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ABSTRACT

When considering real-world adversarial settings, defenders are unlikely to have
access to the full range of deployment-time adversaries during training, and ad-
versaries are likely to use realistic adversarial distortions that will not be limited
to small Lp-constrained perturbations. To narrow in on this discrepancy between
research and reality we introduce eighteen novel adversarial attacks, which we use
to create ImageNet-UA, a new benchmark for evaluating model robustness against
a wide range of unforeseen adversaries. We make use of our benchmark to iden-
tify a range of defense strategies which can help overcome this generalization gap,
finding a rich space of techniques which can improve unforeseen robustness. We
hope the greater variety and realism of ImageNet-UA will make it a useful tool
for those working on real-world worst-case robustness, enabling development of
more robust defenses which can generalize beyond attacks seen during training.

1 INTRODUCTION

Neural networks perform well on a variety of tasks, yet can be consistently fooled by minor adver-
sarial distortions (Szegedy et al., 2013; Goodfellow et al., 2014). This has led to an extensive and
active area of research, mainly focused on the threat model of an “Lp-bounded adversary” that adds
imperceptible distortions to model inputs to cause misclassification. However, this classic threat
model may fail to fully capture many real-world concerns regarding worst-case robustness (Gilmer
et al., 2018). Firstly, real-world worst-case distributions are likely to be varied, and are unlikely to
be constrained to the Lp ball. Secondly, developers will not have access to the worst-case inputs
to which their systems will be exposed to. For example, online advertisers use perturbed pixels in
ads to defeat ad blockers trained only on the previous generation of ads in an ever-escalating arms
race (Tramèr et al., 2018). Furthermore, although research has shown that adversarial training can
lead to overfitting, wherein robustness against one particular adversary does not generalize (Dai
et al., 2022; Yu et al., 2021; Stutz et al., 2020; Tramer & Boneh, 2019), the existing literature is still
focuses on defenses that train against the test-time attacks. This robustness to a train-test distribution
shift has been studied when considering average-case corruptions (Hendrycks & Dietterich, 2018),
but we take this to the worst-case setting.

We address the limitations of current adversarial robustness evaluations by providing a repository
of nineteen gradient-based attacks, which are used to create ImageNet-UA—a benchmark for eval-
uating the unforeseen robustness of models on the popular ImageNet dataset (Deng et al., 2009).
Defenses achieving high Unforeseen Adversarial Accuracy (UA2) on ImageNet-UA demonstrate
the ability to generalize to a diverse set of adversaries not seen at train time, demonstrating a much
more realistic threat model than the Lp adversaries which are a focus of the literature.

Our results show that unforeseen robustness is distinct from existing robustness metrics, further
highlighting the need for a new measure which better captures the generalization of defense meth-
ods. We use ImageNet-UA reveal that models with high L∞ attack robustness (the most ubiquitous
measure of robustness in the literature) do not generalize well to new attacks, recommending L2

as a stronger baseline. We further find that Lp training can be improved on by alternative training
processes, and suggest that the community focuses on training methods with better generalization
behavior. Interestingly, unlike in the Lp case, we find that progress on CV benchmarks has at least
partially tracked unforeseen robustness. We are hopeful that ImageNet-UA can provide an improved
progress measure for defenses aiming to achieve real-world worst-case robustness.
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Figure 1: The full suite of attacks. We present nineteen differentiable non-Lp attacks as part of our
codebase, eighteen of which are novel. To aid visualization, we use higher distortion levels in this
figure than in our benchmark. See Appendix G for examples of the distortion levels used within our
benchmark, and Appendix K for a human study on semantic preservation.

To summarize, we make the following contributions:

• We design eighteen novel non-Lp attacks, constituting a large increase in the set of dataset-
agnostic non-Lp attacks available in the literature. The full benchmark consists of the
nineteen attacks shown in Figure 1. , which are split into a validation and test set.

• We make use of these attacks to form a new benchmark (ImageNet-UA), standardizing and
greatly expanding the scope of unforeseen robustness evaluation.

• We show that it UA2 is distinct from existing robustness metrics in the literature, and
demonstrates that classical Lp-training focused defense strategies can be improved on. We
also measure the unforeseen robustness of a wide variety of techniques, finding promising
research directions for generalizing adversarial robustness.

2 RELATED WORK

Evaluating Adversarial Robustness. Adversarial robustness is notoriously difficult to evaluate cor-
rectly (Papernot et al., 2017; Athalye et al., 2018). To this end, Carlini et al. (2019) provide extensive
guidance for sound adversarial robustness evaluation. Our ImageNet-UA benchmark incorporates
several of their recommendations, such as measuring attack success rates across several magnitudes
of distortion and using a broader threat model with diverse differentiable attacks. Existing measures
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Figure 2: Progression of an attack. As we optimize our differentiable corruptions, model perfor-
mance decreases, while leaving the image semantics unchanged. Unoptimized versions of our at-
tacks have a moderate impact on classifier performance, similar to common corruptions (Hendrycks
& Dietterich, 2019), while optimized versions cause large drops in accuracy.

of adversarial robustness (Croce & Hein, 2020; Moosavi-Dezfooli et al., 2015; Weng et al., 2018)
almost exclusively, apply only to attacks optimizing over an Lp-ball, limiting their applicability for
modeling robustness to new deployment-time adversaries.

Non-Lp Attacks. Many attacks either use generative models (Song et al., 2018; Qiu et al., 2019)
that are often hard to bound and are susceptible to instabilities, or make use of expensive brute-force
search techniques Engstrom et al. (2017). We focus on attacks which are fast by virtue of differen-
tiability, applicable to variety of datasets and independent of auxiliary generative models. Previous
works presenting suitable attacks include Laidlaw & Feizi (2019); Shamsabadi et al. (2021); Zhao
et al. (2019), who all transform the underlying color space of an image and Xiao et al. (2018) who
differentiably warp images, and which we adapt to create our own Elastic attack. The literature
does not have a sufficiently diverse set of suitable adversaries to effectively test the generalization
properties of defenses, causing us to develop our suite of attacks.

Unforeseen and Multi-attack Robustness. There exist defense methods which seek to generalize
across an adversarial train-test gap (Dai et al., 2022; Laidlaw et al., 2020; Lin et al., 2020). Yet,
comparison between these methods is challenging due to the lack of a standardized benchmark
and an insufficient range of adversaries to test against. We fill this gap by implementing a unified
benchmark for testing unforeseen robustness. The more developed field of multi-attack robustness
(Tramer & Boneh, 2019) aims to create models which are robust to a range of attacks, but works
generally focus on a union of Lp adversaries (Maini et al., 2020; Madaan et al., 2021a; Croce & Hein,
2022) and do not enforce that test time adversaries have to differ from those used during training.

Common corruptions Several of our attacks (Pixel, Snow, JPEG and Fog) were inspired by existing
common corruptions (Hendrycks & Dietterich, 2018). We fundamentally change the generation
methods to make these corruptions differentiable, allowing us to focus on worst-case robustness
instead of the average-case robustness (see Section 5.1 for empirical an empirical comparison).

3 THE UNFORESEEN ROBUSTNESS THREAT MODEL

Action Space of Adversaries. The allowed action space of an adversary is defined using a pertur-
bation set Sx of potential adversarial examples for each input x. Given such a set, and a classifier
f which correctly classifies a point x with its ground truth label y, an adversarial example xadv
is defined to be a member the perturbation set Sx which causes the classifier to give an incorrect
prediction:

xadv ∈ Sx : f(xadv) ̸= f(x) (1)
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Figure 3: An illustrative example of one of our attacks. As demonstrated by this illustration
of our Wood attack, all of our attacks function by performing PGD optimization on a set of latent
variables. In the case of the Wood attack, these latent variables are inputs to concentric sine waves
(F (x, y) = sin(

√
x2 + y2)) which are overlaid on the image. See Appendix C for a more detailed

explanation. We design effective attacks which are fast, easy to optimize, precisely bound, preserve
image semantics, are portable across datasets and have variable intensity through the ε parameter.

Then, under some distribution D of interest, the task of adversarial defenses is typically to achieve
high accuracy in the face of an adversary which is allowed to optimize within the perturbation set.

