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Abstract

We introduce MET-Bench, a multimodal entity
tracking benchmark designed to evaluate the abil-
ity of vision-language models to track entity states
across modalities. Using two structured domains,
Chess and the Shell Game, we assess how fron-
tier models integrate textual and image-based
state updates. Our findings reveal a significant
performance gap between text-based and image-
based tracking. We show this performance gap
stems from deficits in visual reasoning rather than
perception and that explicit text-based reasoning
strategies improve performance, yet limitations
remain, especially in long-horizon multimodal
scenarios. MET-Bench highlights the need for im-
proved multimodal representations and reasoning
techniques to bridge the gap between textual and
visual entity tracking.

1. Introduction
World understanding requires tracking information about
entity state as it evolves through text, images, videos and
other modalities. Our work examines this challenge through
the lens of multimodal entity state tracking, where changes
to entity states must be understood from both textual de-
scriptions and visual observations. This setting provides a
natural extension to classical NLP problems related to tex-
tual entity tracking while connecting to emerging research
in world models.

We introduce MET-Bench to assess how effectively cur-
rent language models can track entity states when updates
are conveyed through both text and images. We find that
current language models struggle with multimodal entity
tracking not due to low-level perceptual failures but because
they lack representations for updating entity state across
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sequential visual observations. This suggests a fundamental
limitation in how these models integrate and update state
representations from different modalities.

We make the following contributions:

• We introduce the multimodal entity tracking bench-
mark (MET-Bench) that extends traditional NLP entity
tracking evaluation to the multimodal setting for two
domains: multimodal Chess and Shell Game.

• We demonstrate that current models, despite strong
performance on pure text tasks, struggle to maintain
accurate entity representations when processing mixed
text and image inputs.

• Through experiments, we show that these limitations
stem from higher-level reasoning challenges rather
than low-level perception issues.

• We evaluate various approaches to improving multi-
modal entity tracking, finding that techniques empha-
sizing explicit reasoning outperform methods that rely
on more training examples, especially when generaliz-
ing to novel domains.

2. Methods
We formulate the problem of multimodal entity tracking as
a sequential state estimation task, where an agent must infer
the final state of a system given an initial state and a series
of observed actions. MET-Bench represents the initial and
final states of each domain as text but evaluate the models’
ability to track entity state changes through images. This
approach isolates the multimodal entity tracking challenge
by ensuring that models begin and end with well-defined
textual representations to confounding errors from percep-
tual failures, which remain a known limitation of current
vision-language models (Sharma et al., 2024). We construct
two domains for evaluating model performance.

Chess Domain Chess is a well-studied domain for testing
entity tracking of deep learning models (Toshniwal et al.,
2022). The entity state is an 8×8 board configuration ex-
pressed in Forsyth–Edwards Notation (FEN) notation, ac-
tions correspond to legal chess moves from real games,
and action observations consist of either symbolic (UCI
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Forsyth–Edwards Notation (FEN):
"rnbqkbnr/pppppppp/8/8/8/8/

PPPPPPPP/RNBQKBNR w KQkq - 0 1"

Ball Position State: 2

Universal Chess Interface (UCI)
Move: e2e4

Shell Game Move: 1 swap 3

Predicted FEN:
"rnbqkbnr/pppppppp

/8/8/4P3/8/
PPPP1PPP/

RNBQKBNR b KQkq e3 0 1"

Predicted Ball
Position:
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Figure 1: In the multimodal entity tracking benchmark (MET-Bench), a vision-language model (VLM) predicts the final
entity state from the initial state and actions which update the entity state. The initial entity state is provided as text and the
actions are given as images or as text. The predicted final state is a text representation of the entity state. The image and text
representations in this figure are are used for evaluation.

Role Messages

User You are a helpful assistant that
tracks chess moves in a game
and produces the final FEN. The
initial state is:
rnbqkbnr/pppppppp/8/8/8/8/

PPPPPPPP/RNBQKBNR w KQkq - 0 1

Here are the moves played:
e2e4

e7e5

Now what is the final FEN?
Output FINAL ANSWER: [FEN].

Assistant FINAL ANSWER: rnbqkbnr/pppp1ppp/8/4p3/4P3/

8/PPPP1PPP/RNBQKBNR w KQkq - 2 2

Figure 2: An example zero-shot user–assistant exchange
in the Chess domain, showing the initial board state as
FEN, two UCI moves (e2e4, e7e5) and the final state. For
image actions, the UCI moves are replaced with their visual
representations and a description of how to interpret these
images. The FEN is line-broken for readability. For details
see Appendix A, Figures 7 & 8.

notation) or visual (board images) descriptions of moves.
Utilizing real Chess games from the Millionbase dataset1

used in Toshniwal et al. (2022), we generate sequences of
states and actions (moves) using standard chess notation:
Universal Chess Interface (UCI) for actions and FEN for
board states.

