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ABSTRACT

Offline reinforcement learning (RL) has achieved significant progress in recent
years. However, most existing offline RL methods require a large amount of
training data to achieve reasonable performance and offer limited generalizability
in out-of-distribution (OOD) regions due to conservative data-related regulariza-
tions. This seriously hinders the usability of offline RL in solving many real-world
applications, where the available data are often limited. In this study, we intro-
duce a highly sample-efficient offline RL algorithm that enables state-stitching
in a compact latent space regulated by the fundamental time-reversal symmetry
(T-symmetry) of dynamical systems. Specifically, we introduce a T-symmetry
enforced inverse dynamics model (TS-IDM) to derive well-regulated latent state
representations that greatly facilitate OOD generalization. A guide-policy can then
be learned entirely in the latent space to output the next state that maximizes the
reward, bypassing the conservative action-level behavior constraints as adopted in
most offline RL methods. Finally, the optimized action can be easily extracted by
using the guide-policy’s output as the goal state in the learned TS-IDM. We call our
method Offline RL via T-symmetry Enforced Latent State-Stitching (TELS). Our
approach achieves amazing sample efficiency and OOD generalizability, signifi-
cantly outperforming existing offline RL methods in a wide range of challenging
small-sample tasks, even using as few as 1% of the data samples in D4RL datasets.

1 INTRODUCTION

Offline reinforcement learning (RL) has seen rapid progress in recent years. It bypasses the reliance
on environment interactions as in online RL, directly utilizing pre-collected offline data for policy
learning, thus being ideal for many real-world tasks that lack high-fidelity simulators or have
environment interaction restrictions (Levine et al., 2020; Zhan et al., 2022; 2025). However, offline
RL is also known to be prone to value overestimation, caused by extrapolation error when evaluating
out-of-distribution (OOD) samples and amplified through the bootstrapped update procedure in
RL (Kumar et al., 2019; Fujimoto et al., 2019).

In the past few years, quite a few offline RL methods have been proposed, which commonly adopt
the pessimism principle using strategies such as adding explicit or implicit policy constraints to
prevent the selection of OOD actions (Kumar et al., 2019; Fujimoto et al., 2019; Wu et al., 2019;
Fujimoto and Gu, 2021), penalizing value function on unseen samples (Kumar et al., 2020; Xu et al.,
2022b; Bai et al., 2021; Lyu et al., 2022), or adopting in-sample learning to implicit regularize policy
optimization (Kostrikov et al., 2022; Xu et al., 2023; Mao et al., 2024b). What’s in common with
these methods is the use of some kind of action-level constraints to avoid OOD exploitation. Although
this could stabilize offline value and policy learning, it inevitably leads to over-conservatism and
crippled OOD generalization performance (Li et al., 2022; Cheng et al., 2023). Most of the existing
offline RL methods only perform well when trained in sufficiently large amounts of offline data with
reasonable state-action space coverage (e.g., 1 million samples for simple D4RL tasks (Fu et al.,
2020)). This forms a stark contrast to the reality in most real-world scenarios, where the historical
data are often limited and scaling up data collection can be rather costly (Zhan et al., 2022; 2025;
Cheng et al., 2023). Although offline RL was initially proposed to address a broad spectrum of
practical tasks, its successful real-world deployments remain limited to date.
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Enhancing sample efficiency and OOD generalization capability is essential to making offline RL
widely applicable to real-world applications. This is particularly important for small dataset settings,
as most of the state-action space will become OOD regions. Some recent attempts have been made to
improve the generalization performance of offline RL, which mainly follows three directions. The first
direction builds upon the empirical observation that deep value functions interpolate well but struggle
to extrapolate, thus allowing exploitation on interpolated OOD actions to promote generalization (Li
et al., 2022). However, this method has a smoothness assumption on the offline dataset geometry and
only applies to continuous action space. The second class of methods avoids the conservative action-
level constraint and instead performs reward maximization on the state-space (Xu et al., 2022a; Park
et al., 2024), which allows exploitation of OOD actions as long as the corresponding state transitions
are reachable (also referred to as "state-stitching" (Xu et al., 2022a)). Although such methods offer
some promising generalization capabilities, they still require the state-action space to have reasonable
data coverage to enable valid state-stitching. The last and also most explored direction is to learn
compact and robust latent representations to enhance sample efficiency (Laskin et al., 2020; Agarwal
et al., 2021; Yang and Nachum, 2021; Weissenbacher et al., 2022; Cheng et al., 2023). Most of these
methods only focus on extracting statistical-level information from the data, using techniques such as
contrastive learning (Laskin et al., 2020; Agarwal et al., 2021; Yang and Nachum, 2021; Uehara et al.,
2021). Due to the lack of in-depth modeling of the underlying dynamics patterns inside the sequential
data, these methods still struggle to provide generalizable information beyond data distribution. Some
recent methods (Weissenbacher et al., 2022; Cheng et al., 2023; Zhan et al., 2025) propose to extract
fundamental symmetries of dynamics to facilitate policy learning, such as the time-reversal symmetry
(T-symmetry) (Cheng et al., 2023; Zhan et al., 2025), i.e., the underlying physical laws should not
change under the time-reversal transformation: t→ −t. If we can find and leverage such universally
held symmetries in the dataset, then it is possible to maximally promote OOD generalization without
being restrained by data distribution-related information. Although promising, these methods are
built upon existing action-level constraint offline RL backbone algorithms like CQL (Kumar et al.,
2020) or TD3+BC (Fujimoto and Gu, 2021), which still suffer from the over-conservatism issue.

In this paper, we find that enabling state-stitching in a coherent, fundamental symmetry-enforced
latent space can actually lead to a surprisingly strong sample-efficient offline RL algorithm. We refer
to our method as Offline RL via T-symmetry Enforced Latent State-Stitching (TELS). Specifically,
we introduce a T-symmetry enforced inverse dynamics model (TS-IDM) to not only learn well-
behaved latent representations that greatly alleviate the difficulty of OOD generalization, but can
also facilitate effective action inference. Within the learned latent state space, we can optimize
a T-symmetry regularized guide-policy to output the next latent state that maximizes the reward,
bypassing the conservative action-level behavioral regularization as adopted by most existing offline
RL algorithms. Lastly, the optimized action can be easily extracted by plugging the output of the
guide-policy as the goal state in the learned TS-IDM. The resulting algorithm achieves incredible
sample efficiency and OOD generalization capability, significantly outperforming existing offline RL
algorithms in a wide range of challenging reduced-size D4RL benchmark datasets, even using as few
as 1% of the original samples. Our method greatly pushes the performance limit of offline RL under
low data regimes, offering a new opportunity to tackle many previously unsolvable real-world tasks.

2 PRELIMINARIES

Offline RL. We consider the standard Markov decision process (MDP) setting (Sutton and Barto,
2018), which is represented as a tuple M = {S,A, r,P, ρ, γ}, and a dataset D, which consists of
trajectories τ = {s0, a0, s1, a1, ..., sT }. Here S and A denote the state and action spaces, r(s, a) is a
scalar reward function, P(s′|s, a) and ρ denote the transition dynamics and initial state distribution
respectively, and γ ∈ (0, 1) is a discount factor. Our goal is to learn a policy π(a|s) based on dataset
D by maximizing the expected return in the MDP: E[

∑∞
t=0 γ

t · r(st, at)].
Offline policy optimization in the state space. Instead of adopting conservative action-level
constraints for offline policy learning, Policy-guided Offline RL (POR) (Xu et al., 2022a) proposes an
alternative scheme, which decomposes the conventional reward-maximizing policy into a guide-policy
and an execute policy. The guide-policy only works in the state space to find the optimal next state
that maximizes the state-value function, and the execute-policy is learned as an inverse dynamics
model (Xu et al., 2022a) or a goal-conditioned imitative policy (Park et al., 2024). Such methods
only need to learn a state-only value function V using the IQL-style expectile regression (Kostrikov
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et al., 2022) or the sparse value learning objective as discussed in Xu et al. (2023). We present the
former as follows:

V = argmin
V

E(s,r,s′)∼D
[
Lτ2

(
r(s) + γV̄ (s′)− V (s)

)]
(1)

where Lτ2(x) = |τ − 1(x < 0)|x2 is the asymmetric expectile regression loss and V̄ denotes
the target value network. Based on the learned state-value function, we can learn a guide-policy
πg(s

′|s) to serve as a prophet by telling which state the agent should (high reward) and can (logical
generalization) go to, without being constrained to state-action transitions seen in the dataset. This
can be achieved by leveraging the advantage weighted regression (AWR) objective (Neumann and
Peters, 2008; Peng et al., 2019) to maximize the value while implicitly constraining πg to s → s′

transitions observed in the dataset (i.e., state-stitching):

πg = argmax
πg

E(s,r,s′)∼D

[
exp(α ·A(s, s′)) log πg(s′ | s)

]
(2)

where the advantage A(s, s′) = r + γV (s′)− V (s) serves as the behavior cloning weight, and α is
the temperature parameter to prioritize value maximization over state-wise imitation learning.

