Code-Driven Inductive Synthesis: Enhancing Reasoning Abilities of Large
Language Models with Sequences

Anonymous ACL submission

Abstract

Large language models make remarkable
progress in reasoning capabilities. Existing
works focus mainly on deductive reasoning
tasks (e.g., code and math), while another type
of reasoning mode that better aligns with hu-
man learning, inductive reasoning, is not well
studied. We attribute the reason to the fact
that obtaining high-quality process supervision
data is challenging for inductive reasoning. To-
wards this end, we novelly employ number se-
quences as the source of inductive reasoning
data. We package sequences into algorithmic
problems to find the general term of each se-
quence through a code solution. In this way,
we can verify whether the code solution holds
for any term in the current sequence, and in-
ject case-based supervision signals by using
code unit tests. We build a sequence synthetic
data pipeline and form a training dataset Code-
Seq. Experimental results show that the models
tuned with CodeSeq improve on both code and
comprehensive reasoning benchmarks.

1 Introduction

Recent advances in Al, including openai-ol (Zhong
et al., 2024) and deepseek-rl (DeepSeek-Al, 2025)
make remarkable progress in reasoning capabilities
of large language models (LLMs) (Xi et al., 2023;
Xu et al., 2024; Jin et al., 2024; Franceschelli and
Musolesi, 2023), such as mathematical reasoning
(Ahn et al., 2024; Chen et al., 2024) and code rea-
soning (Liu et al., 2023; Jiang et al., 2024a).
Existing works focus mainly on deductive rea-
soning tasks (e.g., code and math) (Wang et al.,
2024b; Lu et al., 2024), utilizing general princi-
ples and axioms to logically achieve specific con-
clusions. In contrast, another mode of reasoning,
inductive reasoning (Han et al., 2024), involves
drawing general conclusions from specific patterns.
This paradigm is key to knowledge generalization
and better aligns with human learning. However,
limited research are conducted in this area.

[Next Number Prediction] Analyze the given terms of the sequence
of numbers below and predict the next number:
<bos> 1, 2, 3, 6, 11, 23, 47, 106, 235, 551 <e0s>

Il ol-preview
B claude-3.5-sonnet
@ — ® deepseek-rl
0.19
— | 669 | (X) ®
0.14
(O m— 150 |®

0.1

Figure 1: We select 200 sequences and prompt three
powerful models for next number prediction (more de-
tails in Appendix A.1). The results demonstrate that
existing LLMs perform poorly in inductive reasoning,
indicating significant research potential in this area.

We attribute the reason to the fact that obtain-
ing high-quality process supervision data (Havrilla
etal., 2024) is quite challenging. In math-type prob-
lems, each step of the derivation process can be an-
notated and verified (Yang et al., 2024a). However,
the intermediate steps in inductive reasoning are
relatively open, making it difficult to determine cor-
rectness. This leads to challenges in data construc-
tion and, consequently, hardness in model learning.

In this paper, we novelly employ number se-
quences as the source of inductive reasoning
data. Sequence problems require generalizing from
previous observations to predict future elements,
which can reflect the inductive ability (see Fig-
ure 1). We package sequences into algorithmic
problems to find the general term of each sequence
through a code solution. In this way, we can verify
whether the code solution holds for any term in the
current sequence, and inject case-based supervision
signals via code unit tests (Hui et al., 2024). Sep-
cifically, we build a sequence synthetic data (Bauer
et al., 2024) pipeline guided by code unit tests, then
forming a training dataset CodeSeq.

The pipeline consists of three steps. (1) Data
filtering. We scrape many sequences and their re-
lated information from websites. We use manually
written rules and a language model working agent
to filtrate the sequences that have enough informa-
tion to be packaged into algorithmic problems. (2)
Problem generation. We leverage the working
agent to generate an algorithmic problem about
the general term for each selected sequence, along
with two example cases. Another guiding agent
directly generates the output based on the problem
description and the input of example cases to verify
whether the algorithmic problem itself is correct.
(3) Supervision injection. The working agent gen-
erates code solutions for the correct problems. We
verify whether the code solution holds for any term
in the sequence through code unit tests. The guid-
ing agent provides modification suggestions and
asks the working agent to regenerate the answers
for the failed solutions. Through this pipeline, we
inject case-based supervision signals while search-
ing for general term code solutions for sequences,
forming the complete synthetic dataset CodeSeq.

To verify the effectiveness, we apply it to per-
form supervised fine-tuning (SFT) on two LLMs.
Experimental results show that the models tuned
with CodeSeq improve on two code benchmarks
and three comprehensive reasoning benchmarks.

Our contributions can be listed as follows:

* To our knowledge, we are the first to utilize
sequences as the inductive reasoning data and
study their impact on LLMs.

* We package the sequences into algorithmic
problems, which can be injected with case-
based supervision signals to improve data
quality for the inductive reasoning task.

* Our synthetic data CodeSeq is proven effec-
tive for various reasoning tasks, demonstrat-
ing the potential of inductive reasoning.

2 Sequence Synthetic Data Pipeline

In this paper, we employ sequences as the source
of inductive reasoning data. We package sequences
into algorithmic problems to find the general term
of each sequence through a code solution. In this
way, we can verify whether the code solution holds
for any term in the current sequence, and inject
case-based supervision signals by using code unit
tests. The whole pipeline consists of three steps in
Figure 2. More details can refer to Appendix A.3.

2.1 Sequence Data Filtering

We scrape a large number of sequences and their
related information from websites!. Each page on
the website corresponds to a sequence and all its
information, including the source, formula, general
term description, and so on.

We will package the sequences into algorithmic
problems by a powerful language model working
agent. To ensure the accuracy of this process, we
need to filter the information for each candidate
sequence. We first manually wrote rules to filter
out sequences with insufficient information, such
as those with too few terms, or those that evolve
from other sequences (requiring additional web-
page links for reference). Then we prompt the
working agent to self-planning (Jiang et al., 2024b)
the steps for generating an algorithmic problem
and self-reflecting (Wang et al., 2024c) on whether
each step contains enough information. The above
operations result in a batch of sequences with high
information density.

2.2 Sequence Algorithmic Problem
Generation and Validation

We next have the working agent generate an algo-
rithmic problem about the general terms for each
sequence, along with two example cases. Example
cases provide the standard input and output cases
for this algorithmic problem to help the problem
solvers understand it better.

To further verify the correctness of the algorith-
mic problems, we utilize another powerful LLM
as a guiding agent. We input the problem descrip-
tion and two example cases’ inputs into it and let
it directly output the results. By comparing these
results with the ground truth outputs generated by
the working agent, we can determine whether the
current problem is correct. Seed sequence data is
gained via this example case validation.

2.3 Case-based Supervision Signal Injection

After obtaining the seed data, we let the working
agent directly generate the code solution for the
algorithmic problem. Since the problem descrip-
tion involves the general term of a sequence, the
code solution represents the computational process
for the general term of the sequence. Unlike the
example cases, we also set 5 to 7 test cases for
each sequence to ensure the correctness of the code
solution.

"https://oeis.org/

(@
Sequence Data Scraping

=| |

Rules Working Agent

({0

v
High-Density Sequence Data

Stage 1: Sequence Data Filtering

Problem Description

@,

Working Agent

reasons for failed cases

f Guiding Agent
Seed Sequence Data
Input #1: 1

Output #1: 5 e
Input #2: 2

Example Cases Validation

(0

Example Cases

Stage 2: Sequence Algorithm Problems Generation and Validation

Guiding Agent

Stage 3: Case-based Supervision Signal Injection via Code Unit Tests in Sandbox

Figure 2: The sequence synthetic data pipeline consists of three steps, and then forming our CodeSeq.

Imitating previous unit tests (Hui et al., 2024),
we use test cases to test the correctness of each code
solution in an isolated sandbox environment. If a
code solution fails on a test case, we ask the guiding
agent to provide the reason for the failure. We then
give that reason along with the test case back to the
working agent to correct the code solution. Ulti-
mately, through continuous self-correcting (Huang
et al., 2024), we achieve a code solution that passes
all the test cases.

2.4 Synthetic Data Statistics

Based on the above process, we record the code
of the current version each time a modification
is made and generate synthetic data for each se-
quence, then forming a training dataset CodeSeq.
The data organization details of CodeSeq are pro-
vided in the Appendix A.4.

