PUSHING THE LIMIT OF SAMPLE-EFFICIENT OFFLINE
REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Offline reinforcement learning (RL) has achieved significant progress in recent
years. However, most existing offline RL methods require a large amount of
training data to achieve reasonable performance and offer limited generalizability
in out-of-distribution (OOD) regions due to conservative data-related regulariza-
tions. This seriously hinders the usability of offline RL in solving many real-world
applications, where the available data are often limited. In this study, we intro-
duce a highly sample-efficient offline RL algorithm that enables state-stitching
in a compact latent space regulated by the fundamental time-reversal symmetry
(T-symmetry) of dynamical systems. Specifically, we introduce a T-symmetry
enforced inverse dynamics model (TS-IDM) to derive well-regulated latent state
representations that greatly facilitate OOD generalization. A guide-policy can then
be learned entirely in the latent space to output the next state that maximizes the
reward, bypassing the conservative action-level behavior constraints as adopted in
most offline RL methods. Finally, the optimized action can be easily extracted by
using the guide-policy’s output as the goal state in the learned TS-IDM. We call our
method Offline RL via T-symmetry Enforced Latent State-Stitching (TELS). Our
approach achieves amazing sample efficiency and OOD generalizability, signifi-
cantly outperforming existing offline RL methods in a wide range of challenging
small-sample tasks, even using as few as 1% of the data samples in D4RL datasets.

1 INTRODUCTION

Offline reinforcement learning (RL) has seen rapid progress in recent years. It bypasses the reliance
on environment interactions as in online RL, directly utilizing pre-collected offline data for policy
learning, thus being ideal for many real-world tasks that lack high-fidelity simulators or have
environment interaction restrictions (Levine et al., 2020; Zhan et al., 2022; 2025). However, offline
RL is also known to be prone to value overestimation, caused by extrapolation error when evaluating
out-of-distribution (OOD) samples and amplified through the bootstrapped update procedure in
RL (Kumar et al., 2019; Fujimoto et al., 2019).

In the past few years, quite a few offline RL methods have been proposed, which commonly adopt
the pessimism principle using strategies such as adding explicit or implicit policy constraints to
prevent the selection of OOD actions (Kumar et al., 2019; Fujimoto et al., 2019; Wu et al., 2019;
Fujimoto and Gu, 2021), penalizing value function on unseen samples (Kumar et al., 2020; Xu et al.,
2022b; Bai et al., 2021; Lyu et al., 2022), or adopting in-sample learning to implicit regularize policy
optimization (Kostrikov et al., 2022; Xu et al., 2023; Mao et al., 2024b). What’s in common with
these methods is the use of some kind of action-level constraints to avoid OOD exploitation. Although
this could stabilize offline value and policy learning, it inevitably leads to over-conservatism and
crippled OOD generalization performance (Li et al., 2022; Cheng et al., 2023). Most of the existing
offline RL methods only perform well when trained in sufficiently large amounts of offline data with
reasonable state-action space coverage (e.g., 1 million samples for simple D4RL tasks (Fu et al.,
2020)). This forms a stark contrast to the reality in most real-world scenarios, where the historical
data are often limited and scaling up data collection can be rather costly (Zhan et al., 2022; 2025;
Cheng et al., 2023). Although offline RL was initially proposed to address a broad spectrum of
practical tasks, its successful real-world deployments remain limited to date.

Enhancing sample efficiency and OOD generalization capability is essential to making offline RL
widely applicable to real-world applications. This is particularly important for small dataset settings,
as most of the state-action space will become OOD regions. Some recent attempts have been made to
improve the generalization performance of offline RL, which mainly follows three directions. The first
direction builds upon the empirical observation that deep value functions interpolate well but struggle
to extrapolate, thus allowing exploitation on interpolated OOD actions to promote generalization (Li
et al., 2022). However, this method has a smoothness assumption on the offline dataset geometry and
only applies to continuous action space. The second class of methods avoids the conservative action-
level constraint and instead performs reward maximization on the state-space (Xu et al., 2022a; Park
et al., 2024), which allows exploitation of OOD actions as long as the corresponding state transitions
are reachable (also referred to as "state-stitching" (Xu et al., 2022a)). Although such methods offer
some promising generalization capabilities, they still require the state-action space to have reasonable
data coverage to enable valid state-stitching. The last and also most explored direction is to learn
compact and robust latent representations to enhance sample efficiency (Laskin et al., 2020; Agarwal
et al., 2021; Yang and Nachum, 2021; Weissenbacher et al., 2022; Cheng et al., 2023). Most of these
methods only focus on extracting statistical-level information from the data, using techniques such as
contrastive learning (Laskin et al., 2020; Agarwal et al., 2021; Yang and Nachum, 2021; Uehara et al.,
2021). Due to the lack of in-depth modeling of the underlying dynamics patterns inside the sequential
data, these methods still struggle to provide generalizable information beyond data distribution. Some
recent methods (Weissenbacher et al., 2022; Cheng et al., 2023; Zhan et al., 2025) propose to extract
fundamental symmetries of dynamics to facilitate policy learning, such as the time-reversal symmetry
(T-symmetry) (Cheng et al., 2023; Zhan et al., 2025), i.e., the underlying physical laws should not
change under the time-reversal transformation: ¢ — —¢. If we can find and leverage such universally
held symmetries in the dataset, then it is possible to maximally promote OOD generalization without
being restrained by data distribution-related information. Although promising, these methods are
built upon existing action-level constraint offline RL backbone algorithms like CQL (Kumar et al.,
2020) or TD3+BC (Fujimoto and Gu, 202 1), which still suffer from the over-conservatism issue.

In this paper, we find that enabling state-stitching in a coherent, fundamental symmetry-enforced
latent space can actually lead to a surprisingly strong sample-efficient offline RL algorithm. We refer
to our method as Offline RL via T-symmetry Enforced Latent State-Stitching (TELS). Specifically,
we introduce a T-symmetry enforced inverse dynamics model (TS-IDM) to not only learn well-
behaved latent representations that greatly alleviate the difficulty of OOD generalization, but can
also facilitate effective action inference. Within the learned latent state space, we can optimize
a T-symmetry regularized guide-policy to output the next latent state that maximizes the reward,
bypassing the conservative action-level behavioral regularization as adopted by most existing offline
RL algorithms. Lastly, the optimized action can be easily extracted by plugging the output of the
guide-policy as the goal state in the learned TS-IDM. The resulting algorithm achieves incredible
sample efficiency and OOD generalization capability, significantly outperforming existing offline RL
algorithms in a wide range of challenging reduced-size D4RL benchmark datasets, even using as few
as 1% of the original samples. Our method greatly pushes the performance limit of offline RL under
low data regimes, offering a new opportunity to tackle many previously unsolvable real-world tasks.

2 PRELIMINARIES

Offline RL. We consider the standard Markov decision process (MDP) setting (Sutton and Barto,
2018), which is represented as a tuple M = {S, A, r, P, p,v}, and a dataset D, which consists of
trajectories 7 = {so, ag, $1, a1, ..., ST }. Here S and A denote the state and action spaces, (s, a) is a
scalar reward function, P(s’|s, a) and p denote the transition dynamics and initial state distribution
respectively, and vy € (0, 1) is a discount factor. Our goal is to learn a policy 7(a|s) based on dataset
D by maximizing the expected return in the MDP: E[>".° 4" - 7(s¢, ag)].

Offline policy optimization in the state space. Instead of adopting conservative action-level
constraints for offline policy learning, Policy-guided Offline RL (POR) (Xu et al., 2022a) proposes an
alternative scheme, which decomposes the conventional reward-maximizing policy into a guide-policy
and an execute policy. The guide-policy only works in the state space to find the optimal next state
that maximizes the state-value function, and the execute-policy is learned as an inverse dynamics
model (Xu et al., 2022a) or a goal-conditioned imitative policy (Park et al., 2024). Such methods
only need to learn a state-only value function V' using the IQL-style expectile regression (Kostrikov

et al., 2022) or the sparse value learning objective as discussed in Xu et al. (2023). We present the
former as follows:

V= argénin]E(s,’r,s’)ND [L; (7‘(8) + ’YV(SI) - V(S))] (H

where L3(z) = |7 — 1(z < 0)|2? is the asymmetric expectile regression loss and V' denotes
the target value network. Based on the learned state-value function, we can learn a guide-policy
mq(8'|s) to serve as a prophet by telling which state the agent should (high reward) and can (logical
generalization) go to, without being constrained to state-action transitions seen in the dataset. This
can be achieved by leveraging the advantage weighted regression (AWR) objective (Neumann and
Peters, 2008; Peng et al., 2019) to maximize the value while implicitly constraining 7, to s — s
transitions observed in the dataset (i.e., state-stitching):

mg = argmax E(, . g)p | exp(a - A(s, s")) log mg (s’ | s)} 2)
Tg
where the advantage A(s, s’) = r + vV (s") — V(s) serves as the behavior cloning weight, and « is
the temperature parameter to prioritize value maximization over state-wise imitation learning.

For the execute-policy 7., POR employs a supervised learning framework and trains 7, by maximiz-
ing the likelihood of the actions given the states and next states: max, B 4 s)~pllogm. (a | s,5)].
During evaluation phase, given the current state s, we can sample the optimized next state s’ from
7g(s'|s), and can get final action simply as a* = 7. (a | s,7m4(s'|s)). Time-reversal symmetry
for generalizable offline RL. Recently, leveraging fundamental, universally held symmetries of
dynamics such as T-symmetry discovered in classical and quantum mechanics (LLamb and Roberts,
1998; Huh et al., 2020) has been shown to be a promising approach to enhance the generalization of
offline RL (Cheng et al., 2023; Zhan et al., 2025). Specifically, if we model the system dynamics
with measurements x as a set of non-linear first-order differential equations (ODEs) expressed as
% = F(x), a dynamical system is said to exhibit time-reversal symmetry if there is an invertible
transformation I that reverses the direction of time: i.e., dI'(x)/dt = —F(I'(x)). For the discrete-
time MDP setting, the T-symmetry can be extended as learning a pair of ODE forward F(s,a) — $

and reverse dynamics G(s’,a) — —$, and require them to satisfy F'(s,a) = —G(s’,a) (Cheng et al.,
2023), where the time-derivative of state s = % is approximated as s’ — s.