We define the unforeseen robustness of a classifier as the accuracy of the classifier when faced with
an unforeseen distribution of adversaries:

E(x,y),A∼D,A

[
min

xadv∈SA
x

{1f(xadv)=y}
]

This is similar to the usual adversarial accuracy (Madry et al., 2017a), but instead of including
a single Lp adversary, we define a diverse distribution of adversaries A (where each adversary
A ∈ Dom(A) defines a different perturbation set SA

x for each input x). Crucially, A is a uniform
distribution over a held-out test set of adversaries. As we describe below, these adversaries cannot be
used for training or hyperparameter tuning. We also provide a validation set of adversaries. Along
with other attacks such as PGD, these attacks can be used for developing methods.

Information Available to the Adversaries. To ensure that our adversaries are as strong as possible
(Carlini et al., 2019), and to avoid the usage of expensive black-box optimization techniques, we
allow full white-box access to the victim models.

Constraints on the Defender. We enforce that defenders allow adversaries to compute gradients, in
line with previous work demonstrating that defenses relying on masking of gradients are ineffective
(Athalye et al., 2018). We also enforce that defenses do not make use of access to adversaries which
are part of the test-time distribution A. This assumption of unforeseen adversaries is contrary to
most of the literature where the most powerful defenses involve explicitly training against the test
time adversaries (Madry et al., 2017b), and allows us to model more realistic real-world situations
where it is unlikely that defenders will have full knowledge of the adversaries at deployment time.

4 MEASURING UNFORESEEN ROBUSTNESS

To evaluate the unforeseen robustness of models, we introduce a new evaluation framework con-
sisting of a benchmark ImageNet-UA and metric UA2 (Unforeseen Adversarial Accuracy). We also
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Table 1: Lp robustness is disctinct from unforeseen robustness. We highlight some of the models
which achieve high UA2, while still being susceptible to Lp attacks. Models below the dividing
line are adversarially trained, with norm constraints in parentheses. These models demonstrate that
unforeseen robustness is distinct from achieving Lp robustness.

Model L∞ (ε = 4/255) UA2

Dinov2 Vit-large 27.7 27.2
Convnext-V2-large IN-1k+22K 0.0 19.2
Swin-Large ImageNet1K 0.0 16.2

ConvNext-Base L∞, (ε = 8/255) 58.0 22.3
Resnet-50, L∞ (ε = 8/255) 38.9 10
Resnet-50 L2, (ε = 5) 34.1 13.9

further release our nineteen (eighteen of which are novel) approaches for generating non-Lp adver-
sarial examples. We performed extensive sweeps to find the most effective hyperparameters for all
of our attacks, the results of which can be found in Appendix A.

4.1 GENERATING ADVERSARIAL EXAMPLES

Each of our adversaries is defined by a differentiable function A , which generates an adversarial
input xadv from an input image x and some latent variables δ:

xadv = A(x, δ). (2)

To control the strength of our adversary, we introduce an Lp constraint to the variables δ (using
p = ∞ or p = 2 ). We define our perturbation sets in terms of these allowed ranges of optimization
variables, i.e., for attack A with epsilon constraint ε:

SA,ε
x = {A(x, δ) | ∥δ∥p ≤ ε}.

As is typical in the literature (Madry et al., 2017b), we use our dataset loss function L to re-frame
the finding of adversarial examples in our perturbation set Section 4.1 as a continuous optimisation
problem, seeking δadv which solves:

δadv = argmin
δ:∥δ∥p≤ε

{L(f(A(x, δ)), y)}, (3)

and we then use the popular method of Projected Gradient Descent (PGD) (Madry et al., 2017b) to
find an approximate solution to Equation (3).

Using this formulation helps us ensure that all of our attacks are independent of auxiliary generative
models, add minimal overhead when compared to the popular PGD adversary (see Appendix E),
are usable in a dataset-agnostic “plug-and-play” manner, can be used with existing optimization
algorithms (see Figure 4a for behavior of attacks under optimization, and Figure 4a), come with a
natural way of varying intensity through adjusting ε parameter (see Figure 4b for behavior under
varying ε), and have precisely defined perturbation sets which are not dependent on the solutions
found to a relaxed constrained optimization problem. As discussed in Section 2, this is not the case
for most existing attacks in the literature, prompting us to design our new attacks.

4.2 CORE ATTACKS

To provide fast evaluation, we select eight attacks to form our test set of attacks for unforeseen
robustness. We refer to these as our core attacks, and we select them for diversity and effectiveness
across model scale. We leave the other eleven attacks within our repository as a validation set for the
tuning of defense hyperparameters and for a more complete evaluation of new techniques. We do not
allow training or tuning on attacks that are visually similar to our core attacks (e.g., differentiable
rain instead of snow). In Appendix D, we describe our process for designing these attacks and
selecting the test and validation splits. The eight core attacks are:
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(a) Performance with increased optimization.
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(b) Performance as distortion size is varied

Figure 4: Attack effectiveness increases with optimization pressure and distortion budget. We
average performance against our core attacks across all our benchmarked models, demonstrating
that our attacks respond to increased optimization pressure (Figure 4a). We further demonstrate the
importance of the gradient-based nature by comparing random grid search to our gradient-based
method in Appendix M. Furthermore, we demonstrate the ability for our attack stength to be cus-
tomisable by showing that increasing distortion budget reduces model performance (Figure 4b).

Wood. The wood attack is described in Figure 3 and Appendix C.

Glitch. Glitch simulates a common behavior in corrupted images of colored fuzziness. Glitch
greys out the image, splitting it into horizontal bars, before independently shifting color channels
within each of these bars.

JPEG. The JPEG compression algorithm functions by encoding small image patches using the
discrete cosine transform, and then quantizing the results. The attack functions by optimizing L∞-
constrained perturbations within the JPEG-encoded space of compressed images and then reverse-
transforming to obtain the image in pixel space, using ideas from Shin & Song (2017) to make this
differentiable.

Gabor. Gabor spatially occludes the image with visually diverse Gabor noise (Lagae et al., 2009),
optimizing the underlying sparse tensor which the Gabor kernels are applied to.

Kaleidoscope. Kaleidoscope overlays randomly colored polygons onto the image, and then op-
timizes both the homogeneous color of the inside of the shape, and the darkness/lightness of the
individual pixels on the shape’s border, up to an L∞ constraint.

Pixel. Pixel modifies an image so it appears to be of lower quality, by first splitting the image
into m × m “pixels” and then and averaging the image color within each block. The optimization
variables δ then control the level of pixelation, on a per-block bases.

Elastic. Our only non-novel attack. Elastic is adapted from (Xiao et al., 2018), functioning by
which warping the image by distortions x′ = Flow(x, V ), where V : {1, . . . , 224}2 → R2 is
a vector field on pixel space, and Flow sets the value of pixel (i, j) to the bilinearly interpolated
original value at (i, j) + V (i, j). To make the attack suitable for high-resolution images, we modify
the original attack by passing a gaussian kernel over V .

Snow. Snow functions by optimising the intensity of individually snowflakes within an image,
which are created by passing a convolutional filter over a sparsely populated tensor, and then opti-
mising the non-zero entries in this tensor.

4.3 ImageNet-UA: A NEW BENCHMARK FOR UNFORESEEN ROBUSTNESS

We introduce ImageNet-UA, a benchmark for evaluating the unforeseen robustness of image clas-
sifiers on the popular ImageNet dataset (Deng et al., 2009). We also develop CIFAR-10 equivalent
CIFAR-10-UA for computationally efficient evaluation of defense strategies and attack methods.

6
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Table 2: ImageNet-UA baselines Here, we show some of the most robust models on ImageNet-UA,
as well as baseline ResNet-50 models to compare between. We see a variety of techniques achieving
high levels of robustness, demonstrating a rich space of possible interventions. The L∞ column
tracks robustness against a PGD L∞ adversary with ε = 4/255. Numbers denote percentages.