Shell Game Domain Shell Game is classic demonstration
of hidden-state tracking. A ball is placed under one of three
cups (or shells), which are then swapped pairwise in suc-

1https://rebel13.nl/rebel13/rebel%2013.ht
ml

cession. The goal is tracking which cup currently hides the
ball as shells are swapped. The state is the hidden position
of a ball under three shells and actions correspond to swaps
between pairs of shells. Other works have explored shell-
game-like domains with varying levels of added complexity
(Li et al., 2021; Long et al., 2016; Kim & Schuster, 2023).
These image representations were created through visual-
prompt engineering to maximize the classification accuracy
of actions depicted.

3. Experiments
Tracking in Text Outperforms Images We evaluate dif-
ference in accuracy when tracking images from text and im-
age actions in the zero-shot, few-shot, and chain-of-thought,
and reasoning settings in Table 1. We evaluate on a set of
500 games selected at random from the test set, each with
a sequence length of ten actions. Across both domains and
all models, entity tracking in text outperforms tracking in
images, with the exception of Gemini 2.5 Pro which attains
equal performance in these modalities.

Reasoning Aids Long Sequence Accuracy We evaluate
longer sequences ranging to 100 actions in both the text
modality and 20 in the image modality. Results for Chess
are in Figure 3 and Shell Game in Figure 4. We evaluate
reasoning models and other frontier models in the chain-of-
thought setting. Reasoning models tend to perform better
on these longer sequences. Most frontier models perform at
baseline level in the image modality.

Models Understand Image Actions We perform an ex-
periment to demonstrate that VLMs have the ability to ac-
curately interpret the actions depicted in the image-action
representations. Table 2 shows the performance on clas-
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Table 1: Entity tracking accuracy (95% CI) in Chess and Shell Game for text-only and image-only actions. In the Few-Shot
setting N = 5 in-context examples are used. Methods with explicit reasoning perform best. The baseline of predicting the
Game Start board is given for Chess, and randomly selecting a final state for Shell Game.

MODEL CHESS SHELL
TEXT IMAGE TEXT IMAGE

BASELINE
GAME START, RANDOM 74.9 ± 0.5 74.9 ± 0.5 33.0 33.0

ZERO-SHOT
GPT-4O 91.6 ± 0.3 76.0 ± 0.5 33.0 ± 4.1 32.2 ± 4.1
GPT-4O-MINI 75.6 ± 0.5 55.3 ± 0.5 33.6 ± 4.1 32.4 ± 4.1
GPT-4.1 85.6 ± 0.4 67.7 ± 0.5 32.2 ± 4.1 36.4 ± 4.2
GPT-4.1-MINI 82.5 ± 0.4 77.5 ± 0.5 31.4 ± 4.1 30.8 ± 4.0
GPT-4.1-NANO 77.5 ± 0.5 73.3 ± 0.5 31.2 ± 4.0 30.8 ± 4.0
GEMINI-2.5-FLASH 91.0 ± 0.3 66.9 ± 0.5 35.0 ± 4.2 37.0 ± 4.2
LLAMA-4 MAVERICK 86.7 ± 0.4 51.1 ± 1.2 30.8 ± 4.0 33.2 ± 4.1
MINIMAX-VL-01 85.9 ± 0.4 73.4 ± 0.5 30.8 ± 4.0 31.2 ± 4.0
CLAUDE 3.7 SONNET 96.1 ± 0.2 70.2 ± 0.5 35.4 ± 4.2 37.8 ± 4.2

FEW-SHOT (N=5)
GPT-4O 94.3 ± 0.2 77.6 ± 0.5 33.6 ± 4.1 32.0 ± 4.1
GPT-4O-MINI 74.5 ± 0.5 74.2 ± 0.5 34.8 ± 4.2 32.2 ± 4.1
GPT-4.1 86.6 ± 0.4 64.9 ± 0.5 34.6 ± 4.2 33.0 ± 4.1
GPT-4.1-MINI 81.2 ± 0.4 76.9 ± 0.5 36.4 ± 4.2 32.8 ± 4.1
GPT-4.1-NANO 74.5 ± 0.5 74.6 ± 0.5 36.6 ± 4.2 36.4 ± 4.2
GEMINI-2.5-FLASH 91.3 ± 0.3 72.0 ± 0.5 31.4 ± 4.1 35.2 ± 4.2
LLAMA-4 MAVERICK 85.8 ± 0.4 48.1 ± 0.6 35.4 ± 4.2 35.2 ± 4.2
MINIMAX-VL-01 88.0 ± 0.8 40.8 ± 1.2 36.4 ± 4.2 32.0 ± 4.1
CLAUDE 3.7 SONNET 99.2 ± 0.1 77.7 ± 0.5 32.4 ± 4.1 36.0 ± 4.2