For the execute-policy πe, POR employs a supervised learning framework and trains πe by maximiz-
ing the likelihood of the actions given the states and next states: maxπe E(s,a,s′)∼D[log πe (a | s, s′)].
During evaluation phase, given the current state s, we can sample the optimized next state s′ from
πg(s

′|s), and can get final action simply as a∗ = πe (a | s, πg(s′|s)). Time-reversal symmetry
for generalizable offline RL. Recently, leveraging fundamental, universally held symmetries of
dynamics such as T-symmetry discovered in classical and quantum mechanics (Lamb and Roberts,
1998; Huh et al., 2020) has been shown to be a promising approach to enhance the generalization of
offline RL (Cheng et al., 2023; Zhan et al., 2025). Specifically, if we model the system dynamics
with measurements x as a set of non-linear first-order differential equations (ODEs) expressed as
dx
dt = F (x), a dynamical system is said to exhibit time-reversal symmetry if there is an invertible
transformation Γ that reverses the direction of time: i.e., dΓ(x)/dt = −F (Γ(x)). For the discrete-
time MDP setting, the T-symmetry can be extended as learning a pair of ODE forward F (s, a) → ṡ
and reverse dynamics G(s′, a) → −ṡ, and require them to satisfy F (s, a) = −G(s′, a) (Cheng et al.,
2023), where the time-derivative of state ṡ = ds

dt is approximated as s′ − s.

Based on this intuition, TSRL (Cheng et al., 2023) constructed an encoder-decoder structured T-
symmetry enforced dynamics model (TDM) for representation learning, which embeds a pair of latent
ODE forward and reverse dynamics to enforce T-symmetry. TSRL achieves impressive performance
under small-sample settings and its variant has been successfully used for real-world industrial
control (Zhan et al., 2025), but it still has some limitations. First, TSRL only uses the learned encoder
from TDM to derive the latent representations, without fully exploiting the rich dynamics-related
information in TDM for downstream policy learning. Second, it needs both the state and action as
inputs to encode latent representations, forcing TSRL to adopt a Q-function maximization method
(i.e., TD3+BC (Fujimoto and Gu, 2021)) for policy optimization, which inevitably requires adding
conservative action-level behavior cloning constraints to stabilize training. Moreover, involving
action as an input for representation learning is also prone to capturing the biased behaviors in the
data-generating policy, which could impede learning fundamental, distribution-agnostic dynamics
patterns in data. Please refer to Appendix A for a detailed comparison between TSRL and our method.

3 METHODOLOGY

We now present our proposed method, TELS, which comprises a T-symmetry enforced inverse
dynamics model (TS-IDM) integrated with an effective offline policy optimization procedure operated
in latent state space. TS-IDM overcomes multiple drawbacks of TDM in TSRL (Cheng et al., 2023),
which not only extracts the fundamental, T-symmetry preserving representations from the limited
data and facilitates OOD generalization, but can also be seamlessly used as an execute-policy for
optimal action extraction. The overall framework of TELS is illustrated in Figure 1.

3.1 T-SYMMETRY ENFORCED INVERSE DYNAMIC MODEL

If we look at the input and output of our proposed TS-IDM, it functions similarly to a typical
inverse dynamics model that takes current and next state (s, s′) as input and outputs the predicted
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Figure 1: Overview of our proposed T-symmetry Enforced Latent State-Stitching (TELS) framework.

action a. However, TS-IDM’s architecture is special in several aspects. In its interior, it comprises
a state encoder ϕs(s) = zs, a latent inverse dynamics model hinv(zs, zs′) = za, a pair of T-
symmetry enforced latent ODE forward and reverse dynamics models hfwd(zs, za) = żs and
hrvs(zs′ , za) = −żs, an action decoder ψa(za) = â, and an extra state decoder ψs(zs) = ŝ. In the
following, we describe their detailed design logic and learning objectives.

Encoding and decoding. As previously discussed, constructing an informative and well-structured
latent space is critical for sample-efficient offline policy optimization. To this end, we introduce
a state encoder ϕs(s) = zs to map the states s into their corresponding latent representations zs,
and also a state decoder ψs(zs) = s to reconstruct the original states from their latent embeddings,
ensuring that the learned latent representations remain faithful to the original state space and avoid
excessive distortion.

We then construct a latent inverse dynamics model hinv(zs, zs′) = za, which infers the latent action
za from the latent state transitions (zs, zs′). By inferring actions from state transitions, the learned
latent space implicitly encodes the underlying dynamics of the environment. Moreover, the inverse
dynamic model hinv can be integrated with a pair of latent ODE dynamic models to derive the
T-symmetry property of the system, which we will introduce in more detail shortly. Finally, to
ensure that the inferred actions are both meaningful and interpretable, we employ an action decoder
ψa(za) = â to map the latent action back to its original action space. We can thus formulate the
reconstruction loss for the states and actions as follows:

ℓrec(s, a, s
′) = ∥ψs(ϕs(s))− s∥22︸ ︷︷ ︸

reconstruction loss of states

+ ∥ψa(hinv(zs, zs′))− a∥22︸ ︷︷ ︸
reconstruction loss of actions

(3)

Latent ODE forward and reverse dynamics models. Drawing inspiration from previous research
that integrates physics-informed insights into dynamical systems modeling (Brunton et al., 2016;
Champion et al., 2019; Huh et al., 2020; Cheng et al., 2023), we embed a pair of latent ODE forward
and reverse dynamics hfwd(zs, za) = żs and hrvs(zs′ , za) = −żs to separately capture the forward
and reverse time evolution in the latent states. We are interested in modeling ODE systems because it
encourages learning parsimonious models helpful to uncover fundamental properties from the data
that can maximally promote generalization (Brunton et al., 2016; Champion et al., 2019). Note that
based on the chain rule, we can derive the supervision signal for the latent dynamics models with
żs =

dz
dt =

dzs
ds · dsdt = ∇szs · ṡ = ∇sϕs(s) · ṡ to enforce the ODE property. Therefore, we introduce

the following training losses for hfwd and hrvs:

ℓdyn(s, s
′) = ∥(∇szs)ṡ− żs∥22︸ ︷︷ ︸

latent ODE forward dynamics

+ ∥(∇s′zs′)(−ṡ)− (−żs)∥22︸ ︷︷ ︸
latent ODE reverse dynamics

=∥∇sϕs(s)ṡ− hfwd(zs, za)∥22 + ∥∇s′ϕs(s
′)(−ṡ)− hrvs(zs′ , za)∥22, (4)

where the latent action za is obtained from the latent inverse dynamics model hinv(zs, zs′).

