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Abstract— The ability to learn and refine behavior after
deployment has become ever more important for robots as
we design them to operate in unstructured environments like
households. In this work, we design a new learning system
based on large language model (LLM), OLAF, that allows
everyday users to teach a robot using verbal corrections when
the robot makes mistakes, e.g., by saying “Stop what you’re
doing. You should move closer to the cup.” A key feature of
OLAF is its ability to update the robot’s visuomotor neural
policy based on the verbal feedback to avoid repeating mistakes
in the future. This is in contrast to existing LLM-based robotic
systems, which only follow verbal commands or corrections
but not learn from them. We demonstrate the efficacy of our
design in experiments where a user teaches a robot to perform
long-horizon manipulation tasks both in simulation and on
physical hardware, achieving on average 20.0% improvement
in policy success rate. Videos and more results are at https:
//ut-austin-rpl.github.io/olaf/.

I. INTRODUCTION

Imagine training a robot by talking to it about the ways
it could have completed a given task better. This is similar
to how a child learns when s/he spills water and is advised
afterwards: “To avoid this in the future, please try to keep
your cup upright”. In this work, we show that, with the
advent of large language models (LLMs) such as GPT-
4 [20], teaching a robot using verbal corrections is now
possible. To that end, we introduce OLAF (Operation-
relabeled Learning with LAnguage Feedback), a system that
learns robot policies interactively using verbal corrections.

Language has long been recognized as an intuitive modal-
ity for people to provide feedback during robot learning
across a variety of scenarios. Recent works have explored
both learning language-conditioned policies to specify tasks
to robots [16, 27, 33, 34] and giving verbal corrections
to a robot’s course of action [4, 26, 34]. However, these
approaches do not learn from the verbal feedback – the robot
will repeat errors even after being corrected once. As such,
they require perpetual correction [16, 34] or shared control
[4] from the user. OLAF, on the other hand, incorporates
verbal corrections into the robot’s neural policy using a
learning algorithm, so that the robot avoids similar errors
in the future.

OLAF builds on the rich literature on human-in-the-loop
imitation learning (HIL) [7, 8, 11, 15, 17, 21, 32, 35] to train
a robot policy. HIL posits that robots need to learn and refine
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Fig. 1: Teaching the robot through verbal correction with OLAF. OLAF is
a LLM-based learning system designed for updating a robot’s visuomotor
neural-network-based policy using verbal corrections given by regular non-
expert users. To train the robot, the user simply needs to watch to robot
performing a task, stop the robot when the user thinks the robot is not able
to finish the task, and then provide an instruction in natural language on
how the robot can do better.

their behavior after deployment. Indeed, the deployment
scenarios are so very diverse that collecting sufficient data to
train a robot policy to perfectly behave in all of the use cases
is economically infeasible. With existing HIL algorithms, the
user can stop the robot’s execution when it makes mistakes
and demonstrate how to fix them. However, so far these
techniques have been largely limited to scenarios where
teleoperation or kinesthetic teaching is easy [5, 17, 32, 35].
In everyday scenarios, this is rarely the case: these types of
interventions require special equipment, skill, and/or physical
strength in order to correct a robot’s mistakes. Teaching a
robot can be much easier and more intuitive if the robot can
learn directly from natural language feedback.

OLAF is a learning system that regular non-expert users
can teach robots with natural language utterances. At a high-
level, OLAF uses a setup analogous to HIL but replaces
physical intervention (e.g., provided via tele-operation) with
verbal correction, as shown in Fig. 1. In each episode, the
robot attempts to complete a given task with its visuomo-
tor policy, and the human user can stop the robot when
necessary. After the robot stops, the user says what the
robot should have done instead. As such, OLAF can be
applied to scenarios where physical correction may not be
feasible. OLAF still allows optional physical corrections, as
we demonstrate in Section IV-C.

The main technical novelty of our approach is an LLM-
based action relabeling strategy that improves the robot’s
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Fig. 2: OLAF System. The OLAF pipeline consists of three steps: User Interaction, Data Synthesis, and Policy Update. In User Interaction, it collects pairs
of ⟨robot trajectory, verbal correction⟩ of trajectories stopped by the user. In Data Synthesis, it uses the LLM as a critic to select the action (from a
pool of action candidates) that best matches the user’s verbal correction and relabels the pre-intervention trajectory segments (in red). In Policy Update, it
updates the policy by performing behavior cloning on the newly synthesized data and the previously collected data.

policy from the user’s verbal correction. When a user stops
the robot, this is normally due the user noticing some wrong
behavior of the robot. The wrong behavior is caused by
the robot outputting actions that are potentially problematic,
illustrated in Fig. 2 Stage 1 in red ↘. Given a robot trajectory
interrupted by the user, OLAF relabels the suboptimal actions
in the trajectory segment leading up to the trajectory’s
termination with good actions based on the user’s verbal
correction, illustrated in Fig. 2, Stage 2 in blue ↙. OLAF
employs an LLM to relabel the actions.

A key highlight is that we rely on LLMs’ ability to reason
about non-verbal, numerical data capturing the robot’s and
the world’s spatial configurations and dynamics, not just on
LLMs’ commonsense reasoning. For each time step in the
relabeled interval, OLAF presents the LLM with a set of
candidate actions and uses the LLM as a critic, prompting it
to select a better action from the candidate set – an action
that is most consistent with the verbal feedback – than the
one the robot actually executed. Training the robot policy
on the resulting relabeled actions allows the robot to learn
counterfactual good actions that it should have performed,
and therefore perform better in the future.

We showcase the efficacy of OLAF both in simulation
and on physical hardware, achieving on average 20.0%
improvement in policy success rate. Using verbal correction
alone, without the user providing intervention physically,
OLAF improves the success rate on average by 17.8%.
In addition, the experimental results show that OLAF is
compatible with existing HIL methods and can improve their
performance when user correction is available in addition to
verbal correction. In summary, our main contributions are of

follows:
• We introduce a learning system that allows the human to

improve the robot’s policy with verbal corrections.
• We develop a novel action relabeling method where we

employ an LLM to relabel the robot’s erroneous actions
with good actions according to human verbal corrections.

• We evaluate our method against baselines in simulation
and on physical hardware and demonstrate its effectiveness
at improving the robot policy after deployment.

II. LEARNING FROM VERBAL CORRECTION

OLAF (Fig. 2) is a LLM-based learning system designed
for updating a robot’s visuomotor neural-network-based pol-
icy using verbal corrections. It trains the robot’s policy in
three steps:
1) (User Interaction) It executes the robot’s current pol-

icy in an attempt to finish the assigned task, while
allowing the user to stop the robot anytime and
give verbal correction (i.e., a natural-language instruc-
tion on how the robot could have better solved the
problem). This is repeated several times to collect
⟨robot trajectory , verbal correction⟩ pairs.

