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Abstract

LLMs can exhibit age biases, resulting in unequal treatment of individuals across
age groups. While much research has addressed racial and gender biases, age bias
remains little explored. The scarcity of instruction-tuning and preference datasets
for age bias hampers its detection and measurement, and existing fine-tuning
methods seldom address age-related fairness. In this paper, we construct age bias
preference datasets and instruction-tuning datasets for RLHF. We introduce ARG,
an age fairness reward to reduce differences in the response quality of LLMs across
different age groups. Extensive experiments demonstrate this reward significantly
improves response accuracy and reduces performance disparities across age groups.
Our source code and datasets are available at the anonymous link.

1 Introduction

Figure 1: Accuracy of dif-
ferent LLMs across bias cat-
egories on BBQ dataset.

Large language models (LLMs) can perpetuate age biases, affecting career
opportunities and healthcare[1]. Unlike gender and racial biases, age bias
is continuous and evolving. Figure 1 illustrates that LLMs have the lowest
accuracy in detecting age bias, highlighting its complexity.
Medium-sized LLMs[2, 3] generally have under a billion parameters
and face two types of biases: internal, present in the model’s pre-
trained outputs, and external, affecting downstream task predictions. In-
ternal debiasing methods address biases in a pre-trained model’s outputs
through three main approaches: pre-processing[4], in-training[5], and
post-processing[6]. External debiasing methods tackle biases in model
predictions during downstream tasks, using data-centered approaches[7].

Large-scale LLMs encounter challenges due to size and complexity, often addressed through prefer-
ence alignment [8] and prompt engineering[9]. Unlike gender and racial biases, age bias is dynamic,
complicating counterfactual and contrastive methods. Research on age bias mitigation remains lim-
ited [10]. Common fine-tuning methods include instruction-based fine-tuning[11] and reinforcement
learning with human feedback[12]. Additionally, no instruction-based datasets address age bias,
leading to performance discrepancies across age groups.
To address this challenge, we revised and expanded BBQ[13] and ISB[14] datasets and manually
annotated them to create age preference and instruction fine-tuning datasets for age bias. We also
propose AGR, which introduces an Age Group fairness Reward to reduce performance disparities
across age groups during training.
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In summary, our contributions are as follows:
• We construct age bias preference and instruction fine-tuning datasets for bias evaluation.
• We introduce AGR, which employ a fairness reward to reduce performance disparities across

age groups, showing improvement on BBQ and age bias instruction fine-tuning dataset.
• Experiments across various LLMs prove AGR’s effectiveness in age bias mitigation, sur-

passing existing related methods.

2 Group-Fairness-Based Age Bias Mitigation
2.1 Task Overview and Formalization
Let M be an LLM parameterized by θ, which takes a text sequence x = (x1, · · · , xm) ∈ X as input
and produces an output ŷ ∈ Ŷ , where ŷ = M(X; θ) and the form of ŷ depends on the specific task.
The input can come from a labeled dataset D =

{(
x(1),y(1)

)
, · · · ,

(
x(N),y(N)

)}
, or an unlabeled

dataset of sentence continuations and prompt completions D =
{
x(1), · · · ,x(N)

}
.

Age debiasing in LLMs can be framed as ensuring that the model treats all age groups fairly.
Specifically, for a model M and its output ŷ = M(x;θ), given a set of age groups g, age group
fairness requires that the statistical measures My(g) of the model’s output for all different age groups
g ∈ G are approximately equal, i.e.: |My(g)−My (g

′)| ⩽ ϵ, where the choice of M specifies a
fairness constraint, and M could be accuracy, true positive rate, etc.
2.2 Construction of Age Bias Preference Datasets
We extract samples related to age bias from BBQ[13] question-answering dataset and ISB[14] dataset
to construct two preference datasets: Age Bias Mitigation for Behavior (ABMB) and Age Bias
Mitigation for Attribute (ABMA). Then we construct instruction fine-tuning datasets ABMB-IFT and
ABMA-IFT based on these preference datasets.
2.2.1 Response Generation

Content: I saw a grandson and their grandfather last week outside 
the Walmart trying to book a cab on Uber.

