
Code-Driven Inductive Synthesis: Enhancing Reasoning Abilities of Large
Language Models with Sequences

Anonymous ACL submission

Abstract001

Large language models make remarkable002
progress in reasoning capabilities. Existing003
works focus mainly on deductive reasoning004
tasks (e.g., code and math), while another type005
of reasoning mode that better aligns with hu-006
man learning, inductive reasoning, is not well007
studied. We attribute the reason to the fact008
that obtaining high-quality process supervision009
data is challenging for inductive reasoning. To-010
wards this end, we novelly employ number se-011
quences as the source of inductive reasoning012
data. We package sequences into algorithmic013
problems to find the general term of each se-014
quence through a code solution. In this way,015
we can verify whether the code solution holds016
for any term in the current sequence, and in-017
ject case-based supervision signals by using018
code unit tests. We build a sequence synthetic019
data pipeline and form a training dataset Code-020
Seq. Experimental results show that the models021
tuned with CodeSeq improve on both code and022
comprehensive reasoning benchmarks.023

1 Introduction024

Recent advances in AI, including openai-o1 (Zhong025

et al., 2024) and deepseek-r1 (DeepSeek-AI, 2025)026

make remarkable progress in reasoning capabilities027

of large language models (LLMs) (Xi et al., 2023;028

Xu et al., 2024; Jin et al., 2024; Franceschelli and029

Musolesi, 2023), such as mathematical reasoning030

(Ahn et al., 2024; Chen et al., 2024) and code rea-031

soning (Liu et al., 2023; Jiang et al., 2024a).032

Existing works focus mainly on deductive rea-033

soning tasks (e.g., code and math) (Wang et al.,034

2024b; Lu et al., 2024), utilizing general princi-035

ples and axioms to logically achieve specific con-036

clusions. In contrast, another mode of reasoning,037

inductive reasoning (Han et al., 2024), involves038

drawing general conclusions from specific patterns.039

This paradigm is key to knowledge generalization040

and better aligns with human learning. However,041

limited research are conducted in this area.042

[Next Number Prediction] Analyze the given terms of the sequence

of numbers below and predict the next number:
<bos> 1, 2, 3, 6, 11, 23, 47, 106, 235, 551 <eos>

0.19

0.13
0.14

o1-preview

claude-3.5-sonnet

deepseek-r1
1302

669

1510

Figure 1: We select 200 sequences and prompt three
powerful models for next number prediction (more de-
tails in Appendix A.1). The results demonstrate that
existing LLMs perform poorly in inductive reasoning,
indicating significant research potential in this area.

We attribute the reason to the fact that obtain- 043

ing high-quality process supervision data (Havrilla 044

et al., 2024) is quite challenging. In math-type prob- 045

lems, each step of the derivation process can be an- 046

notated and verified (Yang et al., 2024a). However, 047

the intermediate steps in inductive reasoning are 048

relatively open, making it difficult to determine cor- 049

rectness. This leads to challenges in data construc- 050

tion and, consequently, hardness in model learning. 051

In this paper, we novelly employ number se- 052

quences as the source of inductive reasoning 053

data. Sequence problems require generalizing from 054

previous observations to predict future elements, 055

which can reflect the inductive ability (see Fig- 056

ure 1). We package sequences into algorithmic 057

problems to find the general term of each sequence 058

through a code solution. In this way, we can verify 059

whether the code solution holds for any term in the 060

current sequence, and inject case-based supervision 061

signals via code unit tests (Hui et al., 2024). Sep- 062

cifically, we build a sequence synthetic data (Bauer 063

et al., 2024) pipeline guided by code unit tests, then 064

forming a training dataset CodeSeq. 065

1

The pipeline consists of three steps. (1) Data066

filtering. We scrape many sequences and their re-067

lated information from websites. We use manually068

written rules and a language model working agent069

to filtrate the sequences that have enough informa-070

tion to be packaged into algorithmic problems. (2)071

Problem generation. We leverage the working072

agent to generate an algorithmic problem about073

the general term for each selected sequence, along074

with two example cases. Another guiding agent075

directly generates the output based on the problem076

description and the input of example cases to verify077

whether the algorithmic problem itself is correct.078

(3) Supervision injection. The working agent gen-079

erates code solutions for the correct problems. We080

verify whether the code solution holds for any term081

in the sequence through code unit tests. The guid-082

ing agent provides modification suggestions and083

asks the working agent to regenerate the answers084

for the failed solutions. Through this pipeline, we085

inject case-based supervision signals while search-086

ing for general term code solutions for sequences,087

forming the complete synthetic dataset CodeSeq.088

To verify the effectiveness, we apply it to per-089

form supervised fine-tuning (SFT) on two LLMs.090

Experimental results show that the models tuned091

with CodeSeq improve on two code benchmarks092

and three comprehensive reasoning benchmarks.093

Our contributions can be listed as follows:094

• To our knowledge, we are the first to utilize095

sequences as the inductive reasoning data and096

study their impact on LLMs.097

• We package the sequences into algorithmic098

problems, which can be injected with case-099

based supervision signals to improve data100

quality for the inductive reasoning task.101

• Our synthetic data CodeSeq is proven effec-102

tive for various reasoning tasks, demonstrat-103

ing the potential of inductive reasoning.104

2 Sequence Synthetic Data Pipeline105

In this paper, we employ sequences as the source106

of inductive reasoning data. We package sequences107

into algorithmic problems to find the general term108

of each sequence through a code solution. In this109

way, we can verify whether the code solution holds110

for any term in the current sequence, and inject111

case-based supervision signals by using code unit112

tests. The whole pipeline consists of three steps in113

Figure 2. More details can refer to Appendix A.3.114

2.1 Sequence Data Filtering 115

We scrape a large number of sequences and their 116

related information from websites1. Each page on 117

the website corresponds to a sequence and all its 118

information, including the source, formula, general 119

term description, and so on. 120

We will package the sequences into algorithmic 121

problems by a powerful language model working 122

agent. To ensure the accuracy of this process, we 123

need to filter the information for each candidate 124

sequence. We first manually wrote rules to filter 125

out sequences with insufficient information, such 126

as those with too few terms, or those that evolve 127

from other sequences (requiring additional web- 128

page links for reference). Then we prompt the 129

working agent to self-planning (Jiang et al., 2024b) 130

the steps for generating an algorithmic problem 131

and self-reflecting (Wang et al., 2024c) on whether 132

each step contains enough information. The above 133

operations result in a batch of sequences with high 134

information density. 135

2.2 Sequence Algorithmic Problem 136

Generation and Validation 137

We next have the working agent generate an algo- 138

rithmic problem about the general terms for each 139

sequence, along with two example cases. Example 140

cases provide the standard input and output cases 141

for this algorithmic problem to help the problem 142

solvers understand it better. 143

To further verify the correctness of the algorith- 144

mic problems, we utilize another powerful LLM 145

as a guiding agent. We input the problem descrip- 146

tion and two example cases’ inputs into it and let 147

it directly output the results. By comparing these 148

results with the ground truth outputs generated by 149

the working agent, we can determine whether the 150

current problem is correct. Seed sequence data is 151

gained via this example case validation. 152

2.3 Case-based Supervision Signal Injection 153

After obtaining the seed data, we let the working 154

agent directly generate the code solution for the 155

algorithmic problem. Since the problem descrip- 156

tion involves the general term of a sequence, the 157

code solution represents the computational process 158

for the general term of the sequence. Unlike the 159

example cases, we also set 5 to 7 test cases for 160

each sequence to ensure the correctness of the code 161

solution. 162

1https://oeis.org/

2

Sequence Data Scraping

Rules Working Agent

High-Density Sequence Data

Stage 1: Sequence Data Filtering

Stage 2: Sequence Algorithm Problems Generation and Validation

Working Agent

Problem Description

Input #1: 1

Output #1: 5

Input #2: 2

Output #2: 9

Example Cases

Example Cases Validation

Seed Sequence Data

Guiding Agent

Working Agent Code Sandbox Testing Synthetic Data

Guiding Agent

Stage 3: Case-based Supervision Signal Injection via Code Unit Tests in Sandbox

√

×
reasons for failed cases

Figure 2: The sequence synthetic data pipeline consists of three steps, and then forming our CodeSeq.

