al. (2020) at- 044

tributed fine-tuning’s instability to catastrophic for- 045

getting and small sized datasets, and most recently 046

Mosbach et al. (2020) exposed the optimization 047

challenges encountered during fine-tuning LMs. 048

It is notable that, across all prior critics, the fo- 049

cus and attention has been strongly directed to- 050

wards the performance of these LMs, and very lim- 051

ited attention has been paid towards the sensitivity 052

and domain-specific knowledge these LMs pickup 053

during fine-tuning. There is usually such a wide 054

array of disparities between the source (used for 055

pre-training) and the target (used for fine-tuning) 056

domains. Some of these may include but not lim- 057

ited to, word meaning (Navigli, 2009; Zhou and 058

Bollegala, 2021), word intensity (strength or po- 059

tency of a word in given domain) (Yin et al., 2020; 060

Baek, 2022) and abbreviation disambiguation (Wu 061

et al., 2015). If these disparities are not properly 062

catered for, fine-tuning can easily become an under- 063

whelming adaptation process and insensitive to spe- 064

cialised target domains. For instance, words such 065

as chronic, pressure and attack will often be treated 066
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Figure 1: Joint ELM-BLM masking of tokens in an input sequence.

lightly in social conversations, however, clinically067

these words are usually a cause of concern. For068

example, we notice that, whereas the words “pres-069

sure” and “attack” are mentioned by the respondent070

in both the social and clinical contexts in Table 1,071

they definitely require more attention in the clinical072

conversation, hence the questioner “Dan” ought to073

be more sensitive to the respondent “Gary”.074

In this work, we address the domain sensitive075

fine-tuning (DSFT) discussed in the previous para-076

graph. We use insensitivity in our context to imply077

the below par awareness of DS-terms, rather than078

language-insensitivity as it pertains to human feel-079

ings. We investigate the hypothesis: “The aware-080

ness of or sensitivity of PLMs towards DS-terms081

can be appropriately elevated without hurting082

their downstream performance”.083

In order to strategically increase an LM’s aware-084

ness of DS-terms, we revisit the language under-085

standing and generation phenomenon of Mask Lan-086

guage Modeling (MLM) (Devlin et al., 2019). We087

modify MLMs to up-weight the significance of088

masked DS-term tokens such that the attention to-089

wards them is relatively larger than that towards090

masked non DS-term tokens. In doing so, we in-091

troduce the notion of “mask-specific loss”, which092

we compute using appropriately assigned weights093

that are computed using a strategy similar to the094

one Mosbach et al., 2020 used to address class im-095

balance. We further introduce entity recognition096

and entity classification objectives to collectively097

contribute towards a cross entropy loss with an aim098

to enhance the ability of a model to detect men-099

tions. We refer to this approach as Mask-Specific100

Language Modeling (MSLM).101

Using the biomedical domain as our test bed, we102

evaluate how well MSLM can perform when tasked103

to extract clinical entities from a host of datasets104

within the Biomedical Language Understanding &105

Reasoning Benchmark (BLURB) (Gu et al., 2021).106

To study the effectiveness of MSLM, we do not107

simply compare the perplexity of our sensitive mod-108

els to the vanilla models, instead, we proceed to109

check confidence scores with which the two sets110

of models predict DS-terms. We assess the impact 111

of our proposed masking strategy by varying the 112

masking rate and lengths of input sequences and 113

monitoring their influence on the LMs prediction re- 114

sults. In addition, we study how this masking strat- 115

egy compares to other advanced strategies such as 116

PMI (Pointwise Mutual Information) (Levine et al., 117

2020) and Span (Joshi et al., 2020). Our experi- 118

ments demonstrate (a) a performance improvement 119

in extraction of exact mentions of named entities, 120

(b) the influence the masking rate and sequence 121

lengths has on prediction performance, and (c) the 122

superiority of the proposed masking strategy over 123

other advanced masking strategies. 124

2 Mask-Specific Language Modeling 125

In designing our approach, we draw lessons from 126

two prior tested and proven phenomena: (1) MLMs 127

are effective in learning representations for sub- 128

tokens, words (Devlin et al., 2019), phrases (Sun 129

et al., 2019) and spans (Levine et al., 2020; Joshi 130

et al., 2020); and (2) high prediction rates (pro- 131

portion of tokens to be predicted) substantively 132

affect optimization, i.e. they increase training sig- 133

nals, which subsequently boost performance (Wet- 134

tig et al., 2022). We refer to these two phenom- 135

ena respectively as the MLM-effect and the High- 136

prediction-effect in the remainder of this paper. 137

2.1 Masking 138

Randomly replacing a percentage of tokens in a 139

sentence with [MASK] tokens (Base level Mask- 140

ing (BLM; Devlin et al., 2019)) intuitively enables 141

LMs to learn the bi-directional context that often 142

surrounds words in written language text. 143

Because certain spans of words are best under- 144

stood when all of their constituted words are writ- 145

ten together to denote a named entity such as a 146

person, an organisation and a location, replacing 147

named entity spans with [MASK] tokens (Entity 148

level Masking (ELM; Sun et al., 2019; Abaho 149

et al., 2022)) has also proven to be effective in 150

learning contextualised representations for these 151
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entities.152