2) (Data Synthesis) Using this interaction data, OLAF
synthesizes a training dataset to update the robot’s policy.
This is done by using LLM to incorporate the verbal
correction to relabel the robot’s executed action with the
desired actions on the trajectory segments before the robot
is stopped.

3) (Policy Update) It aggregates the newly synthesized
data with the robot’s existing data. Then it updates the
robot’s neural network policy by imitation learning on
the aggregated data.



After training, OLAF internalizes the verbal corrections,
translating them into changes to the weights of the robot’s
neural network policy. This helps the updated policy better
complete the task and avoid the same mistakes that previ-
ously led the user to stop the robot.

This weight-updating approach of OLAF has several
benefits over the common approach of storing the verbal
feedback as prompts to control a LLM-based policy1 [1, 10].
First, OLAF can leverage the generalization ability of neural
network policies. The verbal correction given by a user is
typically related to how and where the robot makes mistakes.
For instance, if the goal is on the left the robot, the verbal
correction could be ”Move to the left.”, but following this
instruction literally is not be meaningful in a new situation
where the goal is on the right of the robot. As a result, it
is important that robot in learning understands the context
in which the verbal correction is given. Training the neural
network policy on the synthesized data associates the robot’s
observations with the desired actions inferred from the verbal
correction, which addresses the need of contextualization.
Second, OLAF only needs to query LLM offline as opposed
to in real time, where the latter is needed for LLM-based
policies. Offloading LLM queries to the offline training
process allows the robot to run more smoothly with a higher
control frequency, because the inference time of a typical
visuomotor neural network policy is much faster and more
conssitent than querying an LLM api (< 0.1s vs. 1-5s). As
a result, OLAF can achieve smoother robot motion than an
LLM-as-policy approach.

Below, we describe the three steps of OLAF in details.

A. User Interaction

Given a pretrained visuomotor policy, OLAF collects
training data to update the policy through interactions with
a human user. Here we use an example to illustrate this
process. Fig. 3 depicts an use case of OLAF for finetuning a
robot manipulator’s policy. Here the robot is tasked to place
the tomato sauce in the basket. The robot opens its gripper
and moves forward. But instead of going to the tomato sauce,
it goes to the right. Upon seeing this surprising behavior,
the user stops the robot by pressing a stop button and says2

“Stop. To pickup the tomato sauce, you should move to your
left.” If teleoperation or kinesthetic teaching is available,
the user can optionally provide intervention (i.e. physical
correction) to physically drive the robot to a better state
solve the task and then finally release the control back to
the robot. This interaction episode can be repeated multiple
times to collect a batch of interaction data.

B. Data Synthesis: Action Relabeling Insight

OLAF uses LLM to relabel the robot’s generated trajectory
based on the user’s verbal feedback and generate an imitation
learning dataset from which the robot can learn to better

1A LLM-based policy or planner is a routine that queries an LLM API
in every time step in execution.

2In the experiments, our system takes the user’s verbal correction through
keyboard.

Stop.To pickup the tomato
sauce, you should move to your left.
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Fig. 3: The left shows an example of a user interaction. The right shows
how a trajectory is partitioned and the action in the pre-intervention region
(abnormal state) is relabelled by the LLM.

solve the task. But how do we achieve this effectively given
that the user only provides the verbal correction once in a
long trajectory? Our key insight is use the verbal correction
to just label the desired actions of a short trajectory segment
before the verbal correction is given. The rationale for this
design is the observation that there is often a delay between
when the robot starts to make mistakes and when the user
realizes the issue and stops the robot. This delay for an
average user is around 1-2 seconds [15]. We call this window
the ”pre-intervention region”, which is where the error of
robot is most likely to have happened and where the robot’s
actions are potentially wrong. Before the pre-intervention
region, the robot’s trajectory reflects a nominal behavior to
solve a task, which does not need correction. Based on this
observation, in OLAF, we apply LLM to relabel the action
in this ”pre-intervention region”, while keeping the starting
robot trajectory as it is when synthesizing the data for policy
update.

Specifically, let ot and at denote the robot’s obser-
vation and action at time t. Suppose the robot gen-
erated a trajectory ξ = {o0, a0, . . . , oT } and receives
a verbal correction v, where T is when the robot is
stopped by the user and given with the verbal cor-
rection v. OLAF relabels the pre-intervention region
{oT−K , aT−K , . . . , oT , âT } of size K at the end of the
trajectory with new actions suggested by the LLM based on
the verbal correction v, which results in a modified trajectory
ξ̂ = {o0, a0, . . . , aT−K−1, oT−K , âT−K , . . . , âT−1, oT },
where ât denotes the new action suggested by the LLM for
time step t. This modified trajectory is than combined with
existing training data (that the pretrained policy is based on)
to update the policy through imitation learning.

For cases where intervention (i.e. physical correc-
tion) can be given by the user in addition to ver-
bal correction, OLAF would include those into the
training data. In this case, the relabeled data would
take the form of {o0, a0, . . . , oT−K , âT−K , . . . , oT , ãT , . . .
. . . , oT+I , aT+I , . . . , aH−1, oH}, where ãt denotes the inter-
vention given by the user at time t, I is the duration of the
intervention, and H is the length of the full trajectory. That is,
the recorded trajectory would be a sequence of 1) the robot’s
initial trajectory, where the mistakes have not happened;
2) the pre-intervention region, which covers the mistakes;
3) the user correction 4) the robot’s terminal trajectory after
the user corrects the robot and releases back the control. The



You are a helpful assistant who is good at employing math and 
computer science tools to arrive at the solution. You analyze numerical 
values carefully and think step by step. 

You also pay close attention to the human language correction, 
interpret the human intention, and use it to arrive at the solution.

(a) System prompt

The manual reads like the following: 
( dx, 0, 0, 0, 0, 0, grip) <-- Translation in x-direction (forward/backward) 
( 0, dy, 0, 0, 0, 0, grip) <-- Translation in y-direction (left/right) 
( 0, 0, dz, 0, 0, 0, grip) <-- Translation in z-direction (up/down)
( 0, 0, 0, droll, 0, 0, grip) <-- Rotation in roll axis
( 0, 0, 0, 0, dpitch, 0, grip) <-- Rotation in pitch axis 
( 0, 0, 0, 0, 0, dyaw, grip) <-- Rotation in yaw axis 

You have a robot arm which is the Franka Emika Panda robot arm, a 
single robot arm with 7 degrees of freedom. 

In this task, the robot must pick a square nut and place it on a rod. The 
nut has a handle to be grasped.

Your task is that, given a few choices of actions to perform at the 
current state, you will choose the correct action for the robot to perform. 

(b) Context prompt

Given the state information, choose an action that can be taken on 
this state. Explaining your reasoning before arriving at the solution. 

You also receive the following human language correction at the 
current state. Use it to arrive at the solution. 