Model Clean Acc. L∞ UA2 JPEG Elastic Wood Glitch Kal. Pixel Snow Gabor

DINOv2 ViT-large Patch14 86.1 15.3 27.7 14.3 42.6 39.7 17.7 46.2 17.2 14.2 29.9
ConvNeXt-V2-large IN-1K+22K 87.3 0.0 19.2 0.0 39.1 34.4 21.4 16.1 15.5 4.0 23.1
ConvNeXt-V2-huge IN-1K 86.3 0.0 17.7 0.0 42.5 21.2 23.8 24.3 6.6 0.7 22.2
ConvNeXt-base, L∞ (4/255) 76.1 58.0 22.3 39.0 23.8 47.9 12.9 2.5 9.7 30.2 12.8
ViT-base Patch16, L∞ (4/255) 76.8 57.1 25.8 52.6 26.3 47.2 13.8 8.1 11.9 27.1 19.5
Swin-base IN-1K 85.3 0.0 15.2 0.0 31.4 24.6 16.2 6.0 6.9 4.3 32.0
ResNet-50 76.1 0.0 1.6 0.0 4.4 6.3 0.4 0.0 0.3 0.1 0.9
ResNet-50 + CutMix 78.6 0.5 6.1 0.2 17.9 15.5 2.5 0.1 6.7 3.0 2.7
ResNet-50, L∞ (8/255) 54.5 38.9 10.0 6.9 11.8 23.9 14.4 0.7 5.2 15.6 1.2
ResNet-50, L2 (5) 56.1 34.1 13.9 39.7 11.9 19.4 12.2 0.3 9.7 15.4 2.5

Table 3: Lp training. We train a range
of ResNet-50 models against Lp adver-
saries on ImageNet-UA

Training Train ε Clean Acc. UA2

Standard - 76.1 1.6

L2

1 69.1 6.4
3 62.8 12.2
5 56.1 13.9

L∞

2/255 69.1 6.4
4/255 63.9 7.9
8/255 54.5 10.0

Table 4: Lp training on generated data. We see
the effect of training when training WRN-28-10 net-
works on CIFAR-10-50M, a 1000x larger diffusion-
model generated version of CIFAR-10 (Wang et al.,
2023)

Dataset Training Clean Acc. UA2

CIFAR-10 L2, ε = 1 82.3 45.8
L∞, ε = 8/255 86.1 41.5

CIFAR-10-50M L2, ε = 0.5 95.2 51.2
L∞, ε = 4/255 92.4 51.5

The unforeseen robustness achieved by a defense is quantified using a new metric, Unforeseen Ad-
versarial Accuracy (UA2), which measures the robustness of a given classifier f across a diverse
range of unforeseen attacks. In line with Section 3 we model the deployment-time population of
adversaries A as a categorical distribution over some finite set A, with a distortion level ϵA for each
adversary A ∈ A. Section 3 then reduces to:

UA2 :=
1

|A|
∑
A∈A

Acc(A, ϵA, f)

where Acc(A, εa, f) denotes the adversarial accuracy of classifier f against attack A at distortion
level εA. We select the population of adversaries to be the eight core adversaries from Section 4.2,
setting A= {JPEG, Elastic, Wood, Glitch, Kaleidoscope, Pixel, Snow, Gabor}.

We further divide our benchmark by picking three different distortion levels for each attack, leading
to three different measures of unforeseen robustness: UA2low, UA2med and UA2high (see Appendix A
for specific ε values used within this work), and we focus on focus on UA2med for all of our reports,
referring to this distortion level as simply UA2. As distortion levels increase, model performance
decreases (Figure 4b). We perform a human study (Appendix K) to ensure UA2med preserves image
semantics.

5 BENCHMARKING FOR UNFORESEEN ADVERSARIAL ROBUSTNESS

In this section, we evaluate a range of models on our standardized benchmarks ImageNet-UA and
CIFAR-10-UA. We aim to present a set of directions for future work, by comparing a wide range of
methods. We also hope to explore how the problem of unforeseen robustness different from existing
robustness metrics.
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Table 5: PixMix and Lp training. We compare UA2 performance on CIFAR-10 of models trained
with PixMix and adversarial training. Combining PixMix with adversarial training results in large
improvements in UA2, demonstrating the potential for novel methods to improve UA2. All numbers
denote percentages, and L∞ training was performed with the TRADES algorithm.

Training Strategy Train ε Clean Acc. UA2

PixMix - 95.1 15.00

L∞ 4/255 89.3 37.3
L∞ + PixMix 4/255 91.4 45.1
L∞ 8/255 84.3 41.4
L∞ + PixMix 8/255 87.1 47.4

5.1 HOW DO EXISTING ROBUSTNESS MEASURES RELATE TO UNFORESEEN ROBUSTNESS?

We find the difference between existing popular metrics and UA2, highlighting the differential
progress made possible by UA2:

UA2 is distinct from existing measures of distribution shift. We compare UA2 to the standard
distribution-shift benchmarks given by ImageNet-C (Hendrycks & Dietterich, 2019), ImageNet-R
Hendrycks et al. (2021) and ImageNet-Sketch (Wang et al., 2019). As shown in Appendix I, we
find that performance on these benchmark correlates with non-optimized versions of our attacks.
However, the optimized versions of our attacks have model robustness profiles more similar to Lp

adversaries. This highlights that UA2 is a measure of worst case robustness, similar to Lp robustness,
and distinct from other distribution shift benchmarks in the literature.

Lp robustness is correlated, but distinct from, unforeseen robustness. As shown in Appendix L,
unforeseen robustness is correlated with Lp robustness. Our attacks also show similar properties to
Lp counterparts, such as the ability for black-box transfer (Appendix N). However, many models
show susceptibility to Lp adversaries while still performing well on UA2 (Table 1), and a range
of strategies beat Lp training baselines Section 5.2 . We conclude that UA2 is distinct from Lp

robustness, and present UA2 as an improved progress measure when working towards real-world
worst-case robustness.

L2-based adversarial training outperforms L∞-based adversarial training We see that Lp ad-
versarial training increases the unforeseen robustness of tested models, with L2 adversarial train-
ing providing the largest increase in UA2 over standard training (1.6% → 13.9%), beating models
which are trained against L∞ adversaries (1.6% → 10.0%). We present L2 trained models as a
strong baseline for unforeseen robustness, noting that the discrepancy between L∞ and L2 training
is particularly relevant as L∞ robustness is the most ubiquitous measure of adversarial robustness.

5.2 HOW CAN WE IMPROVE UNFORESEEN ROBUSTNESS?

We find several promising directions that improve over Lp training, and suggest that the community
should focus more on techniques which we demonstrate to have better generalization properties:

Combining image augmentations and L∞ training. We combine PixMix and L∞ training, finding
that this greatly improves unforeseen robustness over either approach alone (37.3 → 45.1, see
Table 5). This is a novel training strategy which beats strong baselines by combining two distinct
robustness techniques (Lp adversarial training and data augmentation). The surprising effectiveness
of this simple method highlights how unforeseen robustness may foster the development of new
methods.

Multi-attack robustness. To evaluate how existing work on robustness to a union of Lp balls may
improve unforeseen robustness, we use CIFAR-10-UA to evaluate a strong multi-attack robustness
baseline by (Madaan et al., 2021b), which trains a Meta Noise Generator (MNG) that learns the
optimal training perturbations to achieve robustness to a union of Lp adversaries. For WRN-28-10
models on CIFAR-10-UA, we see a large increase in unforeseen robustness compared to the best
Lp baseline (21.4% → 51.1%, full results in Appendix J ), leaving scaling of such methods to full
ImageNet-UA for future work.

8
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Table 6: Effects of data augmentation on
UA2. We evaluate the UA2 of a range of
data-augmented ResNet50 models.

Training Clean Acc. UA2

Standard 76.1 1.0
Moex 79.1 6.0
CutMix 78.6 6.0
Deepaugment + Augmix 75.8 1.8

Table 7: Effects of pretraining and regu-
larization on UA2.

Model Clean Acc. UA2

ConvNeXt-V2-28.6M 83.0 9.8
ConvNeXt-V1-28M 82.1 5.1

ConvNeXt-V2-89M 84.9 14.9
ConvNeXt-V1-89M 83.8 9.7

ConvNeXt-V2-198M 85.8 19.1
ConvNeXt-V1-198M 84.3 10.6

Bounding perturbations with perceptual distance. We evaluate the UA2 of models trained with
Perceptual Adversarial Training (PAT) (Laidlaw et al., 2020). PAT functions by training a model
against an adversary bounded by an estimate of the human perceptual distance, computing the es-
timate by using the hidden states of an image classifier. For computational reasons we train and
evaluate ResNet-50s on a 100-image subset of ImageNet-UA, where this technique outperforms the
best Lp trained baselines (22.6 → 26.2, full results in Appendix J).

Regularizing high-level features. We evaluate Variational Regularization (VR) (Dai et al., 2022),
which adds a penalty term to the loss function for variance in higher level features. We find that the
largest gains in unforeseen robustness come from combining VR with PAT, improving over standard
PAT (26.2 → 29.5, on a 100 class subset of ImageNet-UA, full results in Appendix J).