We leverage benefits of the two above strate-153

gies and propose a new masking strategy, “Joint154

ELM-BLM” shown in Figure 1. On its own, ELM155

would help enrich an LM with contextual knowl-156

edge necessary in discriminating our targeted DS-157

terms, however, when exploiting the MLM-effect,158

we consider it necessary to avoid tightly coupling159

the LM’s weights onto these DS-terms. We there-160

fore utilise BLM to preserve a PLM’s inherent do-161

main and generic knowledge. More so, we avoid162

the assumption that 15% masking rate is optimal163

(Devlin et al., 2019) and instead explore several164

rates to find an optimal one. In our experimental165

setup, we ensure that BLM- and ELM-masked sets166

are disjoint sets of tokens.167

Besides datasets with annotations of DS-terms168

(clinical entities), we assume access to a Biomedi-169

cal PLM denoted as EncPLM. This LM can be used170

for encoding each input sequence s of n tokens to171

obtain H, a matrix of n vectors as shown in (1).172

H = EncPLM(x1, . . . , [MASK]i, . . . , xn) (1)173

2.1.1 Mask specific losses174

The main goal in our approach is to strategically in-175

crease a PLM’s sensitivity towards DS-terms while176

simultaneously retaining sufficient knowledge of177

generic terms. The first attempt in achieving this178

is masking DS-terms along with generic terms as179

discussed in §2.1.180

To further achieve our goal, we introduce the181

idea of mask specific losses, which essentially aims182

to impose larger penalties on the model for inaccu-183

racies in predicting corrupted (masked) DS-terms184

compared to the corrupted generic terms.185

Typically, instance-specific losses are computed186

by re-scaling weights for each possible class in the187

label space (Wang et al., 2017; Cui et al., 2019),188

however, in this case, rather than classes, we have189

ELM- and BLM-masked tokens as well as un-190

masked tokens. To compute the weights assigned to191

the tokens in our masked input, we firstly obtain the192

number of ELM- and BLM-masked tokens within193

the training dataset and denote them as NELM and194

NBLM respectively. A mask specific weight is com-195

puted for each of the mask types (ELM & BLM), as196

the difference between 1 and the the corresponding197

mask type probability (i.e. the mask type’s distribu-198

tion out of the total mask types distribution), given199

by (2). The final mask specific weight is obtained200

as the softmax over the mask specific weights from 201

previous step as given by (5). 202

wx = 1− Nx∑
x∈{BLM,ELM}Nx

(2) 203

wBLM =

{
0.5 if wBLM > 0.5
wBLM

wELM =

{
0.5 if wELM < 0.5
wELM

(3) 204

w = ([wBLM, wELM]) (4) 205

w = softmax(w) (5) 206

In order to elevate the sensitivity towards DS- 207

terms but equally avoid overfitting onto them, we 208

introduce a sensitivity threshold, which is used to 209

encourage the ELM-masked tokens related weight 210

(wELM) and also to carefully suppress the BLM- 211

masked tokens related weight (wBLM). Because of 212

the sporadic nature of the mentions of DS-terms 213

within the dataset, the distribution of ELM-masked 214

tokens will typically be lower than that of BLM- 215

masked tokens, in other words not every input se- 216

quence will have a mention of DS-term/s, while 217

every input sequence will have tokens that are sub- 218

ject to BLM. We therefore set the sensitivity thresh- 219

old to 0.5 to force a balance in their probability 220

distribution (i.e. implying that BLM and ELM are 221

equally likely to occur for a given input sequence). 222

We then ensure that wBLM never rises above this 223

threshold and similarly, wELM should never fall 224

below that threshold as shown in (5). 225

The normalized weight vector w is used to com- 226

pute the MSLM loss (LMSLM) during the predic- 227

tion of the masked tokens xi as given by (6). 228

LMSLM = −
∑

w
(x)
i logP (xi|s) (6) 229

Here, w(x)
i ∈ w is a mask-specific weight for a 230

masked token xi that lies within the sequence s. 231

2.2 Entity detection and Classification 232

Because the biomedical domain is richly endowed 233

with classification schemes that are used in cate- 234

gorizing clinical entities (Jackson et al., 2018; Gu 235

et al., 2021), we maximize the High-prediction- 236

effect by formulating an entity recognition and clas- 237

sification task. The idea behind this is, the more 238

predictions a model has to make (both in predicting 239

masked-out tokens as well as classifying unmasked 240
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#Sents
Train | Val | Test

#Classes AvgSentLen
#Ments

Train | Val | Test
AvgMents AvgMentsLen

BC2GM 12632 | 2531 | 5065 2 25.17 15197 | 3061 | 632 1.20 2.4
NCBI-disease 5432 | 923 | 942 2 25.24 5134 | 787 | 960 0.95 2.2
BC5CDR-chem 4812 | 4602 | 4582 2 25.75 5385 | 5203 | 5347 1.12 1.3

Table 2: Dataset statistics. #Sents is the number of sentences and #Ments is the number of DS-term mentions,
AvgSentLen is the average length of sentences, AvgMents is the average number of DS-terms mentioned per
sentence obtained as (# of train Ent_Ments)/(# of train sents). Full table with all datasets in 8 in the Appendix.

