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Abstract001

The growing resource gap between institutions002
raises critical questions about transparency,003
replicability, and inclusiveness in AI research.004
While some AI research topics remain acces-005
sible, research in areas such as large language006
models (LLMs) necessitate more resources007
such as computational power and data access:008
resources largely concentrated among indus-009
try companies and a few top universities. This010
study investigates research inequality in NLP011
by analyzing topic shifts, institutional resource012
gap, and citation intent patterns in papers from013
the ACL Anthology between 2010 and 2022.014
We identify 2016 as a critical turning point in015
NLP, marked by the rise of large language mod-016
els (LLMs) and generative tasks, which have017
driven increased attention to topics such as Lan-018
guage Modeling, Generation, and Multimodal-019
ity, while traditional areas like Machine Trans-020
lation and Syntax/Parsing have declined. High-021
resource institutions are more likely to publish022
on these trending topics, as indicated by higher023
topic shift ratios. In contrast, low-resource024
teams are concentrated in declining topics. Ci-025
tation intent analysis reveals that methodology-026
use citations, which indicate resource transfer,027
are decreasing over time, particularly in trend-028
ing topics. This trend is especially pronounced029
in citations from low-resource to high-resource030
teams, suggesting that widening computational031
and infrastructural gaps limit the ability of low-032
resource institutions to adopt and build upon033
frontier research. These findings highlight a034
growing divide in NLP research participation035
and impact, underscoring the need for more036
inclusive and equitable research practices.037

1 Introduction038

Modern AI research demands increasing resources,039

especially access to large-scale infrastructure and040

datasets, creating a significant advantage to insti-041

tutions with greater financial and computational042

capacity. For instance, in 2020, private enterprises043

reportedly spent over $80 billion on AI, while U.S. 044

federal non-defense investment in AI-related re- 045

search and development amounted to just $1.5 bil- 046

lion (Littman et al., 2022). This disparity has en- 047

abled well-resourced teams, especially those affil- 048

iated with major technology companies, to drive 049

the development of increasingly sophisticated AI 050

models. In contrast, many academic and public- 051

sector institutions lack the resources necessary to 052

reproduce, extend, or critically evaluate these ad- 053

vances (Patel, 2023), raising concerns about the 054

inclusiveness and reproducibility of progress in the 055

field. 056

This resource gap not only affects what in- 057

stitutions can build but also shapes what re- 058

search questions they choose to ask (Movva et al., 059

2023). While industry actors often drive progress 060

through proprietary models that require vast re- 061

sources (Ahmed et al., 2023), academic and under- 062

resourced teams often focus on problems that are 063

more computationally tractable or theoretically 064

grounded (Ignat et al., 2024; Togelius and Yan- 065

nakakis, 2023). 066

Despite this significant resource disparity, the 067

growing availability of open-source software frame- 068

works, pretrained models, and benchmark datasets, 069

has contributed to a broader participation in AI 070

research (Gururaja et al., 2023), as evidenced by 071

the influx of new authors in recent years (Movva 072

et al., 2023). This raises a critical question: to 073

what extent do high-resource teams, while push- 074

ing the frontier, also act as enablers (e.g., through 075

the release of resources) for broader access? To 076

better understand this dynamic, we focus on the 077

NLP research community and address two research 078

questions: 1) How do research topics differ be- 079

tween research teams from high-resource and low- 080

resource institutions? And 2) To what extent has 081

research from high-resource institutions lowered or 082

heightened the barriers for low-resource teams in 083

NLP? 084
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To investigate the first question, we analyzed085