ODE property enforcement on state decoder. Note that in ℓdyn(s, s
′), we actually implicitly

enforced the ODE property on the state encoder ϕs, the same should also apply to the state decoder
ψs to ensure compatibility with the T-symmetry formalism, i.e. the time-derivative of the state
encoder dϕs(s)

dt and decoder dψs(zs)
dt should behave in the same way as żs and ṡ. Similar to the
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previous treatment on the state encoder, as ṡ = dψs(zs)
dt = dψs(zs)

dzs
· dzsdt = ∇zsψs(zs) · żs, we can

use the following objective to enforce the ODE property for the state decoder ψs:

ℓode(s, s
′) = ∥∇zsψs(zs) · żs − ṡ∥22︸ ︷︷ ︸

enforce ODE of ψs on hfwd

+ ∥∇zs′ψs(zs′) · (−żs)− (−ṡ)∥22︸ ︷︷ ︸
enforce ODE of ψs on hrvs

=∥∇zsψs(zs) · hfwd(zs, za)− ṡ∥22 + ∥∇zs′ψs(zs′) · hrvs(zs′ , za) + ṡ∥22 (5)

Again, the latent action za is obtained from hinv(zs, zs′). Notably, the ODE property enforcement
in Eq. (5) is not considered in the T-symmetry enforced dynamics model (TDM) proposed by
TSRL (Cheng et al., 2023). In other words, TDM only enforces the ODE properties for encoders but
not on decoders. This could lead to inconsistency between the learned dynamics and the underlying
ODE structure, leading to inaccurate or misaligned ODE representations.

T-symmetry enforcement. To further regularize the learned latent representations, we incorporate
the extended version of T-symmetry (Cheng et al., 2023) by requiring hfwd(zs, za) = −hrvs(zs′ , za),
which corresponds to the following T-symmetry consistency loss:

ℓT-sym(zs, za) = ∥hfwd(zs, za) + hrvs(zs + hfwd(zs, za), za)∥22 (6)

where we use the fact that zs′ = zs + żs = zs + hfwd(zs, za) and hrvs(zs + hfwd(zs, za), za) =
−żs = −hfwd(zs, za) to further couple the learning process of hfwd and hrvs. Moreover, given a
latent state-action pair (zs, za), the above T-symmetry consistency loss can also serve as an evaluation
metric to assess their agreement with the learned TS-IDM. A large T-symmetry loss indicates that the
latent state-action representation (zs, za) induced by some (s, s′) may not satisfy the fundamental
dynamics pattern, therefore more likely to be a problematic or non-generalizable sample.

Overall learning objective. Finally, the complete training loss function of TS-IDM is as follows:

LTS-IDM =
∑

(s,a,s′)∈D

[
ℓrec + β · (ℓdyn + ℓode + ℓT-sym)

]
(s, a, s′) (7)

where β is a hyperparameter that balances extracting fundamental dynamics properties and ensuring
the interpretability of the learned representation. As we can observe from the final learning objective,
TS-IDM introduces a series of coupling designs among state encoder ϕs, decoder ψs, latent inverse
dynamics hinv, latent ODE forward and reverse dynamics hfwd and hrvs, forming a strongly
consistent, T-symmetry preserving ODE system to capture the fundamental dynamics properties in
the offline dataset.

3.2 LATENT SPACE OFFLINE POLICY OPTIMIZATION

Once we have a learned TS-IDM, we can extract three highly useful components from it to facilitate
sample-efficient downstream offline policy optimization, including 1) a robust state encoder ϕ(s)
that provides well-behaved and generalizable latent space ideal for state-stitching; 2) T-symmetry
consistency as an additional regularizer to prevent erroneous generalization when learning a guide-
policy in the latent state space; and 3) the TS-IDM itself can serve as an execute-policy as in POR (Xu
et al., 2022a) to extract optimized action given the learned guide-policy.

Latent state-value functions learning. Based on the state encoder ϕs(s) from the learned TS-
IDM, we can convert the entire offline policy optimization process into the latent state space, which
enjoys both the stable learning process and generalizability due to more compact and well-behaved
representations. Specifically, we can use a similar IQL-style expectile regression loss as in Eq. (1) to
learn a state-value function V (zs), but in the latent state space:

min
V

E(s,r,s′)∼D

[
Lτ2

(
r + γV̄ (ϕs(s

′))− V (ϕs(s))
) ]

(8)

T-symmetry regularized guide-policy optimization. A major benefit of learning within the T-
symmetry preserving latent space is that, as T-symmetry captures what is essential and invariant about
the dynamical system, thus it can generalize and provide reliable information even for OOD samples
beyond the offline dataset. This naturally favors learning a reward-maximizing guide-policy πg in
the latent space, which can enjoy more effective state-stitching. Moreover, different from POR (Xu
et al., 2022a), by leveraging the T-symmetry consistency term ℓT-sym(·) in Eq. (6) as an additional
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Algorithm 1 Offline RL via T-symmetry Enforced Latent State-Stitching (TELS).
Require: Offline dataset D.
1: / / TS-IDM learning
2: Learning the state encoder ϕs, state decoder ψs, action decoder ψa, latent inverse dynamics hinv , latent

forward and reverse dynamics hfwd and hrvs using the TS-IDM learning objective Eq. (7).
3: Initialize Vθ , Vθ′ , πσ

4: / / Policy training
5: for t = 1, · · · ,M training steps do
6: Sample transitions (s, r, s′) ∼ D and compute their representations (zs, zs′) using the state encoder ϕs.
7: Use (zs, r, zs′) to update the latent state-value function V using Eq.(8).
8: Use (zs, zs′) to update the latent guide-policy πg using Eq. (9) or (10).
9: end for

10: / / Evaluation
11: Get initial state s from environment
12: while not done do
13: Get optimized next state z∗s′ using guide-policy πg .
14: Extract action a using Eq. (11).
15: end while

regularizer, we can prevent πg from outputting problematic and non-generalizable latent next state,
thereby further enhancing logical state-wise OOD generalization.

In TELS, we provide two instantiations for guide-policy optimization, depending on the choice of
using deterministic policy πg(zs) or stochastic policy πg(zs′ |zs):

- Deterministic policy:

max
πg

E(s,s′)∼D

[
λαV (πg(zs))− η∥ψs(πg(zs))− s′∥22 − ℓT-sym (zs, hivs (zs, πg(zs)))

]
(9)

- Stochastic policy:

max
πg

E(s,s′)∼D

[
exp(α ·A(zs, zs′)) log πg(zs′ | zs)− ℓT-sym(zs, hivs(zs, πg(·|zs))

]
(10)

where zs = ϕs(s), zs′ = ϕs(s
′), and A(zs, zs′) = r + γV (zs′)− V (zs).

For the deterministic policy πg(zs), we extract the guide-policy by directly maximizing the latent state-
value function V weighted by a normalization term λα, together with two additional regularization
terms. The first regularizes the next state decoded from the guide-policy using state decoder ψs should
not deviate too much from the ground truth next state s′ in the dataset. The last term regularizes
guide-policy induced latent state-action pair (i.e., (zs, za) = (zs, hinv(zs, πg(zs)))) to comply with
the T-symmetry consistency specified in the learned TS-IDM.

For the stochastic guide-policy πg(zs′ |zs), we adopt the AWR-style (Neumann and Peters, 2008;
Peng et al., 2019) policy optimization objective as in Eq. (2), while also incorporating the T-symmetry
consistency regularization similar to the deterministic policy version. In our experiments, we find
that the deterministic version objective Eq. (9) works well for the MuJoCo locomotion tasks, while
the stochastic version Eq. (10) works better for more complex D4RL Antmaze tasks (Fu et al., 2020),
potentially due to more stochastic nature of the task environment.