entities), the more signals it would get through com-241

puting gradients during optimization. The entity242

recognition task is defined below.243

Task formulation: Given a sentence s =244

{xi}ni=1 of n tokens, where each xi is tagged with245

a BIO label (Sang and Veenstra, 1999), we build a246

model that can accurately extract entities {e(s)i }Ni=1247

mentioned in s. We obtain a probability distribu-248

tion across all BIO labels as given by (7).249

ŷi = softmax(f(hi ◦W (ed))) (7)250

Here, f is a nonlinear function, ◦ denotes the251

vector concatenation and W (ed) ∈ R1×k is a train-252

able weight vector, hi ∈ H. In addition to LMSLM,253

we compute an entity detection loss given by (8).254

LED = −
n∑

i=1

∑
j∈BIO

yi,j log ŷi,j (8)255

Entity Linking/Classification loss: Given a de-256

tected entity, we obtain an entity span representa-257

tion in (9), and compute probability distribution258

across all entity types E in (10),259

em = meanpool(hi, . . . , hM ) (9)260

where the entity m has 1 to M tokens.261

ŷlm = softmax(f(em ◦W (ec))) (10)262

where f is a non-linear function and W (ec) ∈263

R1×d is a trainable weight vector. The classifica-264

tion loss is given by (11).265

LEL = −
∑
l∈E

ylm log ŷlm (11)266

Model loss: We optimize the joint loss of all267

three cross-entropy losses as given in (12).268

L = LMSLM + LED + LEL (12)269

3 Experiments 270

To evaluate MSLM, we initialize multiple biomed- 271

ical LMs which were pre-trained on massive col- 272

lections of publicly available scientific literature in 273

PubMed. Compared LMs include BioBERT (Lee 274

et al., 2020), SciBERT (Beltagy et al., 2019), 275

PubMedBERT (Gu et al., 2021) and BioELEC- 276

TRA (raj Kanakarajan et al., 2021). 277

Datasets: To facilitate our investigation, we use 278

Named Entity Recognition (NER) datasets within 279

the BLURB benchmark (Gu et al., 2021). These 280

include NCBI-disease containing 6892 disease 281

mentions linked to 790 distinct disease concepts, 282

BC5CDR-Disease & BC5CDR-Chemical con- 283

taining mentions of diseases and chemicals in 1,500 284

PubMed articles, BC2GM containing 20,000 sen- 285

tences with gene mentions, JNLPBA containing 286

2,000 PubMed abstracts with mentions of molecu- 287

lar biology-related entities such as DNA and EBM- 288

NLP containing 5,000 PubMed clinical trial ab- 289

stracts with mentions of the PICO elements (We 290

specifically use the version with denoised outcome 291

annotations as used by Abaho et al. (2019, 2021)). 292

Metrics: We use an exact match (EM) score met- 293

ric to measure the sensitivity towards DS-terms. 294

EM counts a prediction of an entire entity as 1 if 295

and only if it completely matches the correct an- 296

swer, both in terms of the precise boundary of the 297

DS-term mention as well as the term’s classifica- 298

tion. Furthermore, we measure macro-F1 score for 299

NER performance (Hajic et al., 2009) and perplex- 300

ity of the models to monitor how well the models 301

adapt to and comprehend the domain datasets. 302

Setup: Two important factors in our setup in- 303

clude, (1) we establish ELM rate with respect to 304

the total number of DS-terms mentioned in an input 305

sequence rather than all input sequence tokens. For 306

example, if the number of DS-terms in a sequence 307

s is denoted as DSs and DSs = 4, an ELM of 25% 308

implies 0.25×4 = 2, hence 2 out of the 4 DS-terms 309
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Figure 2: Visualization of the confidence score with which different DS-terms belonging to different classes (within
the EBM-NLP dataset) are predicted. The color intensity increases with the confidence score.

are randomly masked. Whenever this computation310

returns a decimal value, we round off the value311

upward to the nearest integer (e.g if DSs = 3, and312

ELM=25%, 0.25×3 = 1.5, which will be rounded313

off to 2), (2) Since ELM consumes a portion of the314

masking budget as explained above, we halve the315

conventional 15% rate to get a BLM rate of 7.5%.316

Furthermore, high masking rates are not favourable317

for moderately-sized (ca. 125M parameters) LMs318

(Wettig et al., 2022) such as the ones we use in this319

paper. This constraint is used in our initial set of320

experiments, however, later on, we explore how321

varying both BLM and ELM rates would affect322

model performance especially because the average323

length of sentences and DS-term mentions varies324

across different datasets listed in Table 2.325

Implementation details: The infrastructure used326

in our experiments includes, PyTorch 2.0 for327

developing MSLM and two GPU machines, a328

Vanilla MSLM
ELM=1,BLM=0.075

BC2GM BioBERT 88.4 90.3±0.5

PubMedBERT 86.8 89.8±0.4

BioELECTRA 87.6 89.1±0.2

SciBERT 85.7 87.1±0.4

NCBI-disease BioBERT 89.1 90.1±0.1

PubMedBERT 89.9 89.9±0.2

BioELECTRA 88.5 88.9±0.2

SciBERT 88.4 89.9±0.1

BC5DCR-chem BioBERT 93.3 94.0±0.2

PubMedBERT 94.0 94.4±0.2

BioELECTRA 90.8 94.0±0.2

SciBERT 90.7 93.7±0.2

EBM-NLP BioBERT 64.3 75.4±0.4

PubMedBERT 65.5 76.2±0.3

BioELECTRA 63.7 73.2±0.3

SciBERT 69.7 73.4 ±0.2

Table 3: Exact match (EM) scores obtained when
MSLM (ELM=100%, BLM=7.5%) is initialized with
various biomedical PLMs. Average scores across 5 runs
and their standard deviation are reported for the MSLM
models which are compared against Vanilla versions of
the LMs. Best results are in bold and full results are
provided in Table 7 in Appendix.

48G NVIDIA RTX A6000 and a 28G N-series 329

(NC6s_v3) Azure Virtual Machine. The two GPUs 330

are not used to concurrently run the same experi- 331

ment but to run different experiments in parallel. 332

Results reported are based on testing performance. 333

Dataset statistics are included in Table 2. 334

3.1 Sensitivity towards DS-terms 335

To investigate the sensitivity of MSLM-fine-tuned 336

models, we evaluate two metrics: (a) the confi- 337

dence in the models predictions, and (b) the EM 338

score of the predictions. With the former, we vi- 339

sualize the softmax probabilities (which we also 340

refer to as confidence scores) with which model 341

predicts DS-terms using the heatmap in Figure 2. 342

For demonstration purposes, we use the EBM-NLP 343

dataset since it has multiple classes in compari- 344

son to the other datasets. As observed in Figure 2, 345

despite both sets of models predicting the correct 346

classes for the 3 DS-terms, cardiovascular death 347

(Mortality outcome), rehospitalization (Resource- 348

use outcome) and congestive heart failure (Physio- 349

logical outcome), the confidence score with which 350

the model predicts classes for the DS-terms is visi- 351

bly higher for MSLM-BioBERT models. 352

Table 3 reports EM scores, which are indica- 353

tive of the model performance in detecting full 354

or exact mentions of DS-terms. We notice that, 355

MSLM improves the performance (+3.2 percent- 356

age points on average) with which LMs detect full 357

mentions. Most notably, we observe significant per- 358

formance increases in the EM scores for the EBM- 359

NLP dataset (+8.5 percentage points average across 360

models) in comparison to the other datasets, which 361

we attribute to (1) the relatively higher number 362

of Average DS-term mentions per sentence within 363

the dataset, and (2) the relatively bigger training 364

set size as seen in Table 8. With the exception of 365

NCBI-dataset (with PubMedBERT model), we ob- 366

serve that MSLM achieves consistent performance 367

improvements when detecting full mentions of DS- 368

terms. 369
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Figure 3: Downstream NER F1 performance of the vanilla and the MSLM-fine-tuned models (i.e. DSFT models).
ELM and BLM rates used in §3.1 are maintained. More plots in Appendix F.

BioB
(PPL)

BioB_MSLM
(PPL)

Pub
(PPL)

Pub_MSLM
(PPL)

BC2GM 1.2 2.3 (+1.1) 1.2 1.9 (+0.7)
BC5CDR-Chem 1.1 1.5 (0.4) 1.1 1.2 (+0.1)
JNLPBA 1.4 4.3 (+2.9) 1.4 3.2 (+1.8)
NCBI-Disease 1.2 1.3 (+0.1) 1.1 1.2 (+0.1)

Table 4: Validation perplexity (PPL) recorded when the
best NER F1 performance was obtained for vanilla and
MSLM models. Biob is BioBERT & Pub is PubMed-
BERT, and the change in perplexity when vanilla flavors
are replaced by MSLM is indicated in brackets.