temporal shifts in topic distributions across insti-086

tutions with varying resource levels, examining087

whether low-resource teams are increasingly con-088

strained in the scope of topics they pursue.089

Drawing on theories of citation that consider090

citations as framing devices and connectors of in-091

tellectual lineages (Latour, 1987), and previous092

studies that has used citation analysis to understand093

research dynamics (Huang et al., 2022; Jiang and094

Liu, 2023; Jones, 1994; Nishikawa, 2023), we in-095

vestigate our second research question by analyz-096

ing citation patterns. Specifically, we examine how097

low-resource teams cite the work of high-resource098

teams, with a focus on methodological adoption,099

such as the use of models, datasets, or software100

developed by high-resource teams. This approach101

interprets methodology-use citations as a proxy for102

resource transfer from the cited institutions to the103

citing institutions, as the increasing prevalence of104

methodology-use citations has been linked to the105

growing availability of reusable technologies and106

evaluations (Jurgens et al., 2018; Jones, 1994).107

2 Data and Methods108

In this work, we synthesized data from various109

sources and trained two prediction models to gen-110

erate variables for downstream analyses. To study111

research topic shift, we retrieved titles and abstracts112

of ACL Anthology papers from the ACL-OCL cor-113

pus (Rohatgi et al., 2023). Each paper’s author114

affiliation metadata was retrieved from OpenAlex,115

an openly accessible database containing metadata116

on scientific research publications (Priem et al.,117

2022). To estimate each institution’s resource level,118

we generated a proxy variable predicted by a ma-119

chine learning model trained on research expendi-120

ture data and bibliometric features. Citation con-121

text data were obtained through Semantic Scholar’s122

S2AG API (Wade, 2022). To analyze patterns of123

methodological diffusion, we fine-tuned a citation124

intent classifier to identify method-use citations,125

which are instances where the citing paper adopts126

tools, models, or methods from the cited work. The127

following subsections describe the above tasks re-128

spectively.129

2.1 Modeling Research Topic Shift130

The ACL-OCL corpus includes the full text of 73k131

papers from the ACL Anthology up to September132

2022. We selected the papers published since 2010,133

since AI research intensified in the past 10-15 years 134

(See Figure 1). 135
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Figure 1: The number of papers included in ACL-OCL
dataset each year.

We used paper titles and abstracts as input for 136

topic modeling. We first embedded each paper’s 137

title and abstract using the SPECTER 2 language 138

model (Cohan et al., 2020). The resulting embed- 139

dings were then reduced in dimensionality using 140

UMAP. HDBSCAN was then applied to further 141

clustered the dimension-reduced embeddings into 142

topic clusters. 143

Using topic coherence (Röder et al., 2015) as the 144

evaluation metric, we compared BERTopic (Groo- 145

tendorst, 2022) under various parameter settings. 146

The highest coherence score was achieved by a 147

BERTopic model configured with 275 neighbors, 148

125 UMAP components, and a minimum cluster 149

size of 275 for HDBSCAN. 150

We further validated the model by manually 151

reviewing sample articles and representative key- 152

words from each topic cluster, comparing them 153

with the ACL submission topics. Using this com- 154

parison, we were able to assign each topic cluster 155

a label based on keywords from the ACL topic list 156

(see Table 3 in the appendix). Finally, each paper 157

was assigned a topic label based on the highest 158

topic probability generated by the topic model. 159

We then calculated the topic shift ratio 160

to measure the annual change in a research 161

topic’s popularity, i.e. whether it gained 162

or lost attention, using the following equation: 163

Topic Shift Ratio = P (Paper is assigned to topic X | Paper Published in year Y )
P (Paper is assigned to topic X | Paper published before year Y )(1) 164

If the topic shift ratio for Topic X is greater than 165

1 in Year Y, it means that Topic X became more 166

prevalent in Year Y, compared to its prevalence in 167

the years before. 168

A slightly modified equation was de- 169

signed to compare the popularity of a topic 170

before and after a cutoff year, e.g. 2016: 171

Topic Shift Ratio = P (Paper is assigned to topic X | Paper Published after year Y )
P (Paper is assigned to topic X | Paper published before year Y )(2) 172