Imitating previous unit tests (Hui et al., 2024),163

we use test cases to test the correctness of each code164

solution in an isolated sandbox environment. If a165

code solution fails on a test case, we ask the guiding166

agent to provide the reason for the failure. We then167

give that reason along with the test case back to the168

working agent to correct the code solution. Ulti-169

mately, through continuous self-correcting (Huang170

et al., 2024), we achieve a code solution that passes171

all the test cases.172

2.4 Synthetic Data Statistics173

Based on the above process, we record the code174

of the current version each time a modification175

is made and generate synthetic data for each se-176

quence, then forming a training dataset CodeSeq.177

The data organization details of CodeSeq are pro-178

vided in the Appendix A.4.179

To ensure the diversity of the training data, we180

perform resampling (Hirota et al., 2024) on the181

problem descriptions and the initially generated182

code solutions. This operation is equivalent to183

resetting the starting point of the reasoning data,184

thereby obtaining a richer training corpus. We use185

LLaMA3-8B model as the tokenizer and the final186

data statistics of CodeSeq can be found in Table 1.187

From the table, we can see that our CodeSeq has188

a rich set of tokens available for training with an189

average of about 3 correction rounds. This proves190

that we effectively incorporate supervision signals191

into the sequence inductive reasoning data.192

Sample Form SFT form
Sample Numbers 9242

All Tokens 15.3M
Output Tokens 9M

Output Max Tokens 4273
First Hit Rate 0.52

Avg Correction Rounds 2.93
Max Correction Rounds 5

Table 1: The data statistical information of CodeSeq.
‘First Hit Rate’ indicates the probability that the first-
generated code can pass all test cases.

3 Experiments 193

To prove the effectiveness of our sequence induc- 194

tive reasoning synthetic data CodeSeq, we employ 195

it to perform SFT on existing LLMs. We test its 196

performance on code and other comprehensive rea- 197

soning benchmarks. We also explore whether Code- 198

Seq could enhance the models’ inductive reasoning 199

capabilities. 200

3.1 Training, Benchmarks, and Evaluation 201

We conduct SFT on two widely used LLMs: 202

LLaMA3-8B (Grattafiori et al., 2024) and 203

Qwen2.5-7B (Qwen et al., 2025). To maintain the 204

models’ instruction-following ability (Zhu et al., 205

2024), we mix CodeSeq with the latest post- 206

training (Williams and Aletras, 2024) corpus Tulu3 207

(Lambert et al., 2025) for SFT. We then test the 208

tuned models on two code benchmarks: Humaneval 209

3

Heval MBPP MMLU BBH GK

GPT4o 92.70 87.60 88.70 83.10 72.20

LLaMA3-8B 56.70 63.81 51.80 63.03 29.64
+ CodeSeq 57.32 65.79 60.62 64.40 29.71

∆ +0.62 +1.98 +8.82 +1.37 +0.07

Qwen2.5-7B 71.34 71.59 68.23 66.05 63.29
+ CodeSeq 78.05 73.93 70.74 69.70 63.77

∆ +6.71 +2.34 +2.51 +3.65 +0.48

Table 2: Both models have improvements on five bench-
marks, finetuned by CodeSeq. ‘Heval’ and ‘GK’ repre-
sent Humaneval and GaoKaoBench respectively.

(Chen et al., 2021) and MBPP (Austin et al., 2021),210

along with three comprehensive reasoning bench-211

marks: MMLU (Hendrycks et al., 2021), BBH212

(Suzgun et al., 2022), and GaoKaoBench (Zhang213

et al., 2024). Finally, we employ OpenCompass214

(Contributors, 2023), which is an LLM evaluation215

platform, supporting a wide range of models, to216

evaluate the results. More details about training217

and evaluating can refer to Appendix A.5.218

3.2 Main Results219

Table 2 shows the main results of the two models’220

performances on five benchmarks after finetuned221

by CodeSeq. We can summarize that: (1) The222

sequence inductive reasoning synthetic data can ef-223

fectively enhance the code generation capabilities224

of the two LLMs. After being finetuned with Code-225

Seq, the models achieve an average improvement226

of 3.67 points on Humaneval and 2.16 points on227

MBPP respectively. (2) The sequence inductive228

reasoning synthetic data also demonstrates excel-229

lent transfer effects on comprehensive reasoning230

benchmarks (OOD). In particular, the LLaMA3-8B231

model improves by more than 8 points on MMLU.232

It is worth noting that although our CodeSeq data233

is in English, we still maintain the performance on234

the Chinese GaoKaoBench.235

3.3 Ablation Study236

We conduct ablation studies with LLaMA3-8B.237

From Table 3, we can conclude that: (1) If Tulu3238

is not used, the model will break down in terms of239

instruction-following ability, and the performances240

on various benchmarks will significantly decline.241

(2) Training only with Tulu3 does not improve per-242

formance, so there will be no data leakage for the243

five benchmarks. (3) The synthetic data will not244

improve compared to the original LLaMA3-8B if245

Heval MBPP MMLU BBH GK

LLaMA3-8B 56.70 63.81 51.80 63.03 29.64
+ CodeSeq 57.32 65.79 60.62 64.40 29.71

- Tulu3 49.68 56.33 54.14 60.26 23.18
- CodeSeq 54.65 61.72 51.91 62.88 28.45
- test cases 55.90 62.47 50.88 62.59 29.53

Table 3: We conduct ablation studies with LLaMA3-8B.
‘-Tulu3’, ‘-CodeSeq’ and ‘-test cases’ mean only SFT
with CodeSeq, only SFT with Tulu3 and deleting stage
3 in Figure 2, respectively.

LLaMA LLaMA+5shot Qwen Qwen+5shot

5

10

15 Claude-3.5-Sonnet

Vanilla
with CodeSeq

Figure 3: We respectively carry out next number pre-
diction using LLaMA3-8B and Qwen2.5-7B before and
after training, to test their inductive reasoning abilities.

the case-based supervision signals are not injected. 246

3.4 CodeSeq for Next Number Prediction 247

We respectively carry out next number prediction 248

using LLaMA3-8B and Qwen2.5-7B before and af- 249

ter training, to test their direct inductive reasoning 250

abilities in Figure 3. It can be concluded that in the 251

5-shot scenario, the accuracy of the models’ predic- 252

tion of the next number in a sequence will increase. 253

It is worth noting that the models trained with our 254

CodeSeq reveal significant improvements in this 255

task. Among them, after being trained with Code- 256

Seq, Qwen2.5-7B’s accuracy under the 5-shot set- 257

ting is already close to the performance of Claude- 258

3.5-Sonnet. 259

4 Conclusion 260

In this paper, we novelly employ number sequences 261

as the source of inductive reasoning data. To our 262

knowledge, we are the first to utilize sequences as 263

such kind of data to study their impact on LLMs. 264

We package the sequences into algorithmic prob- 265

lems, hence we can inject case-based supervision 266

signals via code unit tests to improve data quality. 267

Our synthetic data CodeSeq is proven effective for 268

various reasoning tasks, demonstrating the poten- 269

tial of inductive reasoning. 270

4

Limitations271

This paper takes sequences as a type of inductive272

reasoning data and explores the impact of this type273

of data on LLMs. We construct our own pipeline274

for generating synthetic sequence data and suc-275

cessfully combine it with code to insert process276

supervision signals. The finally formed CodeSeq277

training dataset is proven to have good effects on278

various reasoning tasks. However, this article still279

has two limitations: (1) Inductive reasoning tasks280

themselves are still in the initial stage of develop-281

ment. The significance of this type of task, the282

datasets, and the evaluation methods, etc., have not283

been systematically organized. Although we con-284

duct preliminary explorations, this is a relatively285

novel direction and can be regarded as one of the286

future research works. (2) Using only sequences as287

the data source for inductive reasoning is relatively288

limited. It is expected that more synthetic training289

data for inductive reasoning can be obtained in the290

future.291

Ethics Statements292

The pipeline is primarily generated by deepseek-293

v3 and o1-preview. We obtain all the API Keys294

through a paid subscription. The data source is the295

OEIS website, which is a public website. The entire296

process and outcomes are free from intellectual297

property and ethical legal disputes.298

Acknowledgments299

We will finish this part in the camera-ready version.300

References301

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui302
Zhang, and Wenpeng Yin. 2024. Large language303
models for mathematical reasoning: Progresses and304
challenges. In Proceedings of the 18th Conference of305
the European Chapter of the Association for Compu-306
tational Linguistics, EACL 2024: Student Research307
Workshop, St. Julian’s, Malta, March 21-22, 2024,308
pages 225–237. Association for Computational Lin-309
guistics.310

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten311
Bosma, Henryk Michalewski, David Dohan, Ellen312
Jiang, Carrie Cai, Michael Terry, Quoc Le, and313
Charles Sutton. 2021. Program synthesis with large314
language models. Preprint, arXiv:2108.07732.315