3.2 Is DSFT destructive?370

The success in increasing the sensitivity of LMs to-371

wards the DS-terms (via DSFT) is strongly positive372

as discussed in §3.1, but at what cost? We inves-373

tigate whether the increased sensitivity comes at374

the expense of downstream performance, training375

times and the inherent knowledge of the PLM. For376

the downstream performance and training times,377

we monitor the validation NER F1 performance378

of the MSLM and vanilla flavors over a training379

time of 20 epochs. Figure 3 shows the MSLM-fine-380

tuned models consistently outperform the vanilla381

BioBERT and PubMedBERT during the course of382

training across the 4 datasets. Furthermore, we ob-383

serve that MSLM-fine-tuned models achieve the384

best vanilla performance in a much shorter training385

time of at most 7 epochs (blue dotted line).386

For the inherent knowledge of PLMs, we inves-387

tigate the validation perplexity to check how well388

the models understand the domain datasets. As389

seen in Table 4, perplexity increases when MSLM-390

fine-tuned models replace vanilla models, however,391

only by a few percentage points. We hypothesize392

that, diminishing the penalties incurred when pre-393

dicting non DS-terms (as constrained by (3)) will394

most likely limit the model’s capability to recon-395

struct corrupted non DS-terms, hence affecting the396

net perplexity of the models. This change however397

proves that low perplexity does not necessarily cor- 398

relate with good performance, a hypothesis also 399

discovered by Wettig et al. 2022. 400

Overall, the performance improvement achieved 401

by DSFT is evidence supporting the earlier defined 402

hypothesis; i.e. The awareness of or sensitivity 403

of PLMs towards DS-terms can be appropriately 404

elevated without hurting downstream performance. 405

4 Varying the Masking rates 406

Devlin et al. 2019 choose the 15% masking rate 407

with caution, suggesting that a higher rate risks 408

leaving insufficient context for the LM to learn 409

good representations. However, this caution can 410

be misleading because, several other factors can 411

influence the optimal masking rates such as the 412

model size and type of the task (Liao et al., 2020). 413

We therefore vary the BLM and ELM rates and 414

study the performance changes of the model. To 415

do this, we design the experiments as follows, 416

1. ELM: We select a range of ELM rates from 417

25% to 100% with interval gaps of 25%. The 418

interval is kept to 25% because values < 25% 419

would not change the overall number of DS- 420

terms to mask, following the ELM mask com- 421

putation we establish in our setup in §3. 422

2. BLM: We select a minimum rate of 0% and 423

maximum rate of 22.5% with intervals of 424

7.5%. We cap the masking budget for BLM 425

to 22.5% because we use base models (ca. 426

125M parameters), which have been reported 427

to struggle in high masking regimes (>20%) 428

(Wettig et al., 2022). Using a 7.5% interval is 429

our strategy that enables inclusion of the pop- 430

ular 15% rate in our set of rates to investigate. 431

The resulting sets of rates used in the experiments 432

are [0.25, 0.50, 0.75, 1] and [0, 0.075, 0.15, 0.225] 433

for ELM and BLM respectively. 434
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Figure 4: Test Exact match (EM) scores of varying ELM and BLM rates when two MSLM-fine-tuned models
(MSLM_biobert and MSLM_PubMedBERT) are evaluated on the datasets.

ELM(%) BLM(%)

<AvgSentLen
[51]

>AvgSentLen
[5104]

100 22.5 19.4 85.4
75 15.0 41.2 84.4
50 7.5 75.1 84.0
25 0.0 66.3 77.9

Table 5: Comparisons of the EM performance of low
and high masking regimes for short and long sequences
using MSLM_BioBERT. <AvgSenLen [51] implies, 51
sentences that are shorter than the average sentence
length and similarly, >AvgSentLen, 5104 sentences that
are longer than the average sentence length.

From Figure 4, we see that increasing both the435

ELM and BLM rates consistently degrades the per-436

formance of the models across all four datasets (i.e.437

the lowest performance is certainly obtained when438

both BLM and ELM are high as seen at the top439

right of all plots). As seen, increasing the BLM440

rate is only beneficial up to a certain point (7.5%),441

and that irrespective of a high or low ELM rate, per-442

formance dramatically drops when BLM hits 15%.443

These two noticed revelations point to the fact that444

a high net corruption/masking rate leaves very min-445

imal context to learn from and hence effectively446

re-construct DS-terms in input sequences, which447

are already not very long sequences as shown in448

Table 2. Overall, we observe that the optimal Joint449

ELM-BLM masking is task dependent, however is450

usually ≥0.25 for ELM and ≤0.15 for BLM.451

Masking Rate and Sequence Length: To fur-452

ther understand how much context is necessary453

when fine-tuning the MLM, we study the perfor-454

mance of different rates with different sequence455

lengths on BC2GM.1 We constrain the rates to456

low masking regimes, which we define as ELM ≤457

0.5 and BLM ≤ 0.075, and high masking regimes458

1We use BC2GM as it has the largest number of sentences
below average length compared to the other datasets, which
are dominated (ca. 95%) by sentences above average length

as ELM ≥ 0.75 and BLM ≤ 0.15. Because of 459

the laborious nature of the task of constructing 460

a test set with sufficient samples for varying se- 461

quence lengths, we use the average sentence length 462

(AvgSentLen in Table 2) as a cut off point, where 463

sentences above it are considered as relatively long 464

(>AvgSentLen) and those below as relatively short 465

(<AvgSentLen). We do not perform separate ex- 466

periments but rather compute the EM scores of the 467

predictions on the short and long sentences. 468

In Table 5, we observe that high masking 469

regimes favour long sentences (i.e. overall, highest 470

rates produce the best performance for long sen- 471

tences and worst performance for short ones). This 472

implies that the models are still able to learn suffi- 473

ciently from long sequences despite a high masking 474

rate. We also observe, while the performance on 475

long sentences is consistently better, it does not sig- 476

nificantly differ from that of short ones for the low 477

rates, implying that low rates have minimal impact 478

on varying sequence lengths, and hence LM relies 479

heavily on its inherent pre-trained knowledge. 480

5 Comparisons against Prior Masking 481

Strategies 482

Besides our proposed masking strategy (i.e. Joint 483

ELM-BLM), there are various other advanced 484

masking strategies such as PMI-Masking (PMI) 485

(Levine et al., 2020) and Random-Span masking 486

(SPAN) (Joshi et al., 2020). With PMI, spans of 487

co-occurring words (2-4) (a.k.a collocations) are 488

identified, ranked based on PMI scores computed 489

using the PMI measure proposed by Levine et al. 490

(2020) and stored in a vocabulary. The ranked 491

spans discovered in an input sequence are masked. 492

In the SPAN approach, spans of varying lengths 493

(2-4) are arbitrarily selected and masked. In both 494

approaches, the total masking budget (number of 495

tokens to mask) is maintained to avoid biasing the 496

comparative analysis. Extended details of how we 497
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Figure 5: Comparing performance of other masking
strategies across various rates with the best performance
of our proposed Joint ELM-BLM. Results of BioBERT
(left) and PubMedBERT (right) evaluated on BC2GM
and BC5CDR-chem and hatch the bars with best scores.