2



2.2 Estimating Institutional AI Resources173

We trained a regression model to estimate an insti-174

tution’s AI resource. The training data comes from175

the 2023 Higher Education Research and Devel-176

opment (HERD) Survey. The HERD Survey is an177

annual census of 501 U.S. colleges and universities178

that expended at least $150,000. The survey in-179

cludes data for various research areas. We used ex-180

penditure in the area of information and computer181

science as a proxy measure for an institution’s AI182

research resource.183

Bibliometric features have long served as tools184

in the science of science (Fortunato et al., 2018)185

and the scientometric community (Leydesdorff and186

Milojević, 2012). Employing these features allows187

for investigations of the characteristics and dynam-188

ics inherent in scientific activities and entities. We189

extracted author affiliations for each ACL paper190

from OpenAlex, an openly accessible database con-191

taining metadata on scientific research publications.192

For each institution, we aggregated 15 bibliometric193

features, including (1) basic counts, i.e. the number194

of publications, citations, co-institutions, and re-195

searchers for each institution; (2) researcher senior-196

ity for each institution including the mean, median,197

min, and max researcher h-index; (3) outbound198

citation targets, such as the number of unique au-199

thors, institutions, and publishing venues (such as200

journals, conference proceedings); (4) outbound ci-201

tations aggregated at different research entity level,202

such as author-, institution-, and publishing venue-203

level citations. See Table 5 in the appendix for a204

full list of features and their definitions.205

These features reflect an institution’s research206

output and impact in the NLP community. The207

number of publications and the number of re-208

searchers are used to represent the capacity of each209

institution: a larger university usually has more210

faculty members and students, and thus generates211

more publications. A researcher has an h-index of212

h if they have published h papers, each of which213

has been cited at least h times. Aggregated re-214

searcher h-index data for an institution indicates215

its research capacity and prestige. Citations from216

other research teams, institutions, and publishing217

venues represent the reputation of the institution218

in the research community. Conversely, citations219

made by the institution’s researchers reflect their220

engagement with and awareness of the field, serv-221

ing as a proxy for their research capability too.222

If a paper involved multiple institutions, it was223

counted toward each affiliated institution. 224

Using the bibliometric features and expenditure 225

data as training data, we trained and cross-validated 226

linear regression and random forest regression mod- 227

els with different hyper-parameters. The model 228

with the best performance is a random forest re- 229

gression model with the maximum depth set to 20, 230

minimal samples split set to 2. The model achieves 231

0.407 R-squared on the testing dataset and 0.907 232

R-squared on the training dataset. 233

Using the best prediction model and institution- 234

level bibliometric data for all institutions that ACL- 235

OCL authors are affiliated with, we predicted a 236

pseudo-expenditure value for each affiliation as a 237

proxy for the amount of their AI resource. The fea- 238

ture importance of the model is shown in Table 4 239

in the appendix. We found that the features “Num- 240

ber of citations” and “Number of publications” are 241

among the most important features. It makes sense 242

since research spending should be positively corre- 243

lated with the size and capacity of institutions. 244

2.3 Identifying Methodology-use Citations 245

For each citation to ACL-OCL papers, we retrieved 246

the citation context, or the citation sentence, from 247

the S2AG database. We applied the method pro- 248

posed by (Shui et al., 2024) because it doesn’t re- 249

quire external data such as author and affiliation 250

information to achieve performance comparable 251

to the state-of-the-art. We fine-tuned a SciBERT 252

model using SciCite and ACL-ARC data as a multi- 253

task learning task. 254

The ACL-ARC dataset (Jurgens et al., 2018) 255

provides annotations for citation intents with six 256

classes, including Extends, Future, Motivation, 257

Compares, Uses, and Background, for 1,969 ci- 258

tation sentences from 10 ACL Anthology articles. 259

The SciCite data set includes 11,020 citation 260

sentences from computer science and medicine ar- 261

ticles sampled from the Semantic Scholar corpus 262

(Cohan et al., 2019). The SciCite data schema was 263

simplified based on ACL-ARC, after removing ci- 264

tation intent categories that are rare or not useful 265

for meta-analysis of scientific publications. SciCite 266

includes three categories: background information, 267

use of methods, and comparing result. Here we 268

refer to them briefly as background, methodology, 269

and result citations. 270

Using SciCite as the main training set and ACL- 271

ARC as the auxiliary training set, the resulting 272

model has achieved a macro 0.86 F1 score on the 273

SciCite dataset, with balanced precision and recall 274
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values on all categories. This result is comparable275

to (Paolini et al., 2024). See Table 1 for category-276

level performance.277

Table 1: Performance for the citation intent classifica-
tions task.