André Bauer, Simon Trapp, Michael Stenger, Robert316
Leppich, Samuel Kounev, Mark Leznik, Kyle Chard,317

and Ian T. Foster. 2024. Comprehensive explo- 318
ration of synthetic data generation: A survey. CoRR, 319
abs/2401.02524. 320

Zhen Bi, Ningyu Zhang, Yinuo Jiang, Shumin Deng, 321
Guozhou Zheng, and Huajun Chen. 2024. When 322
do program-of-thought works for reasoning? In 323
Thirty-Eighth AAAI Conference on Artificial Intelli- 324
gence, AAAI 2024, Thirty-Sixth Conference on Inno- 325
vative Applications of Artificial Intelligence, IAAI 326
2024, Fourteenth Symposium on Educational Ad- 327
vances in Artificial Intelligence, EAAI 2014, Febru- 328
ary 20-27, 2024, Vancouver, Canada, pages 17691– 329
17699. AAAI Press. 330

Kedi Chen, Qin Chen, Jie Zhou, Yishen He, and Liang 331
He. 2024. Diahalu: A dialogue-level hallucination 332
evaluation benchmark for large language models. 333
CoRR, abs/2403.00896. 334

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, 335
Henrique Ponde de Oliveira Pinto, Jared Kaplan, 336
Harri Edwards, Yuri Burda, Nicholas Joseph, and 337
so on. 2021. Evaluating large language models 338
trained on code. 339

Elizabeth Cohn, Frida Esther Kleiman, Shayaa Muham- 340
mad, S. Scott Jones, Nakisa Pourkey, and Louise Bier. 341
2024. Returning value to the community through the 342
All of Us research program data sandbox model. J. 343
Am. Medical Informatics Assoc., 31(12):2980–2984. 344

OpenCompass Contributors. 2023. Opencompass: 345
A universal evaluation platform for foundation 346
models. https://github.com/open-compass/ 347
opencompass. 348

Nicola Dainese, Matteo Merler, Minttu Alakuijala, and 349
Pekka Marttinen. 2024. Generating code world mod- 350
els with large language models guided by monte carlo 351
tree search. In Advances in Neural Information Pro- 352
cessing Systems 38: Annual Conference on Neural 353
Information Processing Systems 2024, NeurIPS 2024, 354
Vancouver, BC, Canada, December 10 - 15, 2024. 355

DeepSeek-AI. 2025. Deepseek-r1: Incentivizing rea- 356
soning capability in llms via reinforcement learning. 357
Preprint, arXiv:2501.12948. 358

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingx- 359
uan Wang, Bochao Wu, Chengda Lu, Chenggang 360
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, 361
and so on. 2024. Deepseek-v3 technical report. 362
Preprint, arXiv:2412.19437. 363

Giorgio Franceschelli and Mirco Musolesi. 2023. On 364
the creativity of large language models. CoRR, 365
abs/2304.00008. 366

Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Man- 367
nat Singh, Kalyan Vasudev Alwala, Armand Joulin, 368
and Ishan Misra. 2023. Imagebind one embedding 369
space to bind them all. In IEEE/CVF Conference 370
on Computer Vision and Pattern Recognition, CVPR 371
2023, Vancouver, BC, Canada, June 17-24, 2023, 372
pages 15180–15190. IEEE. 373

5

https://aclanthology.org/2024.eacl-srw.17
https://aclanthology.org/2024.eacl-srw.17
https://aclanthology.org/2024.eacl-srw.17
https://aclanthology.org/2024.eacl-srw.17
https://aclanthology.org/2024.eacl-srw.17
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://doi.org/10.48550/ARXIV.2401.02524
https://doi.org/10.48550/ARXIV.2401.02524
https://doi.org/10.48550/ARXIV.2401.02524
https://doi.org/10.1609/AAAI.V38I16.29721
https://doi.org/10.1609/AAAI.V38I16.29721
https://doi.org/10.1609/AAAI.V38I16.29721
https://doi.org/10.48550/ARXIV.2403.00896
https://doi.org/10.48550/ARXIV.2403.00896
https://doi.org/10.48550/ARXIV.2403.00896
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1093/JAMIA/OCAE174
https://doi.org/10.1093/JAMIA/OCAE174
https://doi.org/10.1093/JAMIA/OCAE174
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
http://papers.nips.cc/paper_files/paper/2024/hash/6f479ea488e0908ac8b1b37b27fd134c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/6f479ea488e0908ac8b1b37b27fd134c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/6f479ea488e0908ac8b1b37b27fd134c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/6f479ea488e0908ac8b1b37b27fd134c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/6f479ea488e0908ac8b1b37b27fd134c-Abstract-Conference.html
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2412.19437
https://doi.org/10.48550/ARXIV.2304.00008
https://doi.org/10.48550/ARXIV.2304.00008
https://doi.org/10.48550/ARXIV.2304.00008
https://doi.org/10.1109/CVPR52729.2023.01457
https://doi.org/10.1109/CVPR52729.2023.01457
https://doi.org/10.1109/CVPR52729.2023.01457

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,374
Abhinav Pandey, Abhishek Kadian, Ahmad Al-375
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,376
Alex Vaughan, and so on. 2024. The llama 3 herd of377
models. Preprint, arXiv:2407.21783.378

Simon Jerome Han, Keith J. Ransom, Andrew Perfors,379
and Charles Kemp. 2024. Inductive reasoning in380
humans and large language models. Cogn. Syst. Res.,381
83:101155.382

Alex Havrilla, Yuqing Du, Sharath Chandra Raparthy,383
Christoforos Nalmpantis, Jane Dwivedi-Yu, Maksym384
Zhuravinskyi, Eric Hambro, Sainbayar Sukhbaatar,385
and Roberta Raileanu. 2024. Teaching large lan-386
guage models to reason with reinforcement learning.387
CoRR, abs/2403.04642.388

Brett K Hayes, Evan Heit, and Haruka Swendsen. 2010.389
Inductive reasoning. Wiley interdisciplinary reviews:390
Cognitive science, 1(2):278–292.391

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,392
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.393
2021. Measuring massive multitask language under-394
standing. Preprint, arXiv:2009.03300.395

Yusuke Hirota, Jerone Theodore Alexander Andrews,396
Dora Zhao, Orestis Papakyriakopoulos, Apostolos397
Modas, Yuta Nakashima, and Alice Xiang. 2024. Re-398
sampled datasets are not enough: Mitigating soci-399
etal bias beyond single attributes. In Proceedings400
of the 2024 Conference on Empirical Methods in401
Natural Language Processing, EMNLP 2024, Miami,402
FL, USA, November 12-16, 2024, pages 8249–8267.403
Association for Computational Linguistics.404

Jie Huang, Xinyun Chen, Swaroop Mishra,405
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-406
ing Song, and Denny Zhou. 2024. Large language407
models cannot self-correct reasoning yet. In The408
Twelfth International Conference on Learning409
Representations, ICLR 2024, Vienna, Austria, May410
7-11, 2024. OpenReview.net.411

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-412
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,413
Bowen Yu, Keming Lu, Kai Dang, Yang Fan,414
Yichang Zhang, An Yang, Rui Men, Fei Huang,415
Bo Zheng, Yibo Miao, Shanghaoran Quan, Yun-416
long Feng, Xingzhang Ren, Xuancheng Ren, Jingren417
Zhou, and Junyang Lin. 2024. Qwen2.5-coder tech-418
nical report. Preprint, arXiv:2409.12186.419

Xue Jiang, Yihong Dong, Lecheng Wang, Zheng Fang,420
Qiwei Shang, Ge Li, Zhi Jin, and Wenpin Jiao.421
2024a. Self-planning code generation with large lan-422
guage models. ACM Trans. Softw. Eng. Methodol.,423
33(7):182:1–182:30.424

Xue Jiang, Yihong Dong, Lecheng Wang, Zheng Fang,425
Qiwei Shang, Ge Li, Zhi Jin, and Wenpin Jiao. 2024b.426
Self-planning code generation with large language427
models. Preprint, arXiv:2303.06689.428

Bowen Jin, Gang Liu, Chi Han, Meng Jiang, Heng 429
Ji, and Jiawei Han. 2024. Large language models 430
on graphs: A comprehensive survey. IEEE Trans. 431
Knowl. Data Eng., 36(12):8622–8642. 432

Philip N Johnson-Laird. 1999. Deductive reasoning. 433
Annual review of psychology, 50(1):109–135. 434