Based on this intuition, TSRL (Cheng et al., 2023) constructed an encoder-decoder structured 7-
symmetry enforced dynamics model (TDM) for representation learning, which embeds a pair of latent
ODE forward and reverse dynamics to enforce T-symmetry. TSRL achieves impressive performance
under small-sample settings and its variant has been successfully used for real-world industrial
control (Zhan et al., 2025), but it still has some limitations. First, TSRL only uses the learned encoder
from TDM to derive the latent representations, without fully exploiting the rich dynamics-related
information in TDM for downstream policy learning. Second, it needs both the state and action as
inputs to encode latent representations, forcing TSRL to adopt a Q-function maximization method
(i.e., TD3+BC (Fujimoto and Gu, 2021)) for policy optimization, which inevitably requires adding
conservative action-level behavior cloning constraints to stabilize training. Moreover, involving
action as an input for representation learning is also prone to capturing the biased behaviors in the
data-generating policy, which could impede learning fundamental, distribution-agnostic dynamics
patterns in data. Please refer to Appendix A for a detailed comparison between TSRL and our method.

3 METHODOLOGY

We now present our proposed method, TELS, which comprises a T-symmetry enforced inverse
dynamics model (TS-IDM) integrated with an effective offline policy optimization procedure operated
in latent state space. TS-IDM overcomes multiple drawbacks of TDM in TSRL (Cheng et al., 2023),
which not only extracts the fundamental, T-symmetry preserving representations from the limited
data and facilitates OOD generalization, but can also be seamlessly used as an execute-policy for
optimal action extraction. The overall framework of TELS is illustrated in Figure 1.

3.1 T-SYMMETRY ENFORCED INVERSE DYNAMIC MODEL

If we look at the input and output of our proposed TS-IDM, it functions similarly to a typical
inverse dynamics model that takes current and next state (s, s’) as input and outputs the predicted

(. . N N
© Latent state-value function learning Learning in the)

| latentspace
minE (.o (L5 (r + 7 @560) - V(@5)))]

(© T-sy ry regularized guide-policy optimization A
max (o) [AV (mg(20)) =1 [(o (20) |
= tr_aym (20 hine (2070 29)) |

2
2

Or

T~ T-symmetry

max [E(s,s')~D [EXP(‘Z : A(stzs')) logm, (Zs’|Zs),,r”'regularization
9 P

= trsym (20 hinw (2074 129))

N J
e E — - —\
e Action inference E xtract optimized action using
p " P latent inverse dynamics
Latent inverse Latent ODE forwar State and action * (()
) a’ = Riny (25, 4 (2.
State encoder dynamics and reverse dynamics decoders) | Yo | hinw (2579 (25))

Figure 1: Overview of our proposed T-symmetry Enforced Latent State-Stitching (TELS) framework.

action a. However, TS-IDM’s architecture is special in several aspects. In its interior, it comprises

a state encoder ¢,(s) = zs, a latent inverse dynamics model h;n,(2s,2s/) = 24, @ pair of T
symmetry enforced latent ODE forward and reverse dynamics models A fq(2s,2,) = %5 and
hrws(2s'5 2a) = —Zs, an action decoder ¢, (2,) = a, and an extra state decoder s (z;) = §. In the

following, we describe their detailed design logic and learning objectives.

Encoding and decoding. As previously discussed, constructing an informative and well-structured
latent space is critical for sample-efficient offline policy optimization. To this end, we introduce
a state encoder ¢s(s) = z, to map the states s into their corresponding latent representations z;,
and also a state decoder 1)4(z5) = s to reconstruct the original states from their latent embeddings,
ensuring that the learned latent representations remain faithful to the original state space and avoid
excessive distortion.

We then construct a latent inverse dynamics model A, (25, 25) = 24, which infers the latent action
2z, from the latent state transitions (zg, zs). By inferring actions from state transitions, the learned
latent space implicitly encodes the underlying dynamics of the environment. Moreover, the inverse
dynamic model h;,, can be integrated with a pair of latent ODE dynamic models to derive the
T-symmetry property of the system, which we will introduce in more detail shortly. Finally, to
ensure that the inferred actions are both meaningful and interpretable, we employ an action decoder
¥a(2q) = G to map the latent action back to its original action space. We can thus formulate the
reconstruction loss for the states and actions as follows:

bec(s,a,8") = |[9hs(ds(8)) — 5”% + |Ya(Piny (25, 2s7)) — aH% 3)

reconstruction loss of states reconstruction loss of actions

Latent ODE forward and reverse dynamics models. Drawing inspiration from previous research
that integrates physics-informed insights into dynamical systems modeling (Brunton et al., 2016;
Champion et al., 2019; Huh et al., 2020; Cheng et al., 2023), we embed a pair of latent ODE forward
and reverse dynamics % y,q(2s, 24) = Zs and hyys(2s7, 24) = —Z, to separately capture the forward
and reverse time evolution in the latent states. We are interested in modeling ODE systems because it
encourages learning parsimonious models helpful to uncover fundamental properties from the data
that can maximally promote generalization (Brunton et al., 2016; Champion et al., 2019). Note that
based on the chain rule, we can derive the supervision signal for the latent dynamics models with
—dz _dzs ds _ g 0.5 — Vs¢s(s) - $ to enforce the ODE property. Therefore, we introduce

Zs = dt —. ds dt
the following training losses for A f,,q and hyys:

bagn(3,8") = [[(Vs25)3 = 253 + |(Vsr 20) (=8) = (=25) 13
latent ODE forward dynamics latent ODE reverse dynamics

=[|Vsos(s)s — hfwd(ZSvZa)Hg + HVS/QSS(S/)(_é) — hrys(zs, Za)H%v 4

where the latent action z, is obtained from the latent inverse dynamics model hy4 (25, 2s7)-

ODE property enforcement on state decoder. Note that in {4y, (s, s"), we actually implicitly
enforced the ODE property on the state encoder ¢, the same should also apply to the state decoder
1 to ensure compatibility with the T-symmetry formalism, i.e. the time-derivative of the state

encoder %t(s) and decoder WSTY:S) should behave in the same way as Z; and §. Similar to the

. o ds(zs) _ d¥s(zs) | dzs .
previous treatment on the state encoder, as § = === = e T V. s(zs) - 25, we can

use the following objective to enforce the ODE property for the state decoder 1):
gode(sa 3/) = Hvzs¢8(zs) Es — 3”% + ||vzsz¢s(ZS’) : (_738) - (_5)”3

enforce ODE of 15 on hfwd enforce ODE of ¥ on Ay s

:Hvz;ws('zs) : hfwd(ZS7 Za) - 3”% + ||vzs/'l/}s(zs/) . hrvs(zs/v Za) + 3”% 4)

Again, the latent action z, is obtained from A, (25, 25/). Notably, the ODE property enforcement
in Eq. (5) is not considered in the T-symmetry enforced dynamics model (TDM) proposed by
TSRL (Cheng et al., 2023). In other words, TDM only enforces the ODE properties for encoders but
not on decoders. This could lead to inconsistency between the learned dynamics and the underlying
ODE structure, leading to inaccurate or misaligned ODE representations.

T-symmetry enforcement. To further regularize the learned latent representations, we incorporate
the extended version of T-symmetry (Cheng et al., 2023) by requiring h ry,q(2s, 2a) = —hrvs(2s7, 2a)
which corresponds to the following T-symmetry consistency loss:

ET—sym(Zm Za) = ||hfwd(257 Za) + hrvs (Zs + hfwd<257 Za)7 Za)H% (6)
where we use the fact that zy = 25 + 25 = 25 + Rpwd(%s, 2a) and hpys(2s + hpwa(zs, Za)s 2a) =
—%s = —hjfwa(zs, za) to further couple the learning process of hf,,q and h,,s. Moreover, given a

latent state-action pair (zs, 2,), the above T-symmetry consistency loss can also serve as an evaluation
metric to assess their agreement with the learned TS-IDM. A large T-symmetry loss indicates that the
latent state-action representation (zs, z,) induced by some (s, s’) may not satisfy the fundamental
dynamics pattern, therefore more likely to be a problematic or non-generalizable sample.

Overall learning objective. Finally, the complete training loss function of TS-IDM is as follows:

ETS—IDM = Z |:€rec + B : (Edyn + gode + KT—sym)] (57 a, 5/) (7)
(s,a,s’)€D

where (3 is a hyperparameter that balances extracting fundamental dynamics properties and ensuring
the interpretability of the learned representation. As we can observe from the final learning objective,
TS-IDM introduces a series of coupling designs among state encoder ¢, decoder v, latent inverse
dynamics Ry, latent ODE forward and reverse dynamics hyf,q and h,.,,, forming a strongly
consistent, T-symmetry preserving ODE system to capture the fundamental dynamics properties in
the offline dataset.

3.2 LATENT SPACE OFFLINE POLICY OPTIMIZATION

Once we have a learned TS-IDM, we can extract three highly useful components from it to facilitate
sample-efficient downstream offline policy optimization, including 1) a robust state encoder ¢(s)
that provides well-behaved and generalizable latent space ideal for state-stitching; 2) T-symmetry
consistency as an additional regularizer to prevent erroneous generalization when learning a guide-
policy in the latent state space; and 3) the TS-IDM itself can serve as an execute-policy as in POR (Xu
et al., 2022a) to extract optimized action given the learned guide-policy.

Latent state-value functions learning. Based on the state encoder ¢, (s) from the learned TS-
IDM, we can convert the entire offline policy optimization process into the latent state space, which
enjoys both the stable learning process and generalizability due to more compact and well-behaved
representations. Specifically, we can use a similar IQL-style expectile regression loss as in Eq. (1) to
learn a state-value function V'(z;), but in the latent state space:

mvin E(s,r,s’)ND |:L‘2r (7’ + 'YV (QSS(S/)) -V (¢S(S))) i| (8)

T-symmetry regularized guide-policy optimization. A major benefit of learning within the T-
symmetry preserving latent space is that, as T-symmetry captures what is essential and invariant about
the dynamical system, thus it can generalize and provide reliable information even for OOD samples
beyond the offline dataset. This naturally favors learning a reward-maximizing guide-policy 7, in
the latent space, which can enjoy more effective state-stitching. Moreover, different from POR (Xu
et al., 2022a), by leveraging the T-symmetry consistency term {1 (-) in Eq. (6) as an additional

Algorithm 1 Offline RL via T-symmetry Enforced Latent State-Stitching (TELS).