Question: Who was not comfortable using the phone?

Human annotatorsGPT

Augment Rewrite Rank

[CE0, LS0, AB0]

[CEN, LSN, ABN]

[CE1, LS1, AB1]..
…

..

ans0 : I choose grandpa because xxx

ansN : I choose son because xxx

ans1  : I choose son because xxx..

Figure 2: Overview of Pref-
erence Dataset Construction.

Based on the context, question, and each candidate answer, GPT-3.5
Turbo rewrites the answers to create a modified dataset. Criteria for
response adjustment and evaluation are shown in Appendix A.
Final score for each dimension is the most common annotation score.
Total quality score for each response is the sum of scores across three
dimensions. Figure 2 shows preference dataset construction process.
2.2.2 Response Ranking
Due to varied annotator values, quality scores are noisy. Ranking re-
sponses standardizes comparisons among models. We use a dataset
format like Nakano et al. [15] and Bai et al. [16], where each item has a
query with two responses, ranked by quality. Invalid pairs with identical
scores are discarded. Constructing the Age-Attribute Preference Dataset

involves manually expanding the ISB dataset. The process is similar to that for the Age-Behavior
Preference Dataset, with both datasets split into training and test sets at a 0.95:0.05 ratio.
2.3 Instruction Fine-Tuning Dataset Construction
To further test age bias in LLMs across different age groups within the same context, we construct the
instruction fine-tuning datasets ABMB-IFT and ABMA-IFT based on original BBQ and ISB datasets.
Examples of these datasets can be found in the anonymous GitHub link. The process includes:

• Question Rewriting: Extract age groups from the context and answers of each sample, then
rewrite the questions using each age group.

• Response Generation: Determine tag category (“Yes” or “No”) for rewritten questions
based on labeled answers. Use GPT-3.5-Turbo to add explanations based on context.

Age group classifications vary by country, culture, and field and can change over time. For simplicity,
we define age groups as: 10-29 years (young adults), 30-59 (middle-aged), and 60+ (elderly).

2.4 Age Group Fairness Reward
RLHF directly uses the output of a trained preference model as the reward value in the reinforcement
learning phase, without considering fairness in response quality across different age groups under
prompt paradigms. We propose an age group fairness reward signal.
Given a LLM M parameterized by θ, and inputs for different age groups a ∈ {xyoung,xmiddle,xold},
and their corresponding outputs ya ∈ {yyoung,ymiddle,yold}, we define a reward signal R to train the
preference model P , aligning the LLM with human preferences and mitigating age-related bias. For
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a set of age groups A = {young,middle, old}, we calculate the quality score of the model output for
each age group a ∈ A, denoted as Q(ya | xa). The quality score Q measures whether the model’s
output meets predefined fairness requirements.
For any two different age groups a, b ∈ A, a ̸= b, we quantify age bias between any two individuals
of different age groups by calculating the absolute value of the difference in quality scores: Da,b(y |
x) = |Q(ya | xa)−Q(yb | xb)|. Next, we use the total difference across all age groups to measure
the extent of age bias in the LLM: Dtotal =

∑
a,b∈A
a̸=b

Da,b(y | x).

Finally, the reward signal Rλ
θ combines quality scores Q for each age group and penalizes total

disparity Dtotal to encourage fairness: Rλ
θ (x, y) =

∑
a∈A Q(ya | xa) − λ · Dtotal. Here, λ is the

coefficient for age group fairness regularization. It balances model output quality with fairness, where
an increase in λ results in reduced disparity in response quality across age groups.
2.5 Training Process of AGR

Output of Actor model

Step 3

ABMA-IFT or
ABMB-IFT or

SFT+ =>Pretrained 
LLM

Step 1

Preference 
model

Frozen

Age group fairness reward
Remax

Actor model Reference model

Frozen

ABMA or ABMB
（Pair data）

PM+ =>Pretrained 
LLM

Step 2

Figure 3: Overview of Three Steps of AGR.