5.3 HOW HAS PROGRESS ON CV BENCHMARKS TRACKED UNFORESEEN ROBUSTNESS?

Computer vision progress has partially tracked unforeseen robustness. Comparing the UA2 of
ResNet-50 to ConvNeXt-V2-huge (1% → 19.1% UA2) demonstrates the effects of almost a decade
of CV advances, including self-supervised pretraining, hardware improvements, data augmentations,
architectural changes and new regularization techniques. More generally, we find a range of modern
architectures and training strategies doing well (see Table 2, full results in Figure 7). This is gives
a positive view of how progress on standard CV benchmarks has tracked underlying robustness
metrics, contrasting with classical Lp adversarial robustness where standard training techniques
have little effect (Madry et al., 2017a).

Scale, data augmentation and pretraining successfully improve robustness. We do a more care-
ful analysis of how three of the most effective CV techniques have improved robustness. As shown
in Table 6, we find that data augmentation improves on unforeseen robustness, even in cases where
they reduce standard accuracy. We compare the performance of ConvNeXt-V1 and ConvNeXt-V2
models, which differ through the introduction of self-supervised pretraining and a new normalization
layer. When controlling for model capacity these methods demonstrate large increase unforeseen ro-
bustness Table 7.

6 CONCLUSION

In this paper, we introduced a new benchmark for unforeseen adversaries (ImageNet-UA) laying
groundwork for future research in improving real world adversarial robustness. We provide nineteen
(eighteen novel) non-Lp attacks as part of our repository, using these to construct a new metric UA2
(Unforeseen Adversarial Accuracy). We then make use use this standardized benchmark to evaluate
classical Lp training techniques, showing that the common practice of L∞ training and evaluation
may be misleading, as L2 shows higher unforeseen robustness. We additionally demonstrate that a
variety of interventions outside of Lp adversarial training can improve unforeseen robustness, both
through existing techniques in the CV literature and through specialised training strategies. We hope
that the ImageNet-UA robustness framework will help guide adversarial robustness research, such
that we continue making meaningful progress towards making machine learning safer for use in
real-world systems.
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Tom B. Brown, Dandelion Mané, Aurko Roy, Martı́n Abadi, and Justin Gilmer. Adversarial patch.
CoRR, abs/1712.09665, 2017. URL http://arxiv.org/abs/1712.09665.

John Canny. A computational approach to edge detection. IEEE Transactions on pattern analysis
and machine intelligence, (6):679–698, 1986.

Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber, Dimitris
Tsipras, Ian J. Goodfellow, Aleksander Madry, and Alexey Kurakin. On evaluating adversarial
robustness. CoRR, abs/1902.06705, 2019. URL http://arxiv.org/abs/1902.06705.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks. In International conference on machine learning, pp. 2206–
2216. PMLR, 2020.

Francesco Croce and Matthias Hein. Adversarial robustness against multiple and single lp-threat
models via quick fine-tuning of robust classifiers, 2022.

Sihui Dai, Saeed Mahloujifar, and Prateek Mittal. Formulating robustness against unforeseen at-
tacks. arXiv preprint arXiv:2204.13779, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry. A
rotation and a translation suffice: Fooling CNNs with simple transformations. arXiv preprint
arXiv:1712.02779, 2017.

Alain Fournier, Don Fussell, and Loren Carpenter. Computer rendering of stochastic models. Com-
mun. ACM, 25(6):371–384, June 1982. ISSN 0001-0782. doi: 10.1145/358523.358553. URL
http://doi.acm.org/10.1145/358523.358553.

Justin Gilmer, Ryan P. Adams, Ian J. Goodfellow, David Andersen, and George E. Dahl. Motivating
the rules of the game for adversarial example research. ArXiv, abs/1807.06732, 2018.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples, 2014. URL https://arxiv.org/abs/1412.6572.

Qing Guo, Felix Juefei-Xu, Xiaofei Xie, Lei Ma, Jian Wang, Bing Yu, Wei Feng, and
Yang Liu. Watch out! motion is blurring the vision of your deep neural networks.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in
Neural Information Processing Systems, volume 33, pp. 975–985. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/0a73de68f10e15626eb98701ecf03adb-Paper.pdf.

Qing Guo, Ziyi Cheng, Felix Juefei-Xu, Lei Ma, Xiaofei Xie, Yang Liu, and Jianjun Zhao. Learn-
ing to adversarially blur visual object tracking. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 10839–10848, 2021.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 16000–16009, 2022.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
ruptions and perturbations. In International Conference on Learning Representations, 2019.

Dan Hendrycks and Thomas G Dietterich. Benchmarking neural network robustness to common
corruptions and surface variations. arXiv preprint arXiv:1807.01697, 2018.

10

http://arxiv.org/abs/1712.09665
http://arxiv.org/abs/1902.06705
http://doi.acm.org/10.1145/358523.358553
https://arxiv.org/abs/1412.6572
https://proceedings.neurips.cc/paper_files/paper/2020/file/0a73de68f10e15626eb98701ecf03adb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/0a73de68f10e15626eb98701ecf03adb-Paper.pdf


Under review as a conference paper at ICLR 2024

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 8340–8349, 2021.

Ares Lagae, Sylvain Lefebvre, George Drettakis, and Philip Dutré. Procedural noise using sparse
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A HYPERPARAMETERS

A.1 TRAINED MODELS

To run our evaluations, we train a range of our own models to benchmark with:

• CIFAR-10 WRN-28-10 robust models and TRADES models are respectively trained with
the official code of Rice et al. (2020) and Zhang et al. (2019) with the default hyperpa-
rameters settings

• The PAT-VR models on ImageNet100 were trained using the official code from Dai et al.
(2022) and employed the hyperparameter settings outlined in the code of Laidlaw et al.
(2020).

• ImageNet100 DINOv2 Oquab et al. (2023) models are trained by finetuning a linear clas-
sification head on the ImageNet100 dataset. We used a SGD optimizer with learning rate
of 0.001 and employed early-stopping.

A.2 MODEL REFERENCE

We use a range of baseline models provided by other works, with model weights available as part of
their open source distribution:

• ImageNet
– ConvNeXt models are from Liu et al. (2022)
– ConvNeXt-V2 models are from Woo et al. (2023)
– ViT models are from Steiner et al. (2022)
– Swin models are from Liu et al. (2021)
– Reversible-ViT models are from Mangalam et al. (2022)
– CLIP (ViT-L/14) is from Radford et al. (2021)
– DINOv2 models are from Oquab et al. (2023)
– MAE models are from He et al. (2022)

• CIFAR-10
– WideResNet TRADES models are from Zhang et al. (2019)
– WRN + Diffusion models are from Wang et al. (2023)
– Meta noise models are from Madaan et al. (2021b)
– ResNet50 VR models are from Dai et al. (2022)
– ReColorAdv models are from Laidlaw & Feizi (2019)
– StAdv modesl are from Xiao et al. (2018)
– Multi attack models are from Tramèr et al. (2018)
– The Multi steepest descent model is from Maini et al. (2020)
– PAT models are from Laidlaw et al. (2020)
– Pre-trained ResNet18 L∞, L2 and L1 models are from Croce & Hein (2022)

• ImageNet100
– ResNet50 PAT models are from Laidlaw et al. (2020)
– ResNet50 PAT + VR models are from Dai et al. (2022)
– DINOv2 models are from Oquab et al. (2023)
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A.3 ATTACK PARAMETERS

To ensure that our attacks are maximally effective, we perform extensive hyper-parameter sweeps to
find the most effective step sizes.

