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Abstract
Deep neural networks (DNNs) have achieved
state-of-the-art performance across various appli-
cations. However, ensuring the reliability and
trustworthiness of DNNs requires enhanced inter-
pretability of model inputs and outputs. As an
effective means of Explainable Artificial Intelli-
gence (XAI) research, the interpretability of exist-
ing attribution algorithms varies depending on the
choice of reference point, the quality of adversar-
ial samples, or the applicability of gradient con-
straints in specific tasks. To thoroughly explore
the attribution integration paths, in this paper, in-
spired by the iterative generation of high-quality
samples in the diffusion model, we propose an
Iterative Search Attribution (ISA) method. To
enhance attribution accuracy, ISA distinguishes
the importance of samples during gradient ascent
and descent, while clipping the relatively unim-
portant features in the model. Specifically, we
introduce a scale parameter during the iterative
process to ensure the features in next iteration
are always more significant than those in current
iteration. Comprehensive experimental results
show that our method has superior interpretability
in image recognition tasks compared with state-
of-the-art baselines. Our code is available at:
https://github.com/LMBTough/ISA

1. Introduction
DNNs have achieved state-of-the-art performance in the
tasks of computer vision (Esteva et al., 2021; Jabbar et al.,
2018; Pathak et al., 2018), natural language processing (Col-
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lobert & Weston, 2008; Ozcan et al., 2021; Rajendran &
Topaloglu, 2020), and speech recognition (Pan et al., 2012;
Maas et al., 2017) and so on. Nevertheless, DNNs are
considered as black-box approach impeding human compre-
hension, which may lead to decision-making errors. Con-
cerning AI safety issue, it becomes essential to provide the
interpretability of these models. However, explaining the
intermediate processes of model inputs to outputs poses
challenges due to the complexity of nonlinear layers and
huge number of parameters in DNNs (Pan et al., 2021).

Gradient-based attribution methods are widely used in Ex-
plainable Artificial Intelligence (XAI) as they offer an ef-
fective way to explain deep learning models. Integrated
Gradient (IG) (Sundararajan et al., 2017) method proposes
the axiomatic theorem of attribution for the first time and
uses the reference input as an anchor on the attribution
integration path to calculate the importance of input fea-
tures. Adversarial Gradient Integration (AGI) method (Pan
et al., 2021) is proposed to search for the steepest gradient
ascent path of adversarial samples, thereby avoiding the
impact of invalid reference selection on attribution accuracy.
More Faithful and Accelerated Boundary-based Attribu-
tion (MFABA) method (Zhu et al., 2023) uses second-order
taylor gradient expansion and hessian approximation to ob-
tain more faithful and accelerated attribution results. To
summarize, the literature indicates that prior researches to
gradient-based attribution method often rely on baseline
points selected (Sundararajan et al., 2017; Wang et al., 2022),
the quality of constructed adversarial samples (Pan et al.,
2021), or specific gradient rules (Kapishnikov et al., 2021;
Zhu et al., 2023). The interpretability of existing attribution
algorithms varies due to limited exploration of attribution
integration paths, leading to less promising performance.

In this paper, we leverage a unique search space to find the
most faithful features of the deep learning model, address-
ing the challenge of parallel processing of model features.
Inspired by the diffusion model (Rogers, 2004), we believe
that the process of iteratively computing feature importance
using autoregressive properties would be more applicable
for the derivation of attribution results. We firstly use both
gradient ascent and gradient descent to investigate the im-
pact of variations in the original features on the outputs.
Additionally, we propose a theorem to distinguish feature
importance during feature search. The redundant features
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Figure 1. ISA’s attribution process (The first row of the image represents the search process of ISA, where each search step includes a
Destroy process and an Enhance process to find features that can disrupt/support the model’s decision. The second row shows the iterative
attribution process, where the blue squares represent regions that have already been attributed, and the orange squares represent regions
that are yet to be attributed)

are subsequently clipped by assigning lower attributions.
Moreover, we introduce a scale parameter during the iter-
ative process to ensure that the features in next iteration
are always more significant than those in current iteration,
enhancing the accuracy of feature importance estimation.
Figure 1 provides an illustration of our attribution process-
ing step. More details will be provided in Section. 4. The
key contributions are summarized as follows:

• We propose a novel iterative attribution method based
on gradient ascent and descent search strategies,
termed ISA, to improve attribution performance.

• We provide the theoretical proof and in-depth analysis
for the ISA method, and perform extensive experiments
and ablation study for the evaluation.

• We demonstrate that the ISA method can be easily im-
plemented to obtain SOTA performance in comparison
with other attribution methods. The relevant source
code is publicly released.

2. Related Work
Current popular methods for interpreting DNNs can be cat-
egorised into local approximation and gradient-based attri-
bution methods (Li et al., 2023). For local approximation
methods, mostly it can only interpret a single sample or a
small portion of samples locally, while for gradient-based
attribution methods, it tends to use gradient information to
obtain a global interpretation of each feature.

2.1. Local approximation methods

Local approximation methods are dedicated to finding an
approximately interpretable surrogate model given diverse
model images to compute gradient information and obtain

attribution results. The Local Interpretable Model-agnostic
Explanations (LIME) algorithm (Ribeiro et al., 2016) com-
bine approximation and weighted sampling methods to con-
struct a local model that gives the interpretable prediction
results of the model classifier. Since the LIME algorithm is
based on a locally interpretable model, it is less interpretable
in the global context and has the potential to produce er-
roneous results. Shapley Additive Explanations (SHAP)
algorithm (Lundberg & Lee, 2017) calculates the contribu-
tion of each feature to the prediction result by Shapley value
and ranks the importance, thus achieving both local and
global interpretation of the model. SHAP algorithm is able
to give an adequate explanation of the model prediction in
the global context compared to LIME. However, it has a
high computational cost due to the need to repeatedly cal-
culate Shapley values for different features. Deep Learning
Important Features (DeepLIFT) method (Shrikumar et al.,
2017) calculates the importance score of each input feature
to explain the prediction effect of the deep learning model.
Some other methods including the works in (Datta et al.,
2016) and (Fong & Vedaldi, 2017) are also used to obtain
the interpretable results for DNNs models.

