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Abstract

Reinforcement learning (RL) has achieved phenomenal success in various domains.1

However, its data-driven nature also introduces new vulnerabilities that can be2

exploited by malicious opponents. Recent work shows that a well-trained RL agent3

can be easily manipulated by strategically perturbing its state observations at the4

test stage. Existing solutions either introduce a regularization term to improve the5

smoothness of the trained policy against perturbations or alternatively train the6

agent’s policy and the attacker’s policy. However, the former does not provide7

sufficient protection against strong attacks, while the latter is computationally8

prohibitive for large environments. In this work, we propose a new robust RL9

algorithm for deriving a pessimistic policy to safeguard against an agent’s un-10

certainty about true states. This approach is further enhanced with belief state11

inference and diffusion-based state purification to reduce uncertainty. Empirical12

results show that our approach obtains superb performance under strong attacks13

and has a comparable training overhead with regularization-based methods.14

1 Introduction15

As one of the major paradigms for data-driven control, reinforcement learning (RL) provides a16

principled and solid framework for sequential decision-making under uncertainty. However, an RL17

agent is subject to various types of attacks, including state and reward perturbation, action space18

manipulation, and model inference and poisoning [16]. Recent studies have shown that an RL agent19

can be manipulated by poisoning its observation [14, 33] and reward signals [15], and a well-trained20

RL agent can be easily defeated by a malicious opponent behaving unexpectedly [8]. In particular,21

recent research has demonstrated the brittleness [33, 27] of existing RL algorithms in the face of22

adversarial state perturbations, where a malicious agent strategically and stealthily perturbs the23

observations of a trained RL agent, causing a significant loss of cumulative reward.24

Several solutions have been proposed to combat state perturbation attacks. SA-MDP [33] imposes a25

regularization term in the training objective to improve the smoothness of the learned policy under26

state perturbations. This approach is improved in WocaR-RL [20] by incorporating an estimate of27

the worst-case reward under attacks into the training objective. In a different direction, ATLA [32]28

alternately trains the agent’s and the attacker’s policy. This approach can potentially lead to a more29

robust policy but incurs high computational overhead, especially for large environments such as Atari30

games with raw pixel observations.31

Despite their promising performance in certain RL environments, the above solutions have two major32

limitations. First, actions are directly derived from a value or policy network trained using true states,33

despite the fact that the agent can only observe perturbed states at the test stage. This mismatch34

between the training and testing leads to unstable performance at the test stage. Second, most existing35
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work does not exploit historical observations and the agent’s knowledge about the underlying MDP36

model to characterize and reduce uncertainty and infer true states in a systematic way.37

In this work, we propose a pessimistic DQN algorithm against state perturbations by viewing the38

defender’s problem as finding an approximate Stackelberg equilibrium for a two-player Markov game39

with asymmetric observations. Given a perturbed state, the agent selects an action that maximizes the40

worst-case value across possible true states. This approach is applied at both training and test stages,41

thus removing the inconsistency between the two. We further propose two approaches to reduce42

the agent’s uncertainty about true states. First, the agent maintains a belief about the actual state43

using historical data, which, together with the pessimistic approach, provides a strong defense against44

large perturbations that may change the semantics of states. Second, for games with raw pixel input,45

such as Atari games, we train a diffusion model using the agent’s knowledge about valid states. This46

approach provides superb performance under commonly used attacks, with the additional advantage47

of being agnostic to the perturbation level. Our method achieves high robustness and significantly48

outperforms existing solutions under strong attacks while maintaining comparable performance under49

relatively weak attacks. Further, its training complexity is comparable to SA-MDP and WocaR-RL50

and is much lower than alternating training-based approaches.51

2 Background52

2.1 Reinforcement Learning53

A reinforcement learning environment is usually formulated as a Markov Decision Process (MDP),54

denoted by a tuple ⟨S,A, P,R, γ⟩, where S is the state space and A is the action space. P :55

S × A → ∆(S) is the transition function of the MDP, where P (s′|s, a) gives the probability of56

moving to state s′ given the current state s and action a. R : S × A → R is the reward function57

where R(s, a) = E(Rt|st−1 = s, at−1 = a) and Rt is the reward in time step t. Finally, γ is58

the discount factor. An RL agent wants to maximize its cumulative reward G = ΣT
t=0γ

tRt over59

a time horizon T ∈ Z+ ∪ {∞}, by finding a (stationary) policy π : S → ∆(A), which can be60

either deterministic or stochastic. For any policy π, the state-value and action-value functions61

are two standard ways to measure how good π is. The state-value function satisfies the Bellman62

equation Vπ(s) = Σa∈Aπ(a|s)[R(s, a) + γΣs′∈SP (s′|s, a)Vπ(s
′)] and the action-value function63

satisfies Qπ(s, a) = R(s, a) + γΣs′∈SP (s′|s, a)[Σa′∈Aπ(a
′|s′)Qπ(s

′, a′)]. For MDPs with a finite64

or countably infinite state space and a finite action space, there is a deterministic and stationary policy65

that is simultaneously optimal for all initial states s.66

2.2 State Adversarial Attacks in RL67

(a) Original (b) Perturbed (c) Original (d) Perturbed

Figure 1: Examples of perturbed states : (a) and (b)
show states in a continuous state Gridworld, and (c) and
(d) show states in the Atari Pong game.

First introduced in [14], a state perturbation at-68

tack is a test stage attack targeting an agent with69

a well-trained policy π. At each time step, the70

attacker observes the true state st and generates71

a perturbed state s̃t (see Figure 1 for examples).72

The agent observes s̃t but not st and takes an73

action at according to π(·|s̃t). The attacker’s74

goal is to minimize the cumulative reward that75

the agent obtains. Note that the attacker only76

interferes with the agent’s observed state but not the underlying MDP. Thus, the true state in the77

next time step is distributed according to P (st+1|st, π(·|s̃t)). To limit the attacker’s capability and78

avoid being detected, we assume that s̃t ∈ Bϵ(st) where Bϵ(st) is the lp ball centered at st for some79

norm p. We consider a strong adversary that has access to both the MDP and the agent’s policy80

π and can perturb at every time step. With these assumptions, it is easy to see that the attacker’s81

problem given a fixed π can also be formulated as an MDP ⟨S, S, P̃ , R̃, γ⟩, where both the state82

and action spaces are S, the transition probability P̃ (s′|s, s̃) =
∑

a π(a|s̃)P (s′|s, a), and reward83

R̃(s, s̃) = −
∑

a π(a|s̃)R(s, a). Thus, an RL algorithm can be used to find a (nearly) optimal84

attack policy. Further, we adopt the common assumption [33, 20] that the agent has access to an85

intact MDP at the training stage and has access to ϵ (or an estimation of it). As we discuss below,86

our diffusion-based approach is agnostic to ϵ. Detailed discussions of related work on attacks and87

defenses in RL, including and beyond state perturbation, are in Appendix B.88

2



3 Pessimistic Q-learning with State Inference and Purification89

Figure 2: Belief-enriched robust RL
against state perturbations. Note that the
agent can only access the true state st
and reward Rt at the training stage.

In this section, we give an overview of our game formu-90

lation and algorithmic solutions. Details can be found in91

Appendix C.92

State-Adversarial MDP as a Stackelberg Markov93

Game with Asymmetric Observations. The problem94

of robust RL under adversarial state perturbations can95

be viewed as a two-player Markov game. The RL96

agent wants to find a policy π : S → ∆(A) that max-97

imizes its long-term return, while the attacker wants98

to find an attack policy ω : S → S to minimize99

the RL agent’s cumulative reward. The agent’s value100

function for a given pair of policies π and ω satis-101

fies the Bellman equation as Qπ◦ω(s, a) = R(s, a) +102

γΣs′∈SP (s′|s, a)[Σa′∈Aπ(a
′|ω(s′))Qπ◦ω(s

′, a′)]. We103

can consider a Stackelberg equilibrium by viewing the104

RL agent as the leader and the attacker as the follower to gain robustness. The agent first com-105

mits to a policy π. The attack observes π and identifies an optimal attack, denoted by ωπ,106

as a response, where ωπ(s) = argmins̃∈Bϵ(s)
Σa′∈Aπ(a

′|s̃)Q(s, a′). Ideally, the agent wants107

to find a policy π∗ that reaches a Stackleberg equilibrium of the game, which is defined as108

∀s ∈ S, ∀π, Vπ∗◦ωπ∗ (s) ≥ Vπ◦ωπ (s). However, previous work has shown that due to the noisy109

observations, finding a stationary policy that is optimal for every initial state is generally impossi-110

ble [33]. Thus, our goal is to find an approximate Stackelberg equilibrium, which is further improved111

through state prediction and denoising (see Figure 2 for the overall framework of our approach).112

Pessimistic Q-learning Against the Worst Case. In this work, we present a pessimistic Q-learning113

algorithm (see Algorithm 1 in Appendix C.2) to address the asymmetric observations. The algorithm114

maintains a Q-function with the true state as the input, similar to vanilla Q-learning. But instead of115

using a greedy approach to derive the target policy or a ϵ-greedy approach to derive the behavior116

policy from the Q-function, a maximin approach is used in both cases. Figure 3 in the Appendix D117

illustrates the relations between a true state s, the perturbed state s̃, the worst-case state s̄ ∈ Bϵ(s̃) for118

which the action is chosen. In particular, it shows that the true state s must land in the ϵ-ball centered119

at s̃, and the worst-case state the RL agent envisions is at most 2ϵ away from the true state. This gap120

causes performance loss that will be studied in Appendix C.6.121

Reducing Uncertainty Using Beliefs. In Algorithm 1, the agent’s uncertainty against the true state122

is captured by the ϵ-ball around the perturbed state. The agent can utilize the sequence of historical123

observations and actions {(s̃τ , aτ )}τ<t ∪ {s̃t} and the transition dynamics of the underlying MDP124

to reduce its uncertainty of the current true state st. To this end, we propose a simple approach to125

reduce the agent’s worst-case uncertainty as follows. Let Mt ⊆ Bϵ(s̃t) denote the agent’s belief126

about all possible true states at time step t. Initially, we let M0 = Bϵ(s̃0). At the end of the time127

step t, we update the belief to include all possible next states that is reachable from the current state128

and action with a non-zero probability. Formally, let M ′
t = {s′ ∈ S : ∃s ∈ Mt, P (s′|s, at) > 0}.129