We propose AGR, which uses Rλ
θ to train the preference

model and leverage it in reinforcement learning phase to
optimize model parameters and reduce age bias. AGR has
a three-stage process, similar to RLHF, to fine-tune the
base model for age bias mitigation, as shown in Figure 3.

2.5.1 Supervised Fine-Tuning
The LLM is fine-tuned based on conditional probability
distribution y ∼ P (· | x;θ), where θ represents initial-
ization parameters. We perform supervised fine-tuning of
LLM using ABMB-IFT and ABMA-IFT, injecting age

bias mitigation knowledge into the pre-trained base LLM. This process aims to enhance response to
specific contextual questions and accelerate convergence speed of reinforcement learning phase.

2.5.2 Training the Preference Model
Formally, a preference model [17] or reward model [18] can be represented as a parameterized map-
ping function Rλ

θ : X×Y → R, which provides a real-valued reward (or preference) score Rλ
θ (x, y).

We use the proposed age group fairness reward, which quantifies the fluency, logical soundness, and
age bias of textual responses corresponding to input prompts x = (x1, x2, · · · , xN ) ∈ X and text
responses y = (y1, y2, · · · , yM ) ∈ Y. Given an input x and a pair of responses

(
ygood,ybad

)
, where

ygood represents a high-quality response and ybad represents a low-quality response, the reward model
Rλ

θ should establish a preference for ygood, i.e., Rλ
θ

(
x, ygood

)
> Rλ

θ

(
x, ybad

)
.

Therefore, given the preference data tuple D =
{(

x,ygood,ybad
)}

, we train the reward model by
increasing the gap between Rλ

θ

(
x,ygood

)
and Rλ

θ

(
x, ybad

)
. Based on this idea, this chapter adopts

the binary ranking loss function[19] to measure the accuracy of the preference model’s ranking:
LRanking = −E(x,ygood,ybad )∼D log σ

(
∆Rθ

)
,, where ∆Rθ = Rθ

(
x,ygood

)
− Rθ

(
x,ybad

)
and σ(·)

is the Sigmoid function.

2.5.3 Reinforcement Learning Fine-Tuning with Preference Model
AGR updates LLM parameters using the group fairness reward Rλ

θ provided by the preference model
to guide the LLM in generating outputs with lower bias. We use Remax algorithm[20] to optimize
the supervised fine-tuned base model using the preference model trained in the second step. The
objective function is as follows: J(ϕ) = Ey∼πRL

ϕ (·|x) [Rθ(x,y)]− βDKL

(
πRL
ϕ ∥πSFT

)
where πRL

ϕ is

the learned policy, πSFT is the supervised fine-tuned model, DKL is the KL divergence, and β is a
constant coefficient. This objective function uses the policy gradient method to learn the optimal
policy πRL

ϕ that maximizes J(ϕ).

3 Experiments
3.1 Baseline
We test four open-source models—Llama2-7B-base[21], Qwen1.5-7B-base2, ChaGLM3-6B-base3,
and Baichuan2-7B[22]—for supervised learning. Qwen1.5-7B achieves the highest ranking accuracy,
so it is used as the base model for all reward models.

2https://huggingface.co/Qwen/Qwen1.5-7B
3https://huggingface.co/THUDM/chatglm3-6b
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Table 1: Comparison with baselines on ABMA-IFT,
ABMB-IFT, and BBQ Datasets.

Model Method ABMA-IFT ABMB-IFT BBQ(Age)

Tag Content T&C Tag Content T&C Answer

Qwen1.5-7B

Base 0.755 0.657 0.613 0.637 0.518 0.483 0.358
DePrompt 0.807 0.742 0.719 0.675 0.643 0.581 0.395
KG-Debias 0.794 0.735 0.723 0.692 0.655 0.607 0.454
SFT-LoRA 0.857 0.814 0.781 0.847 0.779 0.735 0.697

RLHF 0.839 0.845 0.813 0.803 0.839 0.782 0.689
AGR(ours) 0.863 0.876 0.852 0.869 0.851 0.836 0.713