2.2. Gradient-based attribution methods

In order to obtain reliable evaluations to cope with realistic
and highly sensitive deep learning tasks, Grad-CAM (Sel-
varaju et al., 2017) and Score-CAM (Wang et al., 2020) use
gradient information to visualize the contribution values of
image pixels to explain the model prediction process. Un-
fortunately, these two methods are more suitable for CNNs
and perform poorly in non-CNN cases (Pan et al., 2021).
Saliency Map (SM) method (Simonyan et al., 2013) can
obtain interpretable results of non-CNN models, but suf-
fers from gradient saturation and the attribution result may
be zero. Layer-wise Relevance Propagation (LRP) (Bach
et al., 2015) assigns activation values in the network to input
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features and calculates each neuron’s contribution to the
final output through backpropagation. However, LRP is
sensitive to small perturbations in the input, affecting the
interpretability when facing adversarial samples.

Integrated Gradients (IG) method (Sundararajan et al., 2017)
addresses the gradient deficiency of the SM algorithm. By
selecting the desired reference points as anchors on a linear
integration path, IG integrates the continuous gradients to
obtain the attribution of each input feature. However, for the
methods like SM, LRP or IG, they are usually considered to
be local since they operate based on gradients calculated at
specific anchors or input instances.

To explore better anchor selection than IG, Boundary-based
Integrated Gradient (BIG) method (Wang et al., 2022) in-
troduces boundary search to obtain more accurate attribu-
tion results. Although BIG attempts to use an adversarial
sample as anchors, its integration path is still linear. Mean-
while, BIG needs to calculate the gradient of each feature,
which increases the computational complexity to some ex-
tent. Adversarial Gradient Integration(AGI) method (Pan
et al., 2021) is committed to finding a steepest non-linear
ascending path from the adversarial example, which does
not need reference points on the path like IG. The accuracy
of AGI highly depends on the quality of adversarial samples,
and the effectiveness changes when the construct method of
adversarial samples is varying.

Considering the path noise in IG algorithm, the Guided In-
tegrated Gradients (GIG) method (Kapishnikov et al., 2021)
eliminates unnecessary noisy pixel attributions by constrain-
ing the network input and back-propagating the gradients
of the neurons so that only the pixel attributes associated
with the predicted category are retained. However, GIG
is limited to the image tasks and the quality of the input
features can largely affect the attribution accuracy, while the
computational complexity of the algorithm is also an issue.
Other variations of IG algorithm such as Fast-IG (Hesse
et al., 2021) and Expected Gradient (EG) (Erion et al., 2021)
have similar problems.

3. Preliminaries
3.1. Problem definition

Formally, to explain the explicit expression of the DNN
model f(·), we define the input feature x ∈ Rn where n
is the dimension of the input feature, and the output of the
model ŷ = f(x). The goal of attribution is to find A ∈ Rn

to interpret the importance of each feature in x. For easy
understanding, we refer to the basic idea of the Saliency
Map (Simonyan et al., 2013). If the deep neural network f
is continuously differentiable, the input feature importance
A of the model will be derived from the gradient information
∂f
∂x . It is important to highlight that this process involves a

direct one-to-one mapping. We define the situation where
features are unseen to the model as: We change the features
to 0, because after the features become 0, the first layer
parameters of the model will not be activated.

3.2. Sensitivity and implementation invariance axioms

As mentioned in (Sundararajan et al., 2017), an attribution
method satisfies Sensitivity if for every input and baseline
that differ in one feature but have different predictions then
the differing feature should be given a non-zero attribution.
For two neural networks with the same inputs and outputs,
the attribution is always the same if they satisfy Implemen-
tation Invariance.

4. Method
4.1. Attribution and Adversarial Attacks

To understand a model’s decision-making process, one ap-
proach is to identify the minimal feature variations that
either disrupt or enhance the current decision. The emphasis
on minimality is crucial as changes to a large number of
features could sever the semantic link to the original sam-
ple. This problem can be reformulated as finding the most
impactful feature variations under a constraint of limited
changes to disrupt or enhance the model’s decision.

In the context of attribution, the gradient ∂L(x)
∂x w.r.t. the

sample x is vital information (Zhu et al., 2023; Pan et al.,
2021). Gradients, representing local first-order changes,
help evaluate the impact of feature modifications on the
model’s decisions. However, relying solely on sample’s
gradient is insufficient (violating the Sensitivity axiom). The
product of the feature variation value and ∂L(x)

∂x needs to be
introduced (detailed proof in Appendix. A).

We introduce the notion of fairness in attribution:

Fairness: Each feature should be treated equitably in the
attribution process.

Consider a toy example with two one-dimensional features
x1 and x2, where the change ∆x1 = 1 and ∂L(x1)

∂x1
= 0.5,

resulting in a product of 0.5. For ∆x2 = 0.1 and ∂L(x2)
∂x2

=
0.49, the product is 0.49. Based on the attribution result, x1

appears more significant. However, x2, with a change value
of 0.1, would be more impactful if its change magnitude was
1, indicating an unfair treatment between x1 and x2. Thus,
ensuring Fairness across different feature dimensions during
sample variation and gradient computation is necessary.