State:
Robot Position: [21 3 90] 
Robot Angles: [ 20 -20 73] 
Gripper State: [100] 

Nut Position: [-11 13 83] 
Nut Angles: [ 0 0 90]

Action Choices: 
Action 0: [ 20 0 0 0 0 0 -100] 
Action 1: [ 0 20 0 0 0 0 -100] 
Action 2: [ 0 0 20 0 0 0 -100] 
Action 3: [ 0 0 0 0 0 20 -100] 

Action 4: [ -20 0 0 0 0 0 -100] 
Action 5: [ 0 -20 0 0 0 0 -100] 
Action 6: [ 0 0 -20 0 0 0 -100] 
Action 7: [ 0 0 0 0 0 -20 -100] 

Language Correction:
“You should aim at the nut to grasp it.”

(c) Action relabeling prompt

Fig. 4: Prompts of an LLM as a critic for action relabeling. The system
prompt specify system-level desired behavior, the context prompt describes
the task level instruction, and the action relabeling prompt includes the
trajectory-level information and the verbal correction. The black denotes
the template and the blue denotes user- or sensor-dependent information.
We highlight the action proposal in blue background.

decomposition can be visualized in Fig. 3.
OLAF relabels the pre-intervention region, while prior

HIL algorithms [11, 15] choose to discard these potentially
wrong actions and learn mainly from the physical user
intervention data. In comparison, the relabeled actions in
the pre-intervention region provide the signal to avoid the
mistakes that caused the user to stop the robot, whereas the
user intervention only shows how the errors can be corrected
after occurrence. Therefore, by mimicking the relabeled data
generated based on the user’s verbal correction (as well as
the user intervention), OLAF can learn to directly avoid the
previous mistakes and better solve the task.

C. Data Synthesis: LLM as Critic for Action Relabeling

OLAF relabels the pre-intervention region by using LLM
as a critic to select, from a set of action candidates, the
action that best matches the verbal feedback. Fig. 4 shows

the prompts used to query the critic LLM. It is composed of
three parts: a system prompt, a context prompt and an action-
relabeling prompt. The system prompt specifies system-level
desired behavior for LLM, e.g. “You are a helpful assistant
with good analytical skills”. The context prompt provides
the context for the task, including a basic manual of the
robot (in black) and the task-dependent instruction (in blue).
The action relabeling prompt reads state information from
the robot’s trajectory and the user’s verbal feedback (in
blue) and asks the LLM to select the best action from
the candidates to achieve the task. In the experiments, we
consider action candidates that cover unit motion changes in
all the degrees of freedom of the robot (the end-effector’s
position and the gripper state of a Franka Emika Panda
robot). Given a robot trajectory ξ = {o0, a1, . . . , . . . , oT },
interrupted by the user at time T , we set the state in
Fig. 4 as oT and then use the output of the LLM â to
relabel all the actions in the pre-intervention time interval
[T − K,T − 1]. That is, we have the relabelled trajectory
ξ̂ = {o0, a0, . . . , aT−K−1, oT−K , âT−K , . . . , oT , } and ât =
â for all t ∈ [T − K,T − 1]. We apply this procedure
for each trajectory collected from the user interaction phase
individually and create the synthetic data that will be used
to update the robot’s policy.

There are several ways to generate the list of action candi-
dates for the LLM to choose from. We find that the following
simple action proposal method works reasonably well: we
generate a list of “one-dimensional” actions, each of which
makes a change to a single dimension in position, orientation,
or gripper state, and let the LLM choose from this list (see
Fig. 4c). Rather than using these “one-dimensional” actions
directly, we apply them as delta-actions on top of the original
policy’s actions. We scale the actions to be integers, which
are more intuitive for an LLM to interpret and are also short
in terms of LLM token length. Ablation results of different
action proposal methods can be found in Section IV-E; more
details on the LLM workflow design and hyperparameters
can be found in Appendix VI.

Notice that OLAF queries the LLM only once per verbal
correction. We found that issuing one query and then apply-
ing the results to all time steps in the pre-intervention period
achieves similar performance to issuing a separate query for
each individual time step, but the former is significantly more
cost effective (about 15× fewer LLM calls). We present more
analysis in Section IV-E.

D. Policy Update

To update the policy, OLAF combines the relabeled data
and the dataset used to pretrain the robot’s initial policy
together as an aggregated dataset D̂+. Then it fits the policy
on the aggregated dataset (which consists of sequences of
observations and actions) using behavior cloning:

max
π

Eh,a∼D̂+
[log π(a|h)] (1)

where h denotes the history of observations and action
preceding the action a, and Eh,a∼D̂+

denotes the expectation
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Fig. 5: We evaluate OLAF on four tasks in simulation and two tasks on real robot. The tasks in simulation are fine-grained manipulation tasks while the
tasks on real robot are long-horizon, multi-staged tasks.

over the data distribution of D̂+. In practice, this can be done
using stochastic gradient descent and minibatch sampling.

In general, we can run OLAF in multiple rounds (of
user interaction, data synthesis, and policy update), where
the latest policy is used to collect new user-interaction
data. Therefore, we can view OLAF as an extension of the
interactive imitation learning algorithm, DAgger [24]. The
main difference is that OLAF uses LLM (conditioned on the
user’s verbal feedback) as the expert policy, as opposed to
using the user as the expert directly. Past studies have found
that human users are incapable of providing high-quality
feedback to relabel robot trajectories due to the missing
sensorimotor feedback. By using LLM and having the user
provide verbal correction instead, we circumvent this issue
without introducing tele-operation or kinesthesis teaching,
which require additional setups. In the experiments, we uses
only one pass of data collection and policy update.

III. RELATED WORK

A. Human-in-the-loop Imitation Learning

Data Aggregation (DAgger) [25] is a canonical interactive
imitation learning technique to update policies in deploy-
ment. DAgger first executes the pretrained policy in an
environment, relabels the generated trajectories in hindsight
with an expert policy’s actions, and retrains the learner
policy on the relabeled data (and the original data). However,
humans struggle to play the role of the expert in DAgger be-
cause human sensorimotor control relies on receiving timely
feedback, making hindsight relabeling difficult in practice
and to potentially degrade robot learning performance [12].
HIL algorithms [11, 15, 17, 28] address this issue through
intervention, which gives the human user full control to cor-
rect the robot (e.g., via tele-operation) at the moment when
the user thinks the robot is starting to do something wrong.
Compared to hindsight relabeling in DAgger, intervening and
correcting is more intuitive for humans. HG-DAgger [11],
based on DAgger, learns from interventions, but it only
updates the learner policy on the intervention. IWR [17]
trains the policy also on the robot’s own trajectories before
the intervention (with lower importance weights), which
improves the stability and performance over HG-DAgger.
Sirius [15] further removes a small pre-intervention trajectory
segment because human users have a minimum reaction time
before they can intervene on the robot. EIL [28] follows a
similar idea but trains value functions to update the policy,
rather than directly imitating interventions.