After observing the perturbed state s̃t+1, we then update the belief to be the intersection of M ′
t and130

Bϵ(s̃t+1), i.e., Mt+1 = M ′
t ∩Bϵ(s̃t+1), which gives the agent’s belief at time t+ 1. When the state131

space is high-dimensional and continuous, computing the accurate belief is particularly hard. To deal132

with this, we adapt the particle filter recurrent neural network (PF-RNN) technique developed in [21]133

to generate belief Mt under high-dimensional state space.134

Purifying Invalid Observations via Diffusion. For environments that use raw pixels as states,135

such as Atari Games, perturbed states generated by adding bounded noise to each pixel are mostly136

“invalid” in the following sense. Let S0 ⊆ S denote the set of possible initial states. Let S0 denote137

the set of states that are reachable from any initial state in S0 by following an arbitrary policy. Then138

perturbed states will fall outside of S0 with high probability. This is especially the case for l∞139

attacks that bound the perturbation applied to each pixel as commonly assumed in existing work140

(see Appendix D.2 for an example). We choose to utilize a diffusion model [12, 26] to purify the141

perturbed states, which obtains promising performance, as we show in our empirical results. A more142

detailed description of the diffusion models and our adaptations are given in Appendix B.6.143
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4 Experiments144

We develop two pessimistic versions of the classic DQN algorithm [22] by incorporating approximate145

belief update and diffusion-based purification, denoted by BP-DQN and DP-DQN (see Algorithms 4-146

7 in Appendix F), respectively and evaluate them by conducting experiments on three environments,147

a continuous state Gridworld environment (shown in Figure 1a) for BP-DQN and two Atari games,148

Pong and Freeway for DP-DQN-O and DP-DQN-F, which utilize DDPM [12] and Progressive149

Distillation [26] as the diffusion model, respectively. (See Appendix G.1 for a justification.) We150

choose vanilla DQN [23], SA-DQN [33], and WocaR-DQN [20] as defense baselines. We consider151

three commonly used attacks to evaluate the robustness of these algorithms: (1) PGD attack [33];152

(2) MinBest attack [14]; and (3) PA-AD [27]. Details on the experiment setup can be found in153

Appendix G.2. Additional experiment results and ablation studies are given in Appendix G.3.154

PGD MinBestEnvironment Model Natural Reward
ϵ = 0.1 ϵ = 0.5 ϵ = 0.1 ϵ = 0.5

DQN 156.5± 90.2 128± 118 −53± 86 98.2± 137 −82± 20
SA-DQN 20.8± 140 46± 142 −100± 0 −5.8± 131 −100± 0

WocaR-DQN −100± 0 −100± 0 −63.2± 88 −100± 0 −63.2± 88
Continuous
Gridworld

BP-DQN (Ours) 163± 26 165± 29 176± 16 147± 88 114± 114

(a) Continuous Gridworld Results

PGD MinBest PA-ADEnv Model Natural
Reward ϵ = 1/255 ϵ = 3/255 ϵ = 15/255 ϵ = 1/255 ϵ = 3/255 ϵ = 15/255 ϵ = 1/255 ϵ = 3/255 ϵ = 15/255

DQN 21± 0 −21± 0 −21± 0 −21± 0 −21± 0 −21± 0 −21± 0 −18.2± 2.3 −19± 2.2 −21± 0
SA-DQN 21± 0 21± 0 21± 0 −20.8± 0.4 21± 0 21± 0 −21± 0 21± 0 18.7± 2.6 −20± 0

WocaR-DQN 21± 0 21± 0 21± 0 −21± 0 21± 0 21± 0 −21± 0 21± 0 19.7± 2.4 −21± 0
DP-DQN-O(Ours) 19.9± 0.3 19.9± 0.3 19.8± 0.4 19.7± 0.5 19.9± 0.3 19.9± 0.3 19.3± 0.8 19.9± 0.3 19.9± 0.3 19.3± 0.8

Pong

DP-DQN-F (Ours) 21± 0 20.4± 0.7 20.2± 0.8 18.6± 1 20.2± 0.9 19.0± 0 19.3± 1.6 18.0± 1.0 17.6± 1.8 17± 2.3
DQN 34± 0.1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0

SA-DQN 30± 0 30± 0 30± 0 0± 0 27.2± 3.4 18.3± 3.0 0± 0 20.1± 4.0 9.5± 3.8 0± 0
WocaR-DQN 31.2± 0.4 31.2± 0.5 31.4± 0.3 21.6± 1 29.6± 2.5 19.8± 3.8 21.6± 1 24.9± 3.7 12.3± 3.2 21.6± 1

DP-DQN-O (Ours) 28.8± 1.1 29.1± 1.1 29± 0.9 28.9± 0.7 29.2± 1.0 28.5± 1.2 28.6± 1.3 28.6± 1.2 28.3± 1 28.8± 1.3
Freeway

DP-DQN-F (Ours) 31.2± 1 30± 0.9 30.1± 1 30.7± 1.2 30.2± 1.3 30.6± 1.4 29.4± 1.2 30.8± 1 31.4± 0.8 28.9± 1.1

(b) Atari Games Results

Table 1: Experiment Results. We show the average episode rewards ± standard deviation over 10
episodes for our methods and three baselines. The results for our methods are highlighted in gray.

4.1 Results and Discussion155

Continuous Gridworld. As shown in Table 1a, our method (BP-DQN) achieves the best performance156

under all scenarios In contrast, both SA-DQN and WocaR-DQN fail under the large attack budget157

ϵ = 0.5 and perform poorly under the small attack budget ϵ = 0.1. We conjecture that this is because158

state perturbations in the continuous Gridworld environment often change the semantics of states159

since most perturbed states are still valid observations. We also noticed that both SA-DQN and160

WocaR-DQN perform worse than vanilla DQN when there is no attack and when ϵ = 0.1. We161

conjecture that this is due to the mismatch between true states and perturbed states during training162

and testing and the approximation used to estimate the upper and lower bounds of Q-network output163

using the Interval Bound Propagation (IBP) technique [9] in their implementations.164

Atari Games. As shown in Table 1b, our DP-DQN method outperforms all other baselines under a165

strong attack (e.g., PA-AD) or a large attack budget (e.g., ϵ = 15/255), while achieving comparable166

performance as other baselines in other cases. SA-DQN and WocaR-DQN fail to respond to large167

state perturbations for two reasons. First, both of them use IBP to estimate an upper and lower168

bound of the neural network output under perturbations, which are likely to be loose under large169

perturbations. Second, both approaches utilize a regularization-based approach to maximize the170

chance of choosing the best action for all states in the ϵ-ball centered at the true state. This approach171

is effective under small perturbations but can pick poor actions for large perturbations as the latter172

can easily exceed the generalization capability of the Q-network. We observe that WocaR-DQN173

performs better when the attack budget increases from 3/255 to 15/255 in Freeway. The reason is174

that under large perturbations, the agent adopts a bad policy by always moving forward regardless175

of state, which gives a reward of around 21. We admit that our method suffers a small performance176

loss compared with SA-DQN and WocaR-DQN in the Atari games when there is no attack or when177

the attack budget is low. We conjecture that no single fixed policy is simultaneously optimal against178

different types of attacks. A promising direction is to adapt a pre-trained policy to the actual attack179

using samples collected online.180
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Appendix276

A Broader Impacts277

As RL is increasingly being used in vital real-world applications like autonomous driving and large278

generative models, we are rapidly moving towards an AI-assisted society. With AI becoming more279

widespread, it is important to ensure that the policies governing AI are robust. An unstable policy280

could be easily exploited by malicious individuals or organizations, causing damage to property,281

productivity, and even loss of life. Therefore, providing robustness is crucial to the successful282

deployment of RL and other deep learning algorithms in the real world. Our work provides new283

insights into enhancing the robustness of RL policies against adversarial attacks and contributes to284

the foundation of trustworthy AI.285

B Related Work286

B.1 State Perturbation Attacks and Defenses287

State perturbation attacks against RL policies are first introduced in [14], where the MinBest attack288

that minimizes the probability of choosing the best action is proposed. [33] show that when the289

agent’s policy is fixed, the problem of finding the optimal adversarial policy is also an MDP, which290

can be solved using RL. This approach is further improved in [27], where a more efficient algorithm291

for finding the optimal attack called PA-AD is developed.292

On the defense side, Zhang et al. [33] prove that a policy that is optimal for any initial state under293

optimal state perturbation might not exist and propose a set of regularization-based algorithms294

(SA-DQN, SA-PPO, SA-DDPG) to train a robust agent against state perturbations. This approach is295

improved in [20] by training an additional worst-case Q-network and introducing state importance296

weights into regularization. In a different direction, an alternating training framework called ATLA297

is studied in [32] that trains the RL attacker and RL agent alternatively in order to increase the298

robustness of the DRL model. However, this approach suffers from high computational overhead.299