Action inference. After learning the guide-policy πg , we can further use it to generate the optimized
action for control. To do this, we can simply use the optimized latent next state z∗s′ obtained from
guide-policy πg(zs) or πg(·|zs) as the goal state, and plug it into the learned latent inverse dynamics
model hinv(zs, zs′) in TS-IDM to replace zs′ . The final action can be extracted by decoding the
resulting latent action from hinv using the action decoder ψa :

a∗ = ψa (hinv (zs, πg(zs))) (11)

Note that there is no training process needed for this stage. We fully utilize the learned TS-IDM to
serve our purpose. We present the complete training and inference procedure of TELS in Algorithm 1.
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Table 1: Average normalized scores on reduced-size D4RL datasets. The scores are taken over the final 10
evaluations with 5 seeds.

Task Size (ratio) BC TD3+BC CQL IQL DOGE IDQL POR TSRL TELS

Hopper-m 10k (1%) 29.7±11.7 40.1±18.6 43.1±24.6 46.7±6.5 44.2 ± 10.2 44.2±12.1 46.4 ± 1.7 62.0±3.7 77.3 ± 10.7

Hopper-mr 10k (2.5%) 12.1±5.3 7.3±6.1 2.3±1.9 13.4±3.1 17.9 ± 4.5 21.7±7.0 17.4 ± 6.2 21.8±8.2 43.2 ± 3.5

Hopper-me 10k (0.5%) 27.8±10.7 17.8±7.9 29.9±4.5 34.3±8.7 50.5 ± 25.2 43.2±4.4 37.9 ± 6.1 50.9±8.6 100.9 ± 6.8

Halfcheetah-m 10k (1%) 26.4±7.3 16.4±10.2 35.8±3.8 29.9±0.12 36.2 ± 3.4 36.4±1.5 33.3±3.2 38.4±3.1 40.8 ± 0.6

Halfcheetah-mr 10k (5%) 14.3±7.8 17.9±9.5 8.1±9.4 22.7±6.4 23.4 ± 3.6 26.7±1.0 27.5±3.6 28.1±3.5 33.2 ± 1.0

Halfcheetah-me 10k (0.5%) 19.1±9.4 15.4±10.7 26.5±10.8 10.5±8.8 26.7 ± 6.6 38.8±1.9 34.7±2.6 39.9±21.1 40.7 ± 1.2

Walker2d-m 10k (1%) 15.8±14.1 7.4±13.1 18.8±18.8 22.5±3.8 45.1 ± 10.2 31.7±14.2 22.2±3.6 49.7±10.6 62.4 ± 5.3

Walker2d-mr 10k (3.3%) 1.4±1.9 5.7±5.8 8.5±2.19 10.7±11.9 13.5 ± 8.4 12.2±10.5 14.8±4.2 26.0±11.3 54.8 ± 6.0

Walker2d-me 10k (0.5%) 21.7±8.2 7.9±9.1 19.1±14.4 26.5±8.6 35.3 ± 11.6 21.8±14.5 20.1±8.6 46.4±17.4 87.4 ± 13.3

Antmaze-u 10k (1%) 44.7 ± 42.1 0.7 ± 1.2 0.1 ± 0.0 65.1 ± 19.4 56.3 ± 24.4 67.5 ±12.4 6.1 ± 7.3 76.1 ± 15.6 88.7 ± 7.7

Antmaze-u-d 10k (1%) 24.1 ± 22.2 16.27 ± 16.4 0.5 ± 0.1 34.6 ± 18.5 41.7 ± 18.9 55.1 ± 36.8 42.1 ± 14.2 52.2 ± 22.1 60.9 ± 16.9

Antmaze-m-d 100k (10%) 0.0 0.0 0.0 4.8 ± 5.9 0.0 9.0 ±3.4 0.0 0.0 47.2 ± 17.3

Antmaze-m-p 100k (10%) 0.0 0.0 0.0 12.5 ± 5.4 0.0 9.4 ± 14.7 0.0 0.0 62.9 ± 17.8

Antmaze-l-d 100k (10%) 0.0 0.0 0.0 3.6 ± 4.1 0.0 16.1 ± 8.4 0.0 0.0 39.8 ± 14.1

Antmaze-l-p 100k (10%) 0.0 0.0 0.0 3.5 ± 4.1 0.0 9.7 ±8.5 0.0 0.0 47.3 ± 13.1

Figure 2: Performance of TELS against baselines under different data sizes

4 EXPERIMENTS

In this section, we present the evaluation results of TELS on the D4RL MuJoCo-v2 and Antmaze-v1
tasks (Fu et al., 2020) against behavior cloning (BC), and existing offline RL methods: TD3+BC
(Fujimoto and Gu, 2021), CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2021), DOGE (Li et al.,
2022), POR (Xu et al., 2022a), diffusion-based method IDQL (Hansen-Estruch et al., 2023) and
TSRL (Cheng et al., 2023), which is the current SOTA method in small-sample settings. We also
conduct additional experiments to further evaluate the OOD generalizability of TELS on a challenging
task, as well as the effectiveness of the representations learned with TS-IDM in improving small-
sample performance. Performance comparison of the full datasets and implementation details can be
found in Appendix B and C.

4.1 PERFORMANCE COMPARISON ON SMALL-SAMPLE SETTING

In Table 1, we evaluate TELS against baseline methods on reduced-size D4RL datasets (5k∼100k
samples, about 0.5∼10% of their original sizes)1. These small-sample tasks are particularly challeng-
ing for offline RL methods, as the data only sparsely cover the state-action space and require strong
OOD generalization capability for algorithms to achieve reasonable performance.

As shown in Table 1, most baselines fail to learn reasonable policies under small datasets, especially
in the most challenging 100k Antmaze-medium/large datasets. For example, conventional offline
RL methods like TD3+BC and CQL perform poorly on small datasets, primarily due to their over-
conservative data-related policy constraints. Baselines that have generalization promotion designs,
such as DOGE and TSRL, perform slightly better but still fail miserably in the challenging Antmaze-
m/l tasks, as they still adopt conservative action-level constraints to stabilize policy learning. Recent
diffusion-based methods like IDQL, although perform well on large datasets, struggle to learn when
given limited data. By contrast, TELS dominates the chart and outperforms all other baselines in
all tasks, sometimes by a large margin. This is mainly attributed to the leverage of fundamental,

1We use the same reduced-size MuJoCo datasets from the TSRL paper, and create 100k randomly sub-
sampled Antmaze datasets by ourselves for additional experiments.
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Figure 3: Left: Illustration of the 100k Antmaze-m-d task with multiple deletion areas, where the red cross
denotes the start point, the yellow star denotes the goal locations, and the red shaded areas denote the data
deletion regions. Right: Visualization of the training dataset and policy rollout trajectories generated by trained
policies from various algorithms under varying deletion ratios.

Figure 4: Left: The performance of IQL and TD3+BC on 10k datasets with or without using the representation
from TS-IDM. Right: Performance of TELS with different representation models on 10k datasets, error bars
indicate the normalized scores over 5 random seeds.

data distribution-agnostic T-symmetry property for policy learning, which greatly improves the OOD
generalization performance. This is evident when observing the huge performance difference between
POR and TELS, as the former shares a similar policy optimization procedure with TELS but does not
use the T-symmetry enforced representation and policy regularization.

We also evaluate the performance of the algorithms across different dataset sizes in Figure 2. The
results show that TELS can robustly maintain reasonable performance even with only 5k samples,
surpassing all the other methods, while most baseline methods suffer from significant performance
drop when training samples are decreased.

4.2 INVESTIGATING THE OOD GENERALIZABILITY OF TELS

To further demonstrate the OOD generalizability of TELS, we construct a more challenging task
based on the reduced-size 100k Antmaze-m-d dataset, as illustrated in Figure 3. Specifically, we
randomly remove samples within 5 critical regions along the critical paths from the start to the goal
locations. This task requires extremely strong OOD generalization capability to solve, as the vital
information for the optimal trajectory is extremely scarce or completely OOD. We train IQL, POR,
and TELS on the remaining data and plot their policy rollouts over 20 episodes for performance
evaluation and behavior analyses (due to page limit, we also include results for IDQL, DOGE, TSRL
in Appendix B.2).
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Table 2: Ablation results on the design components of TS-IDM.