Our approach OLAF can also use intervention, so it can
be viewed as a HIL method. However, unlike these previ-
ous approaches, OLAF can learn from verbal correction as
well. As a result, providing interventions physically (though
helpful) is optional with OLAF, which is good for scenarios,
e.g., where tele-operation is infeasible to set up. Moreover,
OLAF learns to pre-empt mistakes instead of only correcting
them. This is accomplished by using the verbal feedback to
relabel a trajectory segment before the user intervention.

B. Instruction Following / Language-Conditioned Policies

Despite being more ambiguous than demonstrations, nat-
ural language is perhaps the most intuitive modality to in-
struct a robot. Many recent works have designed instruction-
following robots that allow the user to control the robot via
natural language commands. One approach is to pre-train a
language-conditioned policy using (self-)supervised learning
from pairs of demonstrations and task instructions [26, 33].
Another approach is to leverage an LLM to interpret and
reason about verbal instructions: [29] uses LLM to parse
instruction into way-points; [14, 27, 31] use LLM to generate
program codes to control the robot, whereas [10] and [1]
use LLM to decompose the problems into small steps. [34]
uses LLM to generate rewards for online planning, and [23]
further uses LLM to ask for clarification when the instruction
is vague.

However, none of these methods learn from instructions
to improve the pre-trained policy. In other words, these sys-
tems function more or less as language-based tele-operation.
While verbal correction studied in this paper can be viewed
as a form of verbal instruction, OLAF significantly differs
from the aforementioned methods in that it uses LLM to
update neural visuomotor policies. Our approach showcases
that an LLM’s non-verbal pattern recognition ability can
be used in conjunction with its reasoning ability (which
interprets the verbal feedback) to train neural networks. As
a result, a robot trained by OLAF would internalize the
corrected motor skill and can complete the task alone without
requiring constant human supervision.

C. LLM for Labeling and Finetuning ML Policies

LLMs have recently emerged as generalist agents for many
tasks that can be expressed in language. For instance, they
have been used to annotate supervised learning datasets [2, 6]
using their in-context learning capabilities. OLAF also uses
LLM to annotate robot trajectories, but leans on their physics
and common-sense reasoning rather than in-context learning.



TABLE I: Experimental results of learning with only verbal correction. OLAF consistently improves the performance over the baseline of self-imitation.
OLAF works the best when the feedback is detailed (long feedback) compared with high-level verbal correction (short-feedback). Running OLAF but
querying the LLM critic to select the action without the user instruction (at the end of Fig. 4) performs worse than OLAF conditioned on the user feedback.
We report the mean success rate and the standard deviation of three random seeds.

Method Pick Place Can Threading Square Coffee Machine

BC (self-imitation) 73.6± 4.5 53.3± 3.8 41.0± 2.2 16.0± 2.8
OLAF (no feedback) 81.3± 3.4 51.0± 0.8 44.0± 7.2 45.3± 2.5
OLAF (short feedback) 82.6± 1.9 51.0± 1.4 48.7± 1.2 47.3± 1.9
OLAF (long feedback) 84.6 ± 3.1 60.5 ± 2.5 59.0 ± 7.1 51.0 ± 1.4

TABLE II: Experimental results of learning with both verbal correction and intervention. The upper part compares algorithms that do not introduce
data weighting. Comparing Imitation and OLAF shows the benefit of also learning from the relabelled data based on verbal correction. The bottom part
compares recent HIL algorithms that use data weighting and the hybrid version of OLAF and Sirius [15] (i.e., OLAF using the weighting scheme of
Sirius). Generally, OLAF+Sirius performs the best, even slightly better the state-of-the-art Sirius HIL algorithm. These results show again the effectiveness
of OLAF incorporating verbal correction. We report the mean success rate and the standard deviation of three random seeds.

Method Pick Place Can Threading Square Coffee Machine

BC (self-imitation) 95.3± 3.1 84.4± 6.2 66.6± 2.3 78.8± 1.7
OLAF 97.0 ± 1.4 86.5 ± 1.8 76.3 ± 3.5 84.0 ± 2.8

HG-DAgger [11] 95.4 ± 1.4 75.0± 2.5 72.1± 4.0 75.4± 3.8
IWR [17] 94.6± 2.0 86.7± 2.9 78.8± 2.7 85.8± 2.0
Sirius [15] 95.0± 3.8 87.8± 3.6 80.4± 2.0 86.3± 3.0
OLAF + Sirius 95.0± 1.3 88.3 ± 1.4 82.1 ± 0.7 87.9 ± 0.7

In parallel, the high quality of LLM annotations has birthed a
very prolific area of LLM distillation, where labeled datasets
created by querying LLMs are used to train smaller language
models [3, 9, 13]. OLAF differs from them in that the learner
model is a neural visuomotor policy (implemented by BC-
transformer) rather than a language model.

IV. EXPERIMENTS

Our empirical study of OLAF’s effectiveness focuses on
two questions: (1) Can OLAF effectively learn to improve a
pretrained visuomotor policy by using only verbal feedback?
(2) Can learning from verbal correction with OLAF still be
useful when human physical intervention is available? We
conduct experiments on both simulation tasks that involve
fine-grained manipulation and real-robot tasks that are long-
horizon and multi-stage.

A. Setup

Our interactive learning experiment setup goes
as following. For each task, we collect M human
demonstrations via teleoperation and pretrain a visualmotor
policy with multimodal inputs: 1 workspace camera image, 1
eye-in-hand (wrist) camera image, and robot proprioceptive
state. In each experiment, we use the pretrained policy for
the task, while a human user monitors the robot. During the
robot’s execution, if the user thinks that the robot cannot
finish the task, the user stop the robot and provide a verbal
correction (through keyboard) to describe what or how the
robot should have done instead before it was intervened.
The user can optionally provide physical intervention
by taking over control from a teleoperation device like
Spacemouse, then release the control back to the robot. In
the experiments, the verbal corrections are provided via
a keyboard, but in real-world deployments we envision
using voice recognition systems such as Whisper [22]
for this purpose. We repeat this process to collect N

trajectories with verbal corrections. The interventions are
provided by a PhD student with robotics experience. The
verbal corrections are provided by a recruited senior CS
undergraduate student who has no robotics experience. The
final policy is trained on the aggregated dataset of M + N
trajectories. We use GPT-4 as the LLM with temperature =
0.5. We use a transformer policy (resnet-18 encoder, spatial
softmax, GMM head) with history length 10 (about 19M
parameters in total). More hyperperameter details on policy
and tasks can be found in Section IX in Appendix.