Class Precision Recall F1 Score

Background 0.89 0.91 0.90
Methodology 0.81 0.79 0.80
Result 0.88 0.87 0.87
Macro 0.86

Using the fine-tuned citation intent classification278

model, we predicted citation intent for each citation279

context retrieved from S2AG.280

3 Result281

3.1 Research Topic Shifts in NLP282

Figure 2 illustrates annual changes in NLP research283

topics from 2012 to 2022, revealing several clear284

trends. Most notably, 2016 emerges as a key turn-285

ing point: LLM-driven topics, such as Generation286

and Language Model, have gained significant pop-287

ularity since 2016, while formerly core NLP areas288

like Machine Translation and Syntax/Parsing have289

been declining.290

This shift reflects a reorientation in the NLP291

field following architectural breakthroughs: the292

Transformer architecture was introduced in 2017293

(Vaswani et al., 2017), followed by GPT-1 in 2018294

(Radford et al., 2018) and BERT in 2019 (Devlin295

et al., 2019). These innovations contributed to296

the rise of general-purpose models and generative297

tasks (Ma et al.; Touvron et al., 2023; Lewis et al.,298

2021; Ramesh et al., 2021), drawing attention away299

from narrower, task-specific approaches, demor-300

alizing researchers in those areas (Togelius and301

Yannakakis, 2023).302
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Figure 2: Topic shift ratios for each topic by year from
2012 to 2022.

In addition to these LLM-centered topics, Fig- 303

ure 2 also shows the emergence of interdisciplinary 304

and application-oriented topics, such as Computa- 305

tional Social Science and Cultural Analysis, Mul- 306

timodality, and Dialogue Systems. This trend sup- 307

ports recent findings on diversification of NLP re- 308

search directions (Gururaja et al., 2023). 309

To further quantify these shifts, we calculated 310

topic shift ratios before and after the cutoff year 311

2016. Figure 3 visualizes annual shifts for the five 312

most trending and five most declining topics, based 313

on their shift ratios between pre- and post-2016 314

periods. 315

Figure 2 also shows plateauing or moderate 316

growth in some topics, such as Summarization, In- 317

formation Extraction, and sentiment analysis, sug- 318

gesting topic saturation. This pattern aligns with 319

LLMs’ strong performance on these tasks. The 320

progress of these maturing areas may require new 321

angles, such as multilinguality, interpretability, or 322

social applications. 323
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Figure 3: Annual trends in topic ratios for the five most
trending and five most declining topics.

3.1.1 Topic Differences Between Low-resource 324

and High-resource Teams 325

Next, we compared the distribution of research top- 326

ics between high-resource and low-resource teams. 327

Using our regression model to estimate each institu- 328

tion’s AI resource level, we classified the top 10% 329

of institutions as high-resource, and the remaining 330

90% as low-resource. We define a research team as 331

the group of authors on a single paper. The team’s 332

resource level is determined by the highest-ranked 333

institution among the authors’ affiliations. We then 334

assigned each paper a topic shift ratio, based on 335

its publication year and its assigned research topic 336

(see Figure2). 337

We found that papers from high-resource teams 338

were associated with significantly higher topic shift 339

ratios than those from low-resource teams, indicat- 340

ing that high-resource teams are more likely to 341

publish on trending topics. This difference is statis- 342
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tically significant, as shown by a Mann–Whitney343

U test (U = 230,316,303.0, p < 0.001).344

We then compared the topic distributions be-345

tween low-resource and high-resource research346

teams by counting the number of papers published347

in each topic and applying chi-squared tests to as-348

sess statistical differences. Figure 4 shows the349

residuals from these tests for papers published in350

2016 (χ2 = 70.913, p < 0.0001), 2018 (χ2 =351

55.188, p < 0.0001), and 2020 (χ2 = 58.455,352

p < 0.0001). The topics are ordered by their over-353

all trend, with those declining in popularity near354

the top and trending topics near the bottom (based355

on topic shift ratios calculated in 2016 and held356

consistent across all panels).357

Positive residuals (in blue color) indicate358

over-representation by high-resource teams, and359

negative residuals (in red color) indicate over-360

representation by low-resource teams. The pattern361

across all three years suggests a persistent topic362

divide: low-resource teams are more concentrated363

in declining topics, while high-resource teams in-364

creasingly dominate emerging and computationally365

intensive areas.366
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Figure 4: Topic differences between low-resource and
high-resource institutions. Residual of chi-squared test
comparing topic distribution between papers published
by low-resource teams and high-resource teams for pa-
pers published after 2016 (A), 2018 (B), and 2020 (C).