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, 435
Shengyi Huang, Hamish Ivison, Faeze Brahman, 436
Lester James V. Miranda, Alisa Liu, Nouha Dziri, 437
Shane Lyu, Yuling Gu, Saumya Malik, Victoria 438
Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le 439
Bras, Oyvind Tafjord, Chris Wilhelm, Luca Soldaini, 440
Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and 441
Hannaneh Hajishirzi. 2025. Tulu 3: Pushing fron- 442
tiers in open language model post-training. Preprint, 443
arXiv:2411.15124. 444

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio 445
Savarese, and Steven Chu-Hong Hoi. 2022. Coderl: 446
Mastering code generation through pretrained mod- 447
els and deep reinforcement learning. In Advances in 448
Neural Information Processing Systems 35: Annual 449
Conference on Neural Information Processing Sys- 450
tems 2022, NeurIPS 2022, New Orleans, LA, USA, 451
November 28 - December 9, 2022. 452

Yanlin Li, Jonathan M. McCune, James Newsome, 453
Adrian Perrig, Brandon Baker, and Will Drewry. 454
2014. Minibox: A two-way sandbox for x86 native 455
code. In Proceedings of the 2014 USENIX Annual 456
Technical Conference, USENIX ATC 2014, Philadel- 457
phia, PA, USA, June 19-20, 2014, pages 409–420. 458
USENIX Association. 459

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling- 460
ming Zhang. 2023. Is your code generated by chatgpt 461
really correct? rigorous evaluation of large language 462
models for code generation. In Advances in Neural 463
Information Processing Systems 36: Annual Confer- 464
ence on Neural Information Processing Systems 2023, 465
NeurIPS 2023, New Orleans, LA, USA, December 10 466
- 16, 2023. 467

Zimu Lu, Aojun Zhou, Ke Wang, Houxing Ren, 468
Weikang Shi, Junting Pan, Mingjie Zhan, and Hong- 469
sheng Li. 2024. Mathcoder2: Better math reasoning 470
from continued pretraining on model-translated math- 471
ematical code. CoRR, abs/2410.08196. 472

Mario Martínez-Magallanes, Enrique Cuan-Urquizo, 473
Saúl E Crespo-Sánchez, Ana P Valerga, Armando 474
Roman-Flores, Erick Ramírez-Cedillo, and Cecilia D 475
Treviño-Quintanilla. 2023. Hierarchical and fractal 476
structured materials: Design, additive manufacturing 477
and mechanical properties. Proceedings of the In- 478
stitution of Mechanical Engineers, Part L: Journal 479
of Materials: Design and Applications, 237(3):650– 480
666. 481

Gabriel Matute, Wode Ni, Titus Barik, Alvin Cheung, 482
and Sarah E. Chasins. 2024. Syntactic code search 483
with sequence-to-tree matching: Supporting syntactic 484
search with incomplete code fragments. Proc. ACM 485
Program. Lang., 8(PLDI):2051–2072. 486

6

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.1016/J.COGSYS.2023.101155
https://doi.org/10.1016/J.COGSYS.2023.101155
https://doi.org/10.1016/J.COGSYS.2023.101155
https://doi.org/10.48550/ARXIV.2403.04642
https://doi.org/10.48550/ARXIV.2403.04642
https://doi.org/10.48550/ARXIV.2403.04642
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcs.44?casa_token=pjL4GIO9YsIAAAAA%3ANs_t8pbB77yAa_K8LqmqP07BemRKrkslzvHGJsvIu5eMedKHwXa0PnIdFfzFZD1j1rZLc5poUClgLYuE
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://aclanthology.org/2024.emnlp-main.471
https://aclanthology.org/2024.emnlp-main.471
https://aclanthology.org/2024.emnlp-main.471
https://aclanthology.org/2024.emnlp-main.471
https://aclanthology.org/2024.emnlp-main.471
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://doi.org/10.1145/3672456
https://doi.org/10.1145/3672456
https://doi.org/10.1145/3672456
https://arxiv.org/abs/2303.06689
https://arxiv.org/abs/2303.06689
https://arxiv.org/abs/2303.06689
https://doi.org/10.1109/TKDE.2024.3469578
https://doi.org/10.1109/TKDE.2024.3469578
https://doi.org/10.1109/TKDE.2024.3469578
http://matt.colorado.edu/teaching/highcog/fall8/j99.pdf
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2411.15124
http://papers.nips.cc/paper_files/paper/2022/hash/8636419dea1aa9fbd25fc4248e702da4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8636419dea1aa9fbd25fc4248e702da4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8636419dea1aa9fbd25fc4248e702da4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8636419dea1aa9fbd25fc4248e702da4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8636419dea1aa9fbd25fc4248e702da4-Abstract-Conference.html
https://www.usenix.org/conference/atc14/technical-sessions/presentation/li_yanlin
https://www.usenix.org/conference/atc14/technical-sessions/presentation/li_yanlin
https://www.usenix.org/conference/atc14/technical-sessions/presentation/li_yanlin
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2410.08196
https://doi.org/10.48550/ARXIV.2410.08196
https://doi.org/10.48550/ARXIV.2410.08196
https://doi.org/10.48550/ARXIV.2410.08196
https://doi.org/10.48550/ARXIV.2410.08196
https://www.researchgate.net/profile/Enrique-Cuan-Urquizo/publication/362910148_Hierarchical_and_fractal_structured_materials_Design_additive_manufacturing_and_mechanical_properties/links/630736c0acd814437fd5a657/Hierarchical-and-fractal-structured-materials-Design-additive-manufacturing-and-mechanical-properties.pdf
https://www.researchgate.net/profile/Enrique-Cuan-Urquizo/publication/362910148_Hierarchical_and_fractal_structured_materials_Design_additive_manufacturing_and_mechanical_properties/links/630736c0acd814437fd5a657/Hierarchical-and-fractal-structured-materials-Design-additive-manufacturing-and-mechanical-properties.pdf
https://www.researchgate.net/profile/Enrique-Cuan-Urquizo/publication/362910148_Hierarchical_and_fractal_structured_materials_Design_additive_manufacturing_and_mechanical_properties/links/630736c0acd814437fd5a657/Hierarchical-and-fractal-structured-materials-Design-additive-manufacturing-and-mechanical-properties.pdf
https://www.researchgate.net/profile/Enrique-Cuan-Urquizo/publication/362910148_Hierarchical_and_fractal_structured_materials_Design_additive_manufacturing_and_mechanical_properties/links/630736c0acd814437fd5a657/Hierarchical-and-fractal-structured-materials-Design-additive-manufacturing-and-mechanical-properties.pdf
https://www.researchgate.net/profile/Enrique-Cuan-Urquizo/publication/362910148_Hierarchical_and_fractal_structured_materials_Design_additive_manufacturing_and_mechanical_properties/links/630736c0acd814437fd5a657/Hierarchical-and-fractal-structured-materials-Design-additive-manufacturing-and-mechanical-properties.pdf
https://doi.org/10.1145/3656460
https://doi.org/10.1145/3656460
https://doi.org/10.1145/3656460
https://doi.org/10.1145/3656460
https://doi.org/10.1145/3656460

Qwen, An Yang, Baosong Yang, Beichen Zhang,487
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan488
Li, Dayiheng Liu, Fei Huang, Haoran Wei, and489
so on. 2025. Qwen2.5 technical report. Preprint,490
arXiv:2412.15115.491

Qiushi Sun, Zhirui Chen, Fangzhi Xu, Kanzhi492
Cheng, Chang Ma, Zhangyue Yin, Jianing Wang,493
Chengcheng Han, Renyu Zhu, Shuai Yuan, Qipeng494
Guo, Xipeng Qiu, Pengcheng Yin, Xiaoli Li,495
Fei Yuan, Lingpeng Kong, Xiang Li, and Zhiy-496
ong Wu. 2025. A survey of neural code intelli-497
gence: Paradigms, advances and beyond. Preprint,498
arXiv:2403.14734.499

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-500
bastian Gehrmann, Yi Tay, Hyung Won Chung,501
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi,502
Denny Zhou, and Jason Wei. 2022. Challenging503
big-bench tasks and whether chain-of-thought can504
solve them. Preprint, arXiv:2210.09261.505

Yao Wan, Yang He, Zhangqian Bi, Jianguo Zhang,506
Hongyu Zhang, Yulei Sui, Guandong Xu, Hai Jin,507
and Philip S. Yu. 2023. Deep learning for code in-508
telligence: Survey, benchmark and toolkit. Preprint,509
arXiv:2401.00288.510