Table 8: Attack parameters for ImageNet-UA

Step Size Num Steps Low Distortion Medium Distortion High Distortion Distance Metric

Core Attacks

PGD 0.004 50 2/255 4/255 8/255 L∞
Gabor 0.0025 100 0.02 0.04 0.06 L∞
Snow 0.1 100 10 15 25 L2

Pixel 1 100 3 5 10 L2

JPEG 0.0024 80 1/255 3/255 6/255 L∞
Elastic 0.003 100 0.1 0.25 0.5 L2

Wood 0.005 80 0.03 0.05 0.1 L∞
Glitch 0.005 90 0.03 0.05 0.07 L∞
Kaleidoscope 0.005 90 0.05 0.1 0.15 L∞

Extra Attacks

Edge 0.02 60 0.03 0.1 0.3 L∞
FBM 0.006 30 0.03 0.06 0.3 L∞
Fog 0.05 80 0.3 0.5 0.7 L∞
HSV 0.012 50 0.01 0.03 0.05 L∞
Klotski 0.01 50 0.03 0.1 0.2 L∞
Mix 1.0 70 5 10 40 L2

Pokadot 0.3 70 1 3 5 L2

Prison 0.0015 30 0.01 0.03 0.1 L∞
Blur 0.03 40 0.1 0.3 0.6 L∞
Texture 0.00075 80 0.01 0.03 0.2 L∞
Whirlpool 4.0 40 10 40 100 L2

Table 9: Attack parameters for CIFAR-10-UA

Step Size Num Steps Low Distortion Medium Distortion High Distortion Distance Metric

Core Attacks

PGD 0.008 50 2/255 4/255 8/255 L∞
Gabor 0.0025 80 0.02 0.03 0.04 L∞
Snow 0.2 20 3 4 5 L2

Pixel 1.0 60 1 5 10 L2

JPEG 0.0024 50 1/255 3/255 6/255 L∞
Elastic 0.006 30 0.1 0.25 0.5 L2

Wood 0.000625 70 0.03 0.05 0.1 L∞
Glitch 0.0025 60 0.03 0.05 0.1 L∞
Kaleidoscope 0.005 30 0.05 0.1 0.15 L∞

Extra Attacks

Edge 0.02 60 0.03 0.1 0.3 L∞
FBM 0.006 30 0.02 0.04 0.08 L∞
Fog 0.05 40 0.3 0.4 0.5 L∞
HSV 0.003 20 0.01 0.02 0.03 L∞
Klotski 0.005 50 0.03 0.05 0.1 L∞
Mix 0.5 30 1 5 10 L2

Pokadot 0.3 40 1 2 3 L2

Prison 0.0015 20 0.01 0.03 0.1 L∞
Blur 0.015 20 0.1 0.3 0.6 L∞
Texture 0.003 30 0.01 0.1 0.2 L∞
Whirlpool 16.0 50 20 100 200 L2

14



Under review as a conference paper at ICLR 2024

B DESCRIPTIONS OF THE 11 ADDITIONAL ATTACKS.

Blur. Blur approximates real-world motion blur effects by passing a Gaussian filter over the
original image and then does a pixel-wise linear interpolation between the blurred version and the
original, with the optimisation variables controlling the level of interpolation. We also apply a
Gaussian filter to the grid of optimisation variables, to enforce some continuity in the strength of the
blur between adjacent pixels. This method is distinct from, but related to other blurring attacks in
the literature (Guo et al., 2020; 2021).

Edge. This attack functions by applying a Canny Edge Detector (Canny, 1986) over the image
to locate pixels at the edge of objects, and then applies a standard PGD attack to the identified edge
pixels.

Fractional Brownian Motion (FBM). FBM overlays several layers of Perlin noise (Perlin, 2005)
at different frequencies, creating a distinctive noise pattern. The underlying gradient vectors which
generate each instance of the Perlin noise are then optimised by the attack.

Fog. Fog simulates worst-case weather conditions, creating fog-like occlusions by adversarially
optimizing parameters in the diamond-square algorithm (Fournier et al., 1982) typically used to
render stochastic fog effects.

HSV. This attack transforms the image into the HSV color space, and then optimises PGD in that
latent space. Due to improving optimisation properties, a gaussian filter is passed over the image.

Klotski. The Klotski attack works by splitting the image into blocks, and applying a differentiable
translation to each block, which is then optimised.

Mix. The Mix attack functions by performing differntiable pixel-wise interpolation between the
original image and an image of a different class. The level of interpolation at each pixel is optimised,
and a gaussian filter is passed over the pixel interpolation matrix to ensure that the interpolation is
locally smooth.

Polkadot. Polkadot randomly selects points on the image to be the centers of a randomly coloured
circle, and then optimising the size of these circles in a differentiable manner.

Prison. Prison places grey ”prison bars” across the image, optimising only the images within the
prison bars. This attack is inspired by previous “patch” attacks (Brown et al., 2017), while ensuring
that only the prison bars are optimised.

Texture. Texture works by removing texture information within an images, passing a Canny Edge
Detector (Canny, 1986) over the image to find all the pixels which are at the edges of objects, and
then filling these pixels in black—creating a silhouette of the original image. The other non-edge (or
”texture”) pixels are then whitened, losing the textural information of the image while preserving
the shape. Per-pixel optimisation variable control the level of whitening.

Whirlpool. Whirlpool translates individual pixels in the image by a differentiable function creat-
ing a whirlpool-like warpings of the image, optimising the strength of each individual whirlpool.
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C FULL DESCRIPTION OF WOOD ATTACK

In Figure 3, we give a high-level explanation of the Wood attack. Here, we give a more detailed
explanation of this figure.

Given a classifier f , the Wood attack with distortion level ε functions by taking a set of adversar-
ial latent variables δn ∈ Rm×m×2 (representing a vector field of per-pixel displacements), applies
projectεp to project this field into the ε ball in the Lp metric and then uses bi-linear interpola-
tion to upsample the latent variables to the input image size. The upsampled latent variables are
then used to make the wood noise, by using an element-wise mapping F : Rn×n×2 → Rn×n,
taking a coordinate to the (power of) the sine of its distance from the center of the image i.e.
F (I) = sin(

√
(X)2 + (Y )2)β , where Xij = Iij0 − n/2 and Yij = Iij1 − n/2 and β is an at-

tack hyperparameter. When applied to constant coordinate tensor C ∈ Rn×n×2, Cij = (i, j), this
function creates the distinctive “wood rings” of the Wood attack, which are then multiplied with the
input image to produce adversarial input. By virtue of the differentiability of this process, we can
backpropagate through this noise generation and optimize the adversarial image xadv by performing
PGD (Madry et al., 2017a) on the input latent variables.

D PROCESS FOR DESIGNING ATTACKS AND SELECTING CORE ATTACKS

Our design of attacks is guided by two motivations: defending against unforeseen adversaries and
robustness to long-tail scenarios. Unforeseen adversaries could implement novel attacks to, e.g.,
evade automated neural network content filters. To model unforeseen adversaries that might real-
istically appear in these scenarios, we include digital corruptions similar to what one might see on
YouTube videos trying to evade content filters. These include attacks such as Kaleidoscope and
Prison. To model long-tail scenarios, we include worst-case versions of common corruptions, like
JPEG, Snow, and Fog.

In preliminary experiments, we found that some of these attacks were more effective than others,
leading to lower accuracy with fewer steps. We also found that some attacks were more correlated
with existing adversaries like PGD. For example, Prison is a pixel-level attack, so its results are more
correlated with PGD than the other attacks. To increase the diversity and efficiency of our evaluation,
we selected a core set of eight attacks based on their effectiveness and diversity, considering both
visual diversity and the correlation of their results to each other and to PGD. This was an iterative
process that led us to make substantial changes to some attacks. For example, we modified the
implementation of the Elastic attack to use larger, lower-frequency distortions, which maintained its
effectiveness while reducing correlation with PGD.

E ATTACK COMPUTATION TIME

We investigate the execution times of our attacks, finding that most attacks are not significantly
slower than an equivalent PGD adversary.
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Figure 5: Evaluation time of the attacks on the ImageNet test set using a ResNet50 model with batch
size of 200 on a single A100-80GB GPU, Attack hyper-parameters are as described in Appendix A.
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F FULL RESULTS OF MODEL EVALUATIONS

We benchmark a large variety of models on our dataset, finding a rich space of interventions affecting
unforeseen robustness.
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Figure 6: ImageNet UA2 performance under low distortion.
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Figure 7: ImageNet UA2 performance under medium distortion
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Figure 8: ImageNet UA2 performance under high distortion
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Figure 9: CIFAR-10 UA2 performance under low distortion.