3.2 Comparing Citation-Mediated Resource367

Transfer in Trending Topics and Declining368

Topics369

Considering methodology-use citation as an indica-370

tor of “resource transfer” from one institution to an-371

other, we analyzed the intent of citations to the ACL372

Anthology papers. Overall, about one half of cita-373

tions are background information, about one third374

on methdology use, and the remaining on result375

discussion. Figure 5A presents the proportions of376

these citation intent types, normalized by the num-377

ber of citations per year, from 2010 to 2022, illus-378

trating a trend that background citations are increas-379

ing (Mann Kendall test: τ = 0.923, p < 0.0001),380

while methodology-use citations (Mann Kendall381

test: τ = −0.718, p < 0.001) and result citations 382

(Mann Kendall test: τ = −0.923, p < 0.001) have 383

been declining. 384

As NLP literature expands, it is not surpris- 385

ing to see researchers citing more prior work as 386

background information. However, the decrease 387

in methodology-use citations needs further exam- 388

ination to see whether it indicates a decline in re- 389

source transfer, since the growing resource gap may 390

prevent low-resource teams from adopting certain 391

methods due to limitations in computing power, 392

data access, and funding. If this is true, we should 393

expect the increase in background citations and the 394

decrease in methodology-use citations to be more 395

pronounced in citations from low-resource teams 396

to high-resource teams, especially among trending 397

topics, since high-resource teams are more likely 398

to work on trending topics. 399
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Figure 5: Citation intent patterns for papers on trending
and declining topics. The proportion of citation intent
for citations to all ACL-OCL papers published after
2010 (A); the proportion of background (B), methodol-
ogy (C) citations to declining topics and trending topics.

To compare methodology-use citations in trend- 400

ing and declining topics, we selected papers from 401

the top five most trending topics (Language Model, 402

Computational Social Science and Cultural Analyt- 403

ics, Generation, Question Answering, Multimodal- 404

ity and Language Grounding to Vision, Robotics 405

and Beyond), and the top five most declining topics 406

(Grammar Correction, Resources and Evaluation, 407

Syntax: Tagging, Chunking and Parsing / ML, Ma- 408

chine Translation, Speech recognition). 409

Figure 5B shows that background citations have 410

increased over time for both trending and declin- 411

ing topics. This trend is supported by the Mann- 412

Kendall test results: for trending topics, τ = 0.769, 413

p < 0.001, with a slope of 0.0046 and intercept of 414

0.50; for declining topics, τ = 0.718, p < 0.001, 415

with a slope of 0.0061 and intercept of 0.43. While 416

both trends are significant, the higher intercept for 417

trending topics suggests that they generally require 418

more background citations than declining topics. 419

This is consistent with expectations: researchers 420
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working in fast-evolving areas may need to cite a421