[31] propose an auto-encoder-based detection and denoising framework to detect perturbed states and300

restore true states. Also, [11] show that when the initial distribution is known, a policy that optimizes301

the expected return across initial states under state perturbations exists.302

B.2 Attacks and Defenses Beyond State Perturbations303

This section briefly introduces other types of adversarial attacks in RL beyond state perturbation. As304

shown in [15], manipulating the reward signal can successfully affect the training convergence of305

Q-learning and mislead the trained agent to follow a policy that the attacker aims at. Furthermore,306

an adaptive reward poisoning method is proposed by [34] to achieve a nefarious policy in steps307

polynomial in state-space size |S| in the tabular setting.308

Lee et al. [19] propose two methods for perturbing the action space, where the LAS (look-ahead309

action space) method achieves better attack performance in terms of decreasing the cumulative310

reward of DRL by distributing attacks across the action and temporal dimensions. Another line of311

work investigates adversarial policies in a multi-agent environment, where it has been shown that an312

opponent adopting an adversarial policy could easily beat an agent with a well-trained policy in a313

zero-sum game [8].314

For attacking an RL agent’s policy network, both inference attacks [5], where the attacker aims315

to steal the policy network parameters, and poisoning attacks [13] that directly manipulate model316

parameters have been considered. In particular, an optimization-based technique for identifying an317

optimal strategy for poisoning the policy network is proposed in [13].318

B.3 Backdoor Attacks in RL319

Recent work investigating defenses against backdoor attacks in RL also considers recovering true320

states to gain robustness [3]. However, there are important differences between our work and [3].321

First, our work contains two important parts that [3] does not have, which are the maximin formulation322

and belief update. The former allows us to obtain a robust policy by making fewer assumptions about323
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attack behavior compared to [3]. Note that this approach is unique to state-perturbation attacks, as324

it is difficult to define a worst-case scenario for backdoor attacks. The latter is crucial to combat325

adaptive perturbations that can change the semantic meaning of states, which can potentially be very326

useful to backdoor attacks as well. Second, our Lipschitz assumptions differ from those in [3]. We327

assume that the reward and transition functions of the underlying MDP are Lipschitz continuous328

while [3] assume that the backdoored policies are Lipschitz continuous.329

B.4 Partially Observable MDPs330

As first proposed by Åström [1], a Partially Observable MDP is a generalization of an MDP where331

the system dynamics are determined by an MDP, but the agent does not have full access to the state.332

The agent could only partially observe the underlying state that is usually determined by a fixed333

observation function O. POMDPs could model a lot of real life sequential decision-making problems334

such as robot navigation. However, since the agent does not have perfect information about the state,335

solutions for POMDPs usually need to infer a belief about the true state and find an action that is336

optimal for each possible belief. To this end, algorithms for finding a compressed belief space in order337

to solve large state space POMDPs have been proposed [25]. State-of-the-art solutions approximate338

the belief states with distributions such as diagonal Gaussian [18], Gaussian mixture [28], categorical339

distribution [10] or particle filters [21]. Most recently, a flow-based recurrent belief state modeling340

approach has been proposed in [6] to approximate general continuous belief states.341

The main difference between POMDPs and MDPs under state adversarial attacks is the way the342

agent’s observation is determined. In a POMDP, the agent’s partial observation at time step t is343

determined by a fixed observation function O, where ot = O(st, at). And it is independent of the344

agent’s policy π. Instead, in an MDP under state adversarial attacks, a perturbed state s̃ is determined345

by the attack policy ω, which can adapt to the agent’s policy π in general.346

B.5 RL for Stackelberg Markov Games347

Previous work has studied various techniques for solving the Stackelberg equilibrium of asymmetric348

Markov games, with one player as the leader and the rest being followers. Kononen [17] proposes349

an asymmetric multi-agent Q-Learning algorithm and establishes its convergence in the tabular350

setting. Besides value-based approaches, Fiez et al. [7] recently investigated sufficient conditions for351

a local Stackelberg equilibrium (LSE) and derived gradient-based learning dynamics for Stackelberg352

games using the implicit function theorem. Follow-up work applied this idea to derive Stackelberg353

actor-critic [35] and Stackelberg policy gradient [29] methods. However, all these studies assume354

that the true state information is accessible to all players, which does not apply to our problem.355

B.6 More Details About Diffusion-Based Denoising356

In a Denoising Diffusion Probabilistic Model (DDPM) [12], the forward process constructs a357

discrete-time Markov chain as follows. Given an initial state x0 sampled from q(·), it grad-358

ually adds Gaussian noise to x0 to generate a sequence of noisy states x1,x2,...,xK where359

q (xi | xi−1) := N
(
xi;

√
1− βixi−1, βiI

)
so that xK approximates the Gaussian white noise.360

Here βi is precalculated according to a variance schedule and I is the identity matrix. The reverse361

process is again a Markov chain that starts with xK sampled from the Gaussian white noise N (0, I)362

and learns to remove the noise added in the forward process to regenerate q(·). This is achieved363

through the reverse transition pθ (xi−1 | xi) := N (xi−1;µθ (xi, i) ,Σθ (xi, i)) where θ denotes the364

network parameters used to approximate the mean and the variance added in the forward process.365

As mentioned in the main text, we modify the reverse process by starting from a perturbed state366

s̃+ ϕ instead of xK , where ϕ is pixel-wise noise randomly sampled from range (−ϵϕ, ϵϕ) uniformly.367

We then take k reverse steps with k ≪ K, according to the observation that a perturbed state only368

introduces a small amount of noise to the true state due to the attack budget ϵ. We observe in our369

experiments that using a large k does not hurt the performance, although it increases the running time370

(see Figures 5d and 5e in Appendix G.3).371

The Progressive Distillation diffusion model [26] can distill an N steps sampler to a new sampler372

of N/2 steps with little degradation of sample quality. Thus with a 1024 step sampler, we could373

generate 512 step, 256 step, ..., and 8 step samplers. Notice that a single reverse step in an 8 step374

sampler will have an equivalent effect of sampling multiple steps in the original 1024 step sampler.375
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By choosing a proper sampler generated by progressive distillation (we report every model we used376

in G.2), we could accelerate our diffusion process while preserving sample quality at the same time.377

C Pessimistic Q-learning with State Inference and Purification378

In this section, we first formulate the robust RL problem as a two-player Stackelberg Markov379

game. We then present our pessimistic Q-learning algorithm that derives maximin actions from380

the Q-function using perturbed states as the input to safeguard against the agent’s uncertainty about381

true states. We further incorporate a belief state approximation scheme and a diffusion-based state382

purification scheme into the algorithm to reduce uncertainty. Our extensions of the vanilla DQN383

algorithm that incorporates all three mechanisms are given in Algorithms 4-7 in Appendix F. We384

further give a theoretical result that characterizes the performance loss of being pessimistic.385

C.1 State-Adversarial MDP as a Stackelberg Markov Game with Asymmetric Observations386

The problem of robust RL under adversarial state perturbations can be viewed as a two-player Markov387

game, which motivates our pessimistic Q-learning algorithm given in the next subsection. The two388

players are the RL agent and the attacker with their state and action spaces and reward functions389

described in Section 2.2. The RL agent wants to find a policy π : S → ∆(A) that maximizes its390

long-term return, while the attacker wants to find an attack policy ω : S → S to minimize the RL391

agent’s cumulative reward. The game has asymmetric observations in that the attacker can observe392

the true states while the RL agent observes the perturbed states only. The agent’s value functions for393

a given pair of policies π and ω satisfy the Bellman equations below.394

Definition 1. Bellman equations for state and action value functions under a state adversarial attack:395

396
Vπ◦ω(s) = Σa∈Aπ(a|(ω(s))[R(s, a) + γΣs′∈SP (s′|s, a)Vπ◦ω(s

′)];

Qπ◦ω(s, a) = R(s, a) + γΣs′∈SP (s′|s, a)[Σa′∈Aπ(a
′|ω(s′))Qπ◦ω(s

′, a′)].

To achieve robustness, a common approach is to consider a Stackelberg equilibrium by viewing397

the RL agent as the leader and the attacker as the follower. The agent first commits to a policy398

π. The attack observes π and identifies an optimal attack, denoted by ωπ, as a response, where399

ωπ(s) = argmins̃∈Bϵ(s)
Σa′∈Aπ(a

′|s̃)Q(s, a′). As the agent has access to the intact environment at400

the training stage and the attacker’s budget ϵ, it can, in principle, identify a robust policy proactively401

by simulating the attacker’s behavior. Ideally, the agent wants to find a policy π∗ that reaches a402

Stackleberg equilibrium of the game, which is defined as follows.403

Definition 2. A policy π∗ is a Stackelberg equilibrium of a Markov game if404

∀s ∈ S,∀π, Vπ∗◦ωπ∗ (s) ≥ Vπ◦ωπ (s).