20



Under review as a conference paper at ICLR 2024

0 100

WRN-40-2 + Stardard
WRN-40-2 + Uniform noise
WRN-40-2 + Mixup
ResNet50
WRN-28-10
WRN-40-2 + Cutmix
ResNet18 + ReColorAdv
WRN-40-2 + Pixmix
WRN-40-2 + Augmix
WRN-28-10 + L2 0.25
ResNet18 + ReColorAdv + VR 0.5
PreAct ResNet18 L1 pretrained
ResNet18 + ReColorAdv + VR 1.0
WRN-28-10 + L2 0.5
WRN-28-10 + L2 1.0
RestNet50 + ReColorAdv
PreAct ResNet18 L2 pretrained
ResNet18 + StAdv
ResNet50 + L2 0.25
ResNet18 + StAdv + VR 0.5
PreAct ResNet18 L  pretrained
RestNet50 + StAdv
ResNet18 + StAdv + VR 1.0
WRN-28-10 + L  4/255
WRN-28-10 + L2 0.25 (TRADES)
WRN-40-2 + L  8/255
RestNet50 + Multi attack (random)
WRN-28-10 + L  4/255 (TRADES)
ResNet50 + L2 0.5
WRN-28-10 + L  8/255
ResNet50 + PAT 0.5 + VR 0.05
ResNet50 + L  8/255
WRN-28-10 + L2 0.5 (TRADES)
WRN-28-10 + L  8/255 + VR 0.7
RestNet50 + AlexNet-bounded PAT
ResNet50 + PAT 0.5
WRN-28-10 + L  8/255 (TRADES)
ResNet18 + L  8/255 + VR 0.5
WRN-34-10 + L  8/255
WRN-28-10 + Multi attack (average)
RestNet50 + Self-bounded PAT
ResNet18 + L2 0.5 + VR 1.0
ResNet50 + PAT 1.0 + VR 0.05
WRN-34-10 + L  8/255 (TRADES)
ResNet50 + PAT 1.0 + VR 0.1
ResNet50 + L2 1.0
ResNet50 + PAT 0.5 + VR 0.1
WRN-28-10 + Multi attack (maximum)
WRN-28-10 + Multi steepest descent
WRN-28-10 + L  4/255 + Pixmix
WRN-28-10 + L2 1.0 (TRADES)
PreAct ResNet18 L1

WRN-28-10 + L  8/255 + Pixmix
WRN-28-10 + Meta noise
PreAct ResNet18 Union of Lp

RestNet50 + Multi attack (average)
RestNet50 + Multi attack (maximum)
WRN-28-10 + L2 128/255 + Diffusion model
WRN-28-10 + Meta noise + Robust self-training
WRN-28-10 + L  8/255 + Diffusion model
WRN-70-16 + L  8/255 + Diffusion model
WRN-70-16 + L2 128/255 + Diffusion model

94.6
94.3
94.8
94.7
95.8
95.7
94.9
95.1
95.0
95.3
94.0

81.5
94.0
95.6
95.5
93.0
87.2
86.8
92.0

82.9
82.9
85.7
80.6
91.9
91.7

83.3
81.8
89.3
89.6
86.5
86.3
85.5
87.6

72.7
71.1

85.7
84.3

72.9
86.1
85.8
82.1
85.2

71.4
84.9

71.5
79.0
84.8
84.3
82.7
91.4

82.3
80.7
87.1
81.5
80.5
85.9
83.5

95.2
88.9
92.4
93.3
95.5

Clean acc

0 100

0.1
0.6
0.2
0.1
0.1
0.1
10.3

1.0
1.4

37.2
28.2

19.9
29.4
38.3
39.5
47.3
44.7

5.3
58.6

4.8
57.1

6.4
8.4

73.0
62.8
68.2

56.0
71.8
66.2
73.8

64.9
72.7

66.5
64.0
59.7
65.1
71.3

63.5
74.3

65.0
62.9
64.5
60.5
72.0

59.7
64.7
65.9
67.7
68.1
74.7

66.5
63.5
74.8

66.4
66.9
70.0
69.2

82.2
75.6
84.0
85.9
83.7

PGD (4/255)

0 100

5.8
6.7
7.2
7.2
7.3
8.5
13.6
15.0
16.0
20.4
20.5
20.7
21.1
21.3
21.4
27.6
30.4
31.4
31.5
31.5
32.1
32.8
32.9
35.1
35.1
37.1
37.2
37.3
38.0
39.8
40.2
40.4
40.9
41.0
41.1
41.3
41.4
41.4
41.5
41.5
41.6
41.9
42.1
42.7
42.7
42.8
42.8
43.5
44.0
45.1
45.8
46.4
47.4
47.5
48.0
48.1
48.8
51.1
51.1
51.6
52.5
53.1

UA2

0 100

0.0
0.0
0.0
0.0
0.0
0.0
7.5

0.0
0.4

20.5
23.2

12.5
24.1
22.5
24.0

38.9
40.8

6.4
49.1

8.3
29.6

9.7
14.5

43.1
57.2

46.2
52.2

44.0
64.7

47.3
62.6

52.6
65.0

46.1
59.2
63.9

48.0
47.2
51.0
62.6
59.4
63.9
59.7

49.9
59.0
64.8
63.4
62.2
61.6

49.6
67.1
64.4

55.1
66.1
65.6
67.2

57.9
78.4
73.0

61.7
62.1

80.1
JPEG

0 100

0.4
1.9
0.4
1.2
0.8
4.2
11.2

2.0
9.3

21.4
21.5

15.0
21.8
23.2
23.6
30.2
29.0

71.8
36.5

65.8
32.7

69.4
64.7

44.2
42.3
39.3
49.7
47.6

40.2
47.0
44.3
48.8
45.0
41.5
43.8
44.8
49.3

40.9
45.3
42.4
42.8
38.0
46.3
50.1
45.1
46.5
48.0
45.9
46.7
56.7

49.1
48.1
59.8

49.4
50.7

66.3
68.8

61.4
56.5
65.1
67.4
65.1

Elastic

0 100

0.9
2.0
1.9
1.4
2.2
2.8
6.8
6.7
15.2
19.3
17.1
24.7

18.2
20.3
19.7
27.3
31.7

60.0
31.8

58.2
24.5

63.7
51.1

35.6
40.0
37.2
48.0

35.4
45.4
39.9
41.8
42.9
50.4

37.1
46.8
45.4
39.5
36.6
41.4
53.0

44.9
47.4
41.8
41.3
42.9
49.3

41.4
53.7
53.8
53.5
55.6
51.6
53.7
58.8
54.0
55.8
59.5
57.8
58.9

51.2
52.7
59.4

Wood

0 100

9.5
13.4
11.0
8.9
11.8
10.8

33.6
22.8
28.5
40.4
41.8
49.7

41.5
40.9
41.4
53.1
54.2

27.0
54.1

27.5
58.4

27.8
33.8

61.5
62.0

55.2
52.8
64.0
59.1
66.1
64.2

56.4
65.6

58.9
58.0
64.2
65.5
59.8
65.9
64.8
64.7
64.5
58.5
65.0

57.2
54.4
64.0
64.8
65.0
65.6
66.0
65.7
66.3
66.8
64.8
67.8
65.3
74.3
72.6
70.7
72.1
75.5

Glitch

0 100

4.6
7.9
5.1
4.7
6.8
11.4
9.0
6.3
12.0
15.2
12.6
16.9
14.1
16.8
17.4
12.7

26.0
26.0
20.8
32.1
35.6
30.1
34.8
28.8

22.0
32.2

21.0
32.8

20.7
32.3

23.2
27.5
26.1

41.1
23.8
22.2

35.2
40.4
36.3

28.1
31.1
27.5
29.8
40.1

31.7
26.4
27.4
33.1
33.1

25.2
30.1
33.2
30.0
32.5
37.6

24.0
30.2
33.7
37.3
44.2
44.7

36.7
Kaleidoscope

0 100

1.0
0.7
1.2
0.7
0.9
1.1
2.0
1.2
0.9
3.3
1.4
5.8
1.8
4.6
3.8
4.7
11.6

1.4
4.7
1.8
7.5
2.2
3.7
5.7
6.9
11.2
9.2
7.5
10.4
12.0
16.1
14.8
14.2
22.1
23.9
18.0
15.6
22.1