CHAIN-OF-THOUGHT
GPT-4O 94.9 ± 0.2 67.5 ± 0.5 99.0 ± 0.9 35.8 ± 4.2
GPT-4O-MINI 68.8 ± 0.5 43.1 ± 0.5 61.0 ± 4.3 30.4 ± 4.0
GPT-4.1 98.1 ± 0.1 75.3 ± 0.5 99.8 ± 0.5 37.6 ± 4.2
GPT-4.1-MINI 86.4 ± 0.4 77.6 ± 0.5 100.0 - 0.4 72.0 ± 3.9
GPT-4.1-NANO 49.0 ± 0.6 34.6 ± 0.5 61.8 ± 4.2 32.2 ± 4.1
GEMINI-2.5-FLASH 77.0 ± 1.0 44.6 ± 1.2 94.0 ± 4.8 34.0 ± 9.1
LLAMA-4 MAVERICK 82.4 ± 0.4 61.9 ± 0.5 77.0 ± 3.7 34.6 ± 4.2
MINIMAX-VL-01 62.3 ± 0.5 32.8 ± 0.5 77.4 ± 3.7 34.4 ± 4.2
CLAUDE 3.7 SONNET 99.5 ± 0.1 96.2 ± 0.2 100.0 - 0.4 77.4 ± 3.7

REASONING
O1 98.2 ± 0.3 83.5 ± 0.9 100.0 - 1.9 92.6 ± 2.3
O3 99.9 ± 0.1 45.5 ± 1.2 100.0 - 1.9 63.0 ± 9.3
O4-MINI 84.2 ± 0.9 78.0 ± 1.0 100.0 - 1.9 33.0 ± 9.1
GEMINI-2.5-PRO 77.4 ± 1.0 76.8 ± 1.0 100.0 - 1.9 100.0 - 1.9
GEMINI-2.5-FLASH (THINKING) 40.2 ± 1.2 17.4 ± 0.9 100.0 - 1.9 42.0 ± 9.5
CLAUDE 3.7 SONNET (THINKING) 99.8 ± 0.1 96.0 ± 0.5 100.0 - 1.9 87.0 ± 6.6

sifying the text action represented by each image action.
We evaluate the recognition of the start (e.g. piece moved),
end, and ‘Overall’ accuracy of classifying the entire action
(start and end) correctly. GPT-4o achieves an accuracy of
95.2% ± 0.4% in Chess and all models attain perfect ac-
curacy on the simpler Shell Game domain. This indicates
that perception of the image-actions is not the fundamen-
tal limiting factor for effective entity tracking with image
inputs.

Cascading Matches Text-Only Tracking Using the text
actions predicted from the images in the image-action clas-

sification task, we devise an ablation to test the effect of
cascading (first captioning the image actions, and then track-
ing entities purely in text). Table 3 shows the accuracy of
cascaded inference. The performance in the cascaded set-
ting is similar to the text-action performance, showing that
the model has the task-knowledge needed to perform entity
tracking in both domains, but cannot reason effectively in
the image modality.
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(a) Chess accuracy with text actions.
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(b) Chess accuracy with image actions.

Figure 3: In the text action setting, the reasoning models Claude 3.7 Sonnet Thinking and Gemini 2.5 Pro, maintain the
highest accuracy at longer sequence lengths. All models struggle to maintain accurate board representations in the image
action setting, with Claude 3.7 Sonnet Thinking performing the best. 95% confidence intervals.
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(a) Shell Game accuracy with text actions.
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(b) Shell Game accuracy with image actions.

Figure 4: In the text action setting, the reasoning models Claude 3.7 Sonnet Thinking and Gemini 2.5 Pro achieve the
highest performance over long action sequences. In the image action setting the accuracy of all models except Gemini 2.5
Pro decreases to random by 20 actions. 95% confidence intervals.