Hao Wang, Zeyu Gao, Chao Zhang, Zihan Sha,511
Mingyang Sun, Yuchen Zhou, Wenyu Zhu, Wenju512
Sun, Han Qiu, and Xi Xiao. 2024a. CLAP: learning513
transferable binary code representations with natural514
language supervision. In Proceedings of the 33rd515
ACM SIGSOFT International Symposium on Soft-516
ware Testing and Analysis, ISSTA 2024, Vienna, Aus-517
tria, September 16-20, 2024, pages 503–515. ACM.518

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun519
Luo, Weikang Shi, Renrui Zhang, Linqi Song,520
Mingjie Zhan, and Hongsheng Li. 2024b. Mathcoder:521
Seamless code integration in llms for enhanced math-522
ematical reasoning. In The Twelfth International523
Conference on Learning Representations, ICLR 2024,524
Vienna, Austria, May 7-11, 2024. OpenReview.net.525

Xiao Wang, Guangyao Chen, Guangwu Qian,526
Pengcheng Gao, Xiao-Yong Wei, Yaowei Wang,527
Yonghong Tian, and Wen Gao. 2023. Large-scale528
multi-modal pre-trained models: A comprehensive529
survey. Mach. Intell. Res., 20(4):447–482.530

Yutong Wang, Jiali Zeng, Xuebo Liu, Fandong Meng,531
Jie Zhou, and Min Zhang. 2024c. Taste: Teach-532
ing large language models to translate through self-533
reflection. In Proceedings of the 62nd Annual Meet-534
ing of the Association for Computational Linguistics535
(Volume 1: Long Papers), ACL 2024, Bangkok, Thai-536
land, August 11-16, 2024, pages 6144–6158. Associ-537
ation for Computational Linguistics.538

Miles Williams and Nikolaos Aletras. 2024. On the539
impact of calibration data in post-training quanti-540
zation and pruning. In Proceedings of the 62nd541
Annual Meeting of the Association for Computa-542
tional Linguistics (Volume 1: Long Papers), ACL543

2024, Bangkok, Thailand, August 11-16, 2024, pages 544
10100–10118. Association for Computational Lin- 545
guistics. 546

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen 547
Ding, Boyang Hong, Ming Zhang, Junzhe Wang, 548
Senjie Jin, Enyu Zhou, and so on. 2023. The rise and 549
potential of large language model based agents: A 550
survey. CoRR, abs/2309.07864. 551

Derong Xu, Wei Chen, Wenjun Peng, Chao Zhang, Tong 552
Xu, Xiangyu Zhao, Xian Wu, Yefeng Zheng, Yang 553
Wang, and Enhong Chen. 2024. Large language mod- 554
els for generative information extraction: a survey. 555
Frontiers Comput. Sci., 18(6):186357. 556

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, 557
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian- 558
hong Tu, Jingren Zhou, Junyang Lin, Keming Lu, 559
Mingfeng Xue, Runji Lin, Tianyu Liu, Xingzhang 560
Ren, and Zhenru Zhang. 2024a. Qwen2.5-math tech- 561
nical report: Toward mathematical expert model via 562
self-improvement. Preprint, arXiv:2409.12122. 563

Guang Yang, Yu Zhou, Xiang Chen, Xiangyu Zhang, 564
Terry Yue Zhuo, and Taolue Chen. 2024b. Chain- 565
of-thought in neural code generation: From and for 566
lightweight language models. IEEE Trans. Software 567
Eng., 50(9):2437–2457. 568

John Yang, Akshara Prabhakar, Karthik Narasimhan, 569
and Shunyu Yao. 2023. Intercode: Standardizing 570
and benchmarking interactive coding with execution 571
feedback. In Advances in Neural Information Pro- 572
cessing Systems 36: Annual Conference on Neural 573
Information Processing Systems 2023, NeurIPS 2023, 574
New Orleans, LA, USA, December 10 - 16, 2023. 575

Zonglin Yang, Li Dong, Xinya Du, Hao Cheng, Erik 576
Cambria, Xiaodong Liu, Jianfeng Gao, and Furu 577
Wei. 2024c. Language models as inductive reasoners. 578
Preprint, arXiv:2212.10923. 579

Xiaotian Zhang, Chunyang Li, Yi Zong, Zhengyu Ying, 580
Liang He, and Xipeng Qiu. 2024. Evaluating the 581
performance of large language models on gaokao 582
benchmark. Preprint, arXiv:2305.12474. 583

Tianyang Zhong, Zhengliang Liu, Yi Pan, Yutong 584
Zhang, Yifan Zhou, Shizhe Liang, Zihao Wu, Yanjun 585
Lyu, Peng Shu, Xiaowei Yu, and so on. 2024. Evalu- 586
ation of openai o1: Opportunities and challenges of 587
AGI. CoRR, abs/2409.18486. 588

Yutao Zhu, Peitian Zhang, Chenghao Zhang, Yifei Chen, 589
Binyu Xie, Zheng Liu, Ji-Rong Wen, and Zhicheng 590
Dou. 2024. INTERS: unlocking the power of large 591
language models in search with instruction tuning. 592
In Proceedings of the 62nd Annual Meeting of the 593
Association for Computational Linguistics (Volume 594
1: Long Papers), ACL 2024, Bangkok, Thailand, Au- 595
gust 11-16, 2024, pages 2782–2809. Association for 596
Computational Linguistics. 597

7

https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2403.14734
https://arxiv.org/abs/2403.14734
https://arxiv.org/abs/2403.14734
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2401.00288
https://arxiv.org/abs/2401.00288
https://arxiv.org/abs/2401.00288
https://doi.org/10.1145/3650212.3652145
https://doi.org/10.1145/3650212.3652145
https://doi.org/10.1145/3650212.3652145
https://doi.org/10.1145/3650212.3652145
https://doi.org/10.1145/3650212.3652145
https://openreview.net/forum?id=z8TW0ttBPp
https://openreview.net/forum?id=z8TW0ttBPp
https://openreview.net/forum?id=z8TW0ttBPp
https://openreview.net/forum?id=z8TW0ttBPp
https://openreview.net/forum?id=z8TW0ttBPp
https://doi.org/10.1007/S11633-022-1410-8
https://doi.org/10.1007/S11633-022-1410-8
https://doi.org/10.1007/S11633-022-1410-8
https://doi.org/10.1007/S11633-022-1410-8
https://doi.org/10.1007/S11633-022-1410-8
https://doi.org/10.18653/V1/2024.ACL-LONG.333
https://doi.org/10.18653/V1/2024.ACL-LONG.333
https://doi.org/10.18653/V1/2024.ACL-LONG.333
https://doi.org/10.18653/V1/2024.ACL-LONG.333
https://doi.org/10.18653/V1/2024.ACL-LONG.333
https://doi.org/10.18653/V1/2024.ACL-LONG.544
https://doi.org/10.18653/V1/2024.ACL-LONG.544
https://doi.org/10.18653/V1/2024.ACL-LONG.544
https://doi.org/10.18653/V1/2024.ACL-LONG.544
https://doi.org/10.18653/V1/2024.ACL-LONG.544
https://doi.org/10.48550/ARXIV.2309.07864
https://doi.org/10.48550/ARXIV.2309.07864
https://doi.org/10.48550/ARXIV.2309.07864
https://doi.org/10.48550/ARXIV.2309.07864
https://doi.org/10.48550/ARXIV.2309.07864
https://doi.org/10.1007/S11704-024-40555-Y
https://doi.org/10.1007/S11704-024-40555-Y
https://doi.org/10.1007/S11704-024-40555-Y
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2409.12122
https://doi.org/10.1109/TSE.2024.3440503
https://doi.org/10.1109/TSE.2024.3440503
https://doi.org/10.1109/TSE.2024.3440503
https://doi.org/10.1109/TSE.2024.3440503
https://doi.org/10.1109/TSE.2024.3440503
http://papers.nips.cc/paper_files/paper/2023/hash/4b175d846fb008d540d233c188379ff9-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4b175d846fb008d540d233c188379ff9-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4b175d846fb008d540d233c188379ff9-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4b175d846fb008d540d233c188379ff9-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4b175d846fb008d540d233c188379ff9-Abstract-Datasets_and_Benchmarks.html
https://arxiv.org/abs/2212.10923
https://arxiv.org/abs/2305.12474
https://arxiv.org/abs/2305.12474
https://arxiv.org/abs/2305.12474
https://arxiv.org/abs/2305.12474
https://arxiv.org/abs/2305.12474
https://doi.org/10.48550/ARXIV.2409.18486
https://doi.org/10.48550/ARXIV.2409.18486
https://doi.org/10.48550/ARXIV.2409.18486
https://doi.org/10.48550/ARXIV.2409.18486
https://doi.org/10.48550/ARXIV.2409.18486
https://doi.org/10.18653/V1/2024.ACL-LONG.154
https://doi.org/10.18653/V1/2024.ACL-LONG.154
https://doi.org/10.18653/V1/2024.ACL-LONG.154

A Appendix598

A.1 Next Number Prediction599

Sequences are an excellent type of data for induc-600

tive reasoning because deriving the general term601

formula of a sequence requires inferring an abstract,602

universal representation based on the specific terms603

of the sequence.604

After the process in the Sequence Synthetic Data605

Pipeline Section, we obtain sequence synthetic data.606

We randomly select 200 sequences and conduct the607

next number prediction experiments with the three608

most powerful LLMs in terms of reasoning ability:609

o1-preview, claude-3.5-sonnet, and deepseek-r1.610

We ensure that these 200 test data are not used in611

the construction of CodeSeq.612

We use the following prompt in Figure 4 to have613

it predict the next number in the given sequence.614

I will give you a sequence now.