To ensure the diversity of the training data, we
perform resampling (Hirota et al., 2024) on the
problem descriptions and the initially generated
code solutions. This operation is equivalent to
resetting the starting point of the reasoning data,
thereby obtaining a richer training corpus. We use
LLaMA3-8B model as the tokenizer and the final
data statistics of CodeSeq can be found in Table 1.
From the table, we can see that our CodeSeq has
a rich set of tokens available for training with an
average of about 3 correction rounds. This proves
that we effectively incorporate supervision signals
into the sequence inductive reasoning data.

Sample Form SFT form
Sample Numbers 9242
All Tokens 15.3M
Output Tokens IM
Output Max Tokens 4273
First Hit Rate 0.52

Avg Correction Rounds 2.93

Max Correction Rounds 5

Table 1: The data statistical information of CodeSeq.
‘First Hit Rate’ indicates the probability that the first-
generated code can pass all test cases.

3 Experiments

To prove the effectiveness of our sequence induc-
tive reasoning synthetic data CodeSeq, we employ
it to perform SFT on existing LLMs. We test its
performance on code and other comprehensive rea-
soning benchmarks. We also explore whether Code-
Seq could enhance the models’ inductive reasoning
capabilities.

3.1 Training, Benchmarks, and Evaluation

We conduct SFT on two widely used LLMs:
LLaMA3-8B (Grattafiori et al., 2024) and
Qwen2.5-7B (Qwen et al., 2025). To maintain the
models’ instruction-following ability (Zhu et al.,
2024), we mix CodeSeq with the latest post-
training (Williams and Aletras, 2024) corpus Tulu3
(Lambert et al., 2025) for SFT. We then test the
tuned models on two code benchmarks: Humaneval

\ \Heval MBPP MMLU BBH GK \ \ \Heval MBPP MMLU BBH GK \
| GPT40 | 9270 87.60 8870 83.10 72220 | LLaMA3-8B | 56.70 63.81 51.80 63.03 29.64
LLaMA3-8B | 5670 63.81 51.80 63.03 29.64 +CodeSeq | 57.32 6579 60.62 6440 29.71
+ CodeSeq | 5732 65.79 60.62 64.40 29.71 -Tulu3 | 49.68 5633 54.14 6026 23.18
A +0.62 +1.98 +8.82 +1.37 +0.07 -CodeSeq | 54.65 6172 5191 62.88 28.45
Qwen25.7B | 7134 7159 6823 6605 6329 _testcases | 55.90 6247 50.88 62.59 29.53
+ CodeSeq | 78.05 73.93 7074 69.70 63.77 Table 3: W duct abla dies with LLaMA3.SB
A +671 4234 251 4365 +048 able 3: We conduct ablation studies wit! a -3B.

Table 2: Both models have improvements on five bench-
marks, finetuned by CodeSeq. ‘Heval’ and ‘GK’ repre-
sent Humaneval and GaoKaoBench respectively.

(Chen et al., 2021) and MBPP (Austin et al., 2021),
along with three comprehensive reasoning bench-
marks: MMLU (Hendrycks et al., 2021), BBH
(Suzgun et al., 2022), and GaoKaoBench (Zhang
et al., 2024). Finally, we employ OpenCompass
(Contributors, 2023), which is an LLM evaluation
platform, supporting a wide range of models, to
evaluate the results. More details about training
and evaluating can refer to Appendix A.S5.

3.2 Main Results

Table 2 shows the main results of the two models’
performances on five benchmarks after finetuned
by CodeSeq. We can summarize that: (1) The
sequence inductive reasoning synthetic data can ef-
fectively enhance the code generation capabilities
of the two LLMs. After being finetuned with Code-
Seq, the models achieve an average improvement
of 3.67 points on Humaneval and 2.16 points on
MBPP respectively. (2) The sequence inductive
reasoning synthetic data also demonstrates excel-
lent transfer effects on comprehensive reasoning
benchmarks (OOD). In particular, the LLaMA3-8B
model improves by more than 8 points on MMLU.
It is worth noting that although our CodeSeq data
is in English, we still maintain the performance on
the Chinese GaoKaoBench.

3.3 Ablation Study

We conduct ablation studies with LLaMA3-8B.
From Table 3, we can conclude that: (1) If Tulu3
is not used, the model will break down in terms of
instruction-following ability, and the performances
on various benchmarks will significantly decline.
(2) Training only with Tulu3 does not improve per-
formance, so there will be no data leakage for the
five benchmarks. (3) The synthetic data will not
improve compared to the original LLaMA3-8B if

‘-Tulu3’, -CodeSeq’ and ‘-test cases’ mean only SFT
with CodeSeq, only SFT with Tulu3 and deleting stage
3 in Figure 2, respectively.

w0 —Qlaude 3,5 Sonnet _

oS

Vanilla
=m==With CodeSeq

LLaMA LLaMA+5shot Qwen Qwen+5shot

Figure 3: We respectively carry out next number pre-
diction using LLaMA3-8B and Qwen2.5-7B before and
after training, to test their inductive reasoning abilities.

the case-based supervision signals are not injected.

3.4 CodeSeq for Next Number Prediction

We respectively carry out next number prediction
using LLaMA3-8B and Qwen2.5-7B before and af-
ter training, to test their direct inductive reasoning
abilities in Figure 3. It can be concluded that in the
5-shot scenario, the accuracy of the models’ predic-
tion of the next number in a sequence will increase.
It is worth noting that the models trained with our
CodeSeq reveal significant improvements in this
task. Among them, after being trained with Code-
Seq, Qwen2.5-7B’s accuracy under the 5-shot set-
ting is already close to the performance of Claude-
3.5-Sonnet.

4 Conclusion

In this paper, we novelly employ number sequences
as the source of inductive reasoning data. To our
knowledge, we are the first to utilize sequences as
such kind of data to study their impact on LLMs.
We package the sequences into algorithmic prob-
lems, hence we can inject case-based supervision
signals via code unit tests to improve data quality.
Our synthetic data CodeSeq is proven effective for
various reasoning tasks, demonstrating the poten-
tial of inductive reasoning.

Limitations

This paper takes sequences as a type of inductive
reasoning data and explores the impact of this type
of data on LLMs. We construct our own pipeline
for generating synthetic sequence data and suc-
cessfully combine it with code to insert process
supervision signals. The finally formed CodeSeq
training dataset is proven to have good effects on
various reasoning tasks. However, this article still
has two limitations: (1) Inductive reasoning tasks
themselves are still in the initial stage of develop-
ment. The significance of this type of task, the
datasets, and the evaluation methods, etc., have not
been systematically organized. Although we con-
duct preliminary explorations, this is a relatively
novel direction and can be regarded as one of the
future research works. (2) Using only sequences as
the data source for inductive reasoning is relatively
limited. It is expected that more synthetic training
data for inductive reasoning can be obtained in the
future.

Ethics Statements

The pipeline is primarily generated by deepseek-
v3 and ol-preview. We obtain all the API Keys
through a paid subscription. The data source is the
OEIS website, which is a public website. The entire
process and outcomes are free from intellectual
property and ethical legal disputes.

Acknowledgments

We will finish this part in the camera-ready version.

References

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui
Zhang, and Wenpeng Yin. 2024. Large language
models for mathematical reasoning: Progresses and
challenges. In Proceedings of the 18th Conference of
the European Chapter of the Association for Compu-
tational Linguistics, EACL 2024: Student Research
Workshop, St. Julian’s, Malta, March 21-22, 2024,
pages 225-237. Association for Computational Lin-
guistics.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and
Charles Sutton. 2021. Program synthesis with large
language models. Preprint, arXiv:2108.07732.

André Bauer, Simon Trapp, Michael Stenger, Robert
Leppich, Samuel Kounev, Mark Leznik, Kyle Chard,

and Ian T. Foster. 2024. Comprehensive explo-
ration of synthetic data generation: A survey. CoRR,
abs/2401.02524.