Llama2-7B

Base 0.682 0.571 0.513 0.513 0.372 0.357 0.343
DePrompt 0.743 0.651 0.621 0.642 0.535 0.493 0.379
KG-Debias 0.756 0.685 0.636 0.659 0.611 0.575 0.445
SFT-LoRA 0.869 0.792 0.768 0.872 0.763 0.724 0.632

RLHF 0.851 0.827 0.792 0.791 0.807 0.769 0.645
AGR(ours) 0.884 0.853 0.837 0.843 0.839 0.813 0.672

ChatGLM-6B

Base 0.667 0.564 0.497 0.527 0.412 0.362 0.327
DePrompt 0.737 0.689 0.653 0.644 0.523 0.485 0.384
KG-Debias 0.741 0.703 0.684 0.631 0.586 0.536 0.429
SFT-LoRA 0.882 0.816 0.779 0.833 0.759 0.724 0.591

RLHF 0.847 0.813 0.785 0.827 0.796 0.753 0.575
AGR(ours) 0.879 0.851 0.823 0.841 0.807 0.781 0.586

Baichuan2-7B

Base 0.697 0.553 0.506 0.527 0.433 0.398 0.352
DePrompt 0.791 0.712 0.683 0.674 0.575 0.529 0.389
KG-Debias 0.780 0.729 0.694 0.685 0.618 0.574 0.436
SFT-LoRA 0.874 0.834 0.796 0.824 0.759 0.729 0.653

RLHF 0.858 0.837 0.804 0.816 0.774 0.745 0.681
AGR(ours) 0.872 0.849 0.817 0.837 0.801 0.776 0.697

Table 2: Comparison with baselines on Different Age
Groups on ABMA-IFT and ABMB-IFT Datasts.

Model Method ABMA-IFT ABMB-IFT

Tag&Content Tag&Content
Young Middle-age Old Young Middle-age Old

Qwen1.5-7B

Base 0.641 0.614 0.584 0.521 0.481 0.447
DePrompt 0.745 0.729 0.683 0.627 0.584 0.532
KG-Debias 0.763 0.735 0.671 0.645 0.617 0.559
SFT-LoRA 0.797 0.793 0.754 0.755 0.758 0.692

RLHF 0.835 0.816 0.788 0.813 0.794 0.739
AGR(ours) 0.862 0.857 0.837 0.855 0.849 0.804

Llama2-7B

Base 0.523 0.531 0.485 0.364 0.378 0.329
DePrompt 0.628 0.649 0.586 0.503 0.542 0.434
KG-Debias 0.635 0.672 0.601 0.563 0.652 0.510
SFT-LoRA 0.781 0.778 0.745 0.732 0.749 0.691

RLHF 0.793 0.815 0.768 0.774 0.797 0.736
AGR(ours) 0.839 0.848 0.824 0.817 0.835 0.787

ChatGLM-6B

Base 0.522 0.497 0.472 0.390 0.359 0.337
DePrompt 0.712 0.655 0.592 0.527 0.496 0.432
KG-Debias 0.752 0.684 0.616 0.612 0.537 0.459
SFT-LoRA 0.805 0.791 0.741 0.745 0.732 0.695

RLHF 0.798 0.804 0.753 0.772 0.759 0.728
AGR(ours) 0.832 0.828 0.809 0.797 0.781 0.765

Baichuan2-7B

Base 0.524 0.513 0.481 0.423 0.397 0.374
DePrompt 0.729 0.683 0.637 0.587 0.534 0.466
KG-Debias 0.741 0.699 0.642 0.627 0.575 0.520
SFT-LoRA 0.826 0.804 0.758 0.754 0.736 0.697

RLHF 0.810 0.827 0.775 0.769 0.741 0.725
AGR(ours) 0.823 0.836 0.792 0.784 0.775 0.769

We empirically compare AGR with the following SOTA bias mitigation methods.
• DePrompt [23] uses debias-prompt like “Note that the answer does not rely on stereotypes.”.
• KG-Debias [24] collects relevant nouns and obtains structured knowledge, which is then

converted into sentences and applied to LLMs.
• SFT-LoRA [25] freezes pre-trained model weights and introduces trainable low-rank decom-

position matrices in each layer of transformer to reduce parameters number for downstream.
• RLHF [12] uses reinforcement learning with human feedback to fine-tune LLMs, utilizing

a reward model based on output preferences.