implement SPAN and PMI are in Appendix E.498

In Figure 5, we directly replace Joint ELM-BLM499

with either SPAN or PMI and vary the total mask-500

ing budget while maintaining the optimal budget501

for Joint ELM-BLM. For instance, we keep ELM502

= 0.75 and BLM = 0.0 for Joint ELM-BLM, when503

evaluating MSLM_Biobert on BC2GM dataset be-504

cause they are the optimal rates. However, we vary505

the rates for both PMI and SPAN across the values506

in the set of BLM rates established in §4.507

We observe that Joint ELM-BLM outperforms508

other strategies across all experiments. PMI pro-509

duces majority of the second best results despite510

SPAN masking being quite competitive. We at-511

tribute PMI’s performance to the fact that the PMI’s512

vocabulary from which spans to mask are drawn513

has a high concentration (> 50%) of DS-terms (de-514

tails in Appendix E.3)), which effectively makes it515

similar to ELM that directly masks DS-terms. As516

noticed earlier in §4, masking DS-terms is highy517

effective even with no BLM masking (i.e. BLM518

= 0.0). We also observe the slight drop in perfor-519

mance as the masking rate increases across PMI520

and SPAN, which further confirms the fact that521

LMs are likely to struggle when decoding highly522

corrupted sequences (Devlin et al., 2019).523

6 Related work524

Domain adaptation of PLMs for NER: The con-525

ventional approach in prior work tackling domain526

adaptation for NER has focused pre-training on527

unlabelled target domain corpora and then fine-528

tune on downstream target domain dataset (Lee529

et al., 2020; Beltagy et al., 2019). Recent work has 530

explored minimising the discrepancy between the 531

source and target embedding distributions (Zhang 532

et al., 2021; Poerner et al., 2020). Our work mostly 533

aligns with Poerner et al. (2020) who also adopt 534

“non-target domain pre-training”. 535

536

Masking: The originally proposed masking ap- 537

proach that involved replacing a percentage of to- 538

kens at random (TOKEN masking) with [MASK] 539

tokens (Devlin et al., 2019) has been modified in 540

recent works to improve MLM. Sun et al. (2019) 541

and Abaho et al. (2022) mask named entity spans 542

(entity masking), Joshi et al. (2020) mask random 543

spans of tokens (SPAN masking) and Levine et al. 544

(2020) mask groups of co-occurring words (PMI 545

masking). With the exception of PMI, our pro- 546

posed Joint ELM-BLM masking approach aligns 547

well with all recent masking modifications. It si- 548

multaneously masks disjoint sets of random tokens 549

and entity spans. Targeting multiple units in a sen- 550

tence makes it greedier than prior works, however, 551

we emphasize mask rate tuning and upholding a 552

masking budget to achieve optimal performance. 553

7 Conclusion 554

We considered the problem of DSFT aiming to 555

improve an LM’s sensitivity (i.e. awareness of) 556

towards DS-terms. We proposed MSLM, an ap- 557

proach that jointly masks DS-terms and random 558

words, while conditioning the LM to larger penal- 559

ties during optimisation for incorrect predictions 560

of DS-terms. Using the biomedical domain as a 561

testbed, the performed experiments reveal improve- 562

ments MSLM makes over vanilla fine-tuning in ex- 563

act DS-term match detection. MSLM’s efficiency 564

is proven when models achieve higher NER F1 565

scores in a much shorter training time. We sub- 566

stantiate the recent narrative, dismissing 15% as 567

a universally optimal rate in MLM (Wettig et al., 568

2022), by proving that optimal performance is in- 569

fluenced by varying masking rates and length of 570

sequences. 571

The Joint ELM-BLM masking strategy we pro- 572

pose dominates performance when compared to 573

advanced masking methods. Although we focus on 574

biomedical NER, our proposed MSLM approach 575

can be be adapted for DSFT for other domains. The 576

positive impact of our proposed masking method 577

motivates us to investigate its effectiveness during 578

pre-training of MLMs in future work. 579
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8 Limitations580

The list of pre-trained biomedical LMs we use in581

our experiments can be considered as a representa-582

tive sample that is used frequently for biomedical583

text mining. However, there are few other biomedi-584

cal LMs such ClinicalBERT (Alsentzer et al., 2019)585

and BlueBERT (Peng et al., 2020), whose inclusion586

can quantitatively improve results of our analysis.587

Despite casting it as an NER task focused on not588

simply detecting DS-terms, but confidently detect-589

ing them for that matter, some other tasks worthy590

of consideration for investigating sensitivity may591

include but not limited to, question and answering592

(Choi et al., 2018), common sense reasoning (Davis593

and Marcus, 2015), event detection (Weng and Lee,594

2011) etc. Furthermore, studying the performance595

of domain sensitive fine-tuning in other domains596

besides biomedicine would be a qualitative addition597

and is recommendable for future research under the598

guise of improving LM sensitivity.599

9 Ethics600

This work addresses insensitive fine-tuning that601

arises from the neglection of the disparities and602

nuances between source and target domains. In603

addressing this problem, our proposed fine-tuning604

method neither guards against nor removes any605

present biases (social, gender etc) in the pre-trained606

MLMs.607

Additionally, we do not annotate any data for the608

datasets we adopt as they are all existing datasets609

that are commonly used for biomedical text mining.610

Furthermore, we credit all prior work whose611

output directly or indirectly influences our work612

especially with the datasets and the methods. In613

our evaluation experiments, we declare some re-614

sults that were not generated from a seperate set615

of experiments but instead obtained by selectively616

retrieving a set of sentences that conform to the617

evaluation criteria we targeted i.e. short and long618

sentences. In comparing our masking strategy to619

the advanced bench-marking strategies, we study620

performance across various masking budgets in or-621

der to provide a fair comparison with our proposed622

method. To further remove any modelling bias,623

we elaborately discuss implementation details of624

compared methods in Appendix.625
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Appendices812

A Dataset statistics813

The full table containing dataset statistics partially814

presented in Table 2, is shown in Table 8.815

B Hyperparameters816

Parameter Tuned-range Optimal

Train Batch size [8,16,32] 8
Eval Batch size [8,16,32] 8
Epochs [10,20,30,50] 20
k [50, 100,200,300] 100
d [50,100,200,300] 100
Optimizer [Adam, SGD] Adam
Learning rate [5e-5, 1e-4, 5e-3, 1e-3] 5e-5

Table 6: Parameter settings for the MSLM-fine-tuned
models. k and d are dimensions of the the randomly ini-
tialised trainable weight vectors W (ed) ∈ R1×k defined
in 7 and W (ec) ∈ R1×d defined in 10 respectively.