Zhen Bi, Ningyu Zhang, Yinuo Jiang, Shumin Deng,
Guozhou Zheng, and Huajun Chen. 2024. When
do program-of-thought works for reasoning? In
Thirty-Eighth AAAI Conference on Artificial Intelli-
gence, AAAI 2024, Thirty-Sixth Conference on Inno-
vative Applications of Artificial Intelligence, IAAI
2024, Fourteenth Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2014, Febru-
ary 20-27, 2024, Vancouver, Canada, pages 17691—
17699. AAAI Press.

Kedi Chen, Qin Chen, Jie Zhou, Yishen He, and Liang
He. 2024. Diahalu: A dialogue-level hallucination
evaluation benchmark for large language models.
CoRR, abs/2403.00896.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, and
so on. 2021. Evaluating large language models
trained on code.

Elizabeth Cohn, Frida Esther Kleiman, Shayaa Muham-
mad, S. Scott Jones, Nakisa Pourkey, and Louise Bier.
2024. Returning value to the community through the
All of Us research program data sandbox model. J.
Am. Medical Informatics Assoc., 31(12):2980-2984.

OpenCompass Contributors. 2023. Opencompass:
A universal evaluation platform for foundation
models. https://github.com/open-compass/
opencompass.

Nicola Dainese, Matteo Merler, Minttu Alakuijala, and
Pekka Marttinen. 2024. Generating code world mod-
els with large language models guided by monte carlo
tree search. In Advances in Neural Information Pro-
cessing Systems 38: Annual Conference on Neural
Information Processing Systems 2024, NeurlPS 2024,
Vancouver, BC, Canada, December 10 - 15, 2024.

DeepSeek-Al. 2025. Deepseek-rl: Incentivizing rea-
soning capability in llms via reinforcement learning.
Preprint, arXiv:2501.12948.

DeepSeek-Al, Aixin Liu, Bei Feng, Bing Xue, Bingx-
uan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
and so on. 2024. Deepseek-v3 technical report.
Preprint, arXiv:2412.19437.

Giorgio Franceschelli and Mirco Musolesi. 2023. On
the creativity of large language models. CoRR,
abs/2304.00008.

Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Man-
nat Singh, Kalyan Vasudev Alwala, Armand Joulin,
and Ishan Misra. 2023. Imagebind one embedding
space to bind them all. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR
2023, Vancouver, BC, Canada, June 17-24, 2023,
pages 15180-15190. IEEE.

https://aclanthology.org/2024.eacl-srw.17
https://aclanthology.org/2024.eacl-srw.17
https://aclanthology.org/2024.eacl-srw.17
https://aclanthology.org/2024.eacl-srw.17
https://aclanthology.org/2024.eacl-srw.17
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://doi.org/10.48550/ARXIV.2401.02524
https://doi.org/10.48550/ARXIV.2401.02524
https://doi.org/10.48550/ARXIV.2401.02524
https://doi.org/10.1609/AAAI.V38I16.29721
https://doi.org/10.1609/AAAI.V38I16.29721
https://doi.org/10.1609/AAAI.V38I16.29721
https://doi.org/10.48550/ARXIV.2403.00896
https://doi.org/10.48550/ARXIV.2403.00896
https://doi.org/10.48550/ARXIV.2403.00896
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1093/JAMIA/OCAE174
https://doi.org/10.1093/JAMIA/OCAE174
https://doi.org/10.1093/JAMIA/OCAE174
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
http://papers.nips.cc/paper_files/paper/2024/hash/6f479ea488e0908ac8b1b37b27fd134c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/6f479ea488e0908ac8b1b37b27fd134c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/6f479ea488e0908ac8b1b37b27fd134c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/6f479ea488e0908ac8b1b37b27fd134c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/6f479ea488e0908ac8b1b37b27fd134c-Abstract-Conference.html
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2412.19437
https://doi.org/10.48550/ARXIV.2304.00008
https://doi.org/10.48550/ARXIV.2304.00008
https://doi.org/10.48550/ARXIV.2304.00008
https://doi.org/10.1109/CVPR52729.2023.01457
https://doi.org/10.1109/CVPR52729.2023.01457
https://doi.org/10.1109/CVPR52729.2023.01457

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and so on. 2024. The llama 3 herd of
models. Preprint, arXiv:2407.21783.

Simon Jerome Han, Keith J. Ransom, Andrew Perfors,
and Charles Kemp. 2024. Inductive reasoning in
humans and large language models. Cogn. Syst. Res.,
83:101155.

Alex Havrilla, Yuqing Du, Sharath Chandra Raparthy,
Christoforos Nalmpantis, Jane Dwivedi-Yu, Maksym
Zhuravinskyi, Eric Hambro, Sainbayar Sukhbaatar,
and Roberta Raileanu. 2024. Teaching large lan-
guage models to reason with reinforcement learning.
CoRR, abs/2403.04642.

Brett K Hayes, Evan Heit, and Haruka Swendsen. 2010.
Inductive reasoning. Wiley interdisciplinary reviews:
Cognitive science, 1(2):278-292.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. Preprint, arXiv:2009.03300.

Yusuke Hirota, Jerone Theodore Alexander Andrews,
Dora Zhao, Orestis Papakyriakopoulos, Apostolos
Modas, Yuta Nakashima, and Alice Xiang. 2024. Re-
sampled datasets are not enough: Mitigating soci-
etal bias beyond single attributes. In Proceedings
of the 2024 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2024, Miami,
FL, USA, November 12-16, 2024, pages 8249-8267.
Association for Computational Linguistics.

Jie Huang, Xinyun Chen, Swaroop Mishra,
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. 2024. Large language
models cannot self-correct reasoning yet. In The
Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, Kai Dang, Yang Fan,
Yichang Zhang, An Yang, Rui Men, Fei Huang,
Bo Zheng, Yibo Miao, Shanghaoran Quan, Yun-
long Feng, Xingzhang Ren, Xuancheng Ren, Jingren
Zhou, and Junyang Lin. 2024. Qwen2.5-coder tech-
nical report. Preprint, arXiv:2409.12186.

Xue Jiang, Yihong Dong, Lecheng Wang, Zheng Fang,
Qiwei Shang, Ge Li, Zhi Jin, and Wenpin Jiao.
2024a. Self-planning code generation with large lan-
guage models. ACM Trans. Softw. Eng. Methodol.,
33(7):182:1-182:30.

Xue Jiang, Yihong Dong, Lecheng Wang, Zheng Fang,
Qiwei Shang, Ge Li, Zhi Jin, and Wenpin Jiao. 2024b.
Self-planning code generation with large language
models. Preprint, arXiv:2303.06689.

Bowen Jin, Gang Liu, Chi Han, Meng Jiang, Heng
Ji, and Jiawei Han. 2024. Large language models
on graphs: A comprehensive survey. IEEE Trans.
Knowl. Data Eng., 36(12):8622-8642.

Philip N Johnson-Laird. 1999. Deductive reasoning.
Annual review of psychology, 50(1):109-135.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin,
Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V. Miranda, Alisa Liu, Nouha Dziri,
Shane Lyu, Yuling Gu, Saumya Malik, Victoria
Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le
Bras, Oyvind Tafjord, Chris Wilhelm, Luca Soldaini,
Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and
Hannaneh Hajishirzi. 2025. Tulu 3: Pushing fron-
tiers in open language model post-training. Preprint,
arXiv:2411.15124.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio
Savarese, and Steven Chu-Hong Hoi. 2022. Coderl:
Mastering code generation through pretrained mod-
els and deep reinforcement learning. In Advances in
Neural Information Processing Systems 35: Annual
Conference on Neural Information Processing Sys-
tems 2022, NeurlPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022.

Yanlin Li, Jonathan M. McCune, James Newsome,
Adrian Perrig, Brandon Baker, and Will Drewry.
2014. Minibox: A two-way sandbox for x86 native
code. In Proceedings of the 2014 USENIX Annual
Technical Conference, USENIX ATC 2014, Philadel-
phia, PA, USA, June 19-20, 2014, pages 409-420.
USENIX Association.

Jiawei Liu, Chungqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023. Is your code generated by chatgpt
really correct? rigorous evaluation of large language
models for code generation. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Zimu Lu, Aojun Zhou, Ke Wang, Houxing Ren,
Weikang Shi, Junting Pan, Mingjie Zhan, and Hong-
sheng Li. 2024. Mathcoder2: Better math reasoning
from continued pretraining on model-translated math-
ematical code. CoRR, abs/2410.08196.