Adversarial attacks aim to maximize the loss function with
minimal perturbations to the input sample, aligning with
the objective of attribution. The use of the sign function
in adversarial attacks to decouple feature variations from
model parameters (Goodfellow et al., 2014) resonates with
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our fairness concept, as it results in identical magnitudes
of |∆xi|. Notably, ∂L(xi)

∂xi
= 0 rarely occurs in attacks, and

even if it does, it signifies that the feature change has a
negligible impact on the decision-making process.
Theorem 4.1. For all ∆x = {∆x1,∆x2, . . . ,∆xT }, where
∆xi ∈ [−1, 0, 1], we have

sign
(
∂L(x)

∂x

)
· ∂L(x)

∂x
⩾ ∆x · ∂L(x)

∂x
(1)

Theorem 4.1 ensures that adversarial attacks seek the opti-
mal feature variations to alter the model’s decision-making
under Fairness concept, with sign(∂L(x)

∂x ) indicating the
most effective direction for feature variations.

4.2. Gradient ascent and gradient descent in attribution

We assume that the model input is x, then for the iterative
step t = 0, 1, ..., T , the model gradient ascent and descent
process can be expressed as

m = sign(
∂L(xt)

∂xt
)⊕ sign(xt) (2)

xt = xt−1 ± η · sign(∂L(xt−1)

∂xt−1
) ·m (3)

The objective of Eq. 2 is to determine the direction of at-
tribution exploration towards removing features. Here, ⊕
represents the XOR symbol. m ∈ Rn ensures that features
will be explored in directions that are unseen to the model by
a mask. As defined in Sec. 3.1, exploring features towards
0 signifies exploration in an unseen direction. It is worth
noting that, due to the sign function, the processes of gra-
dient ascent and gradient descent will completely explore
the entire feature space. {η, T} = {η1, η2, T1, T2}, which
value depends on whether gradient ascent or descent is per-
formed. {η1, T1} is step size and iterative step in gradient
ascent, {η2, T2} is step size and iterative step in gradient
descent.∂L(xt−1)

∂xt−1
is the derivative of the loss function L w.r.t.

the input xt. It is worth noting that in gradient ascent, ± is
a plus sign. Conversely, in gradient descent, ± is a negative
sign.

In this work, inspired by AGI (Pan et al., 2021), we design
the searching mechanism to identify the integration path
instead of the original linear path. We denote x0 as the
original input, the path can be represented as xt = x0 +∑t−1

k=0 △xk. In order to consider both the role of gradient
ascent and gradient descent in feature attribution, we list the
attribution steps below.

△xt = ±η · sign(∂L(xt)

∂xt
) ·m (4)

A =

T−1∑
t=0

△xt ·
∂L(xt)

∂xt
(5)

Here, + and − represent the operation of gradient ascent
and gradient descent, respectively. Our goal is to identify
the important features via attribution since attribution can
indicate the contribution of each feature to the loss change.
Correspondingly, the methods of changing loss include gra-
dient ascent and gradient descent, in which their direction
function sign are used in these two processes to update each
feature in a fair way. We get attribution Aa during gradient
ascent and Ad during gradient descent.

Since the difficulty of feature search corresponding to gra-
dient ascent and gradient descent is different, the value of
the loss function changed at the same number of iterations
has a variability. We define △La = L(xT1

) − L(x0) and
△Ld = L(xT2

) − L(x0). Here xT1
and xT2

represent the
samples in the final stages of gradient ascent and descent,
respectively. So we divide the attribution results in Eq. 5
by the total change in the loss function to make the gradi-
ent ascent and descent equally competitive. Thus, we get
Āa = Aa

△La
∈ [0, 1] and Ād = Ad

△Ld
∈ [0, 1] (detailed proof

in Appendix. A).

Theorem 4.2. Given a sample x0, where Ai
a and Aj

a corre-
spond to the attribution values of the i-th and j-th dimen-
sions after gradient ascent, respectively. If Ai

a ≥ Aj
a, then

the feature importance of the i-th dimension is greater than
that of the j-th dimension. This is because if altering a
feature increases the loss function (i.e., impairs the model’s
decision-making), then this feature is important and should
not be changed easily. The formula is expressed as:

L(x0 +∆x̄i) ≥ L(x0 +∆x̄j) s.t. Ai
a ≥ Aj

a (6)

Here △x̄i = [0, ...,
i

△xi, ..., 0], △x̄j = [0, ...,
j

△xj , ..., 0].
Similarly in gradient descent, the larger Ai

d represents the
weaker ability of the i-th dimension feature to enhance the
model (detailed proof in Appendix. B).

From Theorem 4.2, we can make two Conclusions:

1. During gradient ascent, features with larger attribution
values Aa are important.

2. During gradient descent, features with smaller attribu-
tion values Ad are important.

Discussion As stated in the Conclusion, the smaller attribu-
tion value in Āa is unimportant. Since the sign of ∆Ld is
negative, conclusion 2 is transformed into: During gradient
descent, the smaller attribution value in Ād is unimportant.

As Āa and Ād belong to the same dimensional scale, to
make a balance between gradient ascent and descent, we
combine them in the following equation (detailed proof in
Appendix. A):

Ā = Āa + Ād (7)
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Therefore, the smaller attribution value of Ā is unimportant
in our opinion.

4.3. Prerequisites of ISA

Inspired by diffusion model (Rogers, 2004), attribution can
also be converted into an auto-regression process. The final
attribution result can be obtained iteratively. We also per-
form iterative error analysis in the Appendix. C to prove
the necessity of iterative attribution.

Iterative Integrity Since the attribution values of all fea-
tures need to be obtained, the iterative process has to iterate
over all parameters. Suppose we have n features and each
time we attribute k features in x, the total number of itera-
tions is Γ =

⌈
n
k

⌉
,⌈·⌉ denoted as the rounding up function.