C Sensitivity towards DS-terms817

Table 7 presents the full results of EM scores in818

detecting full or exact mentions of DS-terms. We819

observe an average increment of +3.2 points across820

all datasets when all four LMs are used.821

Vanilla MSLM
BLM=0.075 ELM=1

BC2GM BioBERT 88.4 90.3±0.5

PubMedBERT 86.8 89.8±0.4

BioELECTRA 87.6 89.1±0.2

SciBERT 85.7 87.1±0.4

NCBI-disease BioBERT 89.1 90.1±0.1

PubMedBERT 89.9 89.9±0.2

BioELECTRA 88.5 88.9±0.2

SciBERT 88.4 89.9±0.1

BC5DCR-chem BioBERT 93.3 94.0±0.2

PubMedBERT 94.0 94.4±0.2

BioELECTRA 90.8 94.0±0.2

SciBERT 90.7 93.7±0.2

EBM-NLP BioBERT 64.3 75.4±0.4

PubMedBERT 65.5 76.2±0.3

BioELECTRA 63.7 73.2±0.3

SciBERT 69.7 73.4 ±0.2

BC5DCR-dis BioBERT 91.7 93.4 ±0.2

PubMedBERT 92.3 94.1 ±0.1

BioELECTRA 89.7 93.5 ±0.3

SciBERT 90.1 93.4 ±0.2

JNLPBA BioBERT 86.3 88.9 ±0.2

PubMedBERT 85.7 89.8 ±0.2

BioELECTRA 80.0 83.4 ±0.2

SciBERT 82.4 85.4 ±0.2

Table 7: Full Exact match scores obtained when MSLM
is initialized with various pre-trained biomedical LMs.
These scores are compared against Vanilla versions of
the LMs. Best and second-best are bold and underlined.
Partial results of the table are presented in the main body
in Table 3.

D Domain Adaptation 822

Even if we do not technically have a source and tar- 823

get domain for respectively pre-training fine-tuning, 824

our work aligns with prior work which achieves 825

domain adaptation without pre-training on a tar- 826

get domain. Poerner et al. 2020 build a model 827

called greenBioBERT in a relatively less expen- 828

sive approach and fine-tune it on the same datasets 829

we do. greenBioBERT is word2vec trained on 830

PubMed+PMC articles and with an updated em- 831

bedding layer and tokenizer following BERT’s ar- 832

chitecture. The authors consider this as an LM not 833

pre-trained on target domain. 834

We compare test NER F1 perfomance in our ex- 835

periments with both grteenBioBERT and vanilla 836

BioBERT. Results in Table 9 show our MSLM- 837

fine-tuned BioBERT outperform all the others by 838

at least +2.3 points. This further indicates the heit- 839

ened awareness of DS-terms that MSLM is able 840

to achieve hence effectively improving its entity 841

detection performance. 842
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#Sents
Train | Val | Test

#Classes AvgSentLen
#Ments

Train | Val | Test
AvgMents AvgMentsLen

BC2GM 12632 | 2531 | 5065 2 25.17 15197 | 3061 | 632 1.20 2.4
NCBI-disease 5432 | 923 | 942 2 25.24 5134 | 787 | 960 0.95 2.2
BC5CDR-chem 4812 | 4602 | 4582 2 25.75 5385 | 5203 | 5347 1.12 1.3
BC5CDR-dis 4812 | 4602 | 4582 2 25.75 4182 | 4246 | 4424 0.87 1.7
JNLPBA 14731 | 3876 | 3873 2 30.05 32178 | 8575 | 6241 2.18 3.0
EBM-NLP 32074 | 4009 | 4010 5 24.68 21498 | 2677 | 2736 2.67 2.0
MIMIC III 9937 | 1242 | 1243 3 1943.85 863732 | 106539 | 107330 8.67 2.0

Table 8: Dataset statistics. #Sents and #Ments are the number of sentences and number of DS-term mentions
respectively for the train, validation and test splits, AvgSentLen is the Average length of sentences, AvgMents is
the Average number of DS-terms mentioned per sentence obtained as (# of train Ent_Ments)/(# of train sents) and
AvgMentsLen is the average length of DS-terms.

BioBERT
(Lee et al., 2020)

GreenBioBERT
(Poerner et al., 2020)

MSLM-BioBERT
ELM=1,BLM=0.075

BC5CDR-disease 87.15 85.08 89.45
NCBI-disease 89.71 85.94 91.91
BC5CDR-chem 93.47 93.08 96.79
BC2GM 84.72 83.45 92.17
JNLPBA 77.49 76.89 83.24

Table 9: Downstream NER test F1 scores when differ-
ent variants of BioBERT are fine-tuned on the datasets.
Reference scores from compared methods (Lee et al.,
2020) and (Poerner et al., 2020). Best and second best
results are in bold and underlined respectively.

E Masking strategies843

We compare our proposed joint ELM-BLM mask-844

ing strategy to two other advanced masking strate-845

gies, PMI (Levine et al., 2020) and Random SPAN846

(Joshi et al., 2020) whose implementation we re-847

spectively present in a pseudo code in the algo-848

rithms 2 and 1.849

E.1 SPAN Masking (1)850

Given a tokenized input sequence and a masking851

rate mr as input (line 1), we initialize a pool of852

indices (of the same size as the input sequence |s|)853

randomly ordered (srandom_pool). Each random in-854

dex is a possible starting index of a contiguous855

span to be masked. We compute the masking bud-856

get mb as product between rate and input sequence857

size to get number of tokens to be masked e.g. if858

|s| = 10 and mr = 0.15, mb = 0.15 × 10. For859

each random index in the pool srandompool
, we ini-860

tialize a span length sl randomly sl ∈ 2, 3, 4 at line861

4 i.e. this is the length of the contiguous span to862

be masked. Three different constraints satisfied as863

we iteratively select random spans to be masked864

include, 1) the number of already masked tokens865

summed up with span length sl should be less than866

the masking budget mb (line 7-9), 2) then the end867

Algorithm 1 SPAN Masking

1: Input: Tokenized input sequence:- s,
masking_rate:- mr, mask token:- [MASK],
Output: Masked Tokenized Input sequence
sM

2: Initialize the below,
- A pool of indices (srandom_pool) randomly

ordered, where |s| = |srandom_pool|
- masked_budget mb = math.ceil(mr ×|s|)
- masked_so_far msf = 0

3: for index i in srandom_pool do
4: Initialize random_span_length sl4i=2

i.e. span to be masked could vary from
length 2 to 4.