Mario Martinez-Magallanes, Enrique Cuan-Urquizo,
Sail E Crespo-Sanchez, Ana P Valerga, Armando
Roman-Flores, Erick Ramirez-Cedillo, and Cecilia D
Trevifio-Quintanilla. 2023. Hierarchical and fractal
structured materials: Design, additive manufacturing
and mechanical properties. Proceedings of the In-
stitution of Mechanical Engineers, Part L: Journal
of Materials: Design and Applications, 237(3):650—
666.

Gabriel Matute, Wode Ni, Titus Barik, Alvin Cheung,
and Sarah E. Chasins. 2024. Syntactic code search
with sequence-to-tree matching: Supporting syntactic
search with incomplete code fragments. Proc. ACM
Program. Lang., 8(PLDI):2051-2072.

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.1016/J.COGSYS.2023.101155
https://doi.org/10.1016/J.COGSYS.2023.101155
https://doi.org/10.1016/J.COGSYS.2023.101155
https://doi.org/10.48550/ARXIV.2403.04642
https://doi.org/10.48550/ARXIV.2403.04642
https://doi.org/10.48550/ARXIV.2403.04642
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcs.44?casa_token=pjL4GIO9YsIAAAAA%3ANs_t8pbB77yAa_K8LqmqP07BemRKrkslzvHGJsvIu5eMedKHwXa0PnIdFfzFZD1j1rZLc5poUClgLYuE
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://aclanthology.org/2024.emnlp-main.471
https://aclanthology.org/2024.emnlp-main.471
https://aclanthology.org/2024.emnlp-main.471
https://aclanthology.org/2024.emnlp-main.471
https://aclanthology.org/2024.emnlp-main.471
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://doi.org/10.1145/3672456
https://doi.org/10.1145/3672456
https://doi.org/10.1145/3672456
https://arxiv.org/abs/2303.06689
https://arxiv.org/abs/2303.06689
https://arxiv.org/abs/2303.06689
https://doi.org/10.1109/TKDE.2024.3469578
https://doi.org/10.1109/TKDE.2024.3469578
https://doi.org/10.1109/TKDE.2024.3469578
http://matt.colorado.edu/teaching/highcog/fall8/j99.pdf
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2411.15124
http://papers.nips.cc/paper_files/paper/2022/hash/8636419dea1aa9fbd25fc4248e702da4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8636419dea1aa9fbd25fc4248e702da4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8636419dea1aa9fbd25fc4248e702da4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8636419dea1aa9fbd25fc4248e702da4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8636419dea1aa9fbd25fc4248e702da4-Abstract-Conference.html
https://www.usenix.org/conference/atc14/technical-sessions/presentation/li_yanlin
https://www.usenix.org/conference/atc14/technical-sessions/presentation/li_yanlin
https://www.usenix.org/conference/atc14/technical-sessions/presentation/li_yanlin
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2410.08196
https://doi.org/10.48550/ARXIV.2410.08196
https://doi.org/10.48550/ARXIV.2410.08196
https://doi.org/10.48550/ARXIV.2410.08196
https://doi.org/10.48550/ARXIV.2410.08196
https://www.researchgate.net/profile/Enrique-Cuan-Urquizo/publication/362910148_Hierarchical_and_fractal_structured_materials_Design_additive_manufacturing_and_mechanical_properties/links/630736c0acd814437fd5a657/Hierarchical-and-fractal-structured-materials-Design-additive-manufacturing-and-mechanical-properties.pdf
https://www.researchgate.net/profile/Enrique-Cuan-Urquizo/publication/362910148_Hierarchical_and_fractal_structured_materials_Design_additive_manufacturing_and_mechanical_properties/links/630736c0acd814437fd5a657/Hierarchical-and-fractal-structured-materials-Design-additive-manufacturing-and-mechanical-properties.pdf
https://www.researchgate.net/profile/Enrique-Cuan-Urquizo/publication/362910148_Hierarchical_and_fractal_structured_materials_Design_additive_manufacturing_and_mechanical_properties/links/630736c0acd814437fd5a657/Hierarchical-and-fractal-structured-materials-Design-additive-manufacturing-and-mechanical-properties.pdf
https://www.researchgate.net/profile/Enrique-Cuan-Urquizo/publication/362910148_Hierarchical_and_fractal_structured_materials_Design_additive_manufacturing_and_mechanical_properties/links/630736c0acd814437fd5a657/Hierarchical-and-fractal-structured-materials-Design-additive-manufacturing-and-mechanical-properties.pdf
https://www.researchgate.net/profile/Enrique-Cuan-Urquizo/publication/362910148_Hierarchical_and_fractal_structured_materials_Design_additive_manufacturing_and_mechanical_properties/links/630736c0acd814437fd5a657/Hierarchical-and-fractal-structured-materials-Design-additive-manufacturing-and-mechanical-properties.pdf
https://doi.org/10.1145/3656460
https://doi.org/10.1145/3656460
https://doi.org/10.1145/3656460
https://doi.org/10.1145/3656460
https://doi.org/10.1145/3656460

Qwen, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, and
so on. 2025. Qwen2.5 technical report. Preprint,
arXiv:2412.15115.

Qiushi Sun, Zhirui Chen, Fangzhi Xu, Kanzhi
Cheng, Chang Ma, Zhangyue Yin, Jianing Wang,
Chengcheng Han, Renyu Zhu, Shuai Yuan, Qipeng
Guo, Xipeng Qiu, Pengcheng Yin, Xiaoli Li,
Fei Yuan, Lingpeng Kong, Xiang Li, and Zhiy-
ong Wu. 2025. A survey of neural code intelli-
gence: Paradigms, advances and beyond. Preprint,
arXiv:2403.14734.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi,
Denny Zhou, and Jason Wei. 2022. Challenging
big-bench tasks and whether chain-of-thought can
solve them. Preprint, arXiv:2210.09261.

Yao Wan, Yang He, Zhanggian Bi, Jianguo Zhang,
Hongyu Zhang, Yulei Sui, Guandong Xu, Hai Jin,
and Philip S. Yu. 2023. Deep learning for code in-
telligence: Survey, benchmark and toolkit. Preprint,
arXiv:2401.00288.

Hao Wang, Zeyu Gao, Chao Zhang, Zihan Sha,
Mingyang Sun, Yuchen Zhou, Wenyu Zhu, Wenju
Sun, Han Qiu, and Xi Xiao. 2024a. CLAP: learning
transferable binary code representations with natural
language supervision. In Proceedings of the 33rd
ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis, ISSTA 2024, Vienna, Aus-
tria, September 16-20, 2024, pages 503-515. ACM.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun
Luo, Weikang Shi, Renrui Zhang, Lingi Song,
Mingjie Zhan, and Hongsheng Li. 2024b. Mathcoder:
Seamless code integration in llms for enhanced math-
ematical reasoning. In The Twelfth International
Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net.

Xiao Wang, Guangyao Chen, Guangwu Qian,
Pengcheng Gao, Xiao-Yong Wei, Yaowei Wang,
Yonghong Tian, and Wen Gao. 2023. Large-scale
multi-modal pre-trained models: A comprehensive
survey. Mach. Intell. Res., 20(4):447-482.

Yutong Wang, Jiali Zeng, Xuebo Liu, Fandong Meng,
Jie Zhou, and Min Zhang. 2024c. Taste: Teach-
ing large language models to translate through self-
reflection. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2024, Bangkok, Thai-
land, August 11-16, 2024, pages 6144—6158. Associ-
ation for Computational Linguistics.

Miles Williams and Nikolaos Aletras. 2024. On the
impact of calibration data in post-training quanti-
zation and pruning. In Proceedings of the 62nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), ACL

2024, Bangkok, Thailand, August 11-16, 2024, pages
10100-10118. Association for Computational Lin-
guistics.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen
Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, and so on. 2023. The rise and
potential of large language model based agents: A
survey. CoRR, abs/2309.07864.