Require: Offline dataset D.
1: //TS-IDM learning
: Learning the state encoder ¢, state decoder 15, action decoder v, latent inverse dynamics h;n., latent
forward and reverse dynamics h .4 and A, s using the TS-IDM learning objective Eq. (7).
3: Initialize Vi, Vy/, 7o
4: // Policy training
5: fort=1,---, M training steps do
6 Sample transitions (s, 7, s') ~ D and compute their representations (2, zs/) using the state encoder ¢s.
7 Use (zs, T, 25) to update the latent state-value function V' using Eq.(8).
8: Use (zs, 25) to update the latent guide-policy 74 using Eq. (9) or (10).
9: end for
10: // Evaluation
11
12
13
14
15

[\

: Get initial state s from environment

: while not done do
Get optimized next state 27, using guide-policy 7g.
Extract action a using Eq. (11).

: end while

regularizer, we can prevent 7, from outputting problematic and non-generalizable latent next state,
thereby further enhancing logical state-wise OOD generalization.

In TELS, we provide two instantiations for guide-policy optimization, depending on the choice of
using deterministic policy 7, (zs) or stochastic policy 7, (24/|2s):

- Deterministic policy:
max E(s,s/y~D {)\av(ﬂ'g@s» —nllYs(mg(zs)) — S/HS — lrsym (25, Pivs (25, Wg(zs)D] ©
g
- Stochastic policy:

max E o)p [exp(a - A(zs, 251)) log mg (26 | 25) = brsym (Zss Rivs (2o, wg(-\zs))} (10)

Tg

where z; = 4(5), 2o = ¢s(8'), and A(zs, z50) =1 + 4V (25) — V (25).

For the deterministic policy 74 (25), we extract the guide-policy by directly maximizing the latent state-
value function V' weighted by a normalization term A, together with two additional regularization
terms. The first regularizes the next state decoded from the guide-policy using state decoder /s should
not deviate too much from the ground truth next state s’ in the dataset. The last term regularizes
guide-policy induced latent state-action pair (i.e., (25, 2¢) = (s, Rinv(2s, T4(2s)))) to comply with
the T-symmetry consistency specified in the learned TS-IDM.

For the stochastic guide-policy 74 (2, |25), we adopt the AWR-style (Neumann and Peters, 2008;
Peng et al., 2019) policy optimization objective as in Eq. (2), while also incorporating the T-symmetry
consistency regularization similar to the deterministic policy version. In our experiments, we find
that the deterministic version objective Eq. (9) works well for the MuJoCo locomotion tasks, while
the stochastic version Eq. (10) works better for more complex D4RL Antmaze tasks (Fu et al., 2020),
potentially due to more stochastic nature of the task environment.

Action inference. After learning the guide-policy 7 , we can further use it to generate the optimized
action for control. To do this, we can simply use the optimized latent next state 2, obtained from
guide-policy 74 (z5) or my(-|2,) as the goal state, and plug it into the learned latent inverse dynamics
model h;py (25, 25) in TS-IDM to replace z,. The final action can be extracted by decoding the
resulting latent action from h;,,,, using the action decoder v, :

a* = wa (hinv (Zsaﬂ—g(zs))) (11)

Note that there is no training process needed for this stage. We fully utilize the learned TS-IDM to
serve our purpose. We present the complete training and inference procedure of TELS in Algorithm 1.

Table 1: Average normalized scores on reduced-size D4RL datasets. The scores are taken over the final 10
evaluations with 5 seeds.

Task | Size (ratio) | BC TD3+BC CcQL IQL DOGE IDQL POR TSRL TELS
Hopper-m | 10k(1%) | 207+117 40.1+186 43.14246 467465 442+102 44241201 464+17 620437 T77.3+107
Hopper-mr | 10k(2.5%) | 12.1+53 7.346.1 23419 134431 179+45 217470 174462 218482 432435
Hopper-me | 10k(0.5%) | 27.8+10.7 178479 299445 343487 5054252 432444 379461 509486 1009+ 68

Halfcheetah-m | 10k (1%) 26.4+7.3 16.4£10.2 358+3.8 29.9+0.12 362434 36.4%+1.5 333432 38.4+3.1 40.8 £ 0.6
Halfcheetah-mr | 10k (5%) 14.3+7.8 17.949.5 8.1+£9.4 22.7+6.4 234436 26.7+1.0 27.5+3.6 28.1+3.5 332+1.0
Halfcheetah-me | 10k (0.5%) | 19.1£9.4 15.4410.7 26.5+10.8 10.5+8.8 26.7 + 6.6 38.8+1.9 34.74£2.6 39.9421.1 40.7 £1.2

‘Walker2d-m ‘ 10k (1%) ‘ 15.8+14.1 7.4+13.1 18.8£18.8 22.5+3.8 45.1£102 31.7£14.2 22.2+43.6 49.7£10.6 62.4+53
‘Walker2d-mr ‘ 10k (3.3%) ‘ 1.4+1.9 5.7+5.8 8.5+£2.19 10.7£11.9 135+ 84 12.2+10.5 14.8+4.2 26.0+£11.3 54.8 £ 6.0
‘Walker2d-me ‘ 10k (0.5%) ‘ 21.74£8.2 7.949.1 19.1£14.4 26.5+8.6 353+ 11.6 21.8+145 20.1£8.6 46.4+174 874 +133
Antmaze-u ‘ 10k (1%) ‘ 447 £ 42.1 07+12 01£00 651+£194 563+£244 675+124 6.1+£73 76.1 £ 15.6 88.7 £17.7
Antmaze-u-d ‘ 10k (1%) ‘ 24.1+222 1627+164 05=£0.1 346+ 185 41.7+£189 551+£368 42.1+142 5224221 609 +16.9
Antmaze-m-d ‘ 100k (10%) ‘ 0.0 0.0 0.0 48+59 0.0 9.0+3.4 0.0 0.0 472 +17.3
Antmaze-m-p ‘ 100k (10%) ‘ 0.0 0.0 0.0 125+ 54 0.0 9.4+ 147 0.0 0.0 629 +17.8
Antmaze-1-d ‘ 100k (10%) ‘ 0.0 0.0 0.0 3.6+4.1 0.0 16.1 + 8.4 0.0 0.0 39.8 +14.1
Antmaze-1-p ‘ 100k (10%) ‘ 0.0 0.0 0.0 35+4.1 0.0 9.7 £8.5 0.0 0.0 473 £13.1
120
120

o o

£ 100 | S 100

O L%
2 80 2 80 ‘

[[
N 60 | = 0

© | ©

£ a0 | I | € 40 ’

o I g i
Z 2 | 20 ‘ ‘ | |

BC TD3+BC CQL QL DOGE IDQL POR TSRL TELS BC TD3+BC CQL QL DOGE IDQL POR TSRL TELS

Hopper-me mm 2V mmm 100k mEW 50k 10k mem 5k Walker2d-me

Figure 2: Performance of TELS against baselines under different data sizes
4 EXPERIMENTS

In this section, we present the evaluation results of TELS on the D4RL MuJoCo-v2 and Antmaze-v1
tasks (Fu et al., 2020) against behavior cloning (BC), and existing offline RL. methods: TD3+BC
(Fujimoto and Gu, 2021), CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2021), DOGE (L1 et al.,
2022), POR (Xu et al., 2022a), diffusion-based method IDQL (Hansen-Estruch et al., 2023) and
TSRL (Cheng et al., 2023), which is the current SOTA method in small-sample settings. We also
conduct additional experiments to further evaluate the OOD generalizability of TELS on a challenging
task, as well as the effectiveness of the representations learned with TS-IDM in improving small-
sample performance. Performance comparison of the full datasets and implementation details can be
found in Appendix B and C.

4.1 PERFORMANCE COMPARISON ON SMALL-SAMPLE SETTING

In Table 1, we evaluate TELS against baseline methods on reduced-size D4RL datasets (5k~100k
samples, about 0.5~10% of their original sizes)'. These small-sample tasks are particularly challeng-
ing for offline RL methods, as the data only sparsely cover the state-action space and require strong
OOD generalization capability for algorithms to achieve reasonable performance.

As shown in Table 1, most baselines fail to learn reasonable policies under small datasets, especially
in the most challenging 100k Antmaze-medium/large datasets. For example, conventional offline
RL methods like TD3+BC and CQL perform poorly on small datasets, primarily due to their over-
conservative data-related policy constraints. Baselines that have generalization promotion designs,
such as DOGE and TSRL, perform slightly better but still fail miserably in the challenging Antmaze-
m/1 tasks, as they still adopt conservative action-level constraints to stabilize policy learning. Recent
diffusion-based methods like IDQL, although perform well on large datasets, struggle to learn when
given limited data. By contrast, TELS dominates the chart and outperforms all other baselines in
all tasks, sometimes by a large margin. This is mainly attributed to the leverage of fundamental,

'We use the same reduced-size MuJoCo datasets from the TSRL paper, and create 100k randomly sub-
sampled Antmaze datasets by ourselves for additional experiments.

Data with various deletion ratios Policy rollouts: IQL Policy rollouts: POR Policy rollouts: TELS

Deletion
ratio: 0%

3

100k Antmaze-m-d dataset
with multiple deletion areas

Y-coordinate

&

20 Deletion =
ratio: 70% 3%
e

Y-coordinate

¢ : Startpoint x Deletion ™ ===
A B S

7 : End point
774 : Deletion area

Y-coordinate
=
8
El

! =

-
A S
2 Q

0 5 10 15 20 o 5 10 15 20 o 5 10 15 20 0 5 10 15 20
X-coordinate X-coordinate X-coordinate X-coordinate

Figure 3: Left: Illustration of the 100k Antmaze-m-d task with multiple deletion areas, where the red cross
denotes the start point, the yellow star denotes the goal locations, and the red shaded areas denote the data
deletion regions. Right: Visualization of the training dataset and policy rollout trajectories generated by trained
policies from various algorithms under varying deletion ratios.

60
g g 100
50
A R 801
5 % °
9] O 60
N30 N
© T 4]
E2 g
5 S ‘
=z w0 S 01 |
o o . .
Hopper-me Halfcheetah-me Walker2d-me Hopper-me Halfcheetah-me Walker2d-me
s 1QL(with TS-IDM repre) B TD3+BC(with TS-IDM repre) AE-rep = VAE-rep mmm Contras-rep mm TS-IDM-rep

[1QL(w/o TS-IDM repre) [TD3+BC(w/o TS-IDM repre)

Figure 4: Left: The performance of IQL and TD3+BC on 10k datasets with or without using the representation
from TS-IDM. Right: Performance of TELS with different representation models on 10k datasets, error bars
indicate the normalized scores over 5 random seeds.

data distribution-agnostic T-symmetry property for policy learning, which greatly improves the OOD
generalization performance. This is evident when observing the huge performance difference between
POR and TELS, as the former shares a similar policy optimization procedure with TELS but does not
use the T-symmetry enforced representation and policy regularization.