Simulation Experiments. For simulation experiments,
we evaluate OLAF on four manipulation tasks (Pick
Place Can, Threading, Square, Coffee Machine
in Fig. 5) based on robomimic [19], a simulated robotic
manipulation benchmark. In each task, the robot arm is
a simulated Franka Emika Panda robot with 7 degrees
of freedom (end-effector position, orientation and gripper
state). We use M = 50 and N = 100. We use ground truth
object state from the simulator for LLM prompting, and use
image observation for policy learning. We train 3 seed for
each method for 1000 epochs, and perform 50 trials of task
execution every 100 epoches and compare the averaged best
success rate across seeds for each method.

Real Robot Experiments. For real robot experiments, we
evaluate OLAF on two long-horizon tasks on a physi-
cal Franka Emika Panda arm: (1) pick up the pea can
and popcorn and place them into the bin in sequence
(PickPlace-Bin); and (2) pick up the peach can and
place it in the drawer, and pick up the chocolate box and
place it into the basket (PickPlace-Drawer-Basket)
(see Fig. 5). The arm is with 5 degrees of freedom (end-
effector position, yaw orientation and gripper state). We use
M = 40 and N = 80. We obtain object pose information
using 6D object pose estimator DOPE [30] for LLM prompt-



TABLE III: Experiment results on physical hardware. We evaluated
success rates on learning with both verbal correction and intervention. OLAF
outperform BC baseline on both tasks, showing that the ability to correct
mistakes so as to avoid iterating wrong behaviors is critical.

Method PickPlace-Bin PickPlace-Drawer-Basket

BC 35.3 52.9
OLAF 73.5 70.6

ing, and use image observation for policy learning similar to
simulation experiments. We use one seed, run each training
method for 1000 epochs, perform 34 task execution trials,
and compare the methods’ success rates on the last epoch’s
checkpoint.

B. Learning from Verbal Correction Only

In this experiment, we aim to study whether verbal cor-
rection provides useful information and can help the robot
refine its policy’s performance. In all the experiments here,
we consider the setting with only verbal correction. We only
use the trajectory segments before the human stops the robot,
and ignore all trajectory segments of human intervention.
The policy learns from the aggregated dataset of (1) the
robot’s rollout trajectory without intervention and (2) the
initial expert demonstrations. We consider a self-imitation
baseline, which updates the policy by imitating from the
same dataset but without action relabeling.

We compare OLAF with long and short feedback. A
long feedback refers to the user giving detailed directional
instructions (e.g., “Move toward to the left to grasp the
cup.”). A short feedback on the other hand refers to the
user giving high-level, object-centric instruction (e.g., “Move
closer to the cup.”). We consider these two kinds of feedback
to test the limits of our LLM action relabeling. Using the
short feedback is harder, as LLM additionally has to do some
physics and commonsense reasoning. For ablation purposes,
we also consider a baseline that runs OLAF without verbal
feedback. We remove the part of the prompt about verbal
correction in Fig. 4 and ask the LLM to select from among
the action candidates directly based on the task and the
current state.

The experimental results are summarized in Table I. OLAF
consistently improves the performance over the baseline of
self-imitation. It works the best with long feedback. As
expected, the no-feedback baseline is the weakest version of
OLAF (though still better than self-imitation). This shows
the importance of verbal feedback for the LLM (GPT4) to
provide action suggestions.

C. Learning from Verbal Correction and Intervention

In this experiment, we study whether verbal correction is
still useful when human intervention, i.e., physical correction
in addition to stopping the robot, can be provided. As before,
we consider a baseline, BC (self-imitation), which imitates
the entire trajectory, including the parts generated by the
robot and by human intervention. The experimental results
are summarized in Table II. OLAF generally outperforms
the BC baseline, showing the benefit of learning from verbal

TABLE IV: A comparison of different action proposal methods on
Square. Querying LLM for “one-dimensional” delta actions (Onedim +
Original) achieves better performance.

Method Only Verbal Verbal & Intervention

BC baseline 41.0± 2.2 66.6± 2.3
OLAF: LLM Gives Actions 49.3± 1.2 65.2± 4.2
OLAF: LLM Edits Actions 52.0± 2.8 70.7± 4.6
OLAF: Onedim Actions 54.0± 3.5 62.0± 3.5
OLAF: Onedim + Original 59.0 ± 7.1 76.3 ± 3.5

TABLE V: A comparison of Basic and Full relabeling on Square. The
Basic version achieves on-par performance with the Full version.

Method Only Verbal Verbal & Intervention

OLAF: Basic 59.0± 7.1 76.3± 3.5
OLAF: Full 60.7± 6.1 78.0± 3.5

correction. We note that even when the robot can learn from
data that corrects its behavior after it commits a mistake,
OLAF with action relabeling still outperforms the BC version
without it. This highlights the importance of overriding
erroneous actions to learn the accurate actions that prevent
the mistakes from happening, rather than merely recovering
from the mistakes.

Next, we consider three state-of-the-art HIL algorithms
(HG-DAagger [11], IWR [17], and Sirius [15]) which do
not use verbal corrections, relying just on interventions.
These algorithms mainly differ in how they weigh differ-
ent parts of the trajectory in doing imitation learning. We
combine OLAF with Sirius by incorporating the weighting
scheme in Sirius [15], which up-weights interventions and
down-weights pre-interventions. The hybrid version performs
on par with and slightly better than Sirius, showing that
OLAF is compatible with state-of-the-art HIL algorithms
when human intervention is available. We also note that
it is not a significant improvement because of how down-
weighting pre-intervention samples minimizes the effect of
action relabeling.

D. Experiments on Physical Hardware

We perform the evaluation in the setting of learning with
both verbal correction and human intervention, and use
the long-language-feedback version of OLAF. As shown in
Table III, OLAF with language relabeling outperforms BC
on the original data. It is noteworthy that OLAF’s large per-
formance gain is achieved by relabeling just a few timesteps
before intervention – a very small fraction of the training
data. We hypothesize that this disproportionately positive
effect is due to that OLAF’s behavior corrections prevents
the learning updates from internalizing the erroneous action
choices, and that these real robot experiments requires a
longer manipulation sequence. The BC baseline does not
learn to override the robot mistakes themselves, but rather
to correct them afterwards. For example, we found that if
the robot accidentally drops the object, the BC policy would
preserve the wrong gripper release action, and commit the
same mistake again, which might not be recovered. On the
contrary, OLAF uses the verbal correction to fix the error



before it happens, allowing the robot to proceed to the next
stage of manipulation. On the other hand, the BC baseline
does not learn to override the robot mistakes themselves,
but rather to correct them afterwards; the robot does not
avoid learning from the mistakes. For example, if the robot
accidentally drops the object, it can preserve the wrong
gripper release action, and commit the same mistake again
which might not be recovered.