Feature removal priority The iterative process requires
clipping unimportant features first, because once the most
important features are removed, the remaining features will
not be enough to support current model decisions, and the
importance correlation of these features will become unclear
and cannot be further attributed. Therefore, removing unim-
portant features allows the model to maintain the current
decision and continue attribution. Features that are removed
first have relatively lower attribution values than those that
are removed later. In order to make the attribution results
quantifiable, we perform normalization in eq. 9 to ensure
that they are between 0 and 1.

āγ = mink(Āγ) (8)

āγ =
āγ −min(āγ)

max(āγ)−min(āγ)
(9)

We get a minimum k number of attribution values in Ā
as āγ , here γ represents the γ-th iteration. Such values
are corresponding to the removed features. Following the
principle that the early removal features are less important,
we need to make sure max(āγ) < min( ¯aγ+1). So that we
derive

āγ = āγ + γ (10)

For example, when γ = 0, ā0 ∈ (0, 1). When γ = 1,
ā1 ∈ (1, 2). This satisfies the conditions presented above.

4.4. Scaling factor of ISA

We observe that the best results in the previous iteration will
perform better than the worst results in the latter iteration.
Thus, we add a scaling factor in the iterations to enhance
the performance of the algorithm. The specific iterative
formulas of ISA are as follows

āγ = āγ · S + γ (11)

where S ∈ [1, 2) denotes the scale level of āγ . So we use
an example to explain Eq.11. It is obvious that when γ = 0,

ā0 ∈ (0, S). When γ = 1, ā1 ∈ (1, S+1). By analogy, our
assumptions are satisfied.

4.5. Axiomatic proof of ISA

Sensitivity During the iteration process, changes in gradient
ascent and descent are all captured by original input infor-
mation. It is also not retroactive because the feature values
in previous iterations are invariant in subsequent iterations.
Thus, the attribution result must be non-zero.

Implementation Invariance Since our algorithm follows
the chain rule of gradients, it satisfies the requirement of
Implementation Invariance in (Sundararajan et al., 2017).

5. Experiments
In our study, we orchestrate an array of experiments en-
compassing three models, namely Inception-v3 (Szegedy
et al., 2016), ResNet-50 (He et al., 2016), and VGG16 (Si-
monyan & Zisserman, 2014). The focal objective of these
designed experiments is to discern the relative efficacy of
seven distinct attribution methods, namely IG (Sundararajan
et al., 2017), FastIG (FIG) (Hesse et al., 2021), GuidedIG
(GIG) (Kapishnikov et al., 2021), BIG (Wang et al., 2022),
SaliencyMap (SM) (Simonyan et al., 2013), AGI (Pan et al.,
2021), and ISA (our work).

To statistically analyse and evaluate the performance char-
acteristics, we apply the Insertion and Deletion score (Pan
et al., 2021). We demonstrate that ISA has better perfor-
mance compared to other attribution methods.

5.1. Dataset

In the experiment, we employ the widely used Ima-
geNet (Deng et al., 2009) dataset. We randomly select
1000 samples from ImageNet dataset to evaluate the perfor-
mance of various attribution methods. The sample size is
determined based on the guidelines followed by FIA (Wang
et al., 2021), NAA (Zhang et al., 2022), and AGI (Pan et al.,
2021) experiments.

5.2. Evaluation Metrics

We follow the evaluation metrics used in AGI (Pan et al.,
2021), namely the Insertion and Deletion score. The In-
sertion score measures the extent of output change in the
model when pixels are inserted into the input. If we draw
a curve that represents the prediction values, the area un-
der the curve (AUC) is then defined as the insertion score.
Higher the insertion score, the better the quality of interpre-
tation. Conversely, the Deletion score quantifies the impact
on the model’s output when pixels are removed from the
input. The lower the deletion score, the better the quality
of interpretation. However, due to the adversarial nature
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of neural networks, the Deletion score may not always pro-
vide reliable indications (Petsiuk et al., 2018). Thus, the
Insertion score offers broader and more informative insights
compared to the Deletion score. In addition, we apply the
INFD score (Yeh et al., 2019) to analyze the faithfulness of
ISA to the underlying model. The lower the INFD score,
the more faithful it is to the underlying model.

In-depth analysis Due to the fact that the Insertion score
starts from a baseline of inserting crucial features, it mea-
sures how much the model output changes when features are
inserted into the input. Therefore, the Insertion score is an
accumulation of accuracy from the beginning. If these fea-
tures are indeed significant, the Insertion score will exhibit a
rapid increase. On the other hand, the Deletion score starts
from the original image and represents the accumulation of
accuracy of the remaining parts when features are deleted.
Thus, the accuracy calculated by the deletion score is based
on the feature deletion process. The model can deduce par-
tial information from the surrounding background, which
cannot be controlled for the removed features. At this time,
the undeleted features will interfere with the accuracy and
affect the effect of the interpretability evaluation. Therefore,
the Insertion score serves as a more representative indicator
of the performance of attribution algorithms.

5.3. Experiments Setting

We perform the experiments on a platform with a single
Nvidia RTX3090 GPU. Meanwhile, we configure the exper-
iment with several critical parameters. Specifically, we set
the step size to be 5000, ascent step T1 and descent step T2

to be 8 of each, learning rate to 0.002, and S to 1.1.