ϕ/ψ+ hinv + hfwd, hrvs ↑ + ℓode ↑ + ℓT-sym ↑
Hopper-me 17.2 ± 7.0 35.5 ± 7.3 61.4 ± 23.7 100.9 ± 6.8
Halfcheetah-me 29.7 ± 3.6 31.3 ± 1.1 31.2 ± 1.2 40.7 ± 1.2
Walker2d-me 24.5 ± 10.1 33.6 ± 9.2 58.5 ± 18.1 87.4 ± 13.3

Figure 5: Impact of ℓT-sym on policy optimization Figure 6: Performance of TELS with different η

As shown in Figure 3, IQL can only achieve some success when the deletion ratio is 0%, and POR
fails to reach the goal in all cases. By contrast, TELS consistently learns optimal policy even with
70% and 100% deletion rates. It can effectively utilize the limited information provided in the sparse
remaining data samples at the boundaries of the deletion areas for policy learning. These highlight
the extraordinary OOD generalization capability of TELS in extremely challenging low-data regimes.

4.3 EFFECTIVENESS OF THE LEARNED REPRESENTATIONS

To verify the effectiveness of the learned latent representation in TS-IDM, we use TS-IDM’s state
encoder ϕs(s) as the representation learning module on top of two conventional offline RL methods:
IQL and TD3+BC. Figure 4 (left) reveals significant performance improvements and variance reduc-
tion when IQL and TD3+BC are trained within the latent state space induced by ϕs(s), suggesting
that TS-IDM indeed learns compact and generalizable representations that benefit policy learning.

To further evaluate the quality of TS-IDM’s representations, in Figure 4 (right), we replace TS-IDM
in TELS with other representation learning methods, including autoencoder (“AE-rep”), variational
autoencoder (“VAE-rep”) (Kingma and Welling, 2014), and contrastive learning method SimCLR
(“Contras-rep”) (Chen et al., 2020). Among these, VAE performs the worst, as it is overly impacted
by the simplistic Gaussian prior distribution; policies with AE and contrastive representations obtain
some scores but still perform poorly, due to the lack of system dynamics-related information. In
contrast, TS-IDM provides an information-rich and well-behaved latent space, significantly enhancing
policy performance for small dataset settings.

4.4 ABLATION STUDY

Ablations on the design components of TS-IDM. To examine the impact of each component in
TS-IDM, we compare TELS with various variants of TS-IDM, starting with a vanilla latent inverse
dynamics model with encoder and decoders, denoted as “ ϕ/ψ+ hinv”, gradually adding latent
forward and reverse dynamics models “hfwd, hrvs”, ODE property enforcement “ℓode”, and eventually
the T-symmetry consistency loss “ℓT-sym”, resulting in the full TS-IDM. The results on 10k datasets
are presented in Table 2.

We observe that the naïve autoencoder-based inverse dynamics model fails to provide reasonable
representations. Incorporating latent dynamics models is helpful because some system dynamics-
related information is introduced, but the performance gain remains insufficient. Enforcing ODE
properties on decoders significantly enhances the reliability of the learned representations, particularly
in tasks like Walker2d-me. Lastly, enforcing T-symmetry consistency proves to be the strongest
performance improvement factor, which greatly enhances the quality of the learned representations
for downstream policy learning.
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Ablations on regularizer terms in policy optimization. We also conduct ablation experiments in
Figure 5 to validate the effectiveness of the T-symmetry consistency regularizer term ℓT-sym during
the guide-policy optimization process of TELS. The results demonstrate that incorporating this
term can effectively enhance performance while reducing variance, highlighting the importance of
utilizing T-symmetry consistency regularization to promote OOD generalization and learning stability.
Additionally, in Figure 6, we evaluate the hyperparameter robustness of TELS by training it with
various values of η = {1, 5, 10} to examine its sensitivity to the state-level behavioral constraint in
Eq. (9). The results show that TELS is robust to different η values, consistently delivering reliable
performance across various policy constraint settings.

5 RELATED WORK

Offline RL faces unique challenges in mitigating the risk of OOD exploitation. Evaluating value
functions in OOD regions often results in inaccurate estimates, which can lead to severe value
overestimation and misguiding policy learning. To mitigate this, most offline RL methods leverage
data-related constraints to stabilize the learning process. These include explicit behavior constraint
techniques that penalize action divergence (Wu et al., 2019; Kumar et al., 2019; Fujimoto and Gu,
2021), value regularization schemes to discourage policies from selecting OOD actions via modifying
Bellman update (Kumar et al., 2020; Xu et al., 2022b; Bai et al., 2021; Lyu et al., 2022) or introducing
uncertainty penalities (Wu et al., 2021; An et al., 2021; Bai et al., 2021), and in-sample learning
methods (Brandfonbrener et al., 2021; Kostrikov et al., 2022; Xu et al., 2023; Mao et al., 2024b),
which stabilize training by only using in-sample data for value and policy learning, avoiding OOD
samples. While these methods perform reasonably well on datasets with sufficient state-action
coverage, they often struggle in small-sample settings where exploiting OOD generalization is
vital for achieving good performance. Recently, leveraging expressive model architectures such as
Transformers and diffusion models (Chen et al., 2021; Wang et al., 2022; Ajay et al., 2022; Janner
et al., 2022; Hansen-Estruch et al., 2023; Mao et al., 2024a) have gained popularity in offline RL, due
to their strong capability to fit complex data distributions. However, these models are overly heavy
and require extensive amounts of data to learn, making them impractical for the small-sample setting.

6 CONCLUSION

In this paper, we propose a highly sample-efficient offline RL algorithm that learns optimized pol-
icy within the latent space regulated by the fundamental T-symmetry in the dynamical systems.
Specifically, we develop a T-symmetry enforced inverse dynamics model (TS-IDM) to construct a
well-behaved and generalizable latent space, effectively mitigating the challenges of OOD general-
ization. By learning a T-symmetry regularized guide-policy within this latent space, we can obtain
the reward-maximizing next state to serve as the goal state input in the learned TS-IDM for optimal
action extraction. Through extensive experiments, we show that TELS achieves surprisingly strong
OOD generalization capability and SOTA small-sample performance. Moreover, we show empirically
that TS-IDM can also function as a representation model to provide informative representations and
enhance the performance of existing methods under the small-sample setting. One potential limitation
of TELS is that strong ODE and T-symmetry property regularizations, although helpful for extracting
fundamental features, sometimes could limit the model’s expressive power (see Appendix B.3).
Future studies can explore improved designs to balance fundamental pattern extraction and model
expressivity perfectly.
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A ADDITIONAL DISCUSSION ON RELATED WORKS

In this section, we present a detailed discussion of the connections and differences between our
proposed method, TELS, and the existing approaches TSRL (Cheng et al., 2023) and POR (Xu et al.,
2022a).

Figure 7: Comparison of the architecture between TDM in TSRL and our proposed TS-IDM in TELS.

Connection and Differences with TSRL. As illustrated in Figure 7, both TSRL and TELS leverage
the T-symmetry consistency enforcement to construct the latent space. Specifically, in Figure 7 (a),
TSRL employs a T-symmetry-enforced dynamics model (TDM), which models system dynamics by
incorporating paired latent ODE forward and reverse dynamics to enforce T-symmetry. In contrast,
Figure 7 (b) illustrates our proposed T-symmetry-enforced inverse dynamics model (TS-IDM), which
integrates T-symmetry constraints into both forward and reverse dynamics while incorporating an
inverse dynamics model. We emphasize the main differences between TELS and TSRL as follows:

• Architecture: As presented in Figure 7 (a), TDM jointly encodes state-action pairs to form
the latent space, which may capture behavioral biases from the dataset (e.g., expert-specific
action patterns) and impede learning fundamental, distribution-agnostic dynamics patterns
in data. In contrast, Figure 7 (b) illustrates that TS-IDM overcomes these limitations by
adopting a state-only modeling approach, focusing on the underlying latent state variations.
Additionally, the only useful component of the learned TDM for downstream policy learning
is its encoder ϕ(s, a), wasting the dynamics-related information captured by the model. In
contrast, TS-IDM trains an inverse dynamics model within the T-symmetry-enforced latent
space, which can be reused as an execute-policy to extract optimal actions.