Derong Xu, Wei Chen, Wenjun Peng, Chao Zhang, Tong
Xu, Xiangyu Zhao, Xian Wu, Yefeng Zheng, Yang
Wang, and Enhong Chen. 2024. Large language mod-
els for generative information extraction: a survey.
Frontiers Comput. Sci., 18(6):186357.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, Keming Lu,
Mingfeng Xue, Runji Lin, Tianyu Liu, Xingzhang
Ren, and Zhenru Zhang. 2024a. Qwen2.5-math tech-
nical report: Toward mathematical expert model via
self-improvement. Preprint, arXiv:2409.12122.

Guang Yang, Yu Zhou, Xiang Chen, Xiangyu Zhang,
Terry Yue Zhuo, and Taolue Chen. 2024b. Chain-
of-thought in neural code generation: From and for
lightweight language models. /IEEE Trans. Software
Eng., 50(9):2437-2457.

John Yang, Akshara Prabhakar, Karthik Narasimhan,
and Shunyu Yao. 2023. Intercode: Standardizing
and benchmarking interactive coding with execution
feedback. In Advances in Neural Information Pro-
cessing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurlPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023.

Zonglin Yang, Li Dong, Xinya Du, Hao Cheng, Erik
Cambria, Xiaodong Liu, Jianfeng Gao, and Furu
Wei. 2024c. Language models as inductive reasoners.
Preprint, arXiv:2212.10923.

Xiaotian Zhang, Chunyang Li, Yi Zong, Zhengyu Ying,
Liang He, and Xipeng Qiu. 2024. Evaluating the
performance of large language models on gaokao
benchmark. Preprint, arXiv:2305.12474.

Tianyang Zhong, Zhengliang Liu, Yi Pan, Yutong
Zhang, Yifan Zhou, Shizhe Liang, Zihao Wu, Yanjun
Lyu, Peng Shu, Xiaowei Yu, and so on. 2024. Evalu-
ation of openai ol: Opportunities and challenges of
AGI. CoRR, abs/2409.18486.

Yutao Zhu, Peitian Zhang, Chenghao Zhang, Yifei Chen,
Binyu Xie, Zheng Liu, Ji-Rong Wen, and Zhicheng
Dou. 2024. INTERS: unlocking the power of large
language models in search with instruction tuning.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), ACL 2024, Bangkok, Thailand, Au-
gust 11-16, 2024, pages 2782-2809. Association for
Computational Linguistics.

https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2403.14734
https://arxiv.org/abs/2403.14734
https://arxiv.org/abs/2403.14734
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2401.00288
https://arxiv.org/abs/2401.00288
https://arxiv.org/abs/2401.00288
https://doi.org/10.1145/3650212.3652145
https://doi.org/10.1145/3650212.3652145
https://doi.org/10.1145/3650212.3652145
https://doi.org/10.1145/3650212.3652145
https://doi.org/10.1145/3650212.3652145
https://openreview.net/forum?id=z8TW0ttBPp
https://openreview.net/forum?id=z8TW0ttBPp
https://openreview.net/forum?id=z8TW0ttBPp
https://openreview.net/forum?id=z8TW0ttBPp
https://openreview.net/forum?id=z8TW0ttBPp
https://doi.org/10.1007/S11633-022-1410-8
https://doi.org/10.1007/S11633-022-1410-8
https://doi.org/10.1007/S11633-022-1410-8
https://doi.org/10.1007/S11633-022-1410-8
https://doi.org/10.1007/S11633-022-1410-8
https://doi.org/10.18653/V1/2024.ACL-LONG.333
https://doi.org/10.18653/V1/2024.ACL-LONG.333
https://doi.org/10.18653/V1/2024.ACL-LONG.333
https://doi.org/10.18653/V1/2024.ACL-LONG.333
https://doi.org/10.18653/V1/2024.ACL-LONG.333
https://doi.org/10.18653/V1/2024.ACL-LONG.544
https://doi.org/10.18653/V1/2024.ACL-LONG.544
https://doi.org/10.18653/V1/2024.ACL-LONG.544
https://doi.org/10.18653/V1/2024.ACL-LONG.544
https://doi.org/10.18653/V1/2024.ACL-LONG.544
https://doi.org/10.48550/ARXIV.2309.07864
https://doi.org/10.48550/ARXIV.2309.07864
https://doi.org/10.48550/ARXIV.2309.07864
https://doi.org/10.48550/ARXIV.2309.07864
https://doi.org/10.48550/ARXIV.2309.07864
https://doi.org/10.1007/S11704-024-40555-Y
https://doi.org/10.1007/S11704-024-40555-Y
https://doi.org/10.1007/S11704-024-40555-Y
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2409.12122
https://doi.org/10.1109/TSE.2024.3440503
https://doi.org/10.1109/TSE.2024.3440503
https://doi.org/10.1109/TSE.2024.3440503
https://doi.org/10.1109/TSE.2024.3440503
https://doi.org/10.1109/TSE.2024.3440503
http://papers.nips.cc/paper_files/paper/2023/hash/4b175d846fb008d540d233c188379ff9-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4b175d846fb008d540d233c188379ff9-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4b175d846fb008d540d233c188379ff9-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4b175d846fb008d540d233c188379ff9-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4b175d846fb008d540d233c188379ff9-Abstract-Datasets_and_Benchmarks.html
https://arxiv.org/abs/2212.10923
https://arxiv.org/abs/2305.12474
https://arxiv.org/abs/2305.12474
https://arxiv.org/abs/2305.12474
https://arxiv.org/abs/2305.12474
https://arxiv.org/abs/2305.12474
https://doi.org/10.48550/ARXIV.2409.18486
https://doi.org/10.48550/ARXIV.2409.18486
https://doi.org/10.48550/ARXIV.2409.18486
https://doi.org/10.48550/ARXIV.2409.18486
https://doi.org/10.48550/ARXIV.2409.18486
https://doi.org/10.18653/V1/2024.ACL-LONG.154
https://doi.org/10.18653/V1/2024.ACL-LONG.154
https://doi.org/10.18653/V1/2024.ACL-LONG.154

A Appendix
A.1 Next Number Prediction

Sequences are an excellent type of data for induc-
tive reasoning because deriving the general term
formula of a sequence requires inferring an abstract,
universal representation based on the specific terms
of the sequence.

After the process in the Sequence Synthetic Data
Pipeline Section, we obtain sequence synthetic data.
We randomly select 200 sequences and conduct the
next number prediction experiments with the three
most powerful LLMs in terms of reasoning ability:
ol-preview, claude-3.5-sonnet, and deepseek-r1.
We ensure that these 200 test data are not used in
the construction of CodeSeq.

We use the following prompt in Figure 4 to have
it predict the next number in the given sequence.

1 will give you a sequence now.

Please predict the next number based on the terms |
provide.

Please respond in JSON dictionary format: {“thought™:
XXX, “answer”: Xxx},

where the “thought” section represents your inductive
reasoning process for the sequence, and the “answer”
section should directly give a number representing the
final predicted answer.

<bos> (the sequence) <eos>

Figure 4: The prompt for the next number prediction
task.

A.2 Related Work

A.2.1 Inductive Reasoning

Reasoning can be mainly divided into two modes:
deductive reasoning (Johnson-Laird, 1999) and in-
ductive reasoning (Hayes et al., 2010). Deductive
reasoning, such as well-defined tasks like mathe-
matical and code reasoning (Wang et al., 2024b; Lu
et al., 2024), utilizes general principles and axioms
to achieve specific goals, pursuing logical certainty.
While inductive reasoning is quite the opposite.

Inductive reasoning, involving drawing general
conclusions from specific patterns, is the most uni-
versal and essential method in knowledge discovery
(Han et al., 2024): (1) Deriving general conclusions
from specific cases, allowing it to cover and gener-
alize to a wider range of applications, which aligns
with the human learning process. (2) Adaptive ad-
justments augment its reasoning ability in uncertain
and complex scenarios, where inductive outcomes
may not always be unique.

Despite its significance, existing works of LLMs
reasoning are limited to deductive reasoning (Ahn
et al., 2024; Chen et al., 2024; Liu et al., 2023;
Jiang et al., 2024a). This is because obtaining high-
quality process supervision data is quite challeng-
ing for inductive reasoning (Yang et al., 2024c). So
this paper aims to overcome such limitation.