5.4. Result

Table 1. Insertion and Deletion sore
Model Method

Deletion
score (mean)

Deletion
score (AUC)

Insertion
score (mean)

Insertion
score (AUC)

Inception-v3

IG 0.0445 0.0426 0.3215 0.3208
FIG 0.0475 0.0456 0.2029 0.2017
GIG 0.0363 0.0343 0.3194 0.3187
BIG 0.0557 0.0538 0.4840 0.4840
SM 0.0649 0.0631 0.5331 0.5334
AGI 0.0676 0.0658 0.6249 0.6256
ISA 0.0542 0.0523 0.7335 0.7346

ResNet-50

IG 0.0302 0.0283 0.1467 0.1454
FIG 0.0342 0.0324 0.1078 0.1063
GIG 0.0210 0.0191 0.1463 0.1450
BIG 0.0485 0.0467 0.2911 0.2905
SM 0.0585 0.0567 0.3160 0.3154
AGI 0.0532 0.0515 0.5133 0.5136
ISA 0.0529 0.0512 0.6073 0.6065

VGG16

IG 0.0249 0.0232 0.0973 0.0959
FIG 0.0288 0.0270 0.0809 0.0793
GIG 0.0191 0.0173 0.1040 0.1025
BIG 0.0390 0.0372 0.2274 0.2266
SM 0.0434 0.0417 0.2710 0.2703
AGI 0.0459 0.0442 0.4303 0.4304
ISA 0.0440 0.0423 0.5085 0.5082

As shown in Table. 1 and Table. 2, the ISA method achieves

Table 2. INFD score
Method INFD Score

Inception-v3 ResNet-50 VGG16

IG 88.39 87.73 139.72
FIG 173.09 161.32 301.12
GIG 89.70 61.43 94.65
BIG 13.29 1.77 17.34
SM 26.79 5.13 19.09
AGI 4.98 0.84 3.36
ISA 4.82 0.83 0.56

the best attribution results with the highest Insertion score
and the lowest INFD score, which indicates that the ISA
method outperforms other attribution methods for the attri-
bution task. Specifically, the increase in Insertion score of
the ISA method compared to other attribution methods is rel-
atively large, with average increases of 0.3206 and 0.3538,
and 0.3074 on Inception-v3, ResNet-50, and VGG16, re-
spectively, indicating that the method has significantly im-
proved the attribution performance.

The comparison between ISA and GradCAM and the non-
CNN comparative experiments (ViT-B/16) (Dosovitskiy
et al., 2020) can be found in the Appendix. D and Ap-
pendix. E.

5.5. Attribution complexity analysis

Regarding the attribution efficiency (time cost), it is typical
to evaluate via the number of forward and back propagation
times, such as in AGI(Pan et al., 2021). Following this way,
we firstly consider the computational complexity of ISA is:⌈n

k

⌉
· (T1 + T2) (12)

where ⌈·⌉ denotes the rounding up function. In our experi-
ments, T1 = 8 and T2 = 8 represent the steps for gradient
ascent and gradient descent. For the total feature number n
(224× 224× 3), we will attribute as large as possible k fea-
tures at a time (in our submission, k = 5000). Eventually,⌈
n
k

⌉
is about 30. For the AGI method, the computational

complexity becomes k ·m, where k is the number of false
classes sampled, and m is the maximum number of itera-
tions. In (Pan et al., 2021), AGI takes k = 20,m = 20 on
Inception-v3 respectively.

Thus, our method demonstrates a huge performance im-
provement whilst attributing k = 5000 per attribution, al-
though the time takes slightly longer than AGI (AGI is
propagated 400 times and ISA is propagated 480 times).
Overall, we consider the computational complexity of our
algorithm to be reasonably comparable despite the iterative
attribution nature, which could be very close to the AGI
method. We posit that, despite the efficiency gap arising
from a slightly higher number of gradient propagations, the
performance breakthrough achieved by our algorithm is a
noteworthy outcome. This is also similar to why we prefer
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Figure 2. Attribution visualization for Scoreboard Image using ISA, AGI, and SM (Appendix. G for additional results)

to use diffusion models to generate high quality samples.
Although we know that diffusion models usually take longer
than non-diffusion models, we are actually willing to bear
these efficiency reductions to obtain higher performance.

5.6. Ablation Study

In order to validate the efficacy of the ISA method, a series
of ablation study is conducted using the Inception-v3 model.
These experiments aim to investigate the impact of various
parameters on the model’s performance. Specifically, we
explore the effects of combining parameters of ascent step
T1 and descent step T2, the effects of parameter step size,
the effects of the parameter learning rate, and the effects
of the parameter S. In the Appendix. F, we additionally
provide the ablation performance of ISA on VGG 16 and
ResNet-50 models.

5.6.1. THE EFFECTS OF ASCENT STEP T1 AND DESCENT
STEP T2

In this section, we compare the effects of two different
approaches, gradient ascent and gradient descent, on the
method’s attribution performance. To acieve this, we set the
following parameters: step size at 5000, ascent and descent
steps at 8, learning rate at 0.004, and S at 1.3. Three sets of
experiments are conducted: gradient descent only, gradient
ascent only, and simultaneous gradient descent and ascent.
The combinations of these parameters are summarized in Ta-

ble 3. In the gradient descent-only and gradient ascent-only

Table 3. Insertion sore and deletion score with different gradient
parameters

T1 T2 Insertion score Deletion score

Gradient descent only 0 8 0.7042 0.0715
Gradient ascent only 8 0 0.7055 0.0739
Gradient descent and ascent 8 8 0.7346 0.0523

experiments, we observe similar values for the Insertion
score and Deletion score. This similarity indicates that the
attribution effects of these two methods are comparable.
However, when gradient descent and ascent are performed
simultaneously, the experimental results exhibit a higher
Insertion score and a lower Deletion score. This suggests
that the parameter combination used in the simultaneous ap-
proach outperforms the comparison experiments in terms of
attribution effect. The higher the T1 and T2 values represent
the deeper the exploration of the input space. This effec-
tively demonstrates how altering these two parameters can
influence the exploration of the input space through gradient
ascent and descent, thereby impacting the performance of
attribution.