Table 2: Percent image-action classification accuracy (95%
CI) for various models. We report the accuracy of predicting
the action start, end, and overall/UCI action for both Chess
and Shell Game on 10,000 image actions.

MODEL START (%) END (%) OVERALL (%)

CHESS
GPT-4O-MINI 67.2 ± 0.9 57.4 ± 1.0 46.4 ± 1.0
GPT-4O 96.4 ± 0.4 98.6 ± 0.2 95.2 ± 0.4

SHELL GAME
GPT-4O-MINI 100.0 - 0.2 100.0 - 0.2 100.0 - 0.2
GPT-4O 100.0 - 0.2 100.0 - 0.2 100.0 - 0.2

4. Discussion
Our evaluation of frontier model performance on MET-
Bench provides several insights into the current state and
remaining challenges of multimodal entity tracking. We

Table 3: Cascaded entity tracking accuracy (95% CI) for
Chess and Shell (Image → Text). In cascaded inference,
the model is first used to map each image action to the text
representation of the action. Then model is prompted to
perform the entity tracking task as in the text-action setting.

CASCADED

METHOD CHESS SHELL

CHAIN-OF-THOUGHT
GPT-4O MINI 66.4 ± 0.4 47.6 ± 3.1
GPT-4O 93.2 ± 0.2 99.4 ± 0.5

demonstrate a significant performance gap between text-
based and image-based entity tracking across all evalu-
ated models, with even state-of-the-art vision-language-
reasoning models struggling to maintain accurate entity
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states when processing visual inputs. This disparity persists
across both the Chess and Shell Game domains, suggesting
a fundamental limitation in current architectures’ ability to
reason about entity states through visual observations.

This finding is particularly noteworthy given that our image-
action classification results (Table 2) demonstrate that mod-
els can accurately perceive and classify individual visual
actions. The gap between perception and reasoning suggests
that the challenge lies not in processing visual inputs, but in
maintaining and updating coherent entity information across
sequential visual observations.

Our cascaded inference experiments provide further evi-
dence for this interpretation. When models first translate
visual inputs to text before performing entity tracking, they
achieve performance comparable to pure text-based track-
ing. This indicates that the models possess the relevant task
knowledge and reasoning capabilities, but struggle to apply
them directly in the visual domain.

Further, the effectiveness of chain-of-thought prompt-
ing, particularly in the Shell Game domain where it im-
proved Claude 3.7 Sonnet’s accuracy from near random
to 100.0% − 0.4% for text and 77.4% ± 3.7% for images,
highlights the importance of explicit reasoning for entity
tracking. This improvement indicates that current models
can perform complex entity tracking when guided to decom-
pose the task into smaller steps, even in novel domains not
present in their training data. However, the fact that such
prompting was necessary suggests that models do not im-
plement robust tracking, particularly in multimodal settings.
Lastly, the performance of specialized reasoning models
like Gemini 2.5 Pro and Claude 3.7 Sonnet Thinking on
longer sequences demonstrates the potential of architectures
explicitly trained for sequential reasoning to maintain co-
herent entity states despite the challenges of accumulating
errors over extended sequences.

5. Related Work
Entity tracking has been extensively studied in textual do-
mains, with a focus on probing and improving language
models’ abilities to maintain representations of entity states.
For instance, Toshniwal et al. (2022) evaluates chess as an
entity tracking domain, employing fine-tuned models (Rad-
ford et al., 2019) to assess performance. Similarly, Kim &
Schuster (2023) examine the impact of model size and fine-
tuning on entity tracking in textual settings similar to our
Shell Game domain. Tandon et al. (2020) construct a bench-
mark for understanding entity state changes in procedural
texts. Shirai et al. (2022) construct the Visual Recipe Flow
corpus and evaluate the ability of multimodal embedding
models to properly sequence images depicting recipe states.
In contrast, our work requires predicting entity state changes

from actions specified in images and involves larger state
spaces.

Several studies explore the implicit representations of entity
states in language models. Li et al. (2021) and Long et al.
(2016) use semantic probing to reveal that Transformer-
based models (Vaswani et al., 2017) capture entity state rep-
resentations implicitly during textual reasoning. Building on
this, Prakash et al. (2024) demonstrate that fine-tuning lan-
guage models for entity tracking tasks enhances pre-existing
internal mechanisms rather than learning entirely new rep-
resentations. Li et al. (2023) find that Transformers trained
on Othello games form internal representations of the game
state.