• Detailed Model Design: As shown in Figure 7 (a), TDM only enforces the ODE property
for its encoder but not the decoder, which could lead to inconsistency between the learned
dynamics and the underlying ODE structure, resulting in inaccurate or misaligned ODE rep-
resentations. To address this problem, we introduce the loss term ℓode in Eq. (5) specifically
to achieve this goal. This design is very important as it can greatly enhance the coupling
among the different elements in the model and results in a more stable learning process.

• Training Procedure: In TSRL, the TDM encoder and decoders must be pre-trained before
joint training on other components to avoid stability issues. In contrast, our proposed TS-
IDM does not require pre-training; all components can be learned jointly in a single stage.
Additionally, TDM requires adding L1-norm regularization to the parameters of the latent
forward and reverse dynamics models to stabilize the learning process. This is unnecessary
in TS-IDM (see Eq. 7), as the design of our proposed TS-IDM enables strongly coupled and
consistent relationships among all its internal components. The learning curves of TS-IDM
can be found in Appendix E.

• Policy Optimization: Since TDM requires both state and action inputs to derive latent
representations, it is constrained to Q-function maximization for policy optimization. Conse-
quently, TSRL adopts TD3+BC as its backbone for policy learning, which inherently suffers
from over-conservative action-level constraints, particularly in small dataset settings. In
contrast, TELS performs policy optimization entirely within the compact and generalizable
latent state space derived from TS-IDM, enabling state-level optimization that avoids the
limitations of action-space constraints.
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Table 3: Average normalized scores on full datasets D4RL datasets. The scores are taken over the final 10
evaluations with 5 seeds.

Task BC TD3+BC CQL IQL DOGE IDQL POR TSRL TELS (ours)

Hopper-m 52.9 59.3 58.5 66.3 98.6 ± 2.1 63.1 78.6 ± 7.2 86.7±8.7 94.3 ± 2.8

Hopper-mr 18.1 60.9 95.0 94.7 76.2±17.7 82.4 98.9 ± 2.1 78.7±28.1 99.5 ± 2.3

Hopper-me 52.5 98.0 105.4 91.5 102.7± 5.2 105.3 90.0 ± 12.1 95.9±18.4 105.4 ± 8.5

Halfcheetah-m 42.6 48.3 44.0 47.4 45.3± 0.6 49.7 48.8 ± 0.5 48.2 ±0.7 44.3 ± 0.4

Halfcheetah-mr 55.2 44.6 45.5 44.2 42.8 ±0.6 45.1 43.5±0.9 42.2±3.5 41.1 ± 0.1

Halfcheetah-me 55.2 90.7 91.6 86.7 78.7±8.4 94.4 94.7±2.2 92.0±1.6 87.1 ± 2.9

Walker2d-m 75.3 83.7 72.5 78.3 86.8 ± 0.8 80.2 81.1 ± 2.3 77.5 ±4.5 81.3± 5.1

Walker2d-mr 26.0 81.8 77.2 73.9 87.3 ± 2.3 79.8 76.6 ± 6.9 66.1±12.0 86.0 ± 3.3

Walker2d-me 107.5 110.1 108.8 109.6 110.4±1.5 111.6 109.1 ± 0.7 109.8±3.12 110.7 ± 1.4

Antmaze-u 65.0 78.6 84.8 85.5 97.0 ± 1.8 93.8 90.6 ± 7.1 81.4 ± 19.2 94.5 ± 10.3

Antmaze-u-d 45.6 71.4 43.4 66.7 63.5 ± 9.3 62.0 71.3 ± 12.1 76.5 ± 29.7 79.7 ± 15.3

Antmaze-m-d 0.0 0.0 54.0±11.7 74.6±3.2 77.6±6.1 86.6 79.2±3.1 0.0 82.4 ± 4.5

Antmaze-m-p 0.0 0.0 65.2±4.8 70.4±5.3 80.6±6.5 83.5 84.6 ±5.6 0.0 86.7 ± 5.7

Antmaze-l-d 0.0 0.0 31.6±9.5 45.6±7.6 36.4 ±9.1 56.4 73.4 ±8.5 0.0 41.7 ± 14.2

Antmaze-l-p 0.0 0.0 18.8±15.3 43.5±4.5 48.2±8.1 57.0 58.0 ± 12.4 0.0 60.7 ± 13.3

Connection and differences with POR. As discussed in Section 2, while both POR and TELS
share similarities in utilizing a state-stitching approach in state space for policy optimization, they
exhibit the following fundamental differences:

• State-Space vs. Latent-Space Optimization: POR relies on policy optimization in the
original state space, which inherently requires sufficient state-action coverage for valid
state-stitching. In contrast, TELS mitigates this limitation by constructing a compact and
generalizable latent space via TS-IDM.

• Unregularized T-Symmetry vs. T-Symmetry Regularized Policy Optimization: POR
optimizes the guide-policy solely through an AWR formulation (Neumann and Peters, 2008;
Peng et al., 2019), constraining πg to stay close to the dataset via state-stitching (Eq. 2), but
lacks additional regularization to ensure generalizable state transitions. In contrast, TELS
enforces an additional T-symmetry consistency regularization ℓT-sym, which plays a critical
role in preventing πg from outputting problematic and non-generalizable latent next states,
thereby enhancing its OOD generalizability.

B ADDITIONAL RESULTS

B.1 EVALUATION ON THE FULL DATASETS

We also evaluate the performance of TELS on the original full datasets of D4RL tasks, and the results
are presented in Table 3. Our proposed method achieves comparable or better performance than
existing offline RL methods. Note that although TSRL also adopts a similar T-symmetry regularized
representation learning scheme as ours, it performs poorly in Antmaze medium and large datasets.
This is primarily due to its use of the conservative TD3+BC backbone for policy optimization, which
also behaves similarly in these tasks.

Moreover, we notice that with larger data size and broader state-action space coverage, the strong
T-symmetry regularization in the TS-IDM can be properly relaxed, as sufficient data samples can be
used to learn the model reasonably well. Therefore, we can trade off some regularization to promote
model expressiveness (i.e., lower model learning loss). Specifically, for Antmaze tasks with the full
dataset, we set the regularization hyperparameter β = 0.01 to train the TS-IDM. In Appendix B.3,
we provide additional ablation experiments on the influence of the hyperparameter β.
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Figure 8: Left: Illustration of the 100k Antmaze-m-d task with multiple deletion areas, where the red cross
denotes the start point, the yellow star denotes the goal locations, and the red shaded areas denote the data
deletion regions. Right: Visualization of the training dataset and policy rollout trajectories generated by trained
policies from various algorithms under varying deletion ratios.

B.2 ADDITIONAL OOD GENERALIZABILITY VALIDATION EXPERIMENTS

We further evaluate the generalization capabilities of DOGE (Li et al., 2022), IDQL (Hansen-Estruch
et al., 2023), and TSRL (Cheng et al., 2023) under the variation deletion AntMaze setting. Specifically,
we first train these methods on the remaining data after deletion and then analyze their behaviors by
visualizing rollouts over 20 evaluation episodes.

As shown in Figure 8, only IDQL occasionally successfully reaches the goal when no data is deleted
(0% deletion), whereas both DOGE and TSRL fail in all cases. As the deletion ratio increases to
70% and 100%, none of the three methods can learn effective policies. These results demonstrate
the challenges within this setting, which demands a more compact and expressive latent space and a
highly generalizable policy capable of solving the task with severely limited and extremely sparse
data. Although TSRL incorporates TDM to capture system dynamics, the available data remains
insufficient for its action-constraint-based approach to derive a reasonable policy.