5: sl = min(sl,mb)
6: start, end = i, i+sl

Don’t mask beyond the masking budget [7-10]

7: if (msf + sl) > mb: then
8: sl = mb - msf
9: end = i+sl

10: end if
Don’t mask beyond sequence bounds [11-13]

11: if end ≥ |s| − 1 then
12: end = i+ sl
13: sl = end - start
14: end if

Don’t mask already masked spans [15-17]

15: if sM[start:end] has no [MASK] tokens
then

16: sM[start:end] = [MASK] ∗ sl
17: msf += sl
18: end if
19: if msf ≥ mb then
20: break
21: end if
22: end for return sM
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index of span to masked should not be greater than868

the end index of the input sequence (line 11-13),869

then finally the selected span to be masked should870

not contain already masked tokens inhibiting over-871

lapping masking (line 15-17). Once all constraints872

are satisfied, the span’s tokens within the input se-873

quence are masked or replaced with mask token874

[MASK].875

E.2 PMI Masking (2)876

With PMI, we begin by constructing a PMI vo-877

cabulary of word n-grams of lengths 2–4. These878

n-grams contain words that co-occur in sentences879

a minimum of 5 times within the entire dataset.880

A PMI score for each collocation (n-gram of co-881

occurying words) is computed using the PMI mea-882

sure (Levine et al., 2020). The collocations are883

ranked and ordered in their respective lengths.884

NB: Each dataset has its own PMI vocabulary.885

Given a tokenized input sequence and a masking886

rate mr as input (line 1). The masking budget mb887

is computed similar to the SPAN approach (line 2).888

For each collocation (gram) in the vocabulary, we889

check if collocation is a subsequence (contiguous)890

Algorithm 2 PMI Masking

1: Input: Tokenized input sequence:- s,
masking_rate:- mr, mask token:- [MASK],
PMI_vocabularly (PMIv)
Output: Masked Tokenized Input sequence
sM

2: Initialize the below,
- masked_budget mb = math.ceil(mr×|s|)
- masked_so_far msf = 0

3: while msf ≤ mb do
4: for gram in PMIv do
5: if gram is a subsequence in sM then
6: Get start (st) and end (ed) indices of

gram in sM
7: graml = |gram|
8: if msf + graml > mb then
9: graml = mb - msf

10: end = st+graml

11: end if
12: sM[st:ed] = [MASK]∗ graml

13: msf += graml

14: end if
15: end for
16: end while
17: return sM

of the input sequence. One constraint satisfied is 1) 891

the number of already masked tokens summed up 892

with span length sl should be less than the masking 893

budget mb (line 8-10), 2). Once constraint is sat- 894

isfied, the span’s tokens within the input sequence 895

are masked or replaced with mask token [MASK]. 896

E.3 PMI vocabularly overlapping DS-terms 897

#DS-terms #PMI-vocab
#Overlap

(# | %)

18890 15787 8130 | 51.5

Table 10: Number of vocabularly terms that overlap
across with DS-terms in the BC2GM dataset. “#” im-
plies number of, % implies percentage of the vocabu-
larly that are DS-terms.

Table 10 shows that 51.5% of the phrases in the 898

constructed PMI’s vocabularly (for the BC2GM 899

dataset) are DS-terms. This high concentration of 900

DS-terms in the PMI vocabularly implies that there 901

is a high similarity between PMI masking and En- 902

tity Level Masking (ELM) and hence making PMI 903

masking nearly as effective as standalone ELM 904

masking (i.e. even without BLM masking). Ta- 905

ble 13 shows a sample of the DS-terms that overlap 906

(in blue) across with the PMI vocabularly. 907

F Is DSFT destructive? 908

We present the complete list of all plots from the 909

experiments investigating whether DSFT is destruc- 910

tive hence exploring an answer to the hypothesis in 911

the introduction, i.e. the awareness of or sensitivity 912

towards DS-terms can be appropriately elevated 913

when fine-tuning without hurting downstream per- 914

formance. 915

As observed in Figure 6, we observe better re- 916

sults achieved by the MSLM fine-tuned models, 917

more so, achieving the best performance of the 918

vanilla models in a much shorter training time. A 919

couple of other things we notive include, perfor- 920

mance during the course of training of bioelectra 921

models doesn’t seem to signigicantly differ from 922

that of the MSLM_bioelectra models across all 923

datasets. We also notice that unlike all the other 924

models, with bioelectra, MSLM_fine-tuned models 925

achieve the best performance of the vanilla models 926

after 10 epochs, i.e. longer than the other models. 927

We attribute bioelectra’s competitiveness to its in- 928

herent architectures (ELECTRA; Clark et al., 2020) 929
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Figure 6: Downstream NER F1 performance of the vanilla and the MSLM-fine-tuned models. "MSLM" is used
to uniquely identify DSFT models. ELM and BLM rates used in §3.1 are maintained. Each row contains results
specific to a dataset e.g. first row has BC5CDR-chem, second has NCBI-disease etc. Similarly each column contains
results specific to pre-trained biomedical LM.

which, similar to MSLM, it adds a model to detect930

whether MLM has correctly replaced a token or931

not (token replacement detection). Electra trains932

a generator (which is an MLM) to predict tokens933

for masked slots, and additionally trains a discrimi-934

nator to predict whether a token has been replaced935

or the original masked token is what the generator936

predicted. Whereas MSLM doesn’t add any model937

on top of the MLM, it targets MLM components i.e.938

tilting the MLMs sensitivity towards masks tokens939

corresponding to DS-terms.940

G Additional Analysis941

Due to space limitations, we defer additional inves-942

tigations to further validate our MSLM approach to943

this Appendix. We investigate MSLM in a weakly944

supervised setting and detail everything in follow-945

ing sections.946

G.1 Weak supervision of MIMIC-III947

Specifically, we employ MIMIC-III v1.4 (John-948

son et al., 2016) dataset, and retrieve a sample of949

5000 patient records from the NOTESEVENT table950

(within the MIMIC-III v1.4 database) containing 951

de-identified free text entries recorded by physi- 952

cians and other care providers during patient-care. 953

Figure 7 illustrates the pipeline used in annotating 954

mimic-III in a weakly supervised process. 955

We use Cogstack medcat2, a biomedical anno- 956

tation tool, to extract and categorise medical con- 957

cepts based on medical semantic types defined3 in 958

UMLS and Snomed. 959

Because of the unequal distribution of the se- 960

mantic types across the annotations, we narrow 961

down the scope of target UMLS semantic concepts 962

with the help of a clinical consultant who clusters 963

concepts into three high-level clinical concepts of 964

Diseases, Symptoms and Treatments, as shown in 965

Table 11. 966

After the annotations, we then use SpaCy4 (Neu- 967

mann et al., 2019) for sentence segmentation of 968

each record (a row containing multiple paragraphs) 969

2https://medcat.readthedocs.io/en/latest/
index.html

3https://lhncbc.nlm.nih.gov/ii/tools/MetaMap/
documentation/SemanticTypesAndGroups.html