A Stackelberg equilibrium ensures that the agent’s policy π∗ is optimal (for any initial state) against405

the strongest possible adaptive attack and, therefore, provides a robustness guarantee. However,406

previous work has shown that due to the noisy observations, finding a stationary policy optimal for407

every initial state is generally impossible [33]. Existing solutions either introduce a regularization408

term to improve the smoothness of the policy or alternatively train the agent’s policy and attacker’s409

policy. In this paper, we take a different path with the goal of finding an approximate Stackelberg410

equilibrium, which is further improved through state prediction and denoising. Figure 2 shows the411

high-level framework of our approach, which is discussed in detail below.412

C.2 Strategy I - Pessimistic Q-learning Against the Worst Case413

Both value-based [17] and policy-based [35, 29] approaches have been studied to identify the414

Stackelberg equilibrium (or an approximation of it) of a Markov game. In particular, Stackelberg415

Q-learning [17] maintains separate Q-functions for the leader and the follower, which are updated by416

solving a stage game associated with the true state in each time step. However, these approaches do417

not apply to our problem as they all require both players have access to the true state in each time418

step. In contrast, the RL agent can only observe the perturbed state. Thus, it needs to commit to a419

policy for all states centered around the observed state instead of a single action, as in the stage game420

of Stackelberg Q-learning.421
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Algorithm 1: Pessimistic Q-Learning
Result: Robust Q-function Q

1 Initialize Q(s, a) = 0 for all s ∈ S, a ∈ A;
2 for epsiode = 1,2,... do
3 Initialize true state s
4 repeat
5 Update agent’s policy: ∀s̃ ∈ S, π(s̃) = argmaxa∈Amins̄∈Bϵ(s̃)Q(s̄, a);
6 Update attacker’s policy: ∀s ∈ S, ωπ(s) = argmins̃∈Bϵ(s)Q(s, π(s̃));
7 Generate perturbed state s̃ = ωπ(s);
8 Choose a from s̃ using π with exploration:
9 a = π(s̃) with probability 1− ϵ′; otherwise a is a random action;

10 Take action a, observe reward R and next true state s′;
11 Update Q-function: Q(s, a) = Q(s, a) + α

[
R(s, a) + γQ(s′, π(ωπ(s

′)))−Q(s, a)
]
;

12 s = s′;
13 until s is terminal;
14 end

In this work, we present a pessimistic Q-learning algorithm (see Algorithm 1) to address the above422

challenge. The algorithm maintains a Q-function with the true state as the input, similar to vanilla423

Q-learning. But instead of using a greedy approach to derive the target policy or a ϵ-greedy approach424

to derive the behavior policy from the Q-function, a maximin approach is used in both cases. In425

particular, the target policy is defined as follows (line 5). Given a perturbed state s̃, the agent picks an426

action that maximizes the worst-case Q-value across all possible states in Bϵ(s̃), which represents427

the agent’s uncertainty. We abuse the notation a bit and let π(·) denote a deterministic policy in the428

rest of the paper since we focus on Q-learning-based algorithms in this paper. The behavioral policy429

is defined similarly by adding exploration (lines 8 and 9). The attacker’s policy ωπ is derived as the430

best response to the agent’s policy (line 6), where a perturbed state is derived by minimizing the Q431

value given the agent’s policy.432

A few remarks follow. First, the maximin scheme is applied when choosing an action with exploration433

(line 9) and when updating the Q-function (line 11), and a perturbed state is used as the input in434

both cases. In contrast, in both SA-DQN [33] and WocaR-DQN [20], actions are obtained from435

the Q-network using true states at the training stage, while the same network is used at the test436

stage to derive actions from perturbed states. Our approach removes this inconsistency, leading to437

better performance, especially under relatively large perturbations. Second, instead of the pessimistic438

approach, we may also consider maximizing the average case or the best case across Bϵ(s̃) when439

deriving actions, which provides a different tradeoff between robustness and efficiency. Third, we440

show how policies are derived from the Q-function to help explain the idea of the algorithm. Only441

the Q-function needs to be maintained when implementing the algorithm.442

Figure 3 in the Appendix D illustrates the relations between a true state s, the perturbed state s̃, the443

worst-case state s̄ ∈ Bϵ(s̃) for which the action is chosen (line 5). In particular, it shows that the true444

state s must land in the ϵ-ball centered at s̃, and the worst-case state the RL agent envisions is at most445

2ϵ away from the true state. This gap causes performance loss that will be studied in Section C.6.446

For environments with large state and action spaces, we apply the above idea to derive pessimistic447

DQN algorithms (see Algorithms 4- 7 in Appendix F), which further incorporate state inference and448

purification discussed below. Although we focus on value-based approaches in this work, the key449

ideas can also be incorporated into Stackelberg policy gradient [29] and Stackelberg actor-critic [35]450

approaches, which is left to our future work.451

C.3 Strategy II - Reducing Uncertainty Using Beliefs452

In Algorithm 1, the agent’s uncertainty against the true state is captured by the ϵ-ball around the453

perturbed state. A similar idea is adopted in previous regularization-based approaches [33, 20]. For454

example, SA-MDP [33] regulates the maximum difference between the top-1 action under the true455

state s and that under the perturbed state across all possible perturbed states in Bϵ(s). However,456

this approach is overly conservative and ignores the temporal correlation among consecutive states.457

Intuitively, the agent can utilize the sequence of historical observations and actions {(s̃τ , aτ )}τ<t ∪458
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{s̃t} and the transition dynamics of the underlying MDP to reduce its uncertainty of the current true459

state st. This is similar to the belief state approach in partially observable MDPs (POMDPs). The460

key difference is that in a POMDP, the agent’s observation ot in each time step t is derived from a461

fixed observation function with ot = O(st, at). In contrast, the perturbed state s̃t is determined by462

the attacker’s policy ω, which is non-stationary at the training stage and is unknown to the agent at463

the test stage.464

To this end, we propose a simple approach to reduce the agent’s worst-case uncertainty as follows.465

Let Mt ⊆ Bϵ(s̃t) denote the agent’s belief about all possible true states at time step t. Initially, we466

let M0 = Bϵ(s̃0). At the end of the time step t, we update the belief to include all possible next467

states that is reachable from the current state and action with a non-zero probability. Formally, let468

M ′
t = {s′ ∈ S : ∃s ∈ Mt, P (s′|s, at) > 0}. After observing the perturbed state s̃t+1, we then469

update the belief to be the intersection of M ′
t and Bϵ(s̃t+1), i.e., Mt+1 = M ′

t ∩ Bϵ(s̃t+1), which470

gives the agent’s belief at time t+ 1. Figure 3 in the Appendix D demonstrates this process, and the471

formal belief update algorithm is given in Algorithm 2 in Appendix F. Our pessimistic Q-learning472

algorithm can easily incorporate the agent’s belief. In each time step t, instead of using Bϵ(s̃) in473

Algorithm 1 (line 5), the current belief Mt can be used. It is an interesting open problem to develop a474

strong attacker that can exploit or even manipulate the agent’s belief.475

Belief approximation in large state space environments. When the state space is high-dimensional476

and continuous, computing the accurate belief as described above becomes infeasible as computing477

the intersection between high-dimensional spaces is particularly hard. Previous studies have proposed478

various techniques to approximate the agent’s belief about true states using historical data in partially479

observable settings, including using classical RNN networks [21] and flow-based recurrent belief480

state learning [6]. In this work, we adapt the particle filter recurrent neural network (PF-RNN)481

technique developed in [21] to our setting due to its simplicity. In contrast to a standard RNN-based482

belief model B : (S ×A)t → H that maps the historical observations and actions to a deterministic483

latent state ht, PF-RNN approximates the belief b(ht) by κp weighted particles in parallel, which are484

updated using the particle filter algorithm according to the Bayes rule. An output function fout then485

maps the weighted average of these particles in the latent space to a prediction of the true state in the486

original state space.487

To apply PF-RNN to our problem, we first train the RNN-based belief model N and the prediction488

function fout before learning a robust RL policy. This is achieved by using C trajectories generated489

by a random agent policy and a random attack policy in an intact environment. Then at each time490

step t during the RL training and testing, we use the belief model N and historical observations and491

actions to generate κp particles, map each of them to a state prediction using fout, and take the set of492

κp predicted states as the belief Mt about the true state. PF-RNN includes two versions that support493

LSTM and GRU, respectively, and we use PF-LSTM to implement our approach. We define the494

complete belief model utilizing PF-RNN as Np ≜ fout ◦B.495

We remark that previous work has also utilized historical data to improve robustness. For example,496

[31] uses an LSTM-autoencoder to detect and denoise abnormal states at the test stage, and [32] con-497

siders an LSTM-based policy in alternating training. However, none of them explicitly approximate498

the agent’s belief about true states and use it to derive a robust policy.499

C.4 Strategy III - Purifying Invalid Observations via Diffusion500

For environments that use raw pixels as states, such as Atari Games, perturbed states generated by501

adding bounded noise to each pixel are mostly “invalid” in the following sense. Let S0 ⊆ S denote502

the set of possible initial states. Let S0 denote the set of states that are reachable from any initial503

state in S0 by following an arbitrary policy. Then perturbed states will fall outside of S0 with high504

probability. This is especially the case for l∞ attacks that bound the perturbation applied to each505

pixel as commonly assumed in existing work (see Appendix D.2 for an example). This observation506

points to a fundamental limitation of existing perturbation attacks that can be utilized by an RL agent507

to develop a more efficient defense.508

One way to exploit the above observation is to identify a set of “valid” states near a perturbed state509

and use that as the belief of the true state. However, it is often difficult to check if a state is valid510

or not and to find such a set due to the fact that raw pixel inputs are usually high-dimensional.511
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Instead, we choose to utilize a diffusion model to purify the perturbed states, which obtains promising512

performance, as we show in our empirical results.513

To this end, we first sample C ′ trajectories from a clean environment using a pre-trained policy514

without attack to estimate a state distribution q(·), which is then used to train a Denoising Diffusion515

Probabilistic Model (DDPM) [12]. Then during both RL training and testing, when the agent receives516

a perturbed state s̃, it applies the reverse process of the diffusion model for k steps to generate a set of517

purified states as the belief Mt of size κd, where k and κd are hyperparameters. We let Nd : S → Sκd518

denote a diffusion-based belief model. Note that rather than starting from random noise in the reverse519

process as in image generation, we start from a perturbed state that the agent receives and manually520

add a small amount of pixel-wise noise ϕ to it before denoising, inspired by denoised smoothing521

in deep learning [30]. We observe in experiments that using a large k does not hurt performance,522

although it increases the running time. Thus, unlike previous work, this approach is agnostic to523

the accurate knowledge of attack budget ϵ. One problem with DDPM, however, is that it incurs524

high overhead to train the diffusion model and sample from it, making it less suitable for real-time525

decision-making. To this end, we further evaluate a recently developed fast diffusion technique,526