B.3 ADDITIONAL ABLATION EXPERIMENTS

Impact of T-symmetry regularization on TS-IDM. To investigate the impact of T-symmetry
regularization strength controlled by the hyperparameter β in Eq. (7), we conduct additional ablation
experiments by varying the value of β to assess how T-symmetry regularization influences the
representation learning quality and downstream policy’s performance. Specifically, we train TS-
IDM on reduced-size 10k D4RL MuJoCo datasets with β = {0.1, 1, 10}, representing different
T-symmetry regularization strengths. The learning curves of TS-IDM’s overall learning loss “LTS-IDM”
in Eq. (7) are presented in Figure 9. The final policy learning performances with different TS-IDM
models are presented in Table 4.

From Figure 9, we observe that choosing a proper β value impacts the learning quality of TS-IDM.
A large β (e.g., β = 10) could impose overly strong regularization and hurt model expressiveness,
which is reflected in the high learning loss at convergence. However, when the regularization strength
is lowered, maintaining a proper scale of β is important to ensure both the quality and generalizability
of the learned representations. As we can see in Figure 9, in the Hopper and Walker2d tasks, choosing
β = 1 provides the lowest “LTS-IDM” loss; whereas in the Halfcheetah task, “LTS-IDM” is the lowest
when choosing β = 0.1. If we check the final policy’s performance under different TS-IDMs in
Table 4, we can see a clear correlation with what we have observed in Figure 9. TELS achieves the
highest score on Hopper and Walker2d tasks when β = 1, but the scores are higher for Halfcheetah
tasks when β = 0.1. This matches exactly with the learning performance of TS-IDM under different
β values. The strong correlation between TS-IDM’s learning performance and the final policy’s
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Figure 9: The learning curves for training TS-IDM on 10k dataset with different β hyperparameter.

Table 4: Performance of TELS on 10k D4RL MuJoCo datasets when using TS-IDM with different β hyperpa-
rameters.

β = 10 β = 1 β = 0.1

Hopper-m 77.3 ± 5.4 77.3 ± 10.7 61.4 ± 5.6

Hopper-mr 15.3 ± 6.6 43.2 ± 3.5 19.7 ±3.4

Hopper-me 37.6 ± 17.9 100.9 ± 6.8 64.7 ± 3.3

Halfcheetah-m 32.9 ± 2.3 40.8 ± 0.6 41.2 ± 1.1

Halfcheetah-mr 8.6 ± 1.8 33.2 ± 1.0 34.0 ± 2.2

Halfcheetah-me 7.5 ± 2.2 40.7 ±1.2 39.5 ± 2.1

Walker2d-m 37.2 ± 7.9 62.4 ± 5.3 54.6 ± 8.2

Walker2d-mr 17.1±2.9 54.8 ± 6.0 39.2 ± 8.6

Walker2d-me 20.4 ± 10.4 87.4 ± 13.3 44.7 ± 9.8

performance of TELS shows that we can select the best β hyperparameter values by simply looking
at TS-IDM’s training loss and using the one that provides the lowest training loss. This avoids the
need to perform potentially unsafe online policy evaluations or unstable offline policy evaluations,
which is favorable in real-world deployments.

Impact of components in TS-IDM for stochastic policy optimization. To validate the efficacy of
the T-symmetry regularizer ℓT-sym in Eq. (10), we conduct ablation studies on 100k-sample Antmaze
tasks. As evaluation results presented in Table 5, the naïve autoencoder-based inverse dynamics
model “ϕ/ψ + hinv” fails to form a reasonable latent space, yielding 0 average normalized scores
across all Antmaze environments. The introduction of latent dynamics models “hfwd” and “hrvs”
provides marginal improvements by capturing partial system dynamics yet remains insufficient for
effective policy learning. Notably, enforcing ODE properties on decoders and utilizing T-symmetry
consistency proves to be the strongest performance improvement factor, which substantially enhances
representation reliability for the downstream guide-policy optimization process.

Impact of T-symmetry regularizer term in stochastic policy optimization. As shown in Figure 10
(left), we conduct ablation experiments to evaluate the impact of incorporating the T-symmetry
consistency regularization term ℓT-sym, during the guide-policy optimization process of TELS. The
results demonstrate that the regularization term plays a critical role in ensuring the learned policy
respects the underlying physical symmetries of the system, which becomes especially crucial in
environments with limited data coverage. By penalizing deviations from T-symmetry, the guide-policy
is encouraged to generate state transitions that are consistent with the system’s dynamics, even in
OOD regions.

Effectiveness of learned representations for stochastic policy optimization. As shown in Fig-
ure 10 (right), we conduct ablation studies to assess TELS’s performance with various representation
learning models. The results reveal that all baseline models fail to construct informative latent spaces
as the task becomes more complex and the dataset expands. In contrast, TS-IDM uniquely learns a
well-structured representation that preserves system dynamics. This empirical evidence emphasizes
the importance of learning compact and generalizable representations for effective policy optimization
in complex environments with sparse data distributions.
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Figure 10: Left: Impact of ℓT-sym on policy optimization. Right: Performance of TELS with different representa-
tion models on 10k datasets, error bars indicate the normalized scores over 5 random seeds.

Table 5: Ablations on the components of TS-IDM in Antmaze tasks.

ϕ/ψ+ hinv + hfwd, hrvs ↑ + ℓode ↑ + ℓT-sym ↑
Antmaze-m-d 0 23.6 ± 18.4 34.1 ± 15.7 47.2 ± 17.3
Antmaze-m-p 0 30.4 ± 9.3 48.7 ± 13.3 62.9 ± 17.8
Antmaze-l-d 0 14.4 ± 5.6 20.1 ± 8.9 39.8 ± 14.1
Antmaze-l-p 0 7.8 ± 3.4 22.6 ± 16.7 47.3 ± 13.1

C IMPLEMENTATION DETAILS

C.1 IMPLEMENTATION DETAILS FOR TS-IDM

• Network Structure. For all MuJoCo locomotion and Antmaze tasks, we deployed 3-layer
feed-forward neural networks for the state encoder ϕs, latent inverse dynamics model hinv ,
forward and reverse dynamics models hfwd and hrvs, and decoder models ψs and ψa for the
latent states and actions. The activation function is ReLU and uses Adam optimizer to update
the parameters. We present the hyperparameters details of training TS-IDM in Table 6,
including the details of the structure we have implemented as well as the hyperparameters
we used during the training process.

• ODE Property Enforcement on ϕs and ψs. We adopt a similar approach to TSRL (Cheng
et al., 2023) to train the ODE enforced forward and reverse dynamic models. Specifically,
we compute the time-derivative of the state encoder ϕs(s) by calculating its jacobian matrix
through vmap() function in Functorch 2. This allows us to derive the supervision values
dϕs(s)
ds · ṡ and dϕs(s

′)
ds′ · (−ṡ) for the forward dynamics model and reverse dynamics model

respectively as in Eq. (4). This approach implicitly enforces the ODE property on the state
encoder ϕs as the encoder is required to produce state representations that satisfy the ODE
constraints. Unlike TSRL, which enforces ODE properties only on the encoders and not
on the decoders, our method further regularizes the state decoder ψs. Specifically, ψs is
trained to decode the predicted latent state variables generated by hfwd(zs, za) = żs and
hrvs(zs′ , za) = −żs ensuring that it also satisfies the ODE constraints in Eq. (5). To achieve
this, we apply the same approach to compute dψs(zs)

dt and train the state decoder accordingly.

C.2 IMPLEMENTATION DETAILS FOR T-SYMMETRY REGULARIZED POLICY OPTIMIZATION

• Network Structure. For all MuJoCo locomotion and Antmaze tasks, we deployed 2-
layer feed-forward neural networks for the guide-policy πg and the value function V . The
activation function is ReLU and uses Adam optimizer to update the parameters. We list the
parameter details in Table 7.