We also evaluate the performance of the algorithms across different dataset sizes in Figure 2. The
results show that TELS can robustly maintain reasonable performance even with only Sk samples,
surpassing all the other methods, while most baseline methods suffer from significant performance
drop when training samples are decreased.

4.2 INVESTIGATING THE OOD GENERALIZABILITY OF TELS

To further demonstrate the OOD generalizability of TELS, we construct a more challenging task
based on the reduced-size 100k Antmaze-m-d dataset, as illustrated in Figure 3. Specifically, we
randomly remove samples within 5 critical regions along the critical paths from the start to the goal
locations. This task requires extremely strong OOD generalization capability to solve, as the vital
information for the optimal trajectory is extremely scarce or completely OOD. We train IQL, POR,
and TELS on the remaining data and plot their policy rollouts over 20 episodes for performance
evaluation and behavior analyses (due to page limit, we also include results for IDQL, DOGE, TSRL
in Appendix B.2).

Table 2: Ablation results on the design components of TS-IDM.

‘ ¢/w+ Rinv + hfwda Nros T + gode T + gT—sym T
Hopper-me 172 4+£7.0 355+7.3 61.4 4+ 23.7 100.9 + 6.8
Halfcheetah-me 29.7+3.6 313+ 1.1 312+ 1.2 40.7 £ 1.2
Walker2d-me 24.5 £ 10.1 33.6 £9.2 58.5 £ 18.1 87.4 + 133
o 150 1 w/olr—sym o 227 n=1
S . with L7 sy, 3 100 mm =5
2 2 = =10
5 100 S s n
'f_é . .‘_é 50 - . |
. g »f
0 . . 0
Hopper-me Walker2d-me Halfcheetah-me Walker2d-me
Figure 5: Impact of ¢1.ym on policy optimization Figure 6: Performance of TELS with different n

As shown in Figure 3, IQL can only achieve some success when the deletion ratio is 0%, and POR
fails to reach the goal in all cases. By contrast, TELS consistently learns optimal policy even with
70% and 100% deletion rates. It can effectively utilize the limited information provided in the sparse
remaining data samples at the boundaries of the deletion areas for policy learning. These highlight
the extraordinary OOD generalization capability of TELS in extremely challenging low-data regimes.

4.3 EFFECTIVENESS OF THE LEARNED REPRESENTATIONS

To verify the effectiveness of the learned latent representation in TS-IDM, we use TS-IDM’s state
encoder ¢ (s) as the representation learning module on top of two conventional offline RL methods:
IQL and TD3+BC. Figure 4 (left) reveals significant performance improvements and variance reduc-
tion when IQL and TD3+BC are trained within the latent state space induced by ¢(s), suggesting
that TS-IDM indeed learns compact and generalizable representations that benefit policy learning.

To further evaluate the quality of TS-IDM’s representations, in Figure 4 (right), we replace TS-IDM
in TELS with other representation learning methods, including autoencoder (“AE-rep”), variational
autoencoder (“VAE-rep”) (Kingma and Welling, 2014), and contrastive learning method SimCLR
(“Contras-rep”) (Chen et al., 2020). Among these, VAE performs the worst, as it is overly impacted
by the simplistic Gaussian prior distribution; policies with AE and contrastive representations obtain
some scores but still perform poorly, due to the lack of system dynamics-related information. In
contrast, TS-IDM provides an information-rich and well-behaved latent space, significantly enhancing
policy performance for small dataset settings.

4.4 ABLATION STUDY

Ablations on the design components of TS-IDM. To examine the impact of each component in
TS-IDM, we compare TELS with various variants of TS-IDM, starting with a vanilla latent inverse
dynamics model with encoder and decoders, denoted as “ ¢/¥+ h;y,,”, gradually adding latent
forward and reverse dynamics models “hgyq, hrvs”, ODE property enforcement “/y4.”, and eventually
the T-symmetry consistency loss “l1.gym”, resulting in the full TS-IDM. The results on 10k datasets
are presented in Table 2.

We observe that the naive autoencoder-based inverse dynamics model fails to provide reasonable
representations. Incorporating latent dynamics models is helpful because some system dynamics-
related information is introduced, but the performance gain remains insufficient. Enforcing ODE
properties on decoders significantly enhances the reliability of the learned representations, particularly
in tasks like Walker2d-me. Lastly, enforcing T-symmetry consistency proves to be the strongest
performance improvement factor, which greatly enhances the quality of the learned representations
for downstream policy learning.

Ablations on regularizer terms in policy optimization. We also conduct ablation experiments in
Figure 5 to validate the effectiveness of the T-symmetry consistency regularizer term {1.qy, during
the guide-policy optimization process of TELS. The results demonstrate that incorporating this
term can effectively enhance performance while reducing variance, highlighting the importance of
utilizing T-symmetry consistency regularization to promote OOD generalization and learning stability.
Additionally, in Figure 6, we evaluate the hyperparameter robustness of TELS by training it with
various values of n = {1, 5,10} to examine its sensitivity to the state-level behavioral constraint in
Eq. (9). The results show that TELS is robust to different 7 values, consistently delivering reliable
performance across various policy constraint settings.

5 RELATED WORK

Offline RL faces unique challenges in mitigating the risk of OOD exploitation. Evaluating value
functions in OOD regions often results in inaccurate estimates, which can lead to severe value
overestimation and misguiding policy learning. To mitigate this, most offline RL methods leverage
data-related constraints to stabilize the learning process. These include explicit behavior constraint
techniques that penalize action divergence (Wu et al., 2019; Kumar et al., 2019; Fujimoto and Gu,
2021), value regularization schemes to discourage policies from selecting OOD actions via modifying
Bellman update (Kumar et al., 2020; Xu et al., 2022b; Bai et al., 2021; Lyu et al., 2022) or introducing
uncertainty penalities (Wu et al., 2021; An et al., 2021; Bai et al., 2021), and in-sample learning
methods (Brandfonbrener et al., 2021; Kostrikov et al., 2022; Xu et al., 2023; Mao et al., 2024b),
which stabilize training by only using in-sample data for value and policy learning, avoiding OOD
samples. While these methods perform reasonably well on datasets with sufficient state-action
coverage, they often struggle in small-sample settings where exploiting OOD generalization is
vital for achieving good performance. Recently, leveraging expressive model architectures such as
Transformers and diffusion models (Chen et al., 2021; Wang et al., 2022; Ajay et al., 2022; Janner
et al., 2022; Hansen-Estruch et al., 2023; Mao et al., 2024a) have gained popularity in offline RL, due
to their strong capability to fit complex data distributions. However, these models are overly heavy
and require extensive amounts of data to learn, making them impractical for the small-sample setting.

6 CONCLUSION

In this paper, we propose a highly sample-efficient offline RL algorithm that learns optimized pol-
icy within the latent space regulated by the fundamental T-symmetry in the dynamical systems.
Specifically, we develop a T-symmetry enforced inverse dynamics model (TS-IDM) to construct a
well-behaved and generalizable latent space, effectively mitigating the challenges of OOD general-
ization. By learning a T-symmetry regularized guide-policy within this latent space, we can obtain
the reward-maximizing next state to serve as the goal state input in the learned TS-IDM for optimal
action extraction. Through extensive experiments, we show that TELS achieves surprisingly strong
OOD generalization capability and SOTA small-sample performance. Moreover, we show empirically
that TS-IDM can also function as a representation model to provide informative representations and
enhance the performance of existing methods under the small-sample setting. One potential limitation
of TELS is that strong ODE and T-symmetry property regularizations, although helpful for extracting
fundamental features, sometimes could limit the model’s expressive power (see Appendix B.3).
Future studies can explore improved designs to balance fundamental pattern extraction and model
expressivity perfectly.

REFERENCES

R. Agarwal, M. C. Machado, P. S. Castro, and M. G. Bellemare. Contrastive behavioral similarity
embeddings for generalization in reinforcement learning. In International Conference on Learning
Representations, 2021.

A. Ajay, Y. Du, A. Gupta, J. Tenenbaum, T. Jaakkola, and P. Agrawal. Is conditional generative
modeling all you need for decision-making? arXiv preprint arXiv:2211.15657, 2022.

G. An, S. Moon, J.-H. Kim, and H. O. Song. Uncertainty-based offline reinforcement learning with
diversified g-ensemble. Advances in neural information processing systems, 34:7436-7447, 2021.

10

C. Bai, L. Wang, Z. Yang, Z.-H. Deng, A. Garg, P. Liu, and Z. Wang. Pessimistic bootstrapping
for uncertainty-driven offline reinforcement learning. In International Conference on Learning
Representations, 2021.

D. Brandfonbrener, W. Whitney, R. Ranganath, and J. Bruna. Offline rl without off-policy evaluation.
Advances in Neural Information Processing Systems, 34:4933-4946, 2021.

S. L. Brunton, J. L. Proctor, and J. N. Kutz. Discovering governing equations from data by sparse
identification of nonlinear dynamical systems. Proceedings of the national academy of sciences,
113(15):3932-3937, 2016.

K. Champion, B. Lusch, J. N. Kutz, and S. L. Brunton. Data-driven discovery of coordinates and
governing equations. Proceedings of the National Academy of Sciences, 116(45):22445-22451,
2019.

L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and I. Mordatch.
Decision transformer: Reinforcement learning via sequence modeling. Advances in neural
information processing systems, 34:15084—15097, 2021.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning of
visual representations. In International conference on machine learning, pages 1597-1607. PMLR,
2020.

P. Cheng, X. Zhan, W. Zhang, Y. Lin, H. Wang, L. Jiang, et al. Look beneath the surface: Exploiting
fundamental symmetry for sample-efficient offline rl. Advances in Neural Information Processing
Systems, 36, 2023.

J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven
reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

S. Fujimoto and S. S. Gu. A minimalist approach to offline reinforcement learning. Advances in
Neural Information Processing Systems, 34, 2021.

S. Fujimoto, D. Meger, and D. Precup. Off-policy deep reinforcement learning without exploration.
In International Conference on Machine Learning, pages 2052-2062. PMLR, 2019.

P. Hansen-Estruch, 1. Kostrikov, M. Janner, J. G. Kuba, and S. Levine. Idql: Implicit g-learning as an
actor-critic method with diffusion policies. arXiv preprint arXiv:2304.10573, 2023.