Progressive Distillation [26], which distills a multi-step sampler into a few-step sampler. As we527

show in the experiments, the two diffusion models provide different tradeoffs between robustness and528

running time. A more detailed description of the diffusion models and our adaptations are given in529

Appendix B.6.530

C.5 Pessimistic DQN with Approximate Beliefs and State Purification531

Built upon the above ideas, we develop two pessimistic versions of the classic DQN algorithm [22]532

by incorporating approximate belief update and diffusion-based purification, denoted by BP-DQN533

and DP-DQN, respectively. The details are provided in Algorithms 4- 7 in Appendix F. Below we534

highlight the main differences between our algorithms and vanilla DQN.535

The biggest difference lies in the loss function, where we incorporate the maximin search into the536

loss function to target the worst case. Concretely, instead of setting yi = Ri + γmaxa′∈AQ
′(si, a

′)537

as in vanilla DQN, we set yi = Ri + γmaxa′∈Aminm∈Mi
Q′(m, a′) where Ri, si,Mi are sampled538

from the replay buffer and Q′ is the target network. Similarly, instead of generating actions using the539

ϵ-greedy (during training) or greedy approaches (during testing), the maximin search is adopted.540

To simulate the attacker’s behavior, one needs to identify the perturbed state s̃ that minimizes the541

Q value under the current policy π subject to the perturbation constraint. As finding the optimal542

attack under a large state space is infeasible, we solve the attacker’s problem using projected gradient543

descent (PGD) with η iterations to find an approximate attack similar to the PGD attack in [33]. In544

BP-DQN where approximate beliefs are used, the history of states and actions is saved to generate545

the belief in each round. In DP-DQN where diffusion is used, the reverse process is applied to both546

perturbed and true states. That is, the algorithm keeps the purified version of the true states instead of547

the original states in the replay buffer during training. We find this approach helps reduce the gap548

between purified states and true states. In both cases, instead of training a robust policy from scratch,549

we find that it helps to start with a pre-trained model obtained from an attack-free MDP.550

We want to highlight that BP-DQN is primarily designed for environments with structural input,551

whereas DP-DQN is better suited for environments with raw pixel input. Both approaches demonstrate552

exceptional performance in their respective scenarios, even when faced with strong attacks, as shown553

in our experiments. Thus, although combining the two methods by integrating history-based belief554

and diffusion techniques may seem intuitive, this is only needed when confronted with an even more555

formidable attacker, such as one that alters both semantic and pixel information in Atari games.556

C.6 Bounding Performance Loss due to Pessimism557

In this section, we characterize the impact of being pessimistic in selecting actions. To obtain insights,558

we choose to work on a pessimistic version of the classic value iteration algorithm (see Algorithm 3559

in Appendix F), which is easier to analyze than the Q-learning algorithm presented in Algorithm 1.560

To this end, we first define the Bellman operator for a given pair of policies.561

Definition 3. For a given pair of agent policy π and attack policy ω, the Bellman operator for the562

Q-function is defined as follows.563

Tπ◦ωQ(s, a) = R(s, a) + γΣs′∈SP (s′|s, a)Q(s′, π(ω(s′))) (1)
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The algorithm maintains a Q-function, which is initialized to 0 for all state-action pairs. In each564

round n, the algorithm first derives the agent’s policy πn and attacker’s policy ωπn from the current565

Q-function Qn in the same way as in Algorithm 1, using the worst-case belief, where566

πn(s̃) = argmaxa∈Amins̄∈Bϵ(s̃)Qn(s̄, a),∀s̃ ∈ S.

ωπn
(s) = argmins̃∈Bϵ(s)Qn(s, πn(s̃))),∀s ∈ S.

That is, πn is obtained by solving a maximin problem using the current Qn, and ωπn is a best567

response to πn. The Q-function is then updated as Qn+1 = Tπn◦ωπnQn. It is important to note that568

although Tπ◦ωπ is a contraction for a fixed π (see Lemma 3 in Appendix E for a proof), Tπn◦ωπn is569

typically not due its dependence on Qn. Thus, Qn may not converge in general, which is consistent570

with the known fact that a state-adversarial MDP may not have a stationary policy that is optimal for571

every initial state. However, we show below that we can still bound the gap between the Q-value572

obtained by following the joint policy π̃n := πn ◦ ωπn
, denoted by Qπ̃n , and the optimal Q-value for573

the original MDP without attacks, denoted by Q∗. It is known that Q∗ is the unique fixed point of the574

Bellman optimal operator T ∗, i.e., T ∗Q∗ = Q∗, where575

T ∗Q(s, a) = R(s, a) + γΣs′∈SP (s′|s, a)maxa′∈AQ(s′, a′). (2)

We first make the following assumptions about the reward and transition functions of an MDP and576

then state the main result after that.577

Assumption 1. The reward function and transition function are Lipschitz continuous. That is, there578

are constants lr and lp such that for ∀s1, s2, s′ ∈ S, ∀a ∈ A, we have579

|R(s1, a)−R(s2, a)| ≤ lr∥s1 − s2∥, |P (s′|s1, a)− P (s′|s2, a))| ≤ lp∥s1 − s2∥.
580 Assumption 2. Reward R is upper bounded where for any s ∈ S and a ∈ A, R(s, a) ≤ Rmax.581

Theorem 1. The gap between Qπ̃n and Q∗ is bounded by582

limsupn→∞∥Q∗ −Qπ̃n∥∞ ≤ 1 + γ

(1− γ)2
∆,

where π̃n is obtained by Algorithm 3 and ∆ = 2ϵγ(lr + lp|S|Rmax

1−γ ).583

We give a proof sketch and leave the detailed proof in Appendix E. We first show that Qπ̃n is Lipschitz584

continuous using Assumption1. Then we establish a bound of ∥T ∗Qn − Qn+1∥∞ and prove that585

Tπ◦ωπ for a fixed policy π is a contraction. Finally, we prove Theorem 1 following the idea of586

Proposition 6.1 in [2].587

D More Graphs and Examples588

D.1 An Example of Belief Update589

Figure 3 illustrates the relations between a true state s, the perturbed state s̃, and the worst-case state590

s̄ ∈ Bϵ(s̃) for which the action is chosen.591

D.2 An Example of Invalid States in Pixel-wise Perturbations592

For example, the white bar shown in Figure 4 in Atari Pong game will not change during game593

play and has grayscale value of 236/255. However, a pixel wise state perturbation attack such594

as PGD with attack budget ϵ = 15/255 will change the pixel values in the white bar to range of595

221/255− 251/255 so that the perturbed states become invalid.596

E Proofs597

E.1 Proof of Theorem 1598

In this section, we prove Theorem 1. Recall that π̃ := π◦ωπ . We first establish the Lipchitz continuity599

of Qπ̃ , the Q-value when the agent follows policy π and the attack follows policy ωπ .600
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Figure 3: True, perturbed, and worst-case states in Algorithm 1 and belief update. Beginning with true state s0
and perturbed state s̃0, the agent will have an initial belief, i.e., the ϵ ball centered at s̃0. After taking action a0,
the belief is updated to the region marked by the purple ball. When observing the next perturbed state s̃1, the
agent will update belief by taking the intersection of the purple ball and the green ball.

(a) Original (b) Perturbed

Figure 4: An example of valid vs. invalid states in Pong.

Lemma 1. Qπ̃ is Lipchitz continuous for any π , i.e., ∀s, s′ ∈ S, ∀a ∈ A,601

|Qπ̃(s, a)−Qπ̃(s′, a)| ≤ LQ∫ ∥s− s′∥ (3)

where LQf
= lr +

Rmax

1−γ |S|lp602

Proof. Based on the definition of the action value function under state perturbation, we have603

604

Qπ̃(s, a) = R(s, a) + Σs′∈SP (s′|s, a)γVπ◦ωπ
(s′)

≤ R(s, a) + Σs′∈SP (s′|s, a)γVπ(s
′)

Thus,605

|Qπ̃(s1, a)−Qπ̃(s2, a)|
=|R(s1, a)−R(s2, a) + Σs′∈S [(P (s′|s1, a)− P (s′|s2, a))Vπ◦ωπ

(s′)]|
≤|R(s1, a)−R(s2, a)|+Σs′∈S |[(P (s′|s1, a)− P (s′|s2, a))Vπ(s

′)]|
(a)

≤ lr∥s1 − s2∥+maxs′∈SVπ(s
′)|S|P (s′|s1, a)− P (s′|s2, a)|

(b)

≤ lr∥s1 − s2∥+
Rmax

1− γ
|S|lp∥s1 − s2∥

≤(lr +
Rmax

1− γ
|S|lp)∥s1 − s2∥

=LQ∫ ∥s1 − s2∥
where (a) follows from Assumption 1 and (b) follows from Assumptions 1 and 2 and the definition of606

Vπ .607

Lemma 2. For Qn defined in Algorithm 3, the Bellman approximation error is bounded by608

∥T ∗Qn −Qn+1∥∞ ≤ 2ϵγ(lr + lp|S|
Rmax

1− γ
) (4)
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Proof.