Efforts to improve textual entity tracking beyond domain-
specific fine-tuning include Fagnou et al. (2024), which
establishes theoretical limitations of the Transformer archi-
tecture in tracking entities. They propose a novel atten-
tion mechanism to enhance entity tracking in Transformers.
Gupta & Durrett (2019) fine-tunes small Transformer-based
models for tracking entity state in instructional texts. Kim
et al. (2024) investigates how code pretraining improves
language models’ abilities to track entities in text, while
Yoneda et al. (2024) introduce Stalter, a prompting method
designed to maintain accurate state representations in text-
based robotics planning.

These works focus on entity tracking as a unimodal, text-
based reasoning task. While unimodal approaches have
achieved substantial progress, there remains a gap in eval-
uating models’ ability to integrate multimodal inputs for
entity tracking. Our work extends these evaluations to the
multimodal setting and quantifies the performance improve-
ment of reasoning models for entity tracking.

6. Conclusion
Our findings suggest that the primary bottleneck in multi-
modal entity tracking is not visual recognition but sequential
reasoning over visual updates. Unlike text-based represen-
tations, which align with the models’ training paradigms,
visual updates require implicit state reconstruction—a task
that current architectures do not perform reliably. Future
work should explore the effect of additional visual-reasoning
post-training, explicit memory structures, or hybrid sym-
bolic representations to mitigate this gap. Additional re-
search directions include investigating the role of entity
tracking in world-modeling, narrative understanding, and
expanding MET-Bench to include more complex domains
beyond games. We believe addressing these challenges
will be crucial for developing AI systems capable of robust
reasoning for real-world tasks.
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A. Appendix
A.1. Models Struggle to Integrate Mixed Modalities
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Figure 5: Chain-of-thought entity tracking accuracy for
Chess and Shell Game with GPT-4o. The data splits range
from 100% text-encoded actions to 100% image-encoded
actions. The plot illustrates the change in accuracy as actions
shift between modalities.

To examine how well models can integrate mixed-modality
information, we evaluate performance as we vary the pro-
portion of text and image-based action representations.
As shown in Figure 5, for Chess performance degrades
smoothly as the fraction of image actions increases, rather
than exhibiting an abrupt collapse. However for Shell Game,
the opposite is true and mixes of text and image actions are
challenging for the model to reason over.

A.2. Fine-Tuning Improves Multimodal Entity Tracking

FINE-TUNED TEXT IMAGE

CHESS
GPT-4O MINI 89.2 -
GPT-4O 97.0 86.4

SHELL GAME (S=3)
GPT-4O MINI 32.0 -
GPT-4O 74.0 32.0

Table 4: Fine-tuned model entity tracking accuracy for the
Chess and Shell Game domains (Text actions and Image
actions).GPT-4o-mini does not support image finetuning. A
training set of 100 action sequences of length ten were used
for Chess and 20 action sequences of length three and five
for Shell Game.

Fine-tuning using the OpenAI fine-tuning API substantially
improves model performance across both text and image
modalities, as shown in Table 4. In Chess, fine-tuned models
outperform even the strongest zero-shot reasoning models,

achieving 97.0% accuracy in the text domain and a signif-
icant boost to 86.4% in the image domain. This suggests
that even with a relatively small dataset, fine-tuning allows
the model to learn entity tracking representations that gener-
alize better in both modalities. Notably, fine-tuning leads to
a larger improvement in the image modality than in the text
modality. This reinforces the idea that pretrained models al-
ready encode strong textual reasoning capabilities, whereas
multimodal reasoning requires additional adaptation.

In contrast, improvements on a simplified version of Shell
Game with only three moves are minimal in case of image-
encoded actions. The Shell Game task is not present in
the training data and it’s harder for the model to generalize,
even when exposed to a large fraction of the possible games
of the given length. This may indicate that the Shell Game
domain is simply too challenging for the model to learn in
both the image and text settings from a limited number of
examples. A more complex training curriculum involving
fine-tuning over multiple game lengths may be required.