I. Huh, E. Yang, S. J. Hwang, and J. Shin. Time-reversal symmetric ode network. Advances in Neural
Information Processing Systems, 33:19016—-19027, 2020.

M. Janner, Y. Du, J. B. Tenenbaum, and S. Levine. Planning with diffusion for flexible behavior
synthesis. arXiv preprint arXiv:2205.09991, 2022.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. In ICLR 2014 : International
Conference on Learning Representations (ICLR) 2014, 2014.

I. Kostrikov, R. Fergus, J. Tompson, and O. Nachum. Offline reinforcement learning with fisher
divergence critic regularization. In International Conference on Machine Learning, pages 5774—
5783. PMLR, 2021.

I. Kostrikov, A. Nair, and S. Levine. Offline reinforcement learning with implicit q-learning. In
International Conference on Learning Representations, 2022.

A. Kumar, J. Fu, M. Soh, G. Tucker, and S. Levine. Stabilizing off-policy g-learning via bootstrapping
error reduction. In Advances in Neural Information Processing Systems, pages 11761-11771,
2019.

A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative q-learning for offline reinforcement
learning. In Neural Information Processing Systems (NeurlIPS), 2020.

J. S. Lamb and J. A. Roberts. Time-reversal symmetry in dynamical systems: a survey. Physica D:
Nonlinear Phenomena, 112(1-2):1-39, 1998.

11

M. Laskin, A. Srinivas, and P. Abbeel. Curl: Contrastive unsupervised representations for rein-
forcement learning. In International conference on machine learning, pages 5639-5650. PMLR,
2020.

S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline reinforcement learning: Tutorial, review, and
perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

J. Li, X. Zhan, H. Xu, X. Zhu, J. Liu, and Y.-Q. Zhang. When data geometry meets deep function:
Generalizing offline reinforcement learning. In The Eleventh International Conference on Learning
Representations, 2022.

J. Lyu, X. Ma, X. Li, and Z. Lu. Mildly conservative g-learning for offline reinforcement learning.
Advances in Neural Information Processing Systems, 35:1711-1724, 2022.

L. Mao, H. Xu, X. Zhan, W. Zhang, and A. Zhang. Diffusion-dice: In-sample diffusion guidance for
offline reinforcement learning. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024a.

L. Mao, H. Xu, W. Zhang, and X. Zhan. Odice: Revealing the mystery of distribution correction
estimation via orthogonal-gradient update. In The Twelfth International Conference on Learning
Representations, 2024b.

G. Neumann and J. Peters. Fitted g-iteration by advantage weighted regression. Advances in neural
information processing systems, 21, 2008.

S. Park, D. Ghosh, B. Eysenbach, and S. Levine. Hiql: Offline goal-conditioned rl with latent states
as actions. Advances in Neural Information Processing Systems, 36, 2024.

X. B. Peng, A. Kumar, G. Zhang, and S. Levine. Advantage-weighted regression: Simple and scalable
off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

M. Uehara, X. Zhang, and W. Sun. Representation learning for online and offline rl in low-rank mdps.
arXiv preprint arXiv:2110.04652, 2021.

Z. Wang, J. J. Hunt, and M. Zhou. Diffusion policies as an expressive policy class for offline
reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

M. Weissenbacher, S. Sinha, A. Garg, and K. Yoshinobu. Koopman g-learning: Offline reinforcement
learning via symmetries of dynamics. In International Conference on Machine Learning, pages
23645-23667. PMLR, 2022.

Y. Wu, G. Tucker, and O. Nachum. Behavior regularized offline reinforcement learning. arXiv
preprint arXiv:1911.11361, 2019.

Y. Wu, S. Zhai, N. Srivastava, J. M. Susskind, J. Zhang, R. Salakhutdinov, and H. Goh. Uncertainty
weighted actor-critic for offline reinforcement learning. In International Conference on Machine
Learning, pages 11319-11328. PMLR, 2021.

H. Xu, J. Li, J. Li, and X. Zhan. A policy-guided imitation approach for offline reinforcement
learning. In Advances in Neural Information Processing Systems, 2022a.

H. Xu, X. Zhan, and X. Zhu. Constraints penalized g-learning for safe offline reinforcement learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, 2022b.

H. Xu, L. Jiang, J. Li, Z. Yang, Z. Wang, V. W. K. Chan, and X. Zhan. Offline 1l with no ood actions:
In-sample learning via implicit value regularization. In The Eleventh International Conference on
Learning Representations, 2023.

M. Yang and O. Nachum. Representation matters: offline pretraining for sequential decision making.
In International Conference on Machine Learning, pages 11784—-11794. PMLR, 2021.

12

X. Zhan, H. Xu, Y. Zhang, X. Zhu, H. Yin, and Y. Zheng. Deepthermal: Combustion optimization for
thermal power generating units using offline reinforcement learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2022.

X. Zhan, X. Zhu, P. Cheng, X. Hu, Z. He, H. Geng, J. Leng, H. Zheng, C. Liu, T. Hong, Y. Liang,
Y. Liu, and F. Zhao. Data center cooling system optimization using offline reinforcement learning.
In The Thirteenth International Conference on Learning Representations, 2025.

13

A ADDITIONAL DISCUSSION ON RELATED WORKS

In this section, we present a detailed discussion of the connections and differences between our
proposed method, TELS, and the existing approaches TSRL (Cheng et al., 2023) and POR (Xu et al.,
2022a).

T-symmetry

enforcement

State-action Latent ODE forward State and action Latent inverse Latent ODE forward State and action
encoder and reverse dynamics decoders JAR State encoder dynamics and reverse dynamics decoders

- J

(a) T-symmetry enforced dynamic model (TDM) in TSRL (b) Our proposed T-symmetry enforced inverse dynamic model (TS-IDM)

Figure 7: Comparison of the architecture between TDM in TSRL and our proposed TS-IDM in TELS.

Connection and Differences with TSRL. As illustrated in Figure 7, both TSRL and TELS leverage
the T-symmetry consistency enforcement to construct the latent space. Specifically, in Figure 7 (a),
TSRL employs a T-symmetry-enforced dynamics model (TDM), which models system dynamics by
incorporating paired latent ODE forward and reverse dynamics to enforce T-symmetry. In contrast,
Figure 7 (b) illustrates our proposed T-symmetry-enforced inverse dynamics model (TS-IDM), which
integrates T-symmetry constraints into both forward and reverse dynamics while incorporating an
inverse dynamics model. We emphasize the main differences between TELS and TSRL as follows:

* Architecture: As presented in Figure 7 (a), TDM jointly encodes state-action pairs to form
the latent space, which may capture behavioral biases from the dataset (e.g., expert-specific
action patterns) and impede learning fundamental, distribution-agnostic dynamics patterns
in data. In contrast, Figure 7 (b) illustrates that TS-IDM overcomes these limitations by
adopting a state-only modeling approach, focusing on the underlying latent state variations.
Additionally, the only useful component of the learned TDM for downstream policy learning
is its encoder ¢(s, a), wasting the dynamics-related information captured by the model. In
contrast, TS-IDM trains an inverse dynamics model within the T-symmetry-enforced latent
space, which can be reused as an execute-policy to extract optimal actions.

Detailed Model Design: As shown in Figure 7 (a), TDM only enforces the ODE property
for its encoder but not the decoder, which could lead to inconsistency between the learned
dynamics and the underlying ODE structure, resulting in inaccurate or misaligned ODE rep-
resentations. To address this problem, we introduce the loss term £yq. in Eq. (5) specifically
to achieve this goal. This design is very important as it can greatly enhance the coupling
among the different elements in the model and results in a more stable learning process.

Training Procedure: In TSRL, the TDM encoder and decoders must be pre-trained before
joint training on other components to avoid stability issues. In contrast, our proposed TS-
IDM does not require pre-training; all components can be learned jointly in a single stage.
Additionally, TDM requires adding L.1-norm regularization to the parameters of the latent
forward and reverse dynamics models to stabilize the learning process. This is unnecessary
in TS-IDM (see Eq. 7), as the design of our proposed TS-IDM enables strongly coupled and
consistent relationships among all its internal components. The learning curves of TS-IDM
can be found in Appendix E.

Policy Optimization: Since TDM requires both state and action inputs to derive latent
representations, it is constrained to Q-function maximization for policy optimization. Conse-
quently, TSRL adopts TD3+BC as its backbone for policy learning, which inherently suffers
from over-conservative action-level constraints, particularly in small dataset settings. In
contrast, TELS performs policy optimization entirely within the compact and generalizable
latent state space derived from TS-IDM, enabling state-level optimization that avoids the
limitations of action-space constraints.

14

Table 3: Average normalized scores on full datasets DARL datasets. The scores are taken over the final 10
evaluations with 5 seeds.

Task | BC TD3+BC CQL IQL DOGE IDQL POR TSRL | TELS (ours)
Hopper-m ‘ 529 59.3 58.5 66.3 98.6 + 2.1 63.1 78.6 £7.2 86.7+8.7 ‘ 943 +28
Hopper-mr ‘ 18.1 60.9 95.0 94.7 76.24+17.7 82.4 98.9 £ 2.1 78.7£28.1 ‘ 99.5 +2.3
Hopper-me | 525 98.0 105.4 91.5 102.7+£ 5.2 105.3 90.0 £ 12.1 95.9+184 | 1054+ 85

Halfcheetah-m | 42.6 48.3 44.0 474 453+ 0.6 49.7 488+ 0.5 482407 | 443404
Halfcheetah-mr | 55.2 44.6 45.5 44.2 42.8 0.6 45.1 43.5+£0.9 422435 | 4L1+0.1
Halfcheetah-me | 55.2 90.7 91.6 86.7 78.7+£8.4 94.4 94.7+£2.2 92.0+1.6 | 87.1+29
Walker2d-m | 75.3 83.7 72.5 783 86.8 + 0.8 80.2 81.1 £23 775+45 | 813%5.1
Walker2d-mr | 26.0 81.8 772 73.9 873 +2.3 79.8 76.6 + 6.9 66.1+£12.0 | 86.0 £33
Walker2d-me | 107.5 110.1 108.8 109.6 110.4+1.5 111.6 109.1 £ 0.7 109.8+3.12 | 110.7 £ 14
Antmaze-u | 65.0 78.6 84.8 85.5 97.0 + 1.8 93.8 90.6 + 7.1 81.4+192 | 945+103
Antmaze-u-d | 456 714 434 66.7 63.5+9.3 62.0 7134121 765+29.7 | 79.7+£153
Antmaze-m-d | 0.0 0.0 54.0+11.7 74.6£32 77.6£6.1 86.6 79.24£3.1 0.0 | 824145
Antmaze-m-p | 0.0 0.0 65.2+4.8 70.4+£5.3 80.6£6.5 83.5 84.6 £5.6 0.0 | 86.7+57
Antmaze-l-d | 0.0 0.0 31.6+9.5 45.6£7.6 36.4 £9.1 56.4 73.4 +£8.5 0.0 | 4174142
Antmaze-1-p ‘ 0.0 0.0 18.8+153 43.5+45 48.2£8.1 57.0 58.0 £ 12.4 0.0 ‘ 60.7 +13.3

Connection and differences with POR. As discussed in Section 2, while both POR and TELS
share similarities in utilizing a state-stitching approach in state space for policy optimization, they
exhibit the following fundamental differences:

» State-Space vs. Latent-Space Optimization: POR relies on policy optimization in the
original state space, which inherently requires sufficient state-action coverage for valid
state-stitching. In contrast, TELS mitigates this limitation by constructing a compact and
generalizable latent space via TS-IDM.

e Unregularized T-Symmetry vs. T-Symmetry Regularized Policy Optimization: POR
optimizes the guide-policy solely through an AWR formulation (Neumann and Peters, 2008;
Peng et al., 2019), constraining 74 to stay close to the dataset via state-stitching (Eq. 2), but
lacks additional regularization to ensure generalizable state transitions. In contrast, TELS
enforces an additional T-symmetry consistency regularization {t.qym, which plays a critical
role in preventing 7, from outputting problematic and non-generalizable latent next states,
thereby enhancing its OOD generalizability.