Please predict the next number based on the terms I

provide.

Please respond in JSON dictionary format: {“thought”:

xxx, “answer”: xxx},

where the “thought” section represents your inductive

reasoning process for the sequence, and the “answer”

section should directly give a number representing the

final predicted answer.

<bos> (the sequence) <eos>

Figure 4: The prompt for the next number prediction
task.

A.2 Related Work615

A.2.1 Inductive Reasoning616

Reasoning can be mainly divided into two modes:617

deductive reasoning (Johnson-Laird, 1999) and in-618

ductive reasoning (Hayes et al., 2010). Deductive619

reasoning, such as well-defined tasks like mathe-620

matical and code reasoning (Wang et al., 2024b; Lu621

et al., 2024), utilizes general principles and axioms622

to achieve specific goals, pursuing logical certainty.623

While inductive reasoning is quite the opposite.624

Inductive reasoning, involving drawing general625

conclusions from specific patterns, is the most uni-626

versal and essential method in knowledge discovery627

(Han et al., 2024): (1) Deriving general conclusions628

from specific cases, allowing it to cover and gener-629

alize to a wider range of applications, which aligns630

with the human learning process. (2) Adaptive ad-631

justments augment its reasoning ability in uncertain632

and complex scenarios, where inductive outcomes633

may not always be unique.634

Despite its significance, existing works of LLMs 635

reasoning are limited to deductive reasoning (Ahn 636

et al., 2024; Chen et al., 2024; Liu et al., 2023; 637

Jiang et al., 2024a). This is because obtaining high- 638

quality process supervision data is quite challeng- 639

ing for inductive reasoning (Yang et al., 2024c). So 640

this paper aims to overcome such limitation. 641

A.2.2 Code Reasoning 642

Code serves as a crucial link between humans and 643

machines. It is ultimately converted into specific 644

programs that can replace human labor in fulfill- 645

ing diverse tasks. These programs are marked by 646

several notable traits, including precision, logical 647

structure, modular design, and excitability (Wan 648

et al., 2023; Sun et al., 2025). 649

In the era of AI, code generation mainly consists 650

of three stages: (1) the code embedding (Girdhar 651

et al., 2023), (2) code pre-trained models (Wang 652

et al., 2023), and (3) code generation in LLMs. 653

These three stages have corresponding relation- 654

ships with the development of natural language 655

processing. 656

The most prominent feature of code generation 657

is learning with execution feedback (Yang et al., 658

2023). Code has an inherent property of being 659

compliant and executable. This enables compilers 660

or interpreters to automatically produce accurate 661

feedback. This process can be called the code unit 662

tests (Le et al., 2022). 663

In the era of LLMs, there are three main meth- 664

ods for enhanced code generation: (1) Decoding- 665

enhanced, that is, using methods such as self- 666

planning (Jiang et al., 2024b) and self-filling 667

(Martínez-Magallanes et al., 2023), and guiding 668

the generation of code in combination with the 669

Program of Thought (PoT) (Bi et al., 2024) tech- 670

nology. (2) Feedback-drive, which is similar to tree 671

search (Matute et al., 2024; Dainese et al., 2024) 672

and uses unit tests to provide supervision signals. 673

(3) Natural-language (NL) guidance (Wang et al., 674

2024a), that is, using natural language to guide the 675

generation of code. 676

In this paper, we explore injecting case-based 677

code supervision signals to improve inductive rea- 678

soning data quality. 679

A.3 The Sequence Inductive Reasoning 680

Synthetic Data Pipeline 681

In this section, we will provide more detailed in- 682

formation and more examples to clearly explain 683

the sequence synthetic data pipeline. For the 684

8

working agent, considering that we need to make685

frequent calls, and for cost-saving purposes, we686

chose deepseek-v32 (DeepSeek-AI et al., 2024),687

while for the guiding agent, we select the currently688

most powerful reasoning model, o1-preview3, so689

that the self-correction process will be more ac-690

curate. We will demonstrate how these strong691

instructions-following agents work under the guid-692

ance of prompts with detailed instructions.693

A.3.1 Sequence Data Filtering694

We scrape a large number of sequences and their695

related information from the OEIS website. Each696

page on the website corresponds to a sequence and697

all its information, including the source, formula,698

general term description, and so on. We give an699

example of one OEIS webpage in Figure 5.700

We need to filter the information for each can-701

didate sequence to ensure the accuracy of the al-702

gorithmic problem generation process. We first703

manually wrote rules to filter out sequences with704

insufficient information, including: (1) those with705

too few terms, which will result in any powerful706

agent being unable to thoroughly understand the707

mathematical logic of the sequence. (2) those that708

evolve from other sequences, which will result in709

us being unable to crawl enough information about710

the current sequence from the existing website. (3)711

those without "mathematical" or "programming"712

fields, this is for the working agent to initially filter713

information, making it easier to generate algorithm714

problems. Then we prompt the working agent to715

self-planning the steps for generating an algorith-716

mic problem and self-reflecting on whether each717

step contains enough information. This prompt are718

shown in Figure 6. The above operations result in a719

batch of sequences with high information density.720

A.3.2 Sequence Algorithmic Problem721

Generation and Validation722

We next have the working agent generate an algo-723

rithmic problem about the general terms for each se-724

quence, along with two example cases. The prompt725

for problem generation is in Figure 7. Example726

cases provide the standard input and output cases727

for this algorithmic problem to help the problem728

solvers understand it better. We also give a gener-729

ated example in Figure 8.730

To further verify the correctness of the algorith-731

mic problems, we utilize another powerful LLM732

2https://www.deepseek.com/
3https://openai.com/o1/

as a guiding agent. We input the problem descrip- 733

tion and two example cases’ inputs into it and let 734

it directly output the results (prompt in Figure 9). 735

By comparing these outputs with the ground truth 736

outputs generated by the working agent, we can 737

determine whether the current problem is correct. 738

Seed sequence data is gained via this example case 739

validation. Take the algorithmic problem in Fig- 740

ure 8 as an example, if the guiding agent outputs 741

7 for the first example case, it matches the ground 742

truth. If both the answers match the ground truth 743

in example cases, we can say that the current gen- 744

erated problem is correct. 745

A.3.3 Case-based Supervision Signal Injection 746

After obtaining the seed data, we let the working 747

agent directly generate the code solution for the 748

algorithmic problem with the prompt in Figure 10. 749

Since the problem description involves the gen- 750

eral term of a sequence, the code solution repre- 751

sents the computational process for the general 752

term of the sequence. Unlike the example cases, 753

we also set 5 to 7 test cases for each sequence to 754

ensure the correctness of the code solution, as illus- 755

trated in Figure 7. 756

Imitating previous unit tests (Hui et al., 2024), 757

we use test cases to test the correctness of each code 758

solution in an isolated sandbox environment. A 759

sandbox environment for executing code (Li et al., 760

2014; Cohn et al., 2024) is a controlled and isolated 761

setting where code can be run without affecting the 762

host system or other applications. In this environ- 763

ment, the code is executed within a restricted space, 764

preventing it from accessing sensitive resources, 765

files, or system-level operations outside the sand- 766

box. Sandboxes are commonly used for testing, 767

experimentation, and security purposes, as they al- 768

low developers to execute potentially untrusted or 769

experimental code safely. The goal is to mitigate 770

risks, such as malware or unintentional system dam- 771

age, by containing the code’s actions and ensuring 772

it can not interfere with critical parts of the system. 773

Our code sets up a sandbox environment to safely 774

execute user-provided Python code. It isolates the 775

code by removing access to potentially dangerous 776

built-in functions like open, exec, and eval, and 777

replaces the print function with a safe version. We 778

also redirect input and output to custom streams to 779

capture them. The code is executed in a controlled 780

environment with only a limited set of built-in func- 781

tions available. If errors occur, they are caught and 782

formatted with details, including the line number. 783

9

Figure 5: An example of one OEIS webpage. This webpage includes the sequence, sequence offsets, sequence
references, sequence links to other supplementary information, examples in the explanation process, mathematical
explanations, the relationship between sequences, and so on.