∥T ∗Qn −Qn+1∥∞
= max

s∈S,a∈A
|R(s, a) + γΣs′P (s′|s, a)max

a∈A
Qn(s

′, a)− [R(s, a) + γΣs′P (s′|s, a)Qn(s
′, πn(ωπn

(s′)))]|

=γ max
s∈S,a∈A

Σ
s′∈S

P (s′|s, a)|max
a∈A

Qn(s
′, a)−Qn(s

′, π̃n(s
′))|

≤γmax
s′∈S

|max
a∈A

Qn(s
′, a)−Qn(s

′, π̃n(s
′))|

Let s̃′ = ωπn
(s′) denote the perturbation of the true state s′, and ã and s̄′ denote the agent’s action609

when observing s̃′ and the worst-case state in Bϵ(s̃′) that solves the maximin problem, respectively.610

We then have611

Qn(s
′, ã)≥Qn(s̄′, ã) = max

a∈A
min

s∈Bϵ(s̃′)
Qn(s, a). (5)

where the first inequality is due to the fact that s̄′ obtains the worst-case Q-value under action ã,612

across all states in Bϵ(s̃′) including s′. It follows that613

∥T ∗Qn −Qn+1∥∞ ≤γmax
s′∈S

|max
a∈A

Qn(s
′, a)−Qn(s

′, π̃(s′))|

≤γmax
s′∈S

|max
a∈A

Qn(s
′, a)−max

a∈A
min

s∈Bϵ(s̃′)
Qn(s, a)|

≤γ max
s′∈S,a∈A

|Qn(s
′, a)− min

s∈Bϵ(s̃′)
Qn(s, a)|

(a)

≤γ max
s′∈S,a∈A

|Qn(s
′, a)− min

s∈B2ϵ(s′)
Qn(s, a)|

(b)

≤2γϵLQ∫

where (a) is due to ∥s̃′ − s′∥ ≤ ϵ and (b) follows from Lemma 1.614

Lemma 3. Given any policy π̃ = π ◦ ωπ where π is a fixed policy, T π̃ is a contraction.615

Proof.

∥T π̃Q1 − T π̃Q2∥∞ = max
s∈S,a∈A

Σ
s′∈S

γP (s′|s, a)|Q1(s
′, π(ω(s′)))−Q2(s

′, π(ω(s′)))|

≤ max
s′∈S

γ|Q1(s
′, π(ω(s′)))−Q2(s

′, π(ω(s′)))|

≤ max
s′∈S,a∈A

γ|Q1(s
′, a)−Q2(s

′, a)|

= γ||Q1 −Q2||∞

Thus, for any given policy π, T π̃ is a contraction.616

With Lemmas 2 and 3, we are ready to prove Theorem 1.617

Theorem 1. The gap between Qπ̃n and Q∗ is bounded by618

619

limsupn→∞∥Q∗ −Qπ̃n∥∞ ≤ 1 + γ

(1− γ)2
∆

where π̃n is obtained by Algorithm 3 and ∆ = 2ϵγ(lr + lp|S|Rmax

1−γ ).620

Proof.

∥Q∗ −Qπ̃n∥∞
(a)

≤ ∥T ∗Q∗ − T ∗Qn∥∞ + ∥T ∗Qn − T π̃nQπ̃n∥∞
≤ ∥T ∗Q∗ − T ∗Qn∥∞ + ∥T ∗Qn − T π̃nQn∥∞ + ∥T π̃nQn − T π̃nQπ̃n∥∞
(b)

≤ γ∥Q∗ −Qn∥∞ + ∥T ∗Qn −Qn+1∥∞ + γ(∥Qn −Q∗∥∞ + ∥Q∗ −Qπ̃n∥∞)
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Q1 s1 s2 s3 Q2 s1 s2 s3
a1 12 11 3 a1 4 2 -2
a2 12 10 2 a2 4 0 -1
a3 12 8 1 a3 4 1 -3

Table 2: A counterexample to Tπn◦ωπn being a contraction

where (a) follows from Q∗ is the fixed point of T ∗, Qπ̃n is the fixed point of T π̃n , and the triangle621

inequality, and (b) follows from both T ∗ and T π̃n (for a fixed πn) are contractions. This together622

with Lemma 2 implies that623

∥Q∗ −Qπ̃n∥∞ ≤ 2γ∥Q∗ −Qn∥∞) + ∆

1− γ
(6)

We then bound ∥Q∗ −Qn∥∞ as follows624

∥Q∗ −Qn+1∥∞ ≤ ∥T ∗Q∗ − T ∗Qn∥∞ + ∥T ∗Qn −Qn+1∥∞ ≤ γ∥Q∗ −Qn∥∞ +∆,

which implies that625

limsup
n→∞

∥Q∗ −Qn∥∞ ≤ ∆

1− γ
(7)

Plug this back in equation 6, we have626

limsup
n→∞

∥Q∗ −Qπ̃n∥∞ ≤ 1 + γ

(1− γ)2
∆ (8)

where ∆ = 2ϵγ(lr + lp|S|Rmax

1−γ ).627

E.2 A counterexample to Tπn◦ωπn being a contraction when πn ◦ ωπn
is not fixed628

Consider an MDP ⟨S,A, P,R, γ⟩ where S = {s1, s2, s3} and A = {a1, a2, a3}. Suppose that for any629

s ∈ S and a ∈ A, P (s2|s, a) = 1 and P (s′|s, a) = 0 for s′ ̸= s2, and Bϵ(s) = {s1, s2, s3}. Con-630

sider the two Q-functions shown in Table 2. We have ||Q1−Q2||∞ = |Q1(s2, a2)−Q2(s2, a2)| = 10.631

However, when π̃1 = π1 ◦ ωπ1
is derived from Q1 and π̃2 = π2 ◦ ωπ2

is derived from Q2,632

||T π̃1Q1 − T π̃2Q2||∞ = max
s∈S,a∈A

Σ
s′∈S

γP (s′|s, a)|Q1(s
′, π1(ωπ1

(s′)))−Q2(s
′, π2(ωπ2

(s′)))|

= max
s∈S,a∈A

γ|Q1(s2, π1(ωπ1
(s′)))−Q2(s,π2(ωπ2

(s′)))|

≥ γ|Q1(s2, π1(ωπ1(s2)))−Q2(s2, π2(ωπ2(s2)))|
(a)
= γ|Q1(s2, a1)−Q2(s2, a2)|
= γ × 11

(b)
> 10 = ||Q1 −Q2||∞

where (a) is due to the fact that no matter what ωπ(s2) is, Bϵ(ωπ(s2)) = {s1, s2, s3} = S, which633

implies that π1(ωπ1(s2)) = argmaxa∈Amins̄∈SQ1(s̄, a) = a1, and similarly, π2(ωπ2(s2)) = a2;634

(b) holds when γ > 10
11 . Therefore, Tπ1◦ωπ1 is not a contraction.635
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F Algorithms636

Algorithm 2: Belief Update
Data: Old Belief Mt, action a, perturbed state s̃t+1.
Result: Updated Belief Mt+1

1 Initialize M ′
t to be an empty set

2 for s in Mt do
3 for s′ in S do
4 if P (s′|s, a) ̸= 0 then
5 Add s′ to M ′

t
6 end
7 end
8 end
9 Mt+1 = M ′

t ∩Bϵ(s̃t+1)
10 RETURN Mt+1

637

Algorithm 3: Pessimistic Q-Iteration
Result: Robust Q-function Q

1 Initialize Q0(s, a) = 0 for all s ∈ S, a ∈ A;
2 for n = 0, 1, 2, ... do
3 Update RL agent policy: ∀s̃ ∈ S, πn(s̃) = argmaxa∈Amins̄∈Bϵ(s̃)Qn(s̄, a);
4 Update attacker policy: ∀s ∈ S, ωπn

(s) = argmins̃∈Bϵ(s)
Qn(s, πn(s̃));

5 for s ∈ S do
6 for a ∈ A do
7 Qn+1(s, a) = R(s, a) + γΣs′∈SP (s′|s, a)Qn(s

′, π(ωπ(s
′)));

8 end
9 end

10 end

638

Algorithm 4: Belief-Enriched Pessimistic DQN (BP-DQN) Training. We highlight the difference
between our algorithm and the vanilla DQN algorithm in brown.
Data: Number of iterations T , trained vanilla Q network Qv , PF-RNN belief model Np, target

network update frequency Z, batch size D, exploration parameter ϵ′
Result: Robust Q network Qr

1 Initialize replay buffer B, robust Q network Qr = Qv , target Q network Q′ = Qv , observation
history Shis, action history Ahis;

2 for t = 0,1,...,T do
3 Use PGD to find the best perturb state s̃t that minimizes Qr(st, π(s̃t)), where π is derived

from Qr by taking greedy action;
4 Mt = Mt ∩Bϵ(s̃t);
5 Choose an action based on belief Mt and Qr using ϵ-greedy:

at = argmaxa∈Aminm∈Mt
Qr(m, a) with probability 1− ϵ′; otherwise at is a random

action;
6 Append s̃t and at to Shis and Ahis and use belief model Np(Shis, Ahis) to generate Mt+1;
7 Execute action at in the environment and observe reward Rt and next true state st+1;
8 if st+1 is a terminal state then
9 Reset Shis and Ahis

10 end
11 Store transition {st, at, Rt, st+1,Mt} in B;
12 Sample a random minibatch of size D of transitions {si, ai, Ri, si+1,Mi} from B;

13 Set yi =
{
Ri for terminal si+1

Ri + γmaxa′∈Aminm∈Mi
Q′(m, a′) for non-terminal si+1

14 Perform a gradient descent step to minimize Huber(Σiyi −Qr(si, ai));
15 Update target network every Z steps;
16 end

639
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Algorithm 5: Belief-Enriched Pessimistic DQN (BP-DQN) Testing
Data: Trained robust Q network Qr, PFRNN belief model Np

1 Initialize observation history Shis and action history Ahis;
2 for t = 0,1,...,T do
3 Observe the perturbed state s̃t;
4 if t = 0 then
5 M0 = Bϵ(s̃t);
6 end
7 Select an action based on belief Mt and Qr: at = argmaxa∈Aminm∈Mt