E. Analysis and Ablation Studies

Comparison of different action proposal methods. As
discussed in Section II-B, we query the LLM by asking
for a “one-dimensional” (onedim) delta action, and add the
delta action to the original action as the final relabeled action
used for neural network training. In this section, we discuss
alternative designs for obtaining relabeled actions:
1) LLM Gives Actions: Use the LLM as an actor and

directly ask it to produce a 7D action.
2) LLM Edits Actions: Use the LLM as an actor, tell it the

agent’s original action, and ask it to modify the action.
3) Onedim Actions: Use the LLM as a critic, let it choose

from a set of one-dimensional actions (e.g. moving in
the positive x-direction) for moving in the positive x-
direction), and its choice this as the final action.

4) Onedim Actions + Original (Ours): Query the LLM
similar to Onedim Actions, but instead use the LLM’s
choice as a delta action for adding to the original action.

We present the policy performance of each method in
Table IV. We find that most action proposal methods allow
policy learning to outperform the BC baseline, especially for
the Only Verbal version. However, using Onedim + Original
yields the largest improvement over BC. One potential
explanation is that using the LLM as a critic is generally
more effective than using it as an actor directly, because a
finite set of action choices provides structure and reduces
hallucinations. Also, simple one-dimensional actions may
be more intuitive for the LLM to understand than actions
that attempt to modify multiple state dimensions at a time.
Finally, human corrections are by definition modifications
w.r.t. the existing policy actions, and the Onedim + Original
method reflects this intuition closer than Onedim Actions,
which may explain why Onedim + Original performs better.

Trade-off between LLM query quota and relabeling
accuracy. As mentioned in Section II-C, we query the LLM
only once for each human verbal correction to make running
the system more cost-effective. Namely, we query for the
last time step in each pre-intervention period, obtain an
action choice from the LLM, and use that action for all
time steps in the pre-intervention region. A more elaborate
– but much more expensive – version would be to issue a
separate LLM query for each time step in the pre-intervention
period so as to obtain separate relabeled actions. We call ours
and the elaborate version the “OLAF: Basic” and “OLAF:
Full” version, respectively. We compare the two methods
in Table V for the Square task, and discover that our
version (Basic) achieves similar performance to the Full

version while being much more cost-effective. At the same
time, we recognize that our comparison was done under
the assumption that the same action can apply to all pre-
intervention time steps, which might not always be true and
might generate compromised action relabeling results.

V. CONCLUSION AND LIMITATIONS

We introduced OLAF – the first learning system that
can update visuomotor neural network policy using verbal
correction from regular non-expert users. OLAF uses an
LLM to translate verbal corrections into low-level action
labels to synthesize a dataset for updating the policy. Ex-
perimentally, we show that OLAF is effective in leveraging
verbal correction to improve policy performance, achieving
on average 20.0% improvement from BC baseline across
simulation and physical hardware. The current design of
OLAF has several limitations. First, although we use OLAF
to train visuomotor transformer-based policies, the LLM
requires textualized state estimation to relabel actions. In
addition, we need to hand-craft the task-dependent prompt
properly for the LLM to understand the state information.
While these limitations are common in existing LLM-related
applications, we hope that they can be relaxed in the future.
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APPENDIX

VI. LLM WORKFLOW IMPLEMENTATIONS

Summarization {“action”: 2}
Action 

selection
Action selection 

prompt LLM output

Summarization 
prompt

LLM (GPT-4) LLM (GPT-3.5)

System prompt

If summarization fails

Fig. 6: OLAF’s Workflow for Querying LLM. The OLAF LLM workflow consists of two steps: Action Selection and Summarization. In Action Selection,
a LLM inputs the action selection prompt and system prompt and outputs its CoT reasoning process along with its action choice. In Summarization, another
LLM query is made to summarize the LLM reasoning output into a single action in json format. We use GPT-4 for Action Selection and GPT-3.5 for
Summarization.

We present the pipeline of querying LLM for action relabeling previously discussed in Section II-B. As shown in Figure
6, the OLAF LLM workflow consists of two steps: Action Selection and Summarization. In Action Selection, a LLM inputs
the action selection prompt and system prompt, and outputs its unstructured response. We first make a query on gripper
action selection, and LLM will return the correct gripper action (open or close). We then make a second query on the 6D
action (x, y, z, roll, pitch, yaw) with the correct gripper action appended to it.

The response contains its chain-of-thought reasoning process for the final action choice, which we need to parse and
summarize into some structured form. Therefore, we introduce a second step of summarizing the unstructured LLM output
into json format, which we found is a good template for GPT to produce structured response. In Summarization, another
LLM query is made to summarize the LLM reasoning output into a single action in json format. This process can potentially
fail, for example, failing to produce a single action, producing the wrong object type, which causes error in obtaining the
original action later on. If this fails, we add a corrective feedback to the conversation and query at most 3 times until the
response is correct (e.g. “This is incorrect format. You should return the answer as single JSON object and the value should
be a single number! Please try again.”). We use GPT-4 for Action Selection and GPT-3.5 for Summarization.

We use temperature = 0.5 for all LLM queries, and relabel T = 15 timesteps in the pre-intervention region that correspond
to the average human reaction time of 2 second [15]. We use 0.2 for the 6D action scale, which is around the average value
of robot actions.



VII. EXAMPLES OF PROMPTS AND LLM OUTPUTS

A. Prompt for Gripper State Selection

You are a helpful assistant who pay close attention to the human language correction, interpret the human intention,
and use it to arrive at the solution.

You have a robot arm which is the Franka Emika Panda robot arm, a single robot arm with 7 degrees of freedom.
The robot a parallel-jaw gripper equipped with two small finger pads, that comes shipped with the robot arm. The
robot comes with a controller that takes in actions.
The expected action space of the OSC POSE controller (without a gripper) is (dx, dy, dz, droll, dpitch,
dyaw).

The manual reads like the following:
( dx, 0, 0, 0, 0, 0, grip) <-- Translation in x-direction (forward/backward)
( 0, dy, 0, 0, 0, 0, grip) <-- Translation in y-direction (left/right)
( 0, 0, dz, 0, 0, 0, grip) <-- Translation in z-direction (up/down)
( 0, 0, 0, droll, 0, 0, grip) <-- Rotation in roll axis
( 0, 0, 0, 0, dpitch, 0, grip) <-- Rotation in pitch axis
( 0, 0, 0, 0, 0, dyaw, grip) <-- Rotation in yaw axis

If the grip = 100, the robot is having gripper closed. if the grip = -100, the robot is having gripper open.
Note on the gripper:
The robot’s gripper should be closed if it is beginning to grasp the object, or when it is holding the object.
When it is approaching the object, the gripper is open.
If the robot gripper needs to be closed, you should continue to close the gripper, even if it is closed.
Similarly, if the robot gripper needs to be open, you should continue to open the gripper, even if it is already open.
You receive the following human language correction at the current state. Pay close attention to the human language
correction, interpret the human intention, and use it to arrive at the solution.