Finally, we restore the system’s original state af-784

ter execution. This approach ensures safe, isolated785

execution of potentially risky code.786

If a code solution fails on a test case, we ask the787

guiding agent to provide the reason for the failure788

(Figure 11). We then give that reason along with the789

test case back to the working agent to correct the790

code solution. The prompt for the working agent791

to regenerate and correct the code is in Figure 12.792

Ultimately, through continuous self-correcting, we793

achieve a code solution that passes all the test cases.794

A.4 The CodeSeq Dataset795

Based on the above process, we record the code796

of the current version each time a modification797

is made and generate synthetic data for each se-798

quence, then form a training dataset CodeSeq.799

Our training data is primarily used for model800

training in the post-trained stage (especially SFT),801

so our dataset is organized in the SFT format. A802

standard SFT input format in CodeSeq is shown803

in Figure 13, and a standard SFT output format804

in CodeSeq is shown in Figure 14. As with other 805

powerful reasoning models, we use the Chain-of- 806

Thought (CoT) technique (Yang et al., 2024b) to 807

guide the model’s deep reasoning process. In the 808

output format, we store the CoT field and the final 809

answer field separately. 810

A.5 Details for Training and Evaluation 811

A.5.1 LLM Backbones 812

We conduct SFT on two widely used LLMs: 813

LLaMA3-8B-Instruct and Qwen2.5-7B-Instruct. 814

LLaMA3-8B-Instruct (Grattafiori et al., 2024) 815

LLaMA3-8B is an advanced LLM developed by 816

Meta, featuring 8 billion parameters. It is part of 817

the Llama 3 family. This model is built on an op- 818

timized Transformer architecture and trained on 819

a diverse dataset of over 15 trillion tokens. The 820

training dataset includes a significant amount of 821

code and covers over 30 languages, with more than 822

5% of the data being non-English. LLaMA3-8B is 823

particularly designed to excel in instruction-based 824

10

I will give you a sequence and all the relevant information about it.

I would like to turn this sequence into an algorithmic problem about its general

term formula.

The problem must consist of the problem statement, the format requirements for the

input and output, and two examples for input and output.

Now, please first plan the steps required to generate an algorithm problem, and then

evaluate whether the information I provided can meet the conditions for generating

an algorithm problem by following those steps.

Please output your response in JSON dictionary format: {“step”: xxx, “step_judge”:

xxx, “is_able”: xxx}.

where “step” represents the steps you planned, “step_judge” represents the thought

process for each step's evaluation, and “is_able” indicates whether it is possible to

generate an algorithm problem based on the provided information (True or False).

<bos> (the sequence) <eos>

[slot] (the relevant information) [slot]

Figure 6: The prompt for the working agent to conduct self-planning on the problem generation and self-reflecting
on whether each step contains enough information.

tasks, making it highly effective for scenarios re-825

quiring precise and context-aware responses.826

Qwen2.5-7B-Instruct (Qwen et al., 2025)827

Qwen2.5-7B is a powerful LLM developed828

by Alibaba’s ModelScope team, featuring 7.6829

billion parameters. It is designed to excel in830

various natural language processing tasks, with831

notable strengths in long-context understanding,832

multilingual support, and specialized capabilities833

for coding and mathematical tasks. This model834

supports up to 128K tokens for context under-835

standing and can generate up to 8K tokens of text,836

making it highly effective for long-text generation837

and structured data processing. What’s more,838

Qwen2.5-7B is trained on a massive 18T dataset.839

A.5.2 Mix Training Details840

To maintain the models’ instruction-following abil-841

ity, we mix CodeSeq with the latest post-training842

dataset Tulu3 (Lambert et al., 2025) for SFT.843

Tulu3 is a comprehensive dataset and training844

framework developed by the Allen Institute to ad-845

vance the post-training of LLMs. The Tulu3 dataset846

is designed to enhance language models’ perfor-847

mance through SFT and reinforcement learning. It848

includes a mixture of data from various sources,849

covering a wide range of natural language process-850

ing tasks such as instruction following, mathemati-851

cal reasoning, and code generation. 852

Due to the timeliness of Tulu3, we ensure that 853

it is not used for any backbone model training. 854

During the training process, we removed samples 855

longer than 5120 tokens and excluded all samples 856

related to mathematics and code (since we focus on 857

code and comprehensive reasoning tasks). Finally, 858

we retain over 800k training samples of Tulu3. 859

To improve the models’ reasoning ability while 860

maintaining its other capabilities, particularly 861

instruction-following ability, we calculate the av- 862

erage number of tokens in the Tulu3 and CodeSeq 863

datasets. We assign a weight ratio of 5:1 to these 864

two datasets for mixed training. During training, 865

we wrap all inputs and outputs with chat templates 866

to prevent the loss of instruction-following capabil- 867

ities. 868

A.5.3 Training Parameters 869

We conduct SFT on two widely used LLMs: 870

LLaMA3-8B and Qwen2.5-7B based on Intern- 871

Trainer4 framework with 8 NVIDIA-L20Y. The 872

training parameters are shown in Table 4. 873

A.5.4 Benchmarks 874

We test the tuned models on two code bench- 875

marks: Humaneval (Chen et al., 2021) and MBPP 876

(Austin et al., 2021), along with three comprehen- 877

4https://github.com/interntrainer

11

I will give you a sequence and all the relevant information about it.

I would like to turn this sequence into an algorithmic problem about its general term formula.

The problem must consist of the problem statement, the format requirements for the input

and output, two example cases of input, output and their explanations (make it easier for

problem solvers to understand), and not more than five test cases of input, output and their

explanations (facilitate backend sandbox testing).

Please output your response in JSON dictionary format:

{

“description”: xxx,

“input_format”: xxx,

“output_format”: xxx,

“example cases”: [{“input1”:, “output1”:, “explanation1”:}, {“input2”:, “output2”:,

“explanation2”:}] ,

“test cases”: [{“input1”:, “output1”: ,“explanation1”: },…]

}

##sequence##: <bos> (the sequence) <eos>

##relevant information##: [slot] (the relevant information) [slot]

Figure 7: The prompt for algorithmic problem generation.

sive reasoning benchmarks: MMLU (Hendrycks878

et al., 2021), BBH (Suzgun et al., 2022), and879

GaoKaoBench (Zhang et al., 2024).880

Humaneval consists of 164 hand-crafted pro-881

gramming challenges that are comparable to simple882

software interview questions, each with a function883

signature, natural language description, and unit884

tests to validate the correctness of generated code.885

MBPP The MBPP (Mostly Basic Python Prob-886

lems) benchmark consists of around 1,000 crowd-887

sourced Python programming problems, each with888

a task description, code solution, and three auto-889

mated test cases.890

MMLU The MMLU (Massive Multitask Lan-891

guage Understanding) benchmark is a comprehen-892

sive evaluation tool designed to assess the knowl-893

edge and reasoning capabilities of LLMs across a894

wide range of academic and real-world subjects.895

BBH The Big Bench Hard (BBH) benchmark is a896

collection of challenging tasks designed to evaluate897

the reasoning and logical abilities of LLMs.898

GaoKaoBench The GAOKAO-Bench is an eval-899

uation framework that uses Chinese college en-900

trance examination (Gaokao) questions as its901

dataset to assess the language understanding and902

logical reasoning capabilities of LLMs. It includes903

a comprehensive collection of questions from 2010904

to 2023. For convenience in evaluation, we select 905

only objective questions for testing. 906

A.5.5 Compared Models 907

We chose GPT4o as the target baseline because it 908

undergoes the most systematic evaluations across 909

various benchmarks. Since the parameters in our 910

models are much fewer than that of GPT4o, it is 911

difficult for our model to outperform it in all as- 912

pects. Nevertheless, we can still present the cor- 913

responding results. This will facilitate everyone’s 914

understanding of the gap and motivate us to strive 915

for catching up. 916

GPT4o GPT4o5 is an advanced AI model that 917

provides more accurate and efficient language pro- 918

cessing capabilities by OpenAI. It builds upon the 919

strengths of previous models while incorporating 920

new optimizations to enhance performance. With 921

its ability to understand and generate human-like 922

text, GPT4o aims to assist users in various tasks 923

such as writing, problem-solving, and information 924

retrieval. 925

A.5.6 OpenCompass 926

We employ OpenCompass6 (Contributors, 2023), 927

which is an LLM evaluation platform, supporting 928

a wide range of models, to evaluate the results. 929

5https://openai.com/index/hello-gpt-4o/
6https://github.com/open-compass/opencompass