14.0
15.1
21.6
19.6
28.8

15.1
30.7
26.3
22.3
16.3
18.0

7.2
24.4
29.8

14.2
27.0
28.1

21.7
20.9
21.4
28.8

20.0
19.7
22.4

Pixel

0 100

15.1
14.6
22.2
20.1
21.1
27.7

18.9
30.7
30.7

21.6
20.6
16.1
21.2
22.4
22.1
28.4

16.6
51.8

21.0
49.0

30.6
55.8
51.0

29.0
20.8
31.1
26.5
30.5

22.8
36.3

26.1
34.6

23.4
38.4

31.0
26.6
35.5
38.1
35.4

23.7
30.2
25.7
33.4
38.2
33.1
31.7
32.1
27.0
28.8

44.8
28.9
31.1

46.5
31.2
34.7
36.2
46.7
46.2
40.3

54.0
55.9
50.0

Snow

0 100

14.9
13.2
15.6
20.7
15.2
9.7
19.5

50.2
31.1

21.4
25.7
24.8
26.4

20.1
19.1
25.2
33.1

6.5
33.8

9.4
37.6

3.4
9.3

32.9
29.9

44.0
38.3
36.7
40.5
37.6
43.3
45.2

37.7
43.0
42.6
45.1
42.5
46.2
42.4
42.6
37.8
48.7

38.9
41.9
42.1
42.6
43.5
45.0
44.7

58.1
45.3
47.0
53.8
48.4
48.1
45.4
41.2
35.4
41.0
45.7
45.3

35.6
Gabor

Figure 10: CIFAR-10 UA2 performance under medium distortion
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Figure 11: CIFAR-10 UA2 performance under high distortion
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Figure 12: ImageNet100 UA2 performance under low distortion.
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Figure 13: ImageNet100 UA2 performance under medium distortion
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Figure 14: ImageNet100 UA2 performance under high distortion
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F.4 EXPLORING THE ROBUSTNESS OF DINOV2

Given the strong adversarial robustness of DINOv2 models under the PGD attack (Appendix F), we
further evaluate the DINOv2 model under AutoAttack Croce & Hein (2020). Table 10 and Table 11
show that although for the robust ResNet50 model AutoAttack performs similarly to PGD, it is able
to reduce the accuracy of DINOv2 models to 0.0% across all the distortion levels. Future work may
benefite from applying the AutoAttack benchmark as a comparison point, instead of the base PGD
adversary.

Table 10: Attacked accuracies of models on ImageNet

ResNet50 + L∞ 8/255 DINOv2 ViT-base Patch14 DINOv2 ViT-large Patch14

PGD (2/255) 46.8% 12.0% 16.7%
APGD-CE (2/255) 46.2% 1.0% 1.0%
APGD-CE + APGD-T (2/255) 43.6% 0.0% 0.0%

PGD (4/255) 38.9% 11.4% 15.3%
APGD-CE (4/255) 37.9% 0.9% 0.8%
APGD-CE + APGD-T (4/255) 33.8% 0.0% 0.0%

PGD (8/255) 23.9% 11.0% 14.4%
APGD-CE (8/255) 22.6% 0.6% 0.7%
APGD-CE + APGD-T (8/255) 18.4% 0.0% 0.0%

Table 11: Attacked accuracies of models on ImageNet100

ResNet50 + L∞ 8/255 DINOv2 ViT-base Patch14 DINOv2 ViT-large Patch14

PGD (2/255) 64.5% 34.3% 42.3%
APGD-CE (2/255) 64.4% 17.6% 20.0%
APGD-CE + APGD-T (2/255) 64.1% 0.0% 0.0%

PGD (4/255) 45.7% 32.6% 39.7%
APGD-CE (4/255) 45.2% 16.4% 17.3%
APGD-CE + APGD-T (4/255) 44.6% 0.0% 0.0%

PGD (8/255) 15.7% 31.5% 37.7%
APGD-CE (8/255) 14.7% 15.5% 14.5%
APGD-CE + APGD-T (8/255) 13.6% 0.0% 0.0%

F.5 PERFORMANCE VARIANCE

As described in Section 4.1, we perform adversarial attacks by optimizing latent variables which are
randomly initialized in our current implementation, so the adversarial attack’s performance can be
affected by the random seed for the initialization. To study the effect of random initializations, we
compute the UA2 performances of three samples of two ImageNet models, ResNet50 and ResNet50
+ L2 5. We observe the standard deviations of UA2 of these two models across 5 different seeds to
be respectively 0.1% and 0.04% concluding that the variation in performance across the ImageNet
dataset is minor.

G IMAGES OF ALL ATTACKS ACROSS DISTORTION LEVELS

We provide images of all 19 attacks within the benchmark, across the three distortion levels.
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Snow

Figure 15: Attacked samples of low distortion (1st row), medium distortion (2nd row), and high
distortion (last row) on a standard ResNet50 model
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Figure 16: Attacked samples of low distortion (1st row), medium distortion (2nd row), and high
distortion (last row) on a standard ResNet50 model
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Figure 17: Attacked samples of low distortion (1st row), medium distortion (2nd row), and high
distortion (last row) on a standard ResNet50 model
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Figure 18: Attacked samples of low distortion (1st row), medium distortion (2nd row), and high
distortion (last row) on a standard ResNet50 model

27



Under review as a conference paper at ICLR 2024

H SCALING BEHAVIOUR OF OUR ATTACKS

To see how our attacks perform across model scale, we make use of the ConvNeXt-V2 model suite
(Woo et al., 2023) to test the performance of our attacks as we scale model size. We find that
capacity improves performance across the board, but find diminishing returns to simply scaling up
the architectures, pointing towards techniques described in Section 5.2.
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Figure 19: Unforeseen Robustness across model scale. We measure UA2 across model scale by
evaluating the performance of ConvNeXt-V2 (Woo et al., 2023) models on ImageNet-UA, finding
that scale improves performance, although the benchmark still provides a challenge to the largest
models.

I IMAGENET-C AND UNFORESEEN ROBUSTNESS

Table 12: Common corruptions and UA2 We compare performance on the ImageNet-C benchmark
(mCE) to performance against both non-optimized and optimized versions of our attacks. We find
that performance on the average-case robustness of ImageNet-C is correlated with performance on
optimised attacks, while applying optimised versions favours the adversarially trained models.

Model UA2 (non-optimized) ↑ mCE ↓ UA2 ↑
Resnet 50 55.2 76.7 1.6
Resnet50 + AugMix 59.1 65.7 3.5
Resnet50 + DeepAug 60.2 61.1 3.0
Resnet50 + Mixup 59.9 69.2 4.8

Resnet50 + L2, (ε = 5) 43.2 89.0 13.9
Resnet50 + L∞, (ε = 8/255) 40.6 85.1 10

=
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Table 13: Distribution-shift benchmarks and UA2 Comparing performance on ImageNet-Sketch
and ImageNet-R to performance against both non-optimized and optimized versions of UA2. We
observe that performance on standard distribution shift benchmarks is correlated with performance
on non-optimized UA2, while optimized UA2 settings favor models which have been trained for
worst-case settings.

Model UA2 (non-optimised) ImageNet-Sketch Acc. ImageNet-R Acc. UA2

Resnet 50 55.2 24.1 36.2 1.6
Resnet50 + AugMix 59.1 28.5 41.0 3.5
Resnet50 + DeepAug 60.2 29.5 42.2 3.0
Resnet50 + Mixup 59.9 26.9 39.6 4.8

Resnet50 + L2, (ε = 5) 43.2 24.2 38.9 13.9
Resnet50 + L∞, (ε = 8/255) 40.6 18.6 34.8 10
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(a) JPEG
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(b) Elastic
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(c) Wood
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(d) Glitch
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(e) Kaleidoscope
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(f) Pixel
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(g) Snow
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(h) Gabor

Figure 20: Behaviour of core attacks across model scale. We see the performance of the eight core
attacks across the ConvNeXt-V2 model suite, with performance on attacks improving with model
scale.
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J BENCHMARKING NON- Lp ADVERSARIAL TRAINING STRATEGIES

We wish to compare training strategies which have been specifically developed for robustness
against both a variety of and unforeseen adversaries. To this end, we use Meta Noise Generation
(Madaan et al., 2021b) as a strong multi-attack robustness baseline, finding that on CIFAR-10-UA
this leads to large increases in robustness (Table 14). We also evaluate Perceptual Adversarial
Training (Laidlaw et al., 2020) and Variational Regularization (Dai et al., 2022), two techniques
specifically designed to achieve unforeseen robustness. We also evaluate combining PixMix and Lp

adversarial training. All of these baselines beat Lp training.

Table 14: Comparing alternative training strategies to Lp baselines We demonstrate that mod-
els trained using Meta Noise Generation (MNG) (Madaan et al., 2021b) improve over Lp training
baselines on CIFAR-10-UA.