• Hyperparameters for Policy Optimization. Under both small-sample and full datasets
settings, we employ a deterministic policy update strategy for MuJoCo locomotion tasks,
as defined in Eq. (9), with learning rates of 1e-4 for both value and policy functions. The
normalization term λ is computed as λα = α/[

∑
si
|V (ϕs(si))|/N ], where α controls

the trade-off between value maximization and policy regularization and N denotes the

2https://pytorch.org/functorch/stable/functorch.html
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number of samples in the training batch. For Antmaze tasks, we utilize a stochastic policy
optimization strategy, as outlined in Eq. (10), with learning rates of 1e-3 for value and policy
functions.
Full dataset setting: We set (τ, α, η) = (0.7, 0.01, 10) for all MuJoCo locomotion tasks
and (τ, α) = (0.9, 10) for all Antmaze tasks.
Small-sample setting: For Halfcheetah and Walker2d tasks, we set (τ, α, η) = (0.5, 0.01, 5)
and incorporate policy dropout to mitigate overfitting. These tasks share identical state
and action dimensions (17 states and 6 actions), enabling the use of the same parameter
set for guide-policy training. In contrast, Hopper tasks with a smaller state-action space
(11 states and 3 actions) are comparatively simpler given the same amount of training data
(e.g., 10k samples). Consequently, we adopt a more aggressive learning strategy for Hopper,
setting (τ, α, η) = (0.7, 0.1, 10) to prioritize value maximization. For Antmaze tasks, we
use an identical set of parameters (τ, α) = (0.9, 10) as in the full dataset setting to train the
guide-policy.

Training resources. To train a TS-IDM, we utilize one NVIDIA GeForce RTX 4090 with an AMD
Ryzen 9 7950X 16-Core Processor and 16GB of memory for approximately 30 minutes, running on
Ubuntu 22.04.2 LTS 64-bit. We employ the same resource configurations for approximately 6 hours
for the guide-policy training.

Table 6: Hyperparameters of TS-IDM.

Hyperparameters Value

State encoder hidden units 512× 256
State encoder activation function ReLU
Latent forward model hidden units 256× 256
Latent forward model activation function ReLU
Latent reverse model hidden units 256× 256
Latent reverse model activation function ReLU

TS-IDM latent inverse model hidden units 1024× 1024
Architecture Latent inverse model activation function ReLU

Latent inverse model dropout True
Latent inverse model dropout rate 0.1
State decoder hidden units 256× 512
State decoder activation function ReLU
Action decoder hidden units 512× 512
Action decoder activation function ReLU

Optimizer type Adam
β 1 (locomotion tasks); 0.1 (antmaze tasks)
Weight of ℓrec 1
Learning rate 3e-4

Hyperparameters Batch size 256
Training epoch 1000
State normalize True
Weight decay 0 (locomotion tasks); 1e-5 (antmaze tasks and full dataset setting)

Table 7: Structure and training parameters of guide-policy optimization

Hyperparameters Value

Value network hidden units 1024× 1024
Guide-policy Value network activation function ReLU

structure Policy network hidden units 1024× 1024
Policy network hidden units ReLU

Optimizer type Adam
Training Target Value network moving average 0.05

Perparameters Batch size 256
Training steps 100000
State normalize True
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D DETAILED EXPERIMENT SETUPS

Reduced-size dataset generation. To create reasonable reduced-size D4RL datasets for a fair
comparison, we use the identical small-sample as in TSRL paper (Cheng et al., 2023) for the
locomotion tasks training. For Antmaze tasks, we adopt a similar approach by randomly sub-
sampling trajectories from the original dataset to construct smaller training datasets. Specifically,
for the “Antmaze-umaze” tasks, we randomly sample 10k data points for training. However, for the
“Antmaze-medium” and “Antmaze-large” tasks, we use larger datasets to account for the significantly
larger map scales.

The rationale behind this adjustment is that the “medium” and “large” environments are significantly
more expansive than the “umaze” environment. Sampling only 10k data points would likely result
in trajectories that lack the fundamental information necessary to describe the task. As a result, we
relax the small-sample constraints for these environments to ensure that the reduced datasets at least
contain enough successful trajectories for effective training.

Experiment setups for various representation learning. To assess the effectiveness of the repre-
sentations learned by TS-IDM, we integrate them as the representation model with IQL and TD3+BC,
verifying the usability of the learned latent space as illustrated in Figure 4. Specifically, we process
the original states s and next states s′ from the dataset using the pre-trained state encoder ϕs to
derive their latent representations: ϕs(s) → zs and ϕs(s′) → zs′ . The algorithms are then trained
entirely within this latent state space. The implementation details of these representation models are
as follows:

• “AE-rep”: We implement a naïve autoencoder-based inverse dynamics framework, consist-
ing of a state encoder and decoders ϕs and ψs to construct the latent state space, The inverse
dynamics model hinv is then built within this latent space, serving as the execute-policy,
as in TELS. For a fair comparison, we use the same network parameters for the encoder,
decoder, and inverse dynamics model as in TS-IDM. The “AE-rep” model is trained with a
reconstruction loss to capture the essential features of the input, while the inverse dynamics
model is simultaneously trained on the latent representations to predict actions.

• “VAE-rep”: The variational autoencoder (VAE) (Kingma and Welling, 2014) is built based
on the “AE-rep” model by introducing additional KL divergence loss terms. Specifically,
the encoder outputs parameters of a Gaussian distribution in the latent space, and the latent
representations are sampled using the reparameterization trick. The VAE is trained using a
combined loss function that includes both the reconstruction loss and the KL divergence
loss, which regularizes the latent space to follow a prior distribution. The inverse dynamic
model is trained simultaneously with the VAE, sharing the latent space and optimizing for
both the reconstruction of the input data and the prediction of actions.

• “Contras-rep”: We utilize the NT-Xent loss (Normalized Temperature-Scaled Cross Entropy
Loss) used in SimCLR (Chen et al., 2020) within the latent representation space on top
of the “AE-rep” model. The overall loss function combines the contrastive loss with the
reconstruction loss, ensuring that the latent space not only captures the structure of the data
but also learns semantically meaningful representations that are robust to variations. The
inverse dynamic model is trained simultaneously within the latent space to predict actions.

Experiment setups for OOD generalization tasks in Antmaze. In Section 4.2, we conduct a more
challenging scenario to verify the OOD generalizability of the algorithm. Specifically, based on 100k
“Antmaze-medium-diverse-v2” dataset, we manually selected five critical intervals and erased the data
points within these intervals by randomly deleting them. The selection of intervals was determined
based on the XY-axis coordinates. In this dataset, the first two dimensions of the state represent the
vertical and horizontal coordinates, respectively. Based on this information, we randomly deleted
70% and 100% of the data in the chosen intervals. We then trained IQL (Kostrikov et al., 2022),
DOGE (Li et al., 2022), IDQL (Hansen-Estruch et al., 2023), POR (Xu et al., 2022a), TSRL (Cheng
et al., 2023), and TELS using this modified dataset to evaluate their generalizability.
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E LEARNING CURVES

The following are the learning curves of TS-IDM and the T-symmetry regularized guide-policy
optimization in TELS on the reduced-size D4RL MuJoCo and Antmaze datasets. We evaluate the
policy with 10 episodes over 5 random seeds.

Figure 11: Learning curves of the overall and each individual loss terms in TS-IDM for Hopper tasks.
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Figure 12: Learning curves of the overall and each individual loss terms in TS-IDM for Halfcheetah tasks.
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Figure 13: Learning curves of the overall and each individual loss terms in TS-IDM for Walker2d tasks.
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Figure 14: Learning curves of policy optimization in TELS for D4RL MuJoCo and Antmaze tasks with reduced-
size datasets. We evaluate the policy within 10 episodes over 5 random seeds.
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