12

description: In the Kingdom of Numeria, the wise mathematician Elara has devised a unique

festival where citizens create beautiful mosaic patterns using tiles of various sizes. However,

to honor an ancient tradition, no tile in a mosaic can have a size that is a multiple of 3. The

size of a tile is represented by a positive integer. Given a total area `n`, Elara challenges the

citizens to determine how many distinct ways they can partition the area into tiles following

the tradition. Each partition must consist of positive integers where none of the integers are

multiples of 3, and the order of tiles does not matter (i.e., partitions are considered the same

regardless of the order of tiles). Help the citizens of Numeria by writing a program that

calculates the number of valid partitions for a given area `n`.Note: Two partitions are

different if they have a different set of tile sizes, regardless of the order.

input_format: The input consists of a single integer `n` (1 ≤ n ≤ 5000) representing the total

area to be partitioned.

output_format: Output a single integer representing the number of distinct valid partitions

of `n` where no part is a multiple of 3.

example cases: [{“input1”: 6, “output1”: 7, “explanation1”: For n=6, the valid partitions

are:\\n[6], [5,1], [4,2], [4,1,1], [2,2,2], [2,2,1,1], [1,1,1,1,1,1]\\nThere are 7 valid

partitions.}, …]

test cases: …

Figure 8: A generated example for one sequence algorithmic problem.

It features a wide range of capabilities, including930

language understanding, reasoning, coding, and931

long-text generation, and provides a fair and repro-932

ducible benchmark for model evaluation.933

We apply the Hugging Face framework to infer934

the models. For code generation, the settings are:935

{max-out-len: 1024, max-seq-len: 2048, batch-936

size:4, min-new-tokens: 50, num-return-sequences:937

1, top-p: 0.9, num-beams: 10}. For other genera-938

tion, the settings are: {max-out-len: 1024, batch-939

size:8, min-new-tokens: 10}940

For Humaneval, MBPP, and comprehensive rea-941

soning benchmarks, we use pass@1, pass score,942

and selection accuracy as metrics separately. We943

ensure that all baselines are tested with the same944

settings for a fair comparison.945

total-steps 1000
epochs 1

bzs 16
gradient-accumulation 16

micro-bsz 1
seq-len 5120

max-length-per-sample 5120
min-length 50

num-worker 4
loss-label-smooth 0

lr 1e-5
warmup-ratio 0.1
weight-decay 0.01

adam-beta1 0.9
adam-beta2 0.95
adam-eps 1e-8

fp16-initial-scale 2**14
fp16-min-scale 1

fp16-growth-interval 1000
fp16-growth-factor 2
fp16-backoff-factor 0.5

fp16-max-scale 2**24

zero1-size 8
tensor-size 1

pipeline-size 1
weight-size 1

Table 4: The training parameters.

13

I will now give you an algorithmic problem along with two input

examples (numbers). Please directly provide the corresponding

answers (numbers) for these two inputs.

Please output your response in JSON dictionary format:

{“reason1”: xxx, "answer1": xxx, “reason2”: xxx, "answer2": xxx}

where “reason1” and “reason2” represent your thought process for

the two input examples, and "answer1" and "answer2" are your

answers (please provide the numbers directly, with no extra output).

problem description##: [slot] (problem description) [slot]

input1##:[slot] (input1) [slot]

input2##:[slot] (input2) [slot]

Figure 9: The prompt for the guiding agent directly outputs the results so that we can determine whether the current
problem is correct.

I will now give you an algorithmic problem.

Please give me your code solution with Python.

Please respond in JSON dictionary format: {“thought”: xxx,

“code”: xxx},

where the “thought” section represents your reasoning

process for the problem, and the “code” section should

directly give a python code.

##problem description## : [slot] (problem description) [slot]

##input format## : [slot] (input format) [slot]

##output format## : [slot] (output format) [slot]

##example1## : [slot] (example1) [slot]

##example2## : [slot] (example2) [slot]

Figure 10: The prompt for the first time code solution generation.

I will now give you an algorithmic problem, its python code and one case.

Please tell me why the case works and why the code fails on the case.

Please output your response in JSON dictionary format:{“work_reason”: xxx,

“failed_reason": xxx}

where “work_reason” and “failed_reason” represent why the case works and

why the code fails on the case.

##problem description## : [slot] (problem description) [slot]

##input format## : [slot] (input format) [slot]

##output format## : [slot] (output format) [slot]

##example1## : [slot] (example1) [slot]

##example2## : [slot] (example2) [slot]

##python code##: [slot] (code) [slot]

##case input1## : [slot] (case input1) [slot]

##case output2## : [slot] (case output1) [slot]

Figure 11: This prompt is inputted into the guiding agent to generate the reason why such case fails on the current
code solution.

14

I will now give you an algorithmic problem, the code solution for this problem and a test case

that the code fails .

Please give me your updated code solution with Python.

Please respond in JSON dictionary format: {“thought”: xxx, “code”: xxx},

where the “thought” section represents your reasoning process for the problem, and the “code”

section should directly give a python code.

##problem description## : [slot] (problem description) [slot]

##input format## : [slot] (input format) [slot]

##output format## : [slot] (output format) [slot]

##example1## : [slot] (example1) [slot]

##example2## : [slot] (example2) [slot]

##origin code##: [slot] (origin code) [slot]

#case input##: [slot] (case input) [slot]

#case output##: [slot] (case input) [slot]

#work reason##: [slot] (work reason) [slot]

#failed reason##: [slot] (failed reason) [slot]

Figure 12: The prompt for the working agent to regenerate and correct the code.

input: You are now an algorithm competition participant. Based on the following algorithm problem, you

need to provide the problem-solving approach and the Python code.

Here is the problem statement: [slot] (problem description) [slot]

input format for this problem is: [slot] (input format) [slot]

output format for this problem is: [slot] (output format) [slot]

I will give you two examples to help you better understand the problem and come up with the solution approach

and Python code.

example 1

input1: [slot] (input1) [slot]

output1: [slot] (output1) [slot]

The explanation for this example is: [slot] (explanation1) [slot]

example 2

input2: [slot] (input2) [slot]

output2: [slot] (output2) [slot]

The explanation for this example is: [slot] (explanation2) [slot]

When you output your solution approach, you can write an initial solution code based on your first thoughts.

Then, please create examples and test them on your own. Afterward, reflect and make corrections to your code

based on the examples.

Now, please provide the Python solution approach and code for this problem in {\"cot\":xxx,\"code\":xxx}

dictionary format, where \"cot\" represents your solution approach, and \"code\" represents the final answer code.

Figure 13: The standard input of one sft training data in CodeSeq.

15

output:
{“cot”:

“The Python code for this algorithm problem, based on my initial thoughts, is:

[slot](code1)[slot]

The solution code above did not pass the following test case:

[slot](input1)[slot]

[slot](output1)[slot]

The reason this test case is valid is:

[slot](valid rason1)[slot]

The reason the code fails for this case is:

[slot](failed reason1)[slot]

Based on this test case, the revised solution code is:

[slot](code2)[slot]

…

This code passes all the test cases, so it is the correct solution.”,

“code”:

[slot](answer code)[slot] }

Figure 14: The standard output of one sft training data in CodeSeq.

16

	Introduction
	Sequence Synthetic Data Pipeline
	Sequence Data Filtering
	Sequence Algorithmic Problem Generation and Validation
	Case-based Supervision Signal Injection
	Synthetic Data Statistics

	Experiments
	Training, Benchmarks, and Evaluation
	Main Results
	Ablation Study
	CodeSeq for Next Number Prediction

	Conclusion
	Appendix
	Next Number Prediction
	Related Work
	Inductive Reasoning
	Code Reasoning

	The Sequence Inductive Reasoning Synthetic Data Pipeline
	Sequence Data Filtering
	Sequence Algorithmic Problem Generation and Validation
	Case-based Supervision Signal Injection

	The CodeSeq Dataset
	Details for Training and Evaluation
	LLM Backbones
	Mix Training Details
	Training Parameters
	Benchmarks
	Compared Models
	OpenCompass