Training Clean Acc. UA2

Standard 95.8 7.4
L∞, ε = 8/255 86.5 39.8

L2, ε = 2 95.5 21.4
MNG 88.9 51.1

Meta Noise Generation (MNG) out-performs Lp baselines. We find that MNG, a technique
original developed for multi-attack robustness shows a 11.3% increase in UA2 on CIFAR-10-UA,
and PAT shows a 3.5% increase in UA2.

Table 15: Specialised Unforseen robustness training strategies. We see that ImageNet-UA PAT
(Laidlaw et al., 2020) and PAT-VR (Dai et al., 2022)trained ResNet50s improve over Lp baselines.
Selected Lp models are the best Resnet50s from the bench-marking done in Figure 7, and for com-
putational budget reasons they are trained on a 100-image subset of ImageNet, constructured by
taking every 10th class.

Training Clean Acc. UA2

Standard 88.7 3.2
L∞, ε = 8/255 79.7 17.5

L2, ε = 4800/255 71.6 25.0

PAT 75.0 26.2
PAT-VR 69.4 29.5

Table 16: PixMix and Lp training. We compare UA2 performance on CIFAR-10 of models trained
with PixMix and adversarial training. Combining PixMix with adversarial training results in large
improvements in UA2, demonstrating an exciting future direction for improving unforeseen robust-
ness. All numbers denote percentages, and L∞ training was performed with the TRADES algorithm.

Model Clean Acc. UA2

WRN-40-2 + PixMix 95.1 15.00

WRN-28-10 + L∞ 4/255 89.3 37.3
WRN-28-10 + L∞ 4/255 + PixMix 91.4 45.1
WRN-28-10 + L∞ 8/255 84.3 41.4
WRN-28-10 + L∞ 8/255 + PixMix 87.1 47.4
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K HUMAN STUDY OF SEMANTIC PRESERVATION

Table 17: Results of user study. We run a user study on the 200 class subset of ImageNet presented
as part of ImageNet-R (Hendrycks et al., 2021), assessing the multiple-choice classification accuracy
of human raters, allowing raters to choose certain images as corrupted. We use 4 raters per label and
take a majority vote, finding high classification accuracy across all attacks.

Attack Name Correct Corrupted or Ambiguous

Clean 95.4 4.2

Elastic 92.0 2.0
Gabor 93.4 4.0
Glitch 80.2 16.0
JPEG 93.4 0.6
Kaleidescope 93.0 6.2
Pixel 92.6 1.8
Snow 90.0 3.2
Wood 91.4 1.8

Adversarial images average 91.2 4.5

We ran user studies to compare the difficulties of labeling the adversarial examples compared to the
clean examples. We observe that under our distribution of adversaries users experience a 4.2% drop
in the ability to classify. This highlights how overall humans are still able to classify over 90% of
the images, implying that the attacks have not lost the semantic information, and hence that models
still have room to grow before they match human-level performance on our benchmark.

In line with ethical review considerations, we include the following information about our human
study:

• How were participants recruited? We made use of the surgehq.ai platform to recruit all
participants.

• How were the participants compensated? Participants were paid at a rate of $0.05 per
label, with an average rating time of 4 seconds per image—ending at an average rate of
roughly $45 hour.

• Were participants given the ability to opt out? All submissions were voluntary.
• Were participants told of the purpose of their work? Participants were told that their

work was being used to ”validate machine learning model performance”.
• Was any data or personal information collected from the participants? No personal

data was collected from the participants.
• Was there any potential risks done to the participants? Although some ImageNet

classes are sometimes known to contain elicit or unwelcome content Prabhu (2019). Our
100-class subset of ImageNet purposefully excludes such classes, and as such participants
were not subject to any undue risks or personal harms.
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Figure 21: Interface of participants. We demonstrate the interface which was provided to the
participants of the study, involving the selection of correct classes from our 100-class subset of
ImageNet.

This work is used to validate machine learning model performance and your
participation is voluntary. You’re free to stop the task at any point in
time.
You’ll be shown an image. One of the labels is indeed present in the
image please select the correct one. If you’re unfamiliar with a label
take a second to search for it on google images. Please let us know if
this happens often.
The image may however be too corrupted in which case select that it is
too corrupted. Please avoid using corrupted label unless necessary.
Thanks!

Figure 22: Instructions given to the participants. Above is a list of the instructions which were
given to the participants in the human study.
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L CORRELATION OF Lp ROBUSTNESS AND ImageNet-UA
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Figure 23: Lp robustness correlates with UA2. Across our benchmark, for adversarially trained
models Lp robustness correlates with UA2 - however, several models trained without adversarial
training still improve on UA2.

M GRID SEARCH VS. GRADIENT-BASED SEARCH

Table 18: Comparing gradient-based search to grid-based search We compare the performance
of optimising with a randomised grid-based search using 1000 forward-passes per datapoint, finding
that our gradient-based methods perform a lot better than this compute-intensive baseline.

Optimisation Technique UA2

Randomized grid search 74.1
Gradient-based search (ours) 7.2
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N TRANSFER ATTACKS

Table 19 shows the transfer-attack performances across various source and target models based
on 1000 test samples. We observe that while the transfer attacks are not as effective as white-
box attacks, they consistently outperform baseline unoptimized attacks where the perturbations are
randomly initialized (Table 20).

Table 19: Transfer attack performance

Clean Acc. PGD UA2 JPEG Elastic Wood Glitch Kal. Pixel Snow Gabor

ResNet50 (source model) 75.2 0 13.2 0 22.2 30.8 10 4.3 4.8 3.1 30.4
ViT-small Patch16 ImageNet1K 78.5 73.1 59.99 75 62.7 69.9 46 48 62.8 55.5 60
ConvNeXt-V2-tiny ImageNet1K 82.1 74.8 67.66 77.1 69 75.9 54 60 73.6 65.2 66.5
Swin-small ImageNet1K +L∞ 4/255 71.1 70.6 50.39 70.9 56.7 65.8 34.8 10.7 59.3 48.4 56.5

ResNet50 75.2 67.9 43.19 70.1 53.1 57.7 30.1 5.4 53.3 38.1 37.7
ViT-small Patch16 ImageNet1K (source model) 78.5 0 6.51 0 8.2 12.7 0.5 4.7 2.1 0.8 23.1
ConvNeXt-V2-tiny ImageNet1K 82.1 75.7 67.3 78.6 68.5 72.8 56.4 59.9 70.1 65.1 67
Swin-small ImageNet1K + L∞ 4/255 71.1 70.5 50.11 70.9 57.1 65.1 35 10.8 59.5 48 54.5

ResNet50 75.2 67.8 42.06 68.3 51 55.7 31.7 5.8 51.7 32.1 40.2
ViT-small Patch16 ImageNet1K 78.5 74.7 57.31 75 60 69 42 46.8 57.2 50.2 58.3
ConvNeXt-V2-tiny ImageNet1K (source model) 82.1 0 12.15 0 23.2 22.3 7.4 3.5 6 0.6 34.2
Swin-small ImageNet1K + L∞ 4/255 71.1 71.2 50.1 71.2 56.1 65 37.8 10.7 59.1 45 55.9

ResNet50 75.2 64 36.95 61.8 42.5 57.8 15.6 5.4 45.3 29.2 38
ViT-small Patch16 ImageNet1K 78.5 66.9 53.3 70.6 51.4 68.2 23.8 47.1 58.4 44.2 62.7
ConvNeXt-V2-tiny ImageNet1K 82.1 75.5 65.26 75.7 64.7 74.5 46.1 58.2 72.3 63.6 67
Swin-small ImageNet1K + L∞ 4/255 (source model) 71.1 53.8 21.4 42 17.9 42.3 5.1 5.1 7.6 3.4 47.8

Table 20: Unoptimized attack performance

Clean Acc. PGD UA2 JPEG Elastic Wood Glitch Kal. Pixel Snow Gabor

ResNet50 75.2 74.1 56.44 74.3 62.8 55.7 55.8 6.3 74.1 74.8 47.7
ViT-small Patch16 ImageNet1K 78.5 78 69.19 78 70.2 70.2 65.4 47.7 77.3 78.6 66.1
ConvNeXt-V2-tiny ImageNet1K 82.1 82.2 74.74 82.2 75.2 74.4 69.7 60.7 81.5 81.4 72.8
Swin-small ImageNet1K + L∞ 4/255 71.1 71.3 58.19 71.6 62 63.4 58 10.2 70.9 71.7 57.7
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Figure 24: ImageNet UA2 performance under extra attacks in medium distortion
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