Qr(m, a);
8 Append s̃t and at to Shis and Ahis and use belief model Np(Shis, Ahis) to generate Mt+1;
9 Execute action at in the environment;

10 end

640

Algorithm 6: Diffusion-Assisted Pessimistic DQN (DP-DQN) Training. We highlight the
difference between our algorithm and the vanilla DQN algorithm in brown.
Data: Number of iterations T , trained vanilla Q network Qv , diffusion belief model Nd, target

network update frequency Z, batch size D, belief size κd, exploration parameter ϵ′, noise
level ϵϕ

Result: Robust Q network Qr

1 Initialize replay buffer B, robust Q network Qr = Qv , target Q network Q′ = Qv;
2 for t = 0,1,...,T do
3 Use PGD to find the best perturb state s̃t that minimizes Qr(st, π(s̃t)), where π is derived

from Qr by taking greedy action;
4 Sample noise ϕ uniformly from (−ϵϕ, ϵϕ) with same dimension as st pixel-wise;
5 Use the diffusion belief model to generate belief Mt = Nd(s̃t + ϕ) of size κd;
6 Select an actions based on belief Mt and Qr using ϵ-greedy:

at = argmaxa∈Aminm∈Mt
Qr(m, a) with probability 1− ϵ′; otherwise at is a random

action;
7 Execute action at in environment and observe reward Rt and next true state st+1;
8 Apply the reverse diffusion process to st and st+1: ŝt = Nd(st), ŝt+1 = Nd(st+1);
9 Store transition {ŝt, at, Rt, ŝt+1,Mt} in B;

10 Sample a random minibatch of size D of transitions {ŝi, ai, Ri, ŝi+1,Mi} from B;

11 Set yi =
{
Ri for terminal ŝi+1

Ri + γmaxa′∈Aminm∈Mi
Q′(m, a′) for non-terminal ŝi+1

12 Perform a gradient descent step to minimize Huber(Σiyi −Qr(ŝi, ai));
13 Update target network every Z steps;
14 end

641

Algorithm 7: Diffusion-Assisted Pessimistic DQN (DP-DQN) Testing
Data: Trained robust Q network Qr, diffusion belief model Nd, noise level ϵϕ

1 for t = 0,1,...,T do
2 Observe the perturbed state s̃t;
3 Sample noise ϕ uniformly from (−ϵϕ, ϵϕ) with same dimension as st pixel-wise;
4 Generate belief using the diffusion belief model Mt = Nd(s̃t + ϕ);
5 Choose an action based on belief Mt and Qr: at = argmaxa∈Aminm∈Mt

Qr(m, a);
6 Execute action at in the environment;
7 end

642

G Experiment Details and Additional Results643

G.1 Experiment Setup Justification644

Although both the BP-DQN and DP-DQN algorithms follow our idea of pessimistic Q-learning, the645

former is more appropriate for games with a discrete or a continuous but low-dimensional state space646
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such as the continuous Gridworld environment, while the latter is more appropriate for games with647

raw pixel input such as Atari Games.648

In the Gridworld environment, state perturbations can manipulate the semantics of states by changing649

the coordinates of the agent. In this case, historical information can be utilized to generate beliefs650

about true states. Following this idea, BP-DQN uses the particle filter recurrent neural network (PF-651

RNN) method to predict true states. In principle, we can also use BP-DQN on the Atari environments652

to predict true states through historical data. In practice, however, it is computationally challenging653

to do so due to the high-dimensional state space (84× 84) of the Atari environments. Developing654

more efficient belief update techniques for large environments remains an active research direction.655

On the other hand, state perturbations are injected pixel-wise in state-of-the-art attacks in Atari656

games. Consequently, they can barely change the semantics of true states Atari environments. In657

this case, historical information becomes less useful, and the diffusion model can effectively “purify”658

the perturbed states to recover the true states from high-dimensional image data. Although it is659

theoretically possible to use DP-DQN on the Gridworld environment, we conjecture that it is less660

effective than BP-DQN since it does not utilize historical data, which is crucial to recover true states661

when perturbations can change the semantic meaning of states as in the case of continuous Gridworld.662

In particular, we observe that the distributions of perturbed states and true states are very similar in663

this environment, making it difficult to learn a diffusion model that can map the perturbed states back664

to true states.665

It is an interesting direction to develop strong perturbation attacks that can manipulate the semantics666

of true states for games with raw pixel input. As a countermeasure, we can potentially integrate667

diffusion-based state purification and belief-based history modeling to craft a stronger defense.668

G.2 Experiment Setup669

Environments. The continuous state Gridworld is modified from the grid maze environment in [21].670

We create a 10× 10 map with walls inside. There are also gold and a bomb in the environment where671

the agent aims to find the gold and avoid the bomb. The state space is a tuple of two real numbers in672

[0, 10]× [0, 10] representing the coordinate of the agent. The initial state of the agent is randomized.673

The agent can move in 8 directions, which are up, up left, left, down left, down, down right, right, and674

up right. By taking an action, the agent moves a distance of 0.5 units in the direction they choose. For675

example, if the agent is currently positioned at (x, y) and chooses to move upwards, the next state676

will be (x, y + 0.5). If the agent chooses to move diagonally to the upper right, the next state will677

be (x+ 0.5/
√
2, y + 0.5/

√
2). If the agent would collide with a wall by taking an action, it remains678

stationary at its current location during that step. The agent loses 1 point for each time step before the679

game ends and gains a reward of 200 points for reaching the gold and −50 points for reaching the680

bomb. The game terminates once the agent reaches the gold or bomb or spends 100 steps in the game.681

For Atari games, we choose Pong and Freeway provided by the OpenAI Gym [4].682

Baselines. We choose vanilla DQN [23], SA-DQN [33] and WocaR-DQN [20] as defense baselines.683

We consider three commonly used attacks to evaluate the robustness of these algorithms: (1) PGD684

attack [33], which aims to find a perturbed state s̃ that minimizes Q(s, π(s̃)) and we set PGD steps685

η = 10 for both training and testing usage; (2) MinBest attack [14], which aims to find a perturbed686

state s̃ that minimizes the probability of choosing the best action under s, with the probabilities of687

actions represented by a softmax of Q-values; and (3) PA-AD [27], which utilizes RL to find a (nearly)688

optimal attack policy. For each attack, we choose ϵ ∈ {0.1, 0.5} for the Gridworld environment and689

ϵ ∈ {1/255, 3/255, 15/255} for the Atari games. Natural rewards (without attacks) are reported690

using policies trained under ϵ = 0.1 for continuous state Gridworld and ϵ = 1/255 for Atari games.691

Training and Testing Details. We use the same network structure as vanilla DQN [23], which is692

also used in SA-DQN [33] and WocaR-DQN [20]. We set all parameters as default in their papers693

when training both SA-DQN and WocaR-DQN. For training our pessimistic DQN algorithm with694

PF-RNN-based belief (called BP-DQN, see Algorithm 4 in Appendix F), we set κp = |Mt| = 30, i.e.,695

the PF-RNN model will generate 30 belief states in each time step. For training our pessimistic DQN696

algorithm with diffusion (called DP-DQN, see Algorithm 6 in Appendix F), we set κd = |Mt| = 4,697

that is, the diffusion model generates 4 purified belief states from a perturbed state. We consider two698

variants of DP-DQN, namely, DP-DQN-O and DP-DQN-F, which utilize DDPM and Progressive699

Distillation as the diffusion model, respectively. For DP-DQN-O, we set the number of reverse steps700
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Env Parameter PGD MinBest PA-AD
ϵ = 1/255 ϵ = 3/255 ϵ = 15/255 ϵ = 1/255 ϵ = 3/255 ϵ = 15/255 ϵ = 1/255 ϵ = 3/255 ϵ = 15/255

Pong
noise level ϵϕ 2/255 15/255 8/255 18/255 15/255 8/255 15/255 15/255 8/255
reverse step k 1 1 1 1 1 1 4 4 4
sampler step 64 32 32 32 32 32 64 64 64

Freeway
noise level ϵϕ 5/255 5/255 5/255 5/255 5/255 5/255 5/255 5/255 5/255
reverse step k 1 4 4 1 4 4 2 4 4
sampler step 64 64 64 64 64 64 64 64 64

Table 3: Parameters Used to Test DP-DQN-F

to k = 10 for ϵ = 1/255 or 3/255 and k = 30 for ϵ = 15/255, and do not add noise ϕ when training701

and testing DP-DQN-O. For DP-DQN-F, we set k = 1, sampler step to 64, and add random noise702

with ϵϕ = 5/255 when training DP-DQN-F. We report the parameters used when testing DP-DQN-F703

in Table 3. We sample C = C ′ = 30 trajectories to train PF-RNN and diffusion models. All other704

parameters are set as default for training the PF-RNN and diffusion models. For all other baselines,705

we train 1 million frames for the continuous Gridworld environment and 6 million frames for the706

Atari games. For our methods, we take the pre-trained vanilla DQN model, and train our method707

for another 1 million frames. All training and testing are done on a machine equipped with an708

i9-12900KF CPU and a single RTX 3090 GPU. For each environment, all RL policies are tested in709

10 randomized environments with means and variances reported.710

G.3 More Experiment Results711

G.3.1 More Baseline Results712

Tables 4a and 4b give the complete results for the continuous space Gridworld and the two Atari713

games, where we include another baseline called Radial-DQN [24], which adds an adversarial loss714

term to the nominal loss of regular DRL in order to gain robustness. We find that Radial-DQN fails to715

learn a reasonable policy in continuous Gridworld as other regularization-based methods. However,716

Radial-DQN performs well under a small attack budget in Atari games but still fails to respond when717

the attack budget is high. Our Radial-DQN results for the Atari games were obtained using the718

pre-trained models [24], which might explain why the results are better than those reported in [20].