A.2.2 Code Reasoning

Code serves as a crucial link between humans and
machines. It is ultimately converted into specific
programs that can replace human labor in fulfill-
ing diverse tasks. These programs are marked by
several notable traits, including precision, logical
structure, modular design, and excitability (Wan
et al., 2023; Sun et al., 2025).

In the era of Al, code generation mainly consists
of three stages: (1) the code embedding (Girdhar
et al., 2023), (2) code pre-trained models (Wang
et al., 2023), and (3) code generation in LLMs.
These three stages have corresponding relation-
ships with the development of natural language
processing.

The most prominent feature of code generation
is learning with execution feedback (Yang et al.,
2023). Code has an inherent property of being
compliant and executable. This enables compilers
or interpreters to automatically produce accurate
feedback. This process can be called the code unit
tests (Le et al., 2022).

In the era of LLMs, there are three main meth-
ods for enhanced code generation: (1) Decoding-
enhanced, that is, using methods such as self-
planning (Jiang et al., 2024b) and self-filling
(Martinez-Magallanes et al., 2023), and guiding
the generation of code in combination with the
Program of Thought (PoT) (Bi et al., 2024) tech-
nology. (2) Feedback-drive, which is similar to tree
search (Matute et al., 2024; Dainese et al., 2024)
and uses unit tests to provide supervision signals.
(3) Natural-language (NL) guidance (Wang et al.,
2024a), that is, using natural language to guide the
generation of code.

In this paper, we explore injecting case-based
code supervision signals to improve inductive rea-
soning data quality.

A.3 The Sequence Inductive Reasoning
Synthetic Data Pipeline

In this section, we will provide more detailed in-
formation and more examples to clearly explain
the sequence synthetic data pipeline. For the

working agent, considering that we need to make
frequent calls, and for cost-saving purposes, we
chose deepseek-v3? (DeepSeek-Al et al., 2024),
while for the guiding agent, we select the currently
most powerful reasoning model, o1-preview?, so
that the self-correction process will be more ac-
curate. We will demonstrate how these strong
instructions-following agents work under the guid-

ance of prompts with detailed instructions.

A.3.1 Sequence Data Filtering

We scrape a large number of sequences and their
related information from the OEIS website. Each
page on the website corresponds to a sequence and
all its information, including the source, formula,
general term description, and so on. We give an
example of one OEIS webpage in Figure 5.

We need to filter the information for each can-
didate sequence to ensure the accuracy of the al-
gorithmic problem generation process. We first
manually wrote rules to filter out sequences with
insufficient information, including: (1) those with
too few terms, which will result in any powerful
agent being unable to thoroughly understand the
mathematical logic of the sequence. (2) those that
evolve from other sequences, which will result in
us being unable to crawl enough information about
the current sequence from the existing website. (3)
those without "mathematical" or "programming"
fields, this is for the working agent to initially filter
information, making it easier to generate algorithm
problems. Then we prompt the working agent to
self-planning the steps for generating an algorith-
mic problem and self-reflecting on whether each
step contains enough information. This prompt are
shown in Figure 6. The above operations result in a
batch of sequences with high information density.

A.3.2 Sequence Algorithmic Problem
Generation and Validation

We next have the working agent generate an algo-
rithmic problem about the general terms for each se-
quence, along with two example cases. The prompt
for problem generation is in Figure 7. Example
cases provide the standard input and output cases
for this algorithmic problem to help the problem
solvers understand it better. We also give a gener-
ated example in Figure 8.

To further verify the correctness of the algorith-
mic problems, we utilize another powerful LLM

“https://www.deepseek.com/
3https://openai.com/o1/

as a guiding agent. We input the problem descrip-
tion and two example cases’ inputs into it and let
it directly output the results (prompt in Figure 9).
By comparing these outputs with the ground truth
outputs generated by the working agent, we can
determine whether the current problem is correct.
Seed sequence data is gained via this example case
validation. Take the algorithmic problem in Fig-
ure 8 as an example, if the guiding agent outputs
7 for the first example case, it matches the ground
truth. If both the answers match the ground truth
in example cases, we can say that the current gen-
erated problem is correct.

A.3.3 Case-based Supervision Signal Injection

After obtaining the seed data, we let the working
agent directly generate the code solution for the
algorithmic problem with the prompt in Figure 10.

Since the problem description involves the gen-
eral term of a sequence, the code solution repre-
sents the computational process for the general
term of the sequence. Unlike the example cases,
we also set 5 to 7 test cases for each sequence to
ensure the correctness of the code solution, as illus-
trated in Figure 7.

Imitating previous unit tests (Hui et al., 2024),
we use test cases to test the correctness of each code
solution in an isolated sandbox environment. A
sandbox environment for executing code (Li et al.,
2014; Cohn et al., 2024) is a controlled and isolated
setting where code can be run without affecting the
host system or other applications. In this environ-
ment, the code is executed within a restricted space,
preventing it from accessing sensitive resources,
files, or system-level operations outside the sand-
box. Sandboxes are commonly used for testing,
experimentation, and security purposes, as they al-
low developers to execute potentially untrusted or
experimental code safely. The goal is to mitigate
risks, such as malware or unintentional system dam-
age, by containing the code’s actions and ensuring
it can not interfere with critical parts of the system.
Our code sets up a sandbox environment to safely
execute user-provided Python code. It isolates the
code by removing access to potentially dangerous
built-in functions like open, exec, and eval, and
replaces the print function with a safe version. We
also redirect input and output to custom streams to
capture them. The code is executed in a controlled
environment with only a limited set of built-in func-
tions available. If errors occur, they are caught and
formatted with details, including the line number.

The OEIS is supported by the many generous donors to the OEIS Foundation.

013627 THE ON-LINE ENCYCLOPEDIA
2'395%8 OF INTEGER SEQUENCES®

10221121

founded in 1964 by N.]. A. Sloane

][Search] Hints

(Greetings from The On-Line Encyclopedia of Integer Sequences!)

A054924 Triangle read by rows: T(n,k) = number of nonisomorphic unlabeled connected graphs with n nodes and k edges (n20

» 1L, 8¢ k< nlel)/2).

ool Ly 05705 0 25 2,0 Y 010 10510, 8, 55057 My 25 T 500,105 10590, 05 065 A3, 19 22,205 14y 19 54 2,
0, 0, 0, 11, 33, 67, 107, 132, 138, 126, 95, 64; 40, 21, 10, 5; 2, 1, 1; 0, 0;: 0, 0, O, O; 0, 23, 89, 236,

, 1454, 1579, 1515, 1290, 970, 658, 400, 220, 114

s; listen; history; text; internal format)

REFERENCES R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ.

Newcastle, Australia, 1976.

R. W. Robinson, Rows 1 to 20 of triangle, flattened (corrected by Sean A. Irvine, Apr 29 2022)

G. A. Baker et al., High-temperature expansions for the spin-1/2 Heisenberg_model, Phys. Rev., 164 (1967),
800-817.

Sean A. Irvine, Java code (github)

Gordon Royle, Small graphs

M. L. Stein and P. R. Stein, Enumeration of Linear Graphs and Connected Linear Graphs up to p = 18 Points.

Report LA-3775, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Oct 1967

LINKS

EXAMPLE

: 2

,0,3

,0,0,6,13,19,22,20,14,9,5,2,1,1;

the last batch giving the numbers of connected graphs with 6 nodes and from 0 to 15 edges.

A076263 gives a Mathematica program which produces the nonzero entries in each row.

Needs["Combinatorica "]; Table[Print[row = Join[Array[0&, n-1], Table[Count[Combinatorica ListGraphs[n,
k], g_ /; Combinatorica ConnectedQ[gl]l, {k, n-1, n*(n-1)/2}111; row, {n, 1, 8}]1 // Flatten (* Jean-
Francois Alcover, Jan 15 2015 *)

Cf. A008406, A054925.

Other versions of this triangle: A046751, A076263, A054923, A046742.

Row sums give A001349, column sums give A002905. A046751 is essentially the same triangle. A054923 and
A046742 give same triangle but read by columns.

Main diagonal is A000055. Next diagonal is A001429. Largest entry in each row gives A001437.