5.6.2. THE EFFECTS OF STEP SIZE k

In this experiment, we conduct a comparison of the effect
of different step sizes on the performance of ISA. Initially,
we set ascent step T1 and descent step T2 to 8, learning
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Figure 3. Insertion and Deletion score comparison of ISA

rate to 0.004, and S to 1.3. We tested step sizes of 1000,
3000, 5000, 7000, and 9000, respectively. The results are
presented in Figure 3.

From the figure, we can observe a decreasing trend in both
the Insertion score and Deletion score as the step size in-
creases. Specifically, when the step size is set to 1000, the
Insertion score reaches its maximum value across all exper-
iment results. Conversely, as the step size is increased to
9000, the Insertion score will be the lowest, accompanied
by an increase in the Deletion score. A profound analysis of
this phenomenon reveals that the parameter step size means
the number of unimportant attribution values to be removed
in each iteration. A larger step size means more attribution
values are removed in each iteration. We found that when
step size is 5000, the algorithm achieves the best results. We
believe that when step size is too low, the model may not
be able to fully capture the contribution of different attribu-
tion values to the model’s decision-making behavior. When
step size is too high, noise may be introduced, some of
which may be information irrelevant to the model, leading
to inaccuracy in model interpretation.

5.6.3. THE EFFECTS OF LEARNING RATE η

In this experiment, we conduct a comparison of the attri-
bution effects of ISA using different learning rates. The
parameters are set as follows: ascent step T1 and descent
step T2 at 8, step size at 5000, and S at 1.3. Subsequently,
we evaluate the performance of ISA at learning rates of
0.001, 0.002, 0.003, 0.004, and 0.005, respectively.

The results are presented in Figure 3. As depicted in the fig-
ure, we can see that ISA achieves the highest Insertion score
and competitively low Deletion score when the learning rate
is 0.002. Both the Insertion score and Deletion score decline
dramatically while the learning rates is increased. This is
because the learning rate affects the exploration process of
the input space by gradient ascent and gradient descent. For
gradient ascent, a too high learning rate may lead to over-
exploration of the input space, making the interpretation too
unstable. For gradient descent, a too high learning rate may

cause the interpretation results to be too sensitive.

5.6.4. THE EFFECTS OF SCALING FACTOR S

In this section, we conduct a performance comparison of
ISA using different scales. The experimental setup involves
setting ascent step T1 and descent step T2 to 8, step size to
5000, and learning rate to 0.04. We then test six different S:
1.0, 1.1, 1.2, 1.3, 1.4, and 1.5.

The results are depicted in Figure 3. From the figure, we
can see that both the Insertion score and Deletion score
exhibit similar trends as S increases. Therefore, we select
the parameter with the highest Insertion score as the opti-
mal choice. In this case, ISA achieve the best performance
with a scale of 1.3. We posit that if the value of the pa-
rameter is excessively large (approaching 2), the relative
importance of the attribution values removed in successive
iterations becomes more proximate, thereby exhibiting an
over-intermingling effect. Conversely, if the value is too
diminutive, signifying under-intermingling, a higher degree
of precision in estimation is necessitated. In such instances,
the attribution value removed in each iteration may not be as
optimal as the attribution value removed in the subsequent
iteration.

6. Conclusion
In this paper, we propose a novel attribution method, termed
Iterative Search Attribution (ISA), to better interpret deep
neural networks. Specifically, we consider that both gradient
ascent and gradient descent are important for the exploration
of feature importance. The relatively unimportant features
for the model are clipped to achieve more accurate attribu-
tion results. Comprehensive experimental results show that
our method has superior performance for image recognition
interpretability tasks compared to other state-of-the-art base-
lines. Given the limitation that we only explore the iterative
attribution value by removing features in equal amounts, we
will investigate the performance of our algorithm by varying
the removal of features in unequal amounts in future work.
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Impact Statement
This paper presents work whose goal is to advance the field
of explainable artificial intelligence, in particularly the pro-
posed method ISA significantly enhances the interpretability
of deep neural networks, promoting trust and transparency
in AI applications across critical fields such as healthcare
and finance. By providing more accurate attributions, ISA
aids in informative decision-making and advances research
in explainable AI. While there are many potential societal
consequences of our work, we understand it may be misused
to exploit AI system vulnerabilities, pose privacy concerns
by revealing sensitive data, and lead to an over-reliance on
interpretability. To mitigate these risks, controlled access
to models, robust data protection measures, and compre-
hensive user training are essential. These strategies ensure
that the benefits of ISA are maximized while minimizing
potential negative impacts, contributing to the responsible
advancement of AI technologies.
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A. Detailed proofs of the axiom of Sensitivity
Firstly, during the iterative process, the changes in the gradient along the integration path are captured by the original
input information. Furthermore, it is not retroactive since feature values in previous iterations are unchanged in subsequent
iterations. Therefore, the attribution result must be non-zero, which meets the definition of sensitivity. Here is the
mathematical proof.

We first use the first-order Taylor approximation to expand the loss function and combine the information for the path from
x0 to xT .

L (xt) = L (xt−1)±
∂L (xt−1)

∂xt−1
(xt − xt−1) + ε

T∑
t=1

L (xt) =

T−1∑
t=0

L (xt)±
T−1∑
t=0

∂L (xt)

∂xt
(xt+1 − xt)

A = L (xT )−L (x0) = ±
T−1∑
t=0

∂L (xt)

∂xt
(xt+1 − xt)

= ±
T−1∑
t=0

∂L (xt)

∂xt
· △xt = ±

∫
T

△xt ·
∂L (xt)

∂xt
dt

(13)

Here ϵ is omitted due to the principle of higher-order Taylor expansions. L represents the loss function. xt represents the
input of the t-th iteration. We can know that as long as the loss function of the model changes, the attribution result will
definitely be non-zero.