PGD MinBestEnvironment Model Natural Reward
ϵ = 0.1 ϵ = 0.5 ϵ = 0.1 ϵ = 0.5

DQN 156.5± 90.2 128± 118 −53± 86 98.2± 137 98.2± 137
SA-DQN 20.8± 140 46± 142 −100± 0 −5.8± 131 −100± 0

WocaR-DQN −100± 0 −100± 0 −63.2± 88 −100± 0 −63.2± 88
Radial-DQN −100± 0 −96.1± 12.3 −96.1± 12.3 −100± 0 −100± 0

Continous
Gridworld

BP-DQN (Ours) 163± 26 165± 29 176± 16 147± 88 114± 114

(a) Continuous Gridworld Results

PGD MinBest PA-ADEnv Model Natural
Reward ϵ = 1/255 ϵ = 3/255 ϵ = 15/255 ϵ = 1/255 ϵ = 3/255 ϵ = 15/255 ϵ = 1/255 ϵ = 3/255 ϵ = 15/255

DQN 21± 0 −21± 0 −21± 0 −21± 0 −21± 0 −21± 0 −21± 0 −18.2± 2.3 −19± 2.2 −21± 0
SA-DQN 21± 0 21± 0 21± 0 −20.8± 0.4 21± 0 21± 0 −21± 0 21± 0 18.7± 2.6 −20± 0

WocaR-DQN 21± 0 21± 0 21± 0 −21± 0 21± 0 21± 0 −21± 0 21± 0 19.7± 2.4 −21± 0
Radial-DQN 21± 0 21± 0 21± 0 −21± 0 21± 0 21± 0 −21± 0 21± 0 21± 0 −19± 0

DP-DQN-O(Ours) 19.9± 0.3 19.9± 0.3 19.8± 0.4 19.7± 0.5 19.9± 0.3 19.9± 0.3 19.3± 0.8 19.9± 0.3 19.9± 0.3 19.3± 0.8

Pong

DP-DQN-F(Ours) 21± 0 20.4± 0.7 20.2± 0.8 18.6± 1 20.2± 0.9 19.0± 0 19.3± 1.6 18.0± 1.0 17.6± 1.8 17± 2.3
DQN 34± 0.1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0

SA-DQN 30± 0 30± 0 30± 0 0± 0 27.2± 3.4 18.3± 3.0 0± 0 20.1± 4.0 9.5± 3.8 0± 0
WocaR-DQN 31.2± 0.4 31.2± 0.5 31.4± 0.3 21.6± 1 29.6± 2.5 19.8± 3.8 21.6± 1 24.9± 3.7 12.3± 3.2 21.6± 1
Radial-DQN 33.4± 0.5 33.4± 0.5 33.4± 0.5 21.6± 1 33.4± 0.5 32.8± 0.8 21.6± 1 33.4± 0.5 33.4± 0.5 21.6± 1

DP-DQN-O(Ours) 28.8± 1.1 29.1± 1.1 29± 0.9 28.9± 0.7 29.2± 1.0 28.5± 1.2 28.6± 1.3 28.6± 1.2 28.3± 1 28.8± 1.3

Freeway

DP-DQN-F(Ours) 31.2± 1 30± 0.9 30.1± 1 30.7± 1.2 30.2± 1.3 30.6± 1.4 29.4± 1.2 30.8± 1 31.4± 0/8 28.9± 1.1

(b) Atari Games Results

Table 4: Experiment Results. We show the average episode rewards ± standard deviation over 10
episodes for our methods and three baselines. The results for our methods are highlighted in gray.

719

G.3.2 More Ablation Study Results720

Importance of Combining Maximin and Belief. In Table 5a, we compare our methods (BP-DQN721

and DP-DQN-O) that integrate the ideas of maximin search and belief approximation (using either722
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(a) (b) (c) (d) (e)

Figure 5: a), b) and c) show the l2 distance between perturbed states and original states before and
after purification under different attack budgets in the Pong environment using DDPM. d) shows the
performance of DP-DQN-O under different diffusion steps in the Freeway environment under PGD
attack with ϵ = 15/255. e) shows the testing stage speed of DP-DQN-O (measured by the number of
frames processed per second) under different diffusion steps in the Freeway environment.

PGD PA-ADEnvironment Model
ϵ = 0.5

Environment Model
ϵ = 15/255

Maximin Only −71± 91 Maximin Only −21± 0
Belief Only 45.7± 134 DDPM Only 18.8± 1.6

Continuous
Gridworld BP-DQN (Ours) 176± 16

Pong
DP-DQN-O (Ours) 19.3± 0.8

(a) Ablation Study Results. We compare our methods with variants that use maximin search or belief approxi-
mation only.

Environment Model Training
(hours)

Testing
(FPS) Environment Model Training

(hours)
Testing
(FPS)

SA-DQN 3 607 SA-DQN 38 502
WocaR-DQN 3.5 721 WocaR-DQN 50 635GridWorld

Continous BP-DQN(Ours) 0.6+1.5+7 192 DP-DQN-O (Ours) 1.5+18+30 6.6Pong

DP-DQN-F (Ours) 1+18+24 93

(b) Training and Testing Time Comparison. The training of our methods contains three parts: a) training the
PF-RNN or diffusion model, b) training a vanilla DQN policy without attacks, and c) training a robust policy
using BP-DQN, DP-DQN-O, or DP-DQN-F.

Table 5: Ablation and Time Comparison Results

RNN or diffusion) with variants of our methods that use maximin search or belief approximation only.723

The former is implemented using a trained BP-DQN or DP-DQN-O policy together with random724

samples from the ϵ-ball centered at a perturbed state (the worst-case belief) during the test stage.725

The latter uses the vanilla DQN policy with a single belief state generated by either the PF-RNN726

or the DDPM diffusion model at the test stage. The results clearly demonstrate the importance of727

integrating both ideas to achieve more robust defenses.728

Diffusion Effects. In Figures 5a-5c, we visualize the effect of DDPM-based diffusion by recording729

the l2 distance between a true state and the perturbed state and that between a purified true state and730

the purified perturbed state. For all three levels of attack budgets, our diffusion model successfully731

shrinks the gap between true states and perturbed states.732

Performance vs. Running Time in DP-DQN. We study the impact of different diffusion steps k on733

average return of DP-DQN-O in Figure 5d and their testing stage running time in Figure 5e. Figure734

5d shows the performance under different diffusion steps of our method in the Freeway environment735

under PGD attack with budget ϵ = 15/255. It shows that we need enough diffusion steps to gain736

good robustness, and more diffusion steps do not harm the return but do incur extra overhead, as737

shown in Figure 5e, where we plot the testing stage running time in Frame Per Second (FPS). As the738

number of diffusion steps increases, the running time of our method also increases, as expected.739

On the other hand, as DP-DQN-F uses a distilled sampler, it can decrease the reverse sample step740

k to as small as 1, which greatly reduces the testing time as reported in Table ??. We report the741

performance results of DP-DQN-F in Table 1b and we find that DP-DQN-F improves DP-DQN-O742

under small perturbations, but suffers performance loss in Pong under PA-AD attack and large743

perturbations. Further, DP-DQN-F has a larger standard deviation than DP-DQN in the Pong744

environment, indicateing that DP-DQN-F is less stable than DP-DQN-O in Pong. We conjecture that745

the lower sample quality introduced by Progressive Distillation causes less stable performance and746

performance loss under PA-AD attack compared to DP-DQN-O that utilizes DDPM.747
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Training and Testing Overhead. Table 5b compares the training and test-stage overhead of SA-748

DQN, WocaR-DQN, and our methods. Notice that the training of our methods consists of three parts:749

a) training the PF-RNN belief model or the diffusion model, b) training a vanilla DQN policy without750

attacks, and c) training a robust policy using BP-DQN, DP-DQN-O or DP-DQN-F. In the continuous751

state Gridworld environment, our method takes around 9 hours to finish training, which is higher than752

SA-DQN and WocaR-DQN. But our method significantly outperforms these two baselines as shown753

in Table 1a. In the Atari Pong game, our method takes about 50 hours to train, which is comparable754

to WocaR-DQN but slower than SA-DQN. In terms of running time at the test stage, we calculate the755

FPS of each method and report the average FPS over 5 testing episodes. In the continuous Gridworld756

environment, our method is slower but comparable to SA-DQN and WocaR-DQN due to the belief757

update and maximin search. However, in the Atari Pong game, our DP-DQN-O method is much758

slower than both SA-DQN and WocaR-DQN. This is mainly due to the use of a large diffusion model759

in our method. However, our DP-DQN-F method is around 13 times faster than DP-DQN-O and is760

comparable to SA-DQN and WocaR-DQN.761

H Conclusion and Limitations762

In conclusion, this work proposes two algorithms, BP-DQN and DP-DQN, to combat state per-763

turbations against reinforcement learning. Our methods achieve high robustness and significantly764

outperform state-of-the-art baselines under strong attacks. Further, our DP-DQN method has revealed765

an important limitation of existing state adversarial attacks on RL agents with raw pixel input, pointing766

to a promising direction for future research.767

However, our work also has some limitations. First, our method needs access to a clean environment768

during training. Although the same assumption has been made in most previous work in this area,769

including SA-MDP and WocaR-MDP, a promising direction is to consider an offline setting to release770

the need to access a clean environment by learning directly from (possibly poisoned) trajectory data.771

Second, using a diffusion model increases the computational complexity of our method and causes772

slow running speed at the test stage. Fortunately, we have shown that fast diffusion methods can773

significantly speed up runtime performance. Third, we have focused on value-based methods in this774

work. Extending our approach to policy-based methods is an important next step.775
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