B ADDITIONAL RESULTS

B.1 EVALUATION ON THE FULL DATASETS

We also evaluate the performance of TELS on the original full datasets of D4RL tasks, and the results
are presented in Table 3. Our proposed method achieves comparable or better performance than
existing offline RL methods. Note that although TSRL also adopts a similar T-symmetry regularized
representation learning scheme as ours, it performs poorly in Antmaze medium and large datasets.
This is primarily due to its use of the conservative TD3+BC backbone for policy optimization, which
also behaves similarly in these tasks.

Moreover, we notice that with larger data size and broader state-action space coverage, the strong
T-symmetry regularization in the TS-IDM can be properly relaxed, as sufficient data samples can be
used to learn the model reasonably well. Therefore, we can trade off some regularization to promote
model expressiveness (i.e., lower model learning loss). Specifically, for Antmaze tasks with the full
dataset, we set the regularization hyperparameter 8 = 0.01 to train the TS-IDM. In Appendix B.3,
we provide additional ablation experiments on the influence of the hyperparameter .

15

Data with various deletion ratios Policy rollouts: IDQL Policy rollouts: DOGE Policy rollouts: TSRL

Deletion
ratio: 0%

100k Antmaze-m-d dataset
with multiple deletion areas

Y-coordinate

20 Deletion
ratio: 70% ‘

Y-coordinate

$¢ : Start point » | perEton ‘.m:._.:g
7 : End point rallo:. 100%

7
77 : Deletion area L%:‘L >
SR o

o s 0 15 2 o 5 10 15 2 o 5 10 15 2 o 5 10 15 2
X-coordinate X-coordinate X-coordinate X-coordinate

Y-coordinate

Figure 8: Left: Illustration of the 100k Antmaze-m-d task with multiple deletion areas, where the red cross
denotes the start point, the yellow star denotes the goal locations, and the red shaded areas denote the data
deletion regions. Right: Visualization of the training dataset and policy rollout trajectories generated by trained
policies from various algorithms under varying deletion ratios.

B.2 ADDITIONAL OOD GENERALIZABILITY VALIDATION EXPERIMENTS

We further evaluate the generalization capabilities of DOGE (Li et al., 2022), IDQL (Hansen-Estruch
etal., 2023), and TSRL (Cheng et al., 2023) under the variation deletion AntMaze setting. Specifically,
we first train these methods on the remaining data after deletion and then analyze their behaviors by
visualizing rollouts over 20 evaluation episodes.

As shown in Figure 8, only IDQL occasionally successfully reaches the goal when no data is deleted
(0% deletion), whereas both DOGE and TSRL fail in all cases. As the deletion ratio increases to
70% and 100%, none of the three methods can learn effective policies. These results demonstrate
the challenges within this setting, which demands a more compact and expressive latent space and a
highly generalizable policy capable of solving the task with severely limited and extremely sparse
data. Although TSRL incorporates TDM to capture system dynamics, the available data remains
insufficient for its action-constraint-based approach to derive a reasonable policy.

B.3 ADDITIONAL ABLATION EXPERIMENTS

Impact of T-symmetry regularization on TS-IDM. To investigate the impact of T-symmetry
regularization strength controlled by the hyperparameter 5 in Eq. (7), we conduct additional ablation
experiments by varying the value of [to assess how T-symmetry regularization influences the
representation learning quality and downstream policy’s performance. Specifically, we train TS-
IDM on reduced-size 10k D4RL MuJoCo datasets with 8 = {0.1,1, 10}, representing different
T-symmetry regularization strengths. The learning curves of TS-IDM’s overall learning loss “Lrs.ipm”
in Eq. (7) are presented in Figure 9. The final policy learning performances with different TS-IDM
models are presented in Table 4.

From Figure 9, we observe that choosing a proper 8 value impacts the learning quality of TS-IDM.
A large 3 (e.g., 8 = 10) could impose overly strong regularization and hurt model expressiveness,
which is reflected in the high learning loss at convergence. However, when the regularization strength
is lowered, maintaining a proper scale of 3 is important to ensure both the quality and generalizability
of the learned representations. As we can see in Figure 9, in the Hopper and Walker2d tasks, choosing
B = 1 provides the lowest “Lrs ipm” loss; whereas in the Halfcheetah task, “Lrspy” is the lowest
when choosing 8 = 0.1. If we check the final policy’s performance under different TS-IDMs in
Table 4, we can see a clear correlation with what we have observed in Figure 9. TELS achieves the
highest score on Hopper and Walker2d tasks when /3 = 1, but the scores are higher for Halfcheetah
tasks when 8 = 0.1. This matches exactly with the learning performance of TS-IDM under different
[values. The strong correlation between TS-IDM’s learning performance and the final policy’s

16

Hopper-medium-replay-v2 Halfcheetah-medium-replay-v2 04 Walker2d-medium-replay-v2

1.5
0.15 0.3
= = =
a 91.0 3
10.10 | 10.2
2 2 2
] <05 <
0.05 0.1
0.00 \-s_____“_ 0.0 00 N~
250 500 750 1000 250 500 750 1000 250 500 750 1000
Training epoch Training epoch Training epoch
— =01 — B=1 —— B=10

Figure 9: The learning curves for training TS-IDM on 10k dataset with different 5 hyperparameter.

Table 4: Performance of TELS on 10k D4RL MuJoCo datasets when using TS-IDM with different 3 hyperpa-
rameters.

B =10 =1 8=0.1

|
Hopper-m | 773+£54 71.3+107 614+56
Hopper-mr | 153+66 432+35 197434
Hopper-me | 37.6 £179 1009 £ 6.8 647433

Halfcheetah-m | 32.9+£23 408 +£06 41.2+1.1
Halfcheetah-mr ‘ 8.6+ 1.8 332+£1.0 34.0+22
Halfcheetah-me | 7.542.2 40.7 £1.2 395421
Walker2d-m | 372+79 624+53 546+82
Walker2d-mr | 17.1£2.9 548 £6.0 392+8.6
Walker2d-me | 20.4 £ 104 874+13.3 447498

performance of TELS shows that we can select the best 3 hyperparameter values by simply looking
at TS-IDM’s training loss and using the one that provides the lowest training loss. This avoids the
need to perform potentially unsafe online policy evaluations or unstable offline policy evaluations,
which is favorable in real-world deployments.

Impact of components in TS-IDM for stochastic policy optimization. To validate the efficacy of
the T-symmetry regularizer {1.¢m in Eq. (10), we conduct ablation studies on 100k-sample Antmaze
tasks. As evaluation results presented in Table 5, the naive autoencoder-based inverse dynamics
model “¢ /1) + h;y,,” fails to form a reasonable latent space, yielding 0 average normalized scores
across all Antmaze environments. The introduction of latent dynamics models “h f,q” and “Royq,s”
provides marginal improvements by capturing partial system dynamics yet remains insufficient for
effective policy learning. Notably, enforcing ODE properties on decoders and utilizing T-symmetry
consistency proves to be the strongest performance improvement factor, which substantially enhances
representation reliability for the downstream guide-policy optimization process.

Impact of T-symmetry regularizer term in stochastic policy optimization. As shown in Figure 10
(left), we conduct ablation experiments to evaluate the impact of incorporating the T-symmetry
consistency regularization term {r.qy;, during the guide-policy optimization process of TELS. The
results demonstrate that the regularization term plays a critical role in ensuring the learned policy
respects the underlying physical symmetries of the system, which becomes especially crucial in
environments with limited data coverage. By penalizing deviations from T-symmetry, the guide-policy
is encouraged to generate state transitions that are consistent with the system’s dynamics, even in
OOD regions.

Effectiveness of learned representations for stochastic policy optimization. As shown in Fig-
ure 10 (right), we conduct ablation studies to assess TELS’s performance with various representation
learning models. The results reveal that all baseline models fail to construct informative latent spaces
as the task becomes more complex and the dataset expands. In contrast, TS-IDM uniquely learns a
well-structured representation that preserves system dynamics. This empirical evidence emphasizes
the importance of learning compact and generalizable representations for effective policy optimization
in complex environments with sparse data distributions.

17

© 50 L 50
o o
O 1%
D 60 9 60 1
o kel
[}]
N N
= 40 = 40
© ©
€ £
= f
S 20 S 204
=2 =2

0 0

Antmaze-m-d Antmaze-m-p Antmaze-I-d Antmaze-I-p Antmaze-m-d Antmaze-m-p Antmaze-l-d Antmaze-I-p
3 w/olr-sym W with {7 gym AE-rep EEE VAE-rep W Contras-rep EEE TS-IDM-rep

Figure 10: Left: Impact of ¢1sym on policy optimization. Right: Performance of TELS with different representa-
tion models on 10k datasets, error bars indicate the normalized scores over 5 random seeds.

Table 5: Ablations on the components of TS-IDM in Antmaze tasks.