3.2 Metrics
Following previous works[13, 14], we use Q&A accuracy to compare bias levels in BBQ-Age,
ABMB-IFT, and ABMA-IFT test sets. Tag accuracy measures “Yes” or “No” accuracy, while content
accuracy checks alignment with reference explanations. Higher values indicate lower bias.

3.3 Settings
Detailed description is shown in appendix B.

3.4 Results
Table 1 shows that base versions of the four 7B-parameter LLMs perform better on tag and content
accuracy in the ABMA-IFT test set compared to the ABMB-IFT test set, indicating lower bias in age
attributes than age behavior. Tag accuracy generally exceeds content accuracy, highlighting a need
for improved self-explanation and reasoning in open-source LLMs.
AGR with age group fairness rewards significantly enhances content and combined tag/content
accuracy over RLHF. On ABMA-IFT, AGR boosts accuracy by at least 3% for most models, except
Baichuan2-7B, which shows a 1.7% improvement. On ABMB-IFT, it increases tag/content accuracy
by at least 2.9%, with Qwen1.5-7B improving by 5.4%. Fairness rewards enhance consistency by
penalizing score differences across age groups, exposing age bias during fine-tuning.
Table 2 shows that AGR improves Tag&Content accuracy across age groups compared to baseline
methods. Qwen1.5-7B, for example, increases accuracy by 2.7%, 4.1%, and 4.9% for Young, Middle-
aged, and Old groups on the ABMA-IFT dataset, and by 4.2%, 5.5%, and 6.5% on the ABMB-IFT
dataset. This demonstrates AGR’s effectiveness in enhancing age group fairness and reducing accuracy
gaps. For Qwen1.5-7B on the ABMA-IFT dataset, the accuracy gap between elderly and young, and
middle-aged groups was reduced from 2.8% and 4.7% to 2% and 2.5%.

4 Conclusion
We developed ABMA and ABMB preference datasets and ABMA-IFT and ABMB-IFT instruction
fine-tuning datasets to address age bias in LLMs under prompt-based paradigms. By framing age
bias as a fairness issue and introducing an age fairness reward into AGR, we aimed to reduce quality
disparities across age groups while preserving overall model performance. Experiments on different
show that AGR significantly improves accuracy and reduces age-related performance gaps compared
to existing methods.
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A Criteria for Response Adjustment and Evaluation

We adjust the responses provided by GPT-3.5-Turbo and recruit five annotators to evaluate each
response based on the following three criteria:

• Communication Effectiveness (CE): Measures fluency and grammar, scoring 1 to 3, with
higher scores indicating more natural language.

• Logical Soundness (LS): Assesses logical coherence, scoring 1 to 3, with higher scores
reflecting stronger logic.

• Age-related Bias (AB): Evaluates age bias, scoring 1 to 3, with higher scores indicating
less bias.

B Experiment Settings

Experiments are conducted on four NVIDIA V100 GPUs (32GB each). For supervised fine-tuning,
learning rate is 5× 10−5 with a batch size of 8 per GPU and 3 epochs. Preference model training
uses a learning rate of 3× 10−4, batch size of 8, and 1 epoch. Final token embeddings are processed
through a linear layer for quality scoring. Reinforcement learning fine-tuning employs a learning rate
of 1 × 10−6, batch size of 2, and 1 epoch, with a cosine annealing scheduler[26] and a maximum
text length of 512. The fairness reward coefficient λ is 0.5 for ABMA-IFT and 0.7 for ABMB-IFT.
Models use FP16 during reinforcement learning. Preference and reference models have a zero-stage
of 3 and are loaded into GPU memory only during inference, while actor model has a zero-stage of 2.
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