Model Name Image Reasoning

Claude 3.7 Sonnet ✓
(Anthropic, 2025)
Claude 3.7 Sonnet Thinking ✓ ✓
(Anthropic, 2025)
Gemini-2.5-Flash ✓
(DeepMind, 2024)
Gemini-2.5-Flash Reasoning ✓ ✓
(DeepMind, 2024)
Gemini-2.5-Pro ✓ ✓
(DeepMind, 2024)
GPT-4o ✓
(OpenAI, 2024b)
GPT-4o mini ✓
(OpenAI, 2024a)
GPT-4.1 ✓
(OpenAI, 2025a)
GPT-4.1-mini ✓
(OpenAI, 2025a)
GPT-4.1-nano ✓
(OpenAI, 2025a)
Llama 4 Mavrick ✓
(Meta, 2025)
Minimax-VL-01 ✓
(MiniMax et al., 2025)
o1 ✓ ✓
(OpenAI, 2024c)
o3 ✓ ✓
(OpenAI, 2025b)
o4-mini ✓ ✓
(OpenAI, 2025b)

Table 5: Comparison of capabilities of language models
evaluated using the MET benchmark. All evaluated models
support text input and output. The total API cost of experi-
ments run is $2500.00.
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CONFIGURATION EPOCHS LRM BATCH

CHESS
TEXT:

GPT-4O-MINI 3 1.8 1
GPT-4O 3 2 1

IMAGE:
GPT-4O 3 2 1

SHELL GAME
TEXT:

GPT-4O-MINI 3 1.8 1
GPT-4O 3 2 1

IMAGE:
GPT-4O 5 2 1

Table 6: Hyperparameters used for fine-tuning across do-
mains and modalities. The training epochs, learning rate
multiplier (LRM), and batch size are reported.

Role Messages

User The shell game is a classic game
where a ball is hidden under
one of three shells. You are
a helpful assistant that tracks
the position of the ball. The
ball starts under shell 2. Here
are the moves played:
1 swap 3

2 swap 3

Now what is the final position
of the ball? Only output the
number 1, 2, or 3.

Assistant 3

Figure 6: An example zero-shot user–assistant exchange in
the Shell Game domain, illustrating how the system tracks
swaps to determine the ball’s final shell.

A.3. Models

The models evaluated using MET-Bench are listed in Table
5.

Llama 4 Maverick This model is released under the li-
cense: https://github.com/meta-llama/lla
ma-models/blob/main/models/llama4/LICE
NSE. The model is 400 billion parameters and is trained
on a “ 22 trillion tokens of multimodal data from a mix
of publicly available, licensed data and information from
Meta’s products and services” (Meta, 2025).

Minimax-VL-01 This model is released under the license:
https://github.com/MiniMax-AI/MiniMa
x-01/blob/main/LICENSE. The model is 465 billion
parameters and is trained on a “diverse [dataset] incorporat-
ing diverse sources including academic literature, books,

Role Messages

User You are a helpful assistant that
interprets image-based actions
in chess.
Here is an image representing a
move:
[Image Input]
In UCI notation, what move does
the arrow on the chessboard
represent? The move is from the
green square to the red square.
(e.g., ‘e2e4’). Only output the
move and nothing else.

Assistant e2e4

Figure 7: An example user–assistant exchange in the Chess
domain, where the assistant identifies the move represented
in the image.

Role Messages

User You are a helpful assistant that
interprets image-based actions
in the shell game.
Here is an image representing a
swap:
[Image Input]
In shell game notation, which
shells are being swapped in
the image? Shells are labeled
‘1’, ‘2’, ‘3’ and the shells
being swapped have their numbers
highlighted in green. Only
output a dash-separated pair
like ‘1 swap 3’ and nothing
else.

Assistant 1 swap 3

Figure 8: An example user–assistant exchange in the Shell
Game domain, where the assistant identifies the shell swap
represented in the image.

web content, and programming code” and post-training
dataset encompassing many multimodal and NLP tasks of
512 billion tokens (MiniMax et al., 2025).

A.3.1. PROPRIETARY MODELS

These models have limited information about their training
and development. Like Minimax-VL-01, these models are
likely trained on diverse, web-scale corpora spanning many
domains and tasks. We provide links to the current terms of
their use.

Claude 3.7 Sonnet https://www.anthropic.co
m/legal/consumer-terms.
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Gemini-2.5 https://ai.google.dev/gemini
-api/terms

GPT-4o mini, GPT-4o, GPT-4.1, GPT-4.1-mini, GPT-4.1-
nano, o4-mini, o3 https://openai.com/polic
ies/

A.4. Datasets

The Chess dataset is adapted from Toshniwal et al. (2022)
which is adapted from the MillionBase dataset, available for
download at https://rebel13.nl/rebel13/reb
el%2013.html. To the best of our knowledge, no license
or terms of use are currently listed for either the original
MillionBase dataset or dataset of Toshniwal et al. (2022).
Our usage of this dataset is consistent with the description
of its use by Toshniwal et al. (2022).

MET-Bench is intended for evaluating and improving the
ability of VLMs to perform entity tracking. It is released
under the MIT License.
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