Sequence in context: A326787 A246271 A049334 * A370167 A046751 A124478

Adjacent sequences: A054921 A054922 A054923 * A054925 A054926 A054927

KEYWORD nonn,easy,nice,tabf

AUTHOR N. J. A. Sloane

STATUS approved

MATHEMATICA

CROSSREFS

Figure 5: An example of one OEIS webpage. This webpage includes the sequence, sequence offsets, sequence
references, sequence links to other supplementary information, examples in the explanation process, mathematical
explanations, the relationship between sequences, and so on.

Finally, we restore the system’s original state af-
ter execution. This approach ensures safe, isolated
execution of potentially risky code.

If a code solution fails on a test case, we ask the
guiding agent to provide the reason for the failure
(Figure 11). We then give that reason along with the
test case back to the working agent to correct the
code solution. The prompt for the working agent
to regenerate and correct the code is in Figure 12.
Ultimately, through continuous self-correcting, we
achieve a code solution that passes all the test cases.

A4 The CodeSeq Dataset

Based on the above process, we record the code
of the current version each time a modification
is made and generate synthetic data for each se-
quence, then form a training dataset CodeSeq.
Our training data is primarily used for model
training in the post-trained stage (especially SFT),
so our dataset is organized in the SFT format. A
standard SFT input format in CodeSeq is shown
in Figure 13, and a standard SFT output format

10

in CodeSeq is shown in Figure 14. As with other
powerful reasoning models, we use the Chain-of-
Thought (CoT) technique (Yang et al., 2024b) to
guide the model’s deep reasoning process. In the
output format, we store the CoT field and the final
answer field separately.

A.5 Details for Training and Evaluation

A.5.1 LLM Backbones

We conduct SFT on two widely used LLMs:
LLaMA3-8B-Instruct and Qwen2.5-7B-Instruct.

LLaMA3-8B-Instruct (Grattafiori et al., 2024)
LLaMA3-8B is an advanced LLM developed by
Meta, featuring 8 billion parameters. It is part of
the Llama 3 family. This model is built on an op-
timized Transformer architecture and trained on
a diverse dataset of over 15 trillion tokens. The
training dataset includes a significant amount of
code and covers over 30 languages, with more than
5% of the data being non-English. LLaMA3-8B is
particularly designed to excel in instruction-based

I will give you a sequence and all the relevant information about it.

I would like to turn this sequence into an algorithmic problem about its general
term formula.

The problem must consist of the problem statement, the format requirements for the
input and output, and two examples for input and output.

Now, please first plan the steps required to generate an algorithm problem, and then
evaluate whether the information | provided can meet the conditions for generating
an algorithm problem by following those steps.

Please output your response in JSON dictionary format: {“step”: xxx, “step_judge”:
XxX, “is_able”: xxx}.

where “step” represents the steps you planned, “step_judge” represents the thought
process for each step's evaluation, and “is_able” indicates whether it is possible to
generate an algorithm problem based on the provided information (True or False).

<bos> (the sequence) <eos>
[slot] (the relevant information) [slot]

Figure 6: The prompt for the working agent to conduct self-planning on the problem generation and self-reflecting
on whether each step contains enough information.

tasks, making it highly effective for scenarios re- cal reasoning, and code generation.

quiring precise and context-aware responses. Due to the timeliness of Tulu3, we ensure that
it is not used for any backbone model training.
During the training process, we removed samples
longer than 5120 tokens and excluded all samples
related to mathematics and code (since we focus on
code and comprehensive reasoning tasks). Finally,
we retain over 800k training samples of Tulu3.

To improve the models’ reasoning ability while
maintaining its other capabilities, particularly
instruction-following ability, we calculate the av-
erage number of tokens in the Tulu3 and CodeSeq
datasets. We assign a weight ratio of 5:1 to these
two datasets for mixed training. During training,
we wrap all inputs and outputs with chat templates
to prevent the loss of instruction-following capabil-

A.5.2 Mix Training Details ities.
To maintain the models’ instruction-following abil- ~ A.5.3 Training Parameters

ity, we mix CodeSeq with the latest post-training we conduct SFT on two widely used LLMs:

dataset Tulu3 (Lambert et al., 2025) for SFT. LLaMA3-8B and Qwen2.5-7B based on Intern-
Trainer* framework with 8 NVIDIA-L20Y. The
training parameters are shown in Table 4.

Qwen2.5-7B-Instruct (Qwen et al., 2025)
Qwen2.5-7B is a powerful LLM developed
by Alibaba’s ModelScope team, featuring 7.6
billion parameters. It is designed to excel in
various natural language processing tasks, with
notable strengths in long-context understanding,
multilingual support, and specialized capabilities
for coding and mathematical tasks. This model
supports up to 128K tokens for context under-
standing and can generate up to 8K tokens of text,
making it highly effective for long-text generation
and structured data processing. What’s more,
Qwen2.5-7B is trained on a massive 18T dataset.

Tulu3 is a comprehensive dataset and training
framework developed by the Allen Institute to ad-
vance the post-training of LLMs. The Tulu3 dataset A 54 Benchmarks
is designed to enhance language models’ perfor-
mance through SFT and reinforcement learning. It
includes a mixture of data from various sources,
covering a wide range of natural language process-
ing tasks such as instruction following, mathemati- *https://github.com/interntrainer

We test the tuned models on two code bench-
marks: Humaneval (Chen et al., 2021) and MBPP
(Austin et al., 2021), along with three comprehen-

11

I will give you a sequence and all the relevant information about it.

I would like to turn this sequence into an algorithmic problem about its general term formula.
The problem must consist of the problem statement, the format requirements for the input
and output, two example cases of input, output and their explanations (make it easier for
problem solvers to understand), and not more than five test cases of input, output and their
explanations (facilitate backend sandbox testing).

Please output your response in JSON dictionary format:

{

“description”: XXX,

“input_format”: xxx,

“output_format”: xxx,

“example cases™: [{“inputl”:, “outputl”:, “explanationl”:}, {“input2”:, “output2”:,
“explanation2”:}],

“test cases™: [{“inputl”:, “outputl”: ,“explanationl”: },...]

¥

#tsequencet#: <bos> (the sequence) <eos>
##relevant information##: [slot] (the relevant information) [slot]

Figure 7: The prompt for algorithmic problem generation.

sive reasoning benchmarks: MMLU (Hendrycks to 2023. For convenience in evaluation, we select
et al., 2021), BBH (Suzgun et al., 2022), and only objective questions for testing.

GaoKaoBench (Zhang et al., 2024).
A.5.5 Compared Models

We chose GPT4o as the target baseline because it
undergoes the most systematic evaluations across
various benchmarks. Since the parameters in our
models are much fewer than that of GPT4o, it is
difficult for our model to outperform it in all as-

MBPP The MBPP (Mostly Basic Python Prob- ~ Pects. Nevertheless, we can still present the cor-
lems) benchmark consists of around 1,000 crowd- ~ responding results. This will facilitate everyone’s
sourced Python programming problems, each with understanding of the gap and motivate us to strive

a task description, code solution, and three auto- for catching up.

mated test cases. GPT40 GPT40’ is an advanced AI model that

MMLU The MMLU (Massive Multitask Lan- provides more accurate and efficient language pro-
guage Understanding) benchmark is a comprehen- ~ cessing capabilities by OpenAl It builds upon the
sive evaluation tool designed to assess the knowl- strengths of previous models while incorporating
edge and reasoning capabilities of LLMs across a ~ hew optimizations to enhance performance. With

wide range of academic and real-world subjects. its ability to understand and generate human-like
text, GPT4o0 aims to assist users in various tasks

such as writing, problem-solving, and information
retrieval.

Humaneval consists of 164 hand-crafted pro-
gramming challenges that are comparable to simple
software interview questions, each with a function
signature, natural language description, and unit
tests to validate the correctness of generated code.

BBH The Big Bench Hard (BBH) benchmark is a
collection of challenging tasks designed to evaluate
the reasoning and logical abilities of LLMs.

) A.5.6 OpenCompass
GaoKaoBench The GAOKAO-Bench is an eval-

uation framework that uses Chinese college en-
trance examination (Gaokao) questions as its
dataset to assess the language understanding and
logical reasoning capabilities of LLMs. Itincludes sy //0penai.com/index/hello-gpt-4o/

a comprehensive collection of questions from 2010 ®https://github.com/open-compass/opencompass

We employ OpenCompass® (Contributors, 2023),
which is an LLM evaluation platform, supporting
a wide range of models, to evaluate the results.