‘ ¢/w+ hinv + hfwd’ hrvs T + gode T + ET—sym T

Antmaze-m-d 0 23.6 + 18.4 341+ 157 472+17.3
Antmaze-m-p 0 30.4£93 487+ 133 629+17.8
Antmaze-1-d 0 144 +£5.6 20.1 £89 39.8+14.1
Antmaze-1-p 0 7.8 £34 226 £16.7 473 +13.1

C IMPLEMENTATION DETAILS

C.1 IMPLEMENTATION DETAILS FOR TS-IDM

* Network Structure. For all MuJoCo locomotion and Antmaze tasks, we deployed 3-layer
feed-forward neural networks for the state encoder ¢, latent inverse dynamics model .,
forward and reverse dynamics models % ¢,,q4 and h,.,.5, and decoder models s and v, for the
latent states and actions. The activation function is ReLU and uses Adam optimizer to update
the parameters. We present the hyperparameters details of training TS-IDM in Table 6,
including the details of the structure we have implemented as well as the hyperparameters
we used during the training process.

* ODE Property Enforcement on ¢; and v);. We adopt a similar approach to TSRL (Cheng
et al., 2023) to train the ODE enforced forward and reverse dynamic models. Specifically,
we compute the time-derivative of the state encoder ¢ (s) by calculating its jacobian matrix
through vmap () function in Functorch 2 This allows us to derive the supervision values

d¢ (). §and 9% d(g) - (=8) for the forward dynamics model and reverse dynamics model
respecnvely as in Eq. (4). This approach implicitly enforces the ODE property on the state
encoder ¢, as the encoder is required to produce state representations that satisfy the ODE
constraints. Unlike TSRL, which enforces ODE properties only on the encoders and not
on the decoders, our method further regularizes the state decoder vs. Specifically, 15 is
trained to decode the predicted latent state variables generated by A f.,4(2s, 24) = 25 and
hrvs(2s75 2a) = —Z5 ensuring that it also satisfies the ODE constraints in Eq. (5). To achieve

this, we apply the same approach to compute s (Zb) and train the state decoder accordingly.

C.2 IMPLEMENTATION DETAILS FOR T-SYMMETRY REGULARIZED POLICY OPTIMIZATION

* Network Structure. For all MuJoCo locomotion and Antmaze tasks, we deployed 2-
layer feed-forward neural networks for the guide-policy 7, and the value function V. The
activation function is ReLU and uses Adam optimizer to update the parameters. We list the
parameter details in Table 7.

* Hyperparameters for Policy Optimization. Under both small-sample and full datasets
settings, we employ a deterministic policy update strategy for MuJoCo locomotion tasks,
as defined in Eq. (9), with learning rates of 1e-4 for both value and policy functions. The
normalization term A is computed as Ao = a/[>_, [V (#s(s:))|/N], where o controls
the trade-off between value maximization and policy regularization and N denotes the

2https://pytorch.org/functorch/stable/functorch.html

18

number of samples in the training batch. For Antmaze tasks, we utilize a stochastic policy
optimization strategy, as outlined in Eq. (10), with learning rates of le-3 for value and policy
functions.

Full dataset setting: We set (7, «,) = (0.7,0.01, 10) for all MuJoCo locomotion tasks
and (7,) = (0.9, 10) for all Antmaze tasks.

Small-sample setting: For Halfcheetah and Walker2d tasks, we set (7, a,) = (0.5,0.01, 5)
and incorporate policy dropout to mitigate overfitting. These tasks share identical state
and action dimensions (17 states and 6 actions), enabling the use of the same parameter
set for guide-policy training. In contrast, Hopper tasks with a smaller state-action space
(11 states and 3 actions) are comparatively simpler given the same amount of training data
(e.g., 10k samples). Consequently, we adopt a more aggressive learning strategy for Hopper,
setting (7, «,n) = (0.7,0.1, 10) to prioritize value maximization. For Antmaze tasks, we
use an identical set of parameters (7, &) = (0.9, 10) as in the full dataset setting to train the
guide-policy.

Training resources. To train a TS-IDM, we utilize one NVIDIA GeForce RTX 4090 with an AMD
Ryzen 9 7950X 16-Core Processor and 16GB of memory for approximately 30 minutes, running on
Ubuntu 22.04.2 LTS 64-bit. We employ the same resource configurations for approximately 6 hours
for the guide-policy training.

Table 6: Hyperparameters of TS-IDM.

| Hyperparameters | Value

State encoder hidden units 512 x 256

State encoder activation function ReLU

Latent forward model hidden units 256 x 256

Latent forward model activation function | ReLU

Latent reverse model hidden units 256 x 256

Latent reverse model activation function ReLU

TS-IDM latent inverse model hidden units 1024 x 1024

Architecture Latent inverse model activation function ReLU

Latent inverse model dropout True

Latent inverse model dropout rate 0.1

State decoder hidden units 256 x 512

State decoder activation function ReLU

Action decoder hidden units 512 x 512

Action decoder activation function ReLLU

Optimizer type Adam

153 1 (locomotion tasks); 0.1 (antmaze tasks)

Weight of £rec 1

Learning rate 3e-4

Hyperparameters | Batch size 256

Training epoch 1000

State normalize True

Weight decay 0 (locomotion tasks); le-5 (antmaze tasks and full dataset setting)

Table 7: Structure and training parameters of guide-policy optimization

| Hyperparameters | Value
Value network hidden units 1024 x 1024
Guide-policy | Value network activation function ReLU
structure Policy network hidden units 1024 x 1024
Policy network hidden units ReLU
Optimizer type Adam
Training Target Value network moving average | 0.05
Perparameters | Batch size 256
Training steps 100000
State normalize True

19

D DETAILED EXPERIMENT SETUPS

Reduced-size dataset generation. To create reasonable reduced-size D4RL datasets for a fair
comparison, we use the identical small-sample as in TSRL paper (Cheng et al., 2023) for the
locomotion tasks training. For Antmaze tasks, we adopt a similar approach by randomly sub-
sampling trajectories from the original dataset to construct smaller training datasets. Specifically,
for the “Antmaze-umaze” tasks, we randomly sample 10k data points for training. However, for the
“Antmaze-medium” and “Antmaze-large” tasks, we use larger datasets to account for the significantly
larger map scales.

The rationale behind this adjustment is that the “medium” and “large” environments are significantly
more expansive than the “umaze” environment. Sampling only 10k data points would likely result
in trajectories that lack the fundamental information necessary to describe the task. As a result, we
relax the small-sample constraints for these environments to ensure that the reduced datasets at least
contain enough successful trajectories for effective training.

Experiment setups for various representation learning. To assess the effectiveness of the repre-
sentations learned by TS-IDM, we integrate them as the representation model with IQL and TD3+BC,
verifying the usability of the learned latent space as illustrated in Figure 4. Specifically, we process
the original states s and next states s’ from the dataset using the pre-trained state encoder ¢ to
derive their latent representations: ¢s(s) — zs and ¢4(s’) — zy. The algorithms are then trained
entirely within this latent state space. The implementation details of these representation models are
as follows:

* “AE-rep”: We implement a naive autoencoder-based inverse dynamics framework, consist-
ing of a state encoder and decoders ¢ and 15 to construct the latent state space, The inverse
dynamics model h;,,, is then built within this latent space, serving as the execute-policy,
as in TELS. For a fair comparison, we use the same network parameters for the encoder,
decoder, and inverse dynamics model as in TS-IDM. The “AE-rep” model is trained with a
reconstruction loss to capture the essential features of the input, while the inverse dynamics
model is simultaneously trained on the latent representations to predict actions.

* “VAE-rep”: The variational autoencoder (VAE) (Kingma and Welling, 2014) is built based
on the “AE-rep” model by introducing additional KL divergence loss terms. Specifically,
the encoder outputs parameters of a Gaussian distribution in the latent space, and the latent
representations are sampled using the reparameterization trick. The VAE is trained using a
combined loss function that includes both the reconstruction loss and the KL divergence
loss, which regularizes the latent space to follow a prior distribution. The inverse dynamic
model is trained simultaneously with the VAE, sharing the latent space and optimizing for
both the reconstruction of the input data and the prediction of actions.

* “Contras-rep”: We utilize the NT-Xent loss (Normalized Temperature-Scaled Cross Entropy
Loss) used in SimCLR (Chen et al., 2020) within the latent representation space on top
of the “AE-rep” model. The overall loss function combines the contrastive loss with the
reconstruction loss, ensuring that the latent space not only captures the structure of the data
but also learns semantically meaningful representations that are robust to variations. The
inverse dynamic model is trained simultaneously within the latent space to predict actions.

Experiment setups for OOD generalization tasks in Antmaze. In Section 4.2, we conduct a more
challenging scenario to verify the OOD generalizability of the algorithm. Specifically, based on 100k
“Antmaze-medium-diverse-v2” dataset, we manually selected five critical intervals and erased the data
points within these intervals by randomly deleting them. The selection of intervals was determined
based on the XY-axis coordinates. In this dataset, the first two dimensions of the state represent the
vertical and horizontal coordinates, respectively. Based on this information, we randomly deleted
70% and 100% of the data in the chosen intervals. We then trained IQL (Kostrikov et al., 2022),
DOGE (Li et al., 2022), IDQL (Hansen-Estruch et al., 2023), POR (Xu et al., 2022a), TSRL (Cheng
et al., 2023), and TELS using this modified dataset to evaluate their generalizability.

20

E LEARNING CURVES

The following are the learning curves of TS-IDM and the T-symmetry regularized guide-policy
optimization in TELS on the reduced-size DARL MuJoCo and Antmaze datasets. We evaluate the
policy with 10 episodes over 5 random seeds.