4https://spacy.io/
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Figure 7: Weakly supervised annotation of MIMIC-III v1.4.

Cluster Category Associated UMLS Semantic Types

Treatments
["Pharmacologic Substance", "Clinical Drug",
Antibiotic]

Diseases

["Acquired Abnormality",
"Anatomical Abnormality", "Bacterium",
"Archaeon", "Congenital Abnormality",
"Cell or Molecular Dysfunction",
"Disease or Syndrome", "Virus",
"Neoplastic process"]

Symptoms
["Social Behavior", "Sign or Symptom",
"Mental or Behavioral Dysfunction"]

Table 11: UMLS semantic types that Cogstack can link
to are clustered into three high level categories by a clin-
ical consultant. These clusters encapsulate the semantic
types in an easy-to understand manner

and split the resulting list of sentences into train,970

validation and test sets (9937, 1242 and 1243 sen-971

tences respectively), which are then subsequently972

used in fine-tuning.973

G.2 Results974

After preliminary tuning of BLM and ELM rates975

on validation set, we find the optimal BLM and976

ELM rate as 0.075 and 0.5 respectively, which977

achieves an average improvement of 2.7 points in978

EM scores over the vanilla approach as seen in Ta-979

ble 12. This improvement further indicates how980

beneficial MSLM is in improving extraction of DS-981

terms from clinical patient data. rather than just982

scientific literature in BLURB datasets.983

Vanilla MSLM
BLM=0.075 ELM=0.5

MIMIC-III BioBERT 90.1 92.6±0.2

PubMedBERT 89.8 93.8±0.4

BioELECTRA 88.1 90.1±0.2

SciBERT 87.5 89.7±0.4

Table 12: Exact match (EM) scores. Average scores
(across 5 runs) obtained for fine-tuning LMs on weakly
supervised dataset constructed using MIMIC-III patient
records.
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BC2GM PMI Vocabulary

Bombyx mori
IE promoter
CASE REPORT
Codonopsis pilosula
E2 proteins
HMR locus
LY 294002
Leptomonas seymouri
OAE screener
latent membrane protein 2A
Pisum sativum
protein tyrosine kinase
Punta Toro
Rhodosporidium toruloides
PDH complex
dopamine D2 receptor
Trait Personality
Van der
Veterans Affairs
human chorionic gonadotropin
chengchi tang
cysteine proteinase
dig1 dig2
dihydrolipoyl transsuccinylase
bacterial chloramphenicol acetyltransferase
chloroacetate esterase
·
·
·

bHLH proteins
ta chengchi
pleckstrin homology domain
Aedes aegypti
Autographa californica
RNAP II
sigma 54
El Paso
Expiratory Flow
Gulf War
Hematopoietic growth factors
Rhodobacter capsulatus
Src homology
Task Force
Toxocara canis
monoamine oxidase
cytochrome oxidase
acne vulgaris
aluminium hydroxide
binocular pregeniculate
U5 RNA
campestris pv
Ogg1 protein
forward projection
preformed triplexes
areA product
alkaline phosphatase
Aryl hydrocarbon
CEN ENV
Epidemiologic Follow
PKC beta

tyrosine kinase receptor
tyrosine kinase
dystrophic epidermolysis
exacerbate cryoblobulinemia
fluoromethyl ketone
uPA mRNA
police officers
uPA mRNA
Enterococcus faecalis
Fugu rubripes
ets family
RNA polymerase
Nicotiana tabacum
P22 R17
San Francisco
thymidine kinase promoter
bicycle ergometer
paired domain
dura mater
fluticasone propionate
recombinant human erythropoietin
CAT reporter gene
orientational anisotropy
patent ductus
pia mater
translation upstream factor
·
·
·
epidermolysis bullosa
fork head
dopamine receptor
PCC 7120
Selected topics
chloromethyl alkyl
firefly luciferase gene
irritation sensation
viral LTR
Fusarium moniliforme
Jenkins Activity
histone H3
Medical Radiology
S1 nuclease
NnS neurones
Rhizobium leguminosarum
9804 gene
cyclin D1
emollient cream
imino protons
nontumorigenic Ad5
MAP kinase
proportional hazards
pertussis toxin
volatile solvents
Karger AG
env genes
integrin subunits
aryl hydrocarbon
dyad symmetry
multifocal leukoencephalopathy

glucocorticoid receptor
ad lib
ad libitum
aggregative fimbriae
thyroid hormone receptor
amylose cornstarch
prolyl isomerase
fenfluramine anorexia
hexamethylpropyleneamine oxime
IgG antibodies
rheumatoid factor
myasthenia gravis
otoacoustic emissions
substantia innominata
PDGF receptors
synovial chondromatosis
LDL cholesterol
vena cava
Dirofilaria immitis
alpha 2AP
Cre recombinase
Spodoptera frugiperda
Zea mays
reticulocyte lysate
polypyrimidine tract binding protein
BACTEC 9000
·
·
·
TCR beta
NMDA receptor
SELECTION CRITERIA
acoustic neuroma
acoustic startle
exonuclease III
aphthous stomatitis
SR family
flexor motoneurons
plan spared
antithrombin III
epidermal growth factor
rear corner
vas deferens
vinyl siloxane
ERK MAPK
interspecific backcross
growth hormone
SB 203580
circular dichroism
beta receptor
TK gene
hypoxaemic resuscitation
intraindividual fluctuations
northern Norway
capsid proteins
prizidilol hydrochloride
SH3 domain
thiazide diuretics
von Willebrand
proliferating cell nuclear antigen

Table 13: PMI vocabulary constructed from BC2GM dataset. DS-terms (in blue) discovered within the constructed
PMI vocabularly
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