Some pointers for human language correction interpretation:
Move backward: decrease the x position
Move forward: increase the x position
Move left: decrease the y position
Move right: increase the y position
Move up: increase the z position
Move down: decrease the z position
Rotate: changing the yaw angle

Human language correction:

{} # to be filled in

Consider: Does this correction concern about the gripper state (open / close)? Answer true or false. Do not care
about the other action dimensions first.
If it is true, does the human want the gripper be open (grip = -100) or close (grip = 100)?

Prompt 1: Prompt for selecting the gripper state.

Put the above result in format of json. You must follow the json format!
If there is no change, return: {“grip”: null}
If should be open, return: {“grip”: -100}
If should be close, return: {“grip”: 100}

Prompt 2: Prompt for putting the gripper state in json format.



B. Example Output for Gripper State Selection

Example 1

Language Correction:

"You should move the gripper slightly to the left to aim it at the pea can"

LLM Output:

Based on the human language correction:
”You should move the gripper slightly to the left to aim it at the pea can”
Does this correction concern gripper state open/close?
Answer: false.
The provided correction does not explicitly provide any instruction about changing the gripper’s state (open/close);
it is about the movement of the gripper in the y-axis direction (left).
If it were true, an explanation for whether the gripper should be open or close would be necessary, but since the
statement is false, we need not evaluate the gripper’s state from this correction. The action to be performed according
to the provided correction is a slight movement to the left (which translates to: decrease the y position).
So, based on the OSC POSE controller manual, an appropriate action vector to realize this instruction, not
considering other dimensions, would look something like this:
(0, dy, 0, 0, 0, 0, grip)
Where ”dy” is a small negative value to indicate a slight move to the left and ”grip” remains the same as it is not
specified to change in the correction.

LLM Output 1: Results for selecting the gripper state.

Example 2

Language Correction:

"You should not release! And you should move backwards to aim at the bin."

LLM Output:

Based on the human language correction: ”You should not release! And you should move backwards to aim at the
bin.”
Consider: Does this correction concern gripper state open/close?
Answer: True
Explanation: The phrase ”You should not release!” directly pertains to the state of the gripper, indicating that the
gripper should not let go of whatever it is holding.
If it is true, does the human want the gripper be open or close?
Answer: Close
Explanation: ”You should not release!” implies keeping hold of an object, thus the gripper should remain closed or
be closing, depending on its current state.

LLM Output 2: Results for selecting the gripper state.



C. Prompt and Example Output for 6D Action Selection

You are a helpful assistant who is good at employing math and computer science tools to arrive at the solution. You
analyze numerical values carefully and think step by step. You will also pay close attention to the human language
correction, interpret the human intention, and use it to arrive at the solution. Please describe in detail how you
apply your mathematical and computational abilities, to arrive at solutions.

You have a robot arm which is the Franka Emika Panda robot arm, a single robot arm with 7 degrees of freedom.
The robot a parallel-jaw gripper equipped with two small finger pads, that comes shipped with the robot arm.
The robot comes with a controller that takes in actions.
The expected action space of the OSC POSE controller (without a gripper) is (dx, dy, dz, droll, dpitch,
dyaw).
The manual reads like the following:
( dx, 0, 0, 0, 0, 0, grip) <-- Translation in x-direction (forward/backward)
( 0, dy, 0, 0, 0, 0, grip) <-- Translation in y-direction (left/right)
( 0, 0, dz, 0, 0, 0, grip) <-- Translation in z-direction (up/down)
( 0, 0, 0, droll, 0, 0, grip) <-- Rotation in roll axis
( 0, 0, 0, 0, dpitch, 0, grip) <-- Rotation in pitch axis
( 0, 0, 0, 0, 0, dyaw, grip) <-- Rotation in yaw axis
If the grip = 100, the robot is having gripper closed. if the grip = -100, the robot is having gripper open.

The robot will now perform a task. Your job is that, given a few choices of actions to perform at the current state,
you will choose the correct action for the robot to perform.

Note on the robot position and angle:
You should consider the position and angle of the robot end effector and object, and how they are related to each
other. For example, if the robot end effector is on the left of the object, you should consider moving the robot end
effector to the right. If the robot end effector is not aligned with the object in rotation, you should consider rotating
the robot end effector to align with the object.

Note on the robot gripper:
The robot’s gripper should be closed if it is beginning to grasp the object, or when it is holding the object. When it
is approaching the object, the gripper is open. If the robot gripper needs to be closed, you should continue to close
the gripper, even if it is closed. Similarly, if the robot gripper needs to be open, you should continue to open the
gripper, even if it is already open.

Given the robot and object position, first explain what stage is the task currently in, and what is the relationship
between the robot and object. Explain what a good action is supposed to do.
Then based your result, look at the given actions, and return which of the following actions is the correct action to
take. Let’s think step by step. Explaining your reasoning before arriving at the solution.
You always produce a single Action value in the end, which is a single number. You must follow this format!
If there are multiple actions, you must only return one of them.

You also receive a human language correction given at the current state. Pay close attention to the human language
correction, interpret the human intention, and use it to arrive at the solution.
Some pointers for human language correction interpretation:
Move backward: decrease the x position
Move forward: increase the x position
Move left: decrease the y position
Move right: increase the y position
Move up: increase the z position
Move down: decrease the z position
Rotate: changing the yaw angle

Prompt 3: Prompt for querying LLM for 6D action (shared across tasks and states).



In this task, the robot must pick a square nut and place it on a rod. The nut has a handle to be grasped.
The task has the following stages:
1. Grasping the Handle: Approach the square nut’s handle.
2. Peg Insertion: Lift the nut and get closer to the peg.

Input:
Robot Position: [-7 7 97]
Robot Angles: [ 0 -5 -8]
Handle Position: [-16 13 83]
Handle Angles: [ 0 0 -95]
Peg Position: [23 10 85]
Peg Angles: [0 0 0]
Gripper State: [-100]

Action Choices:
Action 0: [ 20 0 0 0 0 0 -100]
Action 1: [ 0 20 0 0 0 0 -100]
Action 2: [ 0 0 20 0 0 0 -100]
Action 3: [ 0 0 0 0 0 20 -100]
Action 4: [ -20 0 0 0 0 0 -100]
Action 5: [ 0 -20 0 0 0 0 -100]
Action 6: [ 0 0 -20 0 0 0 -100]
Action 7: [ 0 0 0 0 0 -20 -100]

Human Language Correction:
You should not close the gripper now, you should move backwards to aim at the handle first.

Prompt 4: Prompt for querying LLM for 6D action (tasks and states dependent).



Here is the corresponding LLM response for the above task, state, action and human correction information. Note that
the LLM is correct about most of the reasoning except for one place – it says the robot should move “slightly to the left
(decrease y)” that contradicts the true spatial relationship between the robot and the handle. Nonetheless, it is able to return
the correct action with the human verbal correction.