Hopper-m-v2 (10k) Hopper-m-v2 (10k) Hopper-m-v2 (10k)
0.08
0.06 0.020
0.05.
004 0.06 0.015
g z
1 0.03 3004 30010
<7 <5
0.02
0.02 0.005
0.01
0.00 0.00 0.000
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 025 0.50 0.7 1.00
Training Steps (x103) Training Steps (x103) Training Steps (x103)
Hopper-m-v2 (10k) Hopper-m-v2 (10k) 012 Hopper-m-v2 (10k)
0.020 0.035
0.030 0.010
0.015 0.025 0.008
9 €
o Bo.o20 @ 0,006
<0010 «‘n 0.015. !
= \'l_ 0.004
0005 0.010
0.005 0.002
0.000 0.000 0.000
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Training Steps (x103) Training Steps (x10°) Training Steps (x103)
Hopper-m-r-v2 (10k) Hopper-m-r-v2 (10k) Hopper-m-r-v2 (10k)

0.08

0.06

Ls - rec
Y
R
[inv
s o oM o o
=3 o o =3 =3 =
S 8 8 8 8 3
Lewd
o o © o o
g & 8 8 &
g8 8 8 8 2
S 8§ 8 8 3

0.02
0.00 0.000
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 025 0.50 0.75 1.00
Training Steps (x103) Training Steps (x103) Training Steps (x103)
Hopper-m-r-v2 (10k) Hopper-m-r-v2 (10k) s Hopper-m-r-v2 (10k)
0.025
0.04 0.010
0.020
0015 2008 g
2 ? ‘I”>‘0 006
~ 0 0.02
0010 - £ 0004
0.005 0.01 0.002
0.000 0.00 0.000
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.7 1.00
Training Steps (x103) Training Steps (x103) Training Steps (x103)
Hopper-m-e-v2 (10k) i Hopper-m-e-v2 (10k) Hopper-m-e-v2 (10k)
0.0035
0.08 0.08 0.0030
g 0.06 0.06 0.0025
‘I‘ E B0.0020
004 =004 <0015
002 002 0.0010
0.0005
0.00 0.00 0.0000
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Training Steps (x103) Training Steps (x103) Training Steps (x10°)
Hopper-m-e-v2 (10k) om0 Hopper-m-e-v2 (10k) Hopper-m-e-v2 (10k)
002 ’ 0.004
0.025
0.003
0.015 M 0.020 €
0 B >
Loom0 1 0015 | 0002
v =
0,010 =
0.005 0.001
0.005
0.000 0.000 0.000
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Training Steps (x103) Training Steps (x10°) Training Steps (x103)

Figure 11: Learning curves of the overall and each individual loss terms in TS-IDM for Hopper tasks.

21

Halfcheetah-m-v2 (10k) Halfcheetah-m-v2 (10k) Halfcheetah-m-v2 (10k)

0.08

0.06

0.02

s rec
s o s o
S 2 2 B
8 3 & B
linv
o
g
2
Lowg
ol s o
g g8 8
g 8 8
g 8 8

0.002
0.00 0.00 0.000
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 025 0.50 0.75 1.00
Training Steps (x103) Training Steps (x103) Training Steps (x103)
Halfcheetah-m-v2 (10k) » Halfcheetah-m-v2 (10k) Halfcheetah-m-v2 (10k)
04
035 0010
03 0.30
0.008
" gozs €
202 Q020 @ 0.006
= |
Q"A 015 *\'I_ 0.004
0.1 0.10
0.05 0.002
0.0 0.00 0.000
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.7 1.00
Training Steps (x103) Training Steps (x103) Training Steps (x103)
Halfcheetah-m-r-v2 (10k) 1o Halfcheetah-m-r-v2 (10k) Halfcheetah-m-r-v2 (10k)
0.008
0.20
0.08 0.007
0.006
o 0.15 0.06
1] z _g 0.005
1 £ E
oo <04 & zzz‘;
0.05 0.02 0.002
0.001
0.00 0.00 0.000
0.00 0.25 0.50 0.7 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Training Steps (x103) Training Steps (x103) Training Steps (x103)
oo Halfcheetah-m-r-v2 (10k) Halfcheetah-m-r-v2 (10k) Halfcheetah-m-r-v2 (10k)
0.35 0.35
- 0.008
030 0.30
0.25 2025 £ 0006
2020 ?020 @
S~ s Do <:Lloum
0.10 0.10 0.002
0.05 0.05
0.00 0.00 0.000
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Training Steps (x103) Training Steps (x103) Training Steps (x10°)
Halfcheetah-m-e-v2 (10k) Halfcheetah-m-e-v2 (10k) Halfcheetah-m-r-v2 (10k)

[S - rec
o ST,
e 2 2 g
8 3 3 B
lan
SV o
g 2 8
2 8 3
Liwg
o o o o
g 8 g8 g
s g8 g s
g 8 8 8

0.02
0.00 0.00 0.000
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Training Steps (x103) Training Steps (x103) Training Steps (x103)
Halfcheetah-m-e-v2 (10k) Halfcheetah-m-e-v2 (10k) Halfcheetah-m-r-v2 (10k)
0.40 035 0.010
0.35
0.30 0.008
0.30
0.25
025 g € 0.006
s 020 0020 @
015 Yo1s 0004
0.10 0.10
0.002
0.05 0.05
0.00 0.00 0.000
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Training Steps (x103) Training Steps (x103) Training Steps (x10°)

Figure 12: Learning curves of the overall and each individual loss terms in TS-IDM for Halfcheetah tasks.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Walker2d-m-v2 (10k)

Walker2d-m-v2 (10k)

Walker2d-m-v2 (10k)

014 0.08 0.008
0.12
g0.10 0.06 0.006
008 z 2
g}n 0.06 = 0.04 <5 0.004
004 0.02 0,002
0.02
0.00 0.00 0.000
0.00 0.25 0.50 0.75 1.00 .00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Training Steps (x103) Training Steps (x103) Training Steps (x103)
Walker2d-m-v2 (10k) Walker2d-m-v2 (10k) " Walker2d-m-v2 (10k)
0.025 o
0.020 008 0.008
©0.06
é’u.ms 3 go 006
! |
<5 0.04
0.010 Et'z,l <.N- 0.004
0.005 0.02 0.002
0.000 0.00 0.000
0.00 0.25 0.50 0.75 1.00 .00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Training Steps (x103) Training Steps (x103) Training Steps (x10°)
Walker2d-m-r-v2 (10k) Walker2d-m-r-v2 (10k) Walker2d-m-r-v2 (10k)
0.14 0.12 0.007
0.12 o0.10 0.006
g0.10 0.08 0.005
008 .Eoos go.ona
Qo006 = <~ 0003
0.04
0.04 0.002
0.02 0.02 0.001
0.00 0.00 0.000
0.00 0.25 0.50 0.75 1.00 .00 0.25 0.50 0.75 1.00 0.00 0.25 050 075 1.00
Training Steps (x103) Training Steps (x103) Training Steps (x103)
Walker2d-m-r-v2 (10k) Walker2d-m-r-v2 (10k) Walker2d-m-r-v2 (10k)
0.025 0.08 0.008
0.07 0.007
0.020 006 0.006
0015 Zo.0s £ 0005
o <3 &
R 1004 " 0004
"
0.010 =003 <& 0003
0.02 0.002
0.005
0.01 0.001
0.000 0.00 0.000
0.00 0.25 0.50 0.75 1.00 .00 0.25 0.50 0.76 1.00 0.00 0.25 0.50 0.75 1.00
Training Steps (x103) Training Steps (x103) Training Steps (x103)
Walker2d-m-e-v2 (10k) Walker2d-m-e-v2 (10k) Walker2d-m-e-v2 (10k)
0.14 0.08 0.008
012
0.10 0.06 0.006
o
Lo.08 2 2
006 <5004 Sooos
<
0.04 0.02 0.002
0.02
0.00 0.00 0.000
0.00 0.25 0.50 0.75 1.00 00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Training Steps (x103) Training Steps (x103) Training Steps (x10°3)
Walker2d-m-e-v2 (10k) 010 Walker2d-m-e-v2 (10k) Walker2d-m-e-v2 (10k)
0.020 0.08 0.008
0.015 @0, 0.006
é’ .g 0.06 g
]
<0010 0 0.04 ,l 0.004
-
0.005 0.02 0.002
0.000 0.00 0.000
0.00 0.25 0.50 0.75 1.00 00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Training Steps (x103)

Training Steps (x103)

Training Steps (x103)

Figure 13: Learning curves of the overall and each individual loss terms in TS-IDM for Walker2d tasks.

23

Hopper-m-v2 (10k) Hopper-m-r-v2 (10k) Hopper-m-e-v2 (10k)

90 60 100
Qg o © 9
9] <] 5
g g% S &
w
o %0 S a0 @
8 s0 @ 8 60
=40 =30 = 50
o] © T 40
€30 €5 €
S S s ¥
z Z . Z
10 10
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Training Steps (x10°) Training Steps (x10°) Training Steps (x10°)
Halfcheetah-m-v2 (10k) Halfcheetah-m-r-v2 (10k) Halfcheetah-m-e-v2 (10k)
g 4 95’ 40 g %
® @ ®
Rl 30 Bl 30 Rl 30
@ @ ®
N N N
g 20 g 20 (_Eu 20
S0 S0 S
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Training Steps (x10°) Training Steps (x10°) Training Steps (x10°)
Walker2d-m-v2 (10k) Walker2d-m-r-v2 (10k) Walker2d-m-e-v2 (10k)
70 70 100
: g ¥
geo g0 8
2 50 g 50 n 70
el
@ @ 3 e
% 40 % 40 N s
30 30 ©
£ £ €
2 20 2 20 2 »
10 10 10
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Training Steps (x10°) Training Steps (x10°) Training Steps (x10°)
Antmaze-u-v2 (10k) Antmaze-u-d-v2 (10k) Antmaze-m-d-v2 (10k)
100 100 80
g % g 9 g 70
8 3 e o
N 7 N 7 €N
B e B e0 g0
N 5 N 5 -(_%‘ 40
]]
P £ e
S S S»
10 10 10
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Training Steps (x10°) Training Steps (x10°) Training Steps (x10°)
Antmaze-m-p-v2 (10k) Antmaze-I-d-v2 (10k) Antmaze-Il-p-v2 (10k)
80
o & o
o0 o) Q 60
t})" 60 ‘% 50 &;
g g 3
N 40 N N4
© e © 30
£30 £ £
£ E20 £,
S 20 <] S
z, Z . z,
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Training Steps (x10°) Training Steps (x10°) Training Steps (x10°)

Figure 14: Learning curves of policy optimization in TELS for D4ARL MuJoCo and Antmaze tasks with reduced-
size datasets. We evaluate the policy within 10 episodes over 5 random seeds.

24

	Introduction
	Preliminaries
	Methodology
	T-symmetry Enforced Inverse Dynamic Model
	Latent Space Offline Policy Optimization

	Experiments
	Performance Comparison on Small-Sample Setting
	Investigating the OOD Generalizability of TELS
	Effectiveness of the Learned Representations
	Ablation Study

	Related work
	Conclusion
	Additional Discussion on Related Works
	Additional Results
	Evaluation on the Full Datasets
	Additional OOD Generalizability Validation Experiments
	Additional Ablation Experiments

	Implementation Details
	Implementation Details for TS-IDM
	Implementation Details for T-symmetry Regularized Policy Optimization

	Detailed Experiment Setups
	Learning Curves