Since our ISA algorithm combines gradient ascent and gradient descent to explore the input space, the ISA attribution path
can be expanded as follows:

• For the input space exploration of gradient ascent, the attribution path of ISA is x0, x1,..., xT1
.

• For the input space exploration of gradient descent, the attribution path of ISA is x0, x1,..., xT2
.

For the gradient ascent process, we can get the following formula:

Aa = L (xT1
)− L (x0) =

T1−1∑
t=0

∂L (xt)

∂xt
(xt+1 − xt)

=

T1−1∑
t=0

∂L (xt)

∂xt
· △xt =

∫
T1

△xt ·
∂L (xt)

∂xt
dt

(14)

We define △La = L(xT1
)−L(x0) = c1. Here c1 is a constant with a positive sign. Thus, we get Āa = Aa

△La
. According to

Eq. 2, Āa can be expressed as:

Āa =
Aa

△La
=

∑T1−1
t=0

∂L(xt)
∂xt

(xt+1 − xt)

L(xT1)− L(x0)

=

∑T1−1
t=0

∂L(xt)
∂xt

· △xt

L(xT1)− L(x0)
=

1

c1

∫
T1

△xt ·
∂L (xt)

∂xt
dt = 1

(15)

Obviously the attribution result is normalized to 1, which satisfies sensitivity. It is worth noting that since c1 is a constant
with a positive sign, during gradient ascent, we can use L′ = L

c1
to replace the loss function L in Eq. 3, so sensitivity is also

satisfied at this time.
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For the gradient descent process, similarly, we can get the following formula:

Ad = L (xT2)− L (x0) = −
T2−1∑
t=0

∂L (xt)

∂xt
(xt+1 − xt)

= −
T2−1∑
t=0

∂L (xt)

∂xt
· △xt = −

∫
T2

△xt ·
∂L (xt)

∂xt
dt

(16)

We define △Ld = L(xT2
)− L(x0) = c2. Here c2 is a constant with a negative sign. Thus, we get Ād = Ad

△Ld
. According

to Eq. 4, Ād can be expressed as:

Ād =
Ad

△Ld
=

−
∑T2−1

t=0
∂L(xt)
∂xt

(xt+1 − xt)

L(xT2)− L(x0)

=

∑T2−1
t=0

∂L(xt)
∂xt

· △xt

L(x0)− L(xT2)
=

1

−c2

∫
T2

△xt ·
∂L (xt)

∂xt
dt = 1

(17)

Obviously the attribution result is normalized to 1, which satisfies sensitivity. It is worth noting that since c2 is a constant
with a negatove sign, during gradient descent, we can use L′′ = L

−c2
to replace the loss function L in Eq. 5, so sensitivity is

also satisfied at this time.

Finally, we make a balance between gradient ascent and descent by combining them in the following formula:

Ā = Āa + Ād =

∫
T1

△xt ·
∂L′ (xt)

∂xt
dt+

∫
T2

△xt ·
∂L′′ (xt)

∂xt
dt = 2 (18)

We get Ā
2 =

∫
T1

△xt· ∂L′(xt)
∂xt

dt+
∫
T2

△xt· ∂L′′(xt)
∂xt

dt

2 = 1, which also satisfies sensitivity.

B. Proof of Theorem 4.2
Assume xi and xj are the output features of x0 after one-step gradient ascent, where{△xi,△xj} ∈ Rn . Our Theorem 4.2
can be transformed into proving L(x0 +△x̄i) ≥ L(x0 +△x̄j) if Ai

a ≥ Aj
a. Due to the first-order Taylor expansion, we

can get:

L(x0 +△x̄i) = L(x0) +△xi ·
∂L(xi)

∂xi︸ ︷︷ ︸
Ai

a

+ o (19)

L(x0 +△x̄j) = L(x0) +△xj ·
∂L(xj)

∂xj︸ ︷︷ ︸
Aj

a

+ o (20)

If Ai
a ≥ Aj

a, obviously L(x0 +△x̄i) ≥ L(x0 +△x̄j). The case of multi-step gradient ascent here also satisfies Theorem
4.2.

Similarly, if Ai
d ≤ Aj

d, then L(x0+△x̄i) ≥ L(x0+△x̄j). Since this is the case of gradient descent, the larger loss function
L(x0 +△x̄i) means the lower the contribution to enhanced model decision-making.

C. Iterative error analysis

Assume that the feature matrix M = [x] =

[
x1

x2

]
is composed of block matrices M1 and M2. Here M1 = [x1],M2 = [x2].

At this time x1 ∈ Rn1 , x2 ∈ Rn2 , n1 + n2 = n. Then for feature variation △x =

[
△x1

△x2

]
, we have the feature matrix
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x′ = x+△x =

[
x1 +△x1

x2 +△x2

]
after gradient ascent. In order to obtain the attribution to x2, we can perform the following

calculation:

Ax2
= △x2 ·

∂L(

[
x1

x2

]
)

∂x2
(21)

We then can perform Taylor expansion to
∂L(

x1

x2

)

∂x2
:

Ax2
= △x2 ·

∂L(

[
0
x2

]
)

∂x2
+△x1

∂2L(

[
0
x2

]
)

∂x2∂x1
+ o

 = △x2 ·
∂L(

[
0
x2

]
)

∂x2
+△x2 △ x1 ·

∂2L(

[
0
x2

]
)

∂x2∂x1
+ o · △x2 (22)

If we think that the features in the block matrix M1 are unimportant and change them to 0, then the attribution to x2 is:

A′
x2

= △x2 ·
∂L(

[
0
x2

]
)

∂x2
(23)

Since o represents higher-order infinitesimal, when feature x1 is unseen to the model, the attribution error for x2 is
approximately:

Error = △x2 △ x1 ·
∂2L(

[
0
x2

]
)

∂x2∂x1
(24)

In the process of continuous iteration, the block matrix M2 can be continued to be divided into blocks, and the error
calculation during gradient descent is the same.