12

description: In the Kingdom of Numeria, the wise mathematician Elara has devised a unique
festival where citizens create beautiful mosaic patterns using tiles of various sizes. However,
to honor an ancient tradition, no tile in a mosaic can have a size that is a multiple of 3. The
size of a tile is represented by a positive integer. Given a total area "n’, Elara challenges the
citizens to determine how many distinct ways they can partition the area into tiles following
the tradition. Each partition must consist of positive integers where none of the integers are
multiples of 3, and the order of tiles does not matter (i.e., partitions are considered the same
regardless of the order of tiles). Help the citizens of Numeria by writing a program that
calculates the number of valid partitions for a given area "n".Note: Two partitions are
different if they have a different set of tile sizes, regardless of the order.

input_format: The input consists of a single integer 'n" (1 <n < 5000) representing the total
area to be partitioned.

output_format: Output a single integer representing the number of distinct valid partitions
of 'n” where no part is a multiple of 3.

example cases: [{“inputl”: 6, “outputl”: 7, “explanationl”: For n=6, the valid partitions
are:\\n[6], [5,1], [4,2], [4,1,1], [2,2,2], [2,2,1,1], [1,1,1,1,1,1]\\nThere are 7 valid
partitions.}, ...]

test cases: ...

Figure 8: A generated example for one sequence algorithmic problem.

It features a wide range of capabilities, including

. . . total-steps 1000
language understanding, reasoning, coding, and epochs |
long-text generation, and provides a fair and repro- bzs 16
ducible benchmark for model evaluation. . .

. . gradient-accumulation 16
We apply the Hugging Face‘: framework. to infer micro-bsz)
the models. For code generation, the settings are:
seq-len 5120

{max-out-len: 1024, max-seq-len: 2048, batch-

max-length-per-sample 5120
size:4, min-new-tokens: 50, num-return-sequences: min-length 50
1, top-p: 0.9, num-beams: 10). For other genera- num-worker 4
tion, the settings are: {max-out-len: 1024, batch- loss-label-smooth 0
size:8, min-new-tokens: 10} Ir le-5
For Humaneval, MBPP, and comprehensive rea- warmup-ratio 01
soning benchmarks, we use pass@1, pass score, weight-decay 0.01
and selection accuracy as metrics separately. We
ensure that all baselines are tested with the same adam-betal 0.9
settings for a fair comparison. adam-beta2 0.95
adam-eps le-8
fp16-initial-scale 2*%*14
fp16-min-scale 1
fp16-growth-interval 1000
fp16-growth-factor 2
fp16-backoff-factor 0.5
fpl6-max-scale 2%%24
zerol-size 8
tensor-size 1
pipeline-size 1
weight-size 1

13

Table 4: The training parameters.

I will now give you an algorithmic problem along with two input
examples (numbers). Please directly provide the corresponding
answers (numbers) for these two inputs.

Please output your response in JSON dictionary format:
{“reason1”: xxx, "answerl": xxx, “reason2”: xxx, "answer2": Xxxx}
where “reasonl” and “reason2” represent your thought process for
the two input examples, and "answerl" and "answer2" are your
answers (please provide the numbers directly, with no extra output).

problem description##: [slot] (problem description) [slot]
inputl##:[slot] (inputl) [slot]
input2##:[slot] (input2) [slot]

Figure 9: The prompt for the guiding agent directly outputs the results so that we can determine whether the current
problem is correct.

I will now give you an algorithmic problem.

Please give me your code solution with Python.

Please respond in JSON dictionary format: {“thought”: xxx,
“code”: xxx},

where the “thought” section represents your reasoning
process for the problem, and the “code” section should
directly give a python code.

##problem description## : [slot] (problem description) [slot]
##input format## : [slot] (input format) [slot]

##output format## : [slot] (output format) [slot]
##examplel## : [slot] (examplel) [slot]

##example2## : [slot] (example2) [slot]

Figure 10: The prompt for the first time code solution generation.

I will now give you an algorithmic problem, its python code and one case.
Please tell me why the case works and why the code fails on the case.

Please output your response in JSON dictionary format: {“work_reason’: xxx,
“failed_reason™: xxx}

where “work_reason” and “failed_reason” represent why the case works and
why the code fails on the case.

##problem description## : [slot] (problem description) [slot]
##input format## : [slot] (input format) [slot]

##output format## : [slot] (output format) [slot]
#itexamplel## : [slot] (examplel) [slot]

##texample2## : [slot] (example2) [slot]

##python code##: [slot] (code) [slot]

##case inputl## : [slot] (case inputl) [slot]

##case output2## : [slot] (case outputl) [slot]

Figure 11: This prompt is inputted into the guiding agent to generate the reason why such case fails on the current
code solution.

14

I will now give you an algorithmic problem, the code solution for this problem and a test case
that the code fails .

Please give me your updated code solution with Python.

Please respond in JSON dictionary format: {“thought”: xxx, “code”: xxx},

where the “thought” section represents your reasoning process for the problem, and the “code
section should directly give a python code.

2

##problem description## : [slot] (problem description) [slot]
##input format## : [slot] (input format) [slot]

##output format## : [slot] (output format) [slot]
##texamplel## : [slot] (examplel) [slot]

##example2## : [slot] (example2) [slot]

##origin code##: [slot] (origin code) [slot]
#case input##: [slot] (case input) [slot]
#case output##: [slot] (case input) [slot]
#work reason##: [slot] (work reason) [slot]
#failed reason##: [slot] (failed reason) [slot]

Figure 12: The prompt for the working agent to regenerate and correct the code.

input: You are now an algorithm competition participant. Based on the following algorithm problem, you
need to provide the problem-solving approach and the Python code.

Here is the problem statement: [slot] (problem description) [slot]

input format for this problem is: [slot] (input format) [slot]

output format for this problem is: [slot] (output format) [slot]

I will give you two examples to help you better understand the problem and come up with the solution approach
and Python code.

example 1

inputl: [slot] (inputl) [slot]

outputl: [slot] (outputl) [slot]

The explanation for this example is: [slot] (explanationl) [slot]

example 2

input2: [slot] (input2) [slot]

output2: [slot] (output2) [slot]

The explanation for this example is: [slot] (explanation2) [slot]

When you output your solution approach, you can write an initial solution code based on your first thoughts.
Then, please create examples and test them on your own. Afterward, reflect and make corrections to your code
based on the examples.

Now, please provide the Python solution approach and code for this problem in {\"cot\":xxx,\"code\":xxx}
dictionary format, where \"cot\" represents your solution approach, and \"code\" represents the final answer code.

Figure 13: The standard input of one sft training data in CodeSeq.

15

output:

{*cot™:

“The Python code for this algorithm problem, based on my initial thoughts, is:
[slot](codel)[slot]

The solution code above did not pass the following test case:
[slot](inputl)[slot]

[slot](outputl)[slot]

The reason this test case is valid is:

[slot](valid rasonl)[slot]

The reason the code fails for this case is:

[slot](failed reasonl)[slot]

Based on this test case, the revised solution code is:
[slot](code2)[slot]

This code passes all the test cases, so it is the correct solution.”,
“code”:
[slot](answer code)[slot] }

Figure 14: The standard output of one sft training data in CodeSeq.

16

	Introduction
	Sequence Synthetic Data Pipeline
	Sequence Data Filtering
	Sequence Algorithmic Problem Generation and Validation
	Case-based Supervision Signal Injection
	Synthetic Data Statistics

	Experiments
	Training, Benchmarks, and Evaluation
	Main Results
	Ablation Study
	CodeSeq for Next Number Prediction

	Conclusion
	Appendix
	Next Number Prediction
	Related Work
	Inductive Reasoning
	Code Reasoning

	The Sequence Inductive Reasoning Synthetic Data Pipeline
	Sequence Data Filtering
	Sequence Algorithmic Problem Generation and Validation
	Case-based Supervision Signal Injection

	The CodeSeq Dataset
	Details for Training and Evaluation
	LLM Backbones
	Mix Training Details
	Training Parameters
	Benchmarks
	Compared Models
	OpenCompass