Let’s analyze the given information step by step:

1. Determine the current stage of the task:
Since the gripper state is -100 (open), and the robot end effector is not close to the handle, we can conclude that
the task is in the ”Grasping the Handle” stage.

2. Analyze the relationship between the robot and the object:
The robot position is at [-7 7 97], and the handle position is at [-16 13 83]. The robot is to the right and above the
handle, and it needs to move backward (decrease x) and slightly to the left (decrease y) to align with the handle.

3. Interpret the human language correction:
The human language correction says, ”You should not close the gripper now, you should move backwards to aim at
the handle first.” This means we should look for an action that moves the robot backward (decrease x) and keeps
the gripper open (grip = -100).

4. Find the correct action among the given choices:
Based on the human language correction and our analysis, we need an action that moves the robot backward
(decrease x) while keeping the gripper open (grip = -100).

Looking at the given action choices, we can see that Action 4: [ -20 0 0 0 0 0 -100] matches our requirements. The
robot moves backward (decreases x) by 20 units while keeping the gripper open (grip = -100).

Therefore, the correct action to take is Action 4.

final action idx: 4

LLM Output 3: Response for choosing the 6D action.



VIII. MORE PROMPTS

A. Prompts for Different Action Proposal Methods

Here we provide prompts for different action proposal methods. We modify the part in Prompt 3 that specifies the form
of output actions. The following Prompt 5 is taken directly from Prompt 3.

... Then based your result, look at the given actions, and return which of the following actions is the correct action
to take.
Let’s think step by step. Explain your reasoning before arriving at the solution.
You always produce a single Action value in the end, which is a single number. You must follow this format! If there
are multiple actions, you must only return one of them.

Prompt 5: Prompt for “Onedim Actions” and “Onedim + Original”.

... Then based your result, return a correct action to take on the current state in the format of [dx, dy, dz, droll,
dpitch, dyaw, grip] as mentioned above. The action value should be in the appropriate action scale (between -100
to 100).
Let’s think step by step. Explain your reasoning before arriving at the solution.
You always produce an action being in a list of length 7. You must follow this format!

Prompt 6: Prompt for “LLM Gives Actions”.

... Then based your result, identify the action dimension indices that requires modification.
Then modify the original action in these action dimension indices in the appropriate action scale (between -100 to
100).
Finally, return a correct action to take on the current state in the format of [dx, dy, dz, droll, dpitch, dyaw, grip] as
mentioned above.
Let’s think step by step. Explaining your reasoning before arriving at the solution.
You always produce an action being in a list of length 7. You must follow this format!

Prompt 7: Prompt for “LLM Edits Actions”.

B. Prompts for Summarization

LLM generate response in a passage of reasoning process. Here we provide prompts to summarize LLM output into a
standardized json form.

Now based on the previous response, summarize what is the final action choice.
Return the answer as a JSON object, with a single key ’action’, and a single value which is a number.
Do not return any other string besides the json object. For example, if the action is 7, return ’action’: 7 If the text
have multiple results for the correct action, you must only return one of them. Do not return multiple answers!

Prompt 8: Summarization Prompt for “Onedim Actions” and “Onedim + Original”.

This is incorrect format. You should return the answer as single JSON object, with a single key ’action’, and the
value should be a single number!
If the text have multiple results for the correct action, you must only return one of them. Do not return multiple
answers! Please try again.

Prompt 9: Corrective summarization Prompt for “Onedim Actions” and “Onedim + Original”.



Now based on the previous response, summarize what is the final action choice.
Return the answer as a JSON object, with a single key ’action’, and a single list. The value of JSON object must
be a list of 7 numbers.
Do not return any other string besides the json object.

For example, if the action is [0,0,20,0,0,-30,100], return ’action’: [0, 0, 20, 0, 0, -30, 100].
If the action is [0,0,20,0,0,-30,100], return ’action’: [0, 0, 20, 0, 0, -30, 100].
If the action is [0,20,20,0,0,0,-100], return ’action’: [0, 20, 20, 0, 0, 0, -100].
If the action is [-20 20 0 0 0 20 100], return ’action’: [-20, 20, 0, 0, 0, 20, 100].
If the action is [0,-20,0,0,0,0,100], return ’action’: [0, -20, 0, 0, 0, 0, 100].
If the action is [20,0,0,0,0,0,-100], return ’action’: [20, 0, 0, 0, 0, 0, -100].
If the action is 0 0 0 0 0 -20 -100, return ’action’: [0, 0, 0, 0, 0, -20, -100].
If the action is [14 20 0 0 5 0 -100], return ’action’: [14, 20, 0, 0, 5, 0, -100].
If the action is -1 0 2 -40 30 1 100, return ’action’: [-1, 0, 2, -40, 30, 1, 100]

Prompt 10: Summarization Prompt for “LLM Gives Actions” and “LLM Edits Actions”.

This is incorrect format. You should return the answer as single JSON object, with a single key ’action’, and the
value should be a single list! Please try again.

Prompt 11: Corrective summarization Prompt for “LLM Gives Actions” and “LLM Edits Actions”.



IX. POLICY IMPLEMENTATIONS

We describe the policy architecture details initally introduced in Section IV-A. Our codebase is based on robomimic
[18], an open-source project that benchmarks a range of learning algorithms on offline data. We standardize all methods
with the same state-of-the-art policy architectures and hyperparameters from robomimic. The architectural design includes
a transformer policy backbone, ResNet-18 image encoders, random cropping for image augmentation, GMM head, and
the same training procedures. The list of hyperparameter choices is presented in Table VI. We also include the task level
hyperparameters (e.g., image size, number of rollouts) for simulation tasks in Table VII and that for real-robot tasks in Table
VIII.

TABLE VI: Model training hyperparameters

Hyperparameter Value

Context length 10
Embedding dim 512
Num of layers 6
Num of heads 8

Embedding dropout 0.1
Attention dropout 0.1

Block output dropout 0.1
Activation gelu

GMM number of modes 5
Image encoder ResNet-18

Random crop ratio 90% of image height

Optimizer Adam
Batch size 16

# Training steps per epoch 500
# Total training epochs 1000

Evaluation checkpoint interval (in epoch) 100

TABLE VII: Task hyperparameters (simulation)

Hyperparameter Pick Place Can Threading Square Coffee Machine

Workspace camera image size (h× w) 84× 84 84× 84 84× 84 84× 84
Wrist camera image size (h× w) 84× 84 84× 84 84× 84 84× 84

# human demonstrations 50 50 50 50
# rollouts in interaction 50 50 50 50

Evaluation rollout length 300 500 400 450

TABLE VIII: Task hyperparameters (real robot)

Hyperparameter PickPlace-Bin PickPlace-Drawer-Basket

Workspace camera image size (h× w) 84× 84 84× 112
Wrist camera image size (h× w) 84× 84 84× 84

# human demonstrations 40 40
# rollouts in interaction 80 80

Evaluation rollout length 1000 1000
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