D. Comparative experiment on NLP

Table 4. Interpretable performance of different methods on LSTM model
Method IG FIG SG DeepLIFT SM BIG AGI ISA

INS 0.6825 0.4934 0.6541 0.6658 0.7646 0.747 0.6691 0.8316
DEL 0.5016 0.6657 0.5746 0.4932 0.5666 0.687 0.5923 0.5477

E. The comparison between ISA and GradCAM

Table 5. Comparison between ISA and GradCAM
Inception-v3 ResNet-50 VGG16

Method Insertion Deletion Insertion Deletion Insertion Deletion
GradCAM 0.5798 0.1594 0.3417 0.1231 0.4545 0.1092

ISA 0.7293 0.0745 0.6043 0.0619 0.5111 0.0504

F. Comparative experiment on ViT

G. Guidelines of hyperparameter selection
We further elaborate the detailed ablation experiments on the scale parameter, learning rate, feature removal step size, and
gradient ascent & descent steps as discussed in Section 5.6.
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Table 6. Comparative experiment on ViT
vit b 16

Method Insertion Deletion
Fast-IG 0.2682 0.0883

Saliency Map 0.3374 0.098
IG 0.3782 0.068

GIG 0.366 0.06306
AGI 0.5014 0.0849
BIG 0.4704 0.1132
ISA 0.6715 0.1153

In Section 5.6.4, we posit that the scale parameter adjusts the importance between the attribution values removed in adjacent
iterations. We found that, if the scale parameter is too large, it may result in the importance of the removed attribution
values too close, making it too difficult to distinguish the effect of each iteration. In the other way, if it is too low, it may
affect the removal result of attribution values being not precise, requiring more iterations to find the optimal solution. Thus,
we consider a moderate level of 0.3 is a value for the scale parameter, which can largely balance the performance of the
algorithm.

We want to emphasize that, even without the scaling parameter, our algorithm still achieves the best performance. This
can be seen in the third subgraph of Figure 3, where a Scale of 1 is equivalent to not applying any Scale operation. If we
initially work on new tasks, a Scale of 1 can be selected to obtain the attribution result, followed by the trials of other Scales
subsequently. Since calculating insertion and deletion scores for a small number of samples is efficient, we recommend such
an evaluation method on new tasks to validate the effectiveness of Scale.

In Section 5.6.3, we observed that performance drops sharply with an increase in the learning rate. Our reason is that a
high learning rate leads to an unstable exploration of the input space during gradient ascent and overly sensitive exploration
during gradient descent. In this way, we suggest a relatively low value of learning rate at 0.002 will achieve promising
performance.

In Section 5.6.2, we found that while the highest insertion score is achieved when the feature removal step size is 1000, it
also incurs the largest computational cost and the highest deletion score. When the step size is 9000, the insertion score is
the lowest, and the deletion score starts to rise. Therefore, we believe that both too large and too small step sizes fail to
achieve promising effects. An in-depth analysis reveals that if the step size is too low, the model may not fully capture the
contribution of different attribution values to the model’s decision-making behavior, requiring additional iterations. If the
step is too high, it may introduce noise unrelated to the model, leading to inaccurate model explanations. In practice, we set
the step size to a moderate level of 5000 to balance the trade-off between model efficiency and performance.

In Section 5.6.1, we argue that gradient ascent & descent steps are responsible for the depth of exploration in the input space.
Clearly, a higher number of exploration steps corresponds to higher performance. Additionally, we conducted ablation
studies on either performing gradient ascent or descent separately, or performing both in combination. The results showed
that combining both achieves best performance. Considering the efficiency of the algorithm, we set both gradient ascent &
descent steps to 8 in practice.
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H. The ablation study of ISA on ResNet 50 and VGG 16 models
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Figure 4. The ablation study of ISA on ResNet 50
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Figure 5. The ablation study of ISA on VGG 16
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I. Additional visualization
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Figure 6. Additional visualization for Scoreboard Image using ISA, AGI, and SM
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J. Pseudocode

Algorithm 1 Iterative Search Attribution
Input: Original input feature x0, parameter matrix W , step size η1, step size η2, ascent step T1, descent step T2, feature

removal number k, integration step Γ, loss funtion L, Scaling factor S, mask m
Output: A∗

1: Initial: A∗ = 0, Aa = 0, Ad = 0
2: for γ in range Γ do
3: for t = 0, 1, ..., T1 do
4: xt+1 = xt + η1 · sign(∂L(xt)

∂xt
)

5: Aa = Aa + η1 · sign(∂L(xt)
∂xt

) · ∂L(xt)
∂xt

6: end for
7: for t = 0, 1..., T2 do
8: xt+1 = xt − η2 · sign(∂L(xt)

∂xt
)

9: Ad = Ad − η2 · sign(∂L(xt)
∂xt

) · ∂L(xt)
∂xt

10: end for
11: ∆La = L (xT1

)− L (x0), ∆Ld = L (xT2
)− L (x0)

12: Āa = Aa

∆La
, Ād = Ad

∆Ld

13: Ā = Āa + Ād

14: āγ = mink(Āγ), remove the features corresponding to the k minimum attribution values
15: āγ =

āγ−min(āγ)
max(āγ)−min(āγ)

16: āγ = āγ · S + γ
17: A∗ = A∗ + āγ
18: end for
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