broader base of prior work to contextualize and422

support their arguments.423

Figure 5C shows the proportion of methodology-424

use citations over time for both trending and425

declining topics. For trending topics, the426

Mann-Kendall test reveals a decreasing trend427

in Methodology citation proportion (slope =428

−0.0022, intercept = 0.2911), whereas declining429

topics show a more stable and higher baseline level430

(slope = −0.0001, intercept = 0.3150). This431

suggests that in fast-moving areas, researchers are432

less likely to cite existing models, datasets, or tools.433

3.2.1 Citations from Low-resource Teams to434

High-resource Teams435

We further examined whether low-resource teams436

experienced a more pronounced decline in method-437

ology citations to work produced by high-resource438

teams.439

Figure 6 clearly shows a declining trend440

of methodology-use citations from low-resource441

teams to high-resource teams, with the down-442

ward trend accelerating after 2016 ((Mann Kendall443

test: τ = −0.846, p < 0.0001, slope =444

−0.0058, intercept = 0.3310). In compari-445

son, the overall trend across all ACL papers446

shows a much more gradual decline (Mann447

Kendall test: τ = −0.718, p < 0.001, slope =448

−0.0014, intercept = 0.3082).449

The strong and accelerating decrease in450

methodology-use citations from low-resource451

teams to high-resource teams suggests that it is452

increasingly more challenging for low-resource453

teams to engage with or build upon the method-454

ologies developed by high-resource teams.455

3.2.2 Citations from Low-resource Teams to456

High-resource Teams between Trending457

Topics and Declining Topics458

Combining the resource and topic factors, we fur-459

ther compared methodology-use citations from460

low-resource teams to high-resource teams among461

trending and declining topics.462

Figure 7C shows the same trend that463

methodology-use citations have been declin-464

ing for both trending topics (Mann Kendall465

test: τ = −0.600, p < 0.05, slope =466

−0.0067, intercept = 0.2983) and declin-467

ing topics (Mann Kendall test: τ = −0.527, p <468

0.05, slope = −0.0047, intercept = 0.3448).469

Additionally, methodology-use citations are470

0.33

0.30

0.27

Year
20162010 2022

Proportion of Methodology Citations

ACL-OCLLow-Resource to High-Resource

Figure 6: The proportion of methodology citations
for citations from low-resource teams to high-resource
teams, compared with the proportion of methodology
citations to all ACL anthology papers.

consistently less prevalent in trending topics 471

(average proportion for trending topics: 0.27; 472

declining topics: 0.32). Both patterns support the 473

interpretation that low-resource teams face greater 474

challenges in adopting methods from high-resource 475

teams, particularly in trending research areas. 476
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A. Trending Topics B Declining Topics
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Figure 7: Citation intent from low-resource teams to
high-resource teams for citations to papers with trend-
ing and declining topics. (A) and (B) show the pro-
portions of different citation intents for citations from
low-resource teams to high-resource teams for papers
with trending topics (A) and declining topics (B), respec-
tively. (C) further compares the proportion of methodol-
ogy citations in trending topics and declining topics.

To further validate our findings, we conducted 477

a linear regression analysis, using the proportion 478

of methodology citations received by each cited 479

paper as the dependent variable. We aggregated 480

methodology-use citations at the paper level and 481

included three key predictors: (1) the maximum 482

predicted research expenditure among the cited pa- 483

per’s co-author affiliations as a proxy for institu- 484

tional resource level, (2) the publication year, and 485

(3) the normalized topic popularity of the cited 486

paper based on the topic popularity ranking from 487

Figure 2. 488
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Table 2: Linear Regression Results

Dependent variable:

Proportion of Methodology Citations

(1) (2) (3)

Topic Popularity -0.097∗∗∗ (0.002) -0.072∗∗∗ (0.007)
Topic Popularity Gap -0.118∗∗∗ (0.013)
Year -0.010∗∗∗ (0.002) -0.020∗∗∗ (0.007) 0.020∗∗ (0.008)
Resource -0.016∗∗∗ (0.003)
Resource Gap -0.029∗∗ (0.013) -0.033∗∗ (0.015)
Constant 0.329∗∗∗ (0.002) 0.324∗∗∗ (0.008) 0.438∗∗∗ (0.009)

Observations 99,481 19,915 13,290
R2 0.023 0.007 0.007
Adjusted R2 0.022 0.007 0.007
Residual Std. Error 0.197 (df = 99477) 0.277 (df = 19911) 0.251 (df = 13286)
F Statistic 763.412∗∗∗ (df = 3; 99477) 50.091∗∗∗ (df = 3; 19911) 31.145∗∗∗ (df = 3; 13286)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

As shown in Table 2, the results indicate that the489

proportion of methodology-use citations is signifi-490

cantly and negatively associated with cited team’s491

resource level, the popularity of the cited paper’s492

topic, and publication year. In additional models,493

we find that larger gaps in resource levels and topic494

popularity between citing and cited teams are also495

significantly associated with fewer methodology496

citations. These findings reinforce the interpreta-497

tion that institutional and topical asymmetries may498

increasingly constrain methodological reuse, par-499

ticularly disadvantaging low-resource teams when500

citing high-resource work in trending areas.501

The results combined provide more evidence502

that resource barriers limit the adoption of methods503

proposed by high-resource teams, and such a phe-504

nomenon is more serious for publications related to505

trending topics. According to (Jurgens et al., 2018),506

such a trend could indicate a decrease in reusable507

technologies such as models and datasets, and eval-508

uations of tools. Such a decrease could be related509

to the increasing resource gap in the field of AI. We510

also visualized the proportion of non-methodology511

citations. Latour (Latour, 1987) suggests that non-512

methodological citations are important for defend-513

ing proposed ideas. We can interpret from the in-514

crease in non-methodology citations that there is515

an increased need to defend newly proposed ideas,516

and increasingly less consensus in the ACL anthol-517

ogy community. Such interpretation makes sense518

as AI is fast-growing, and new ideas need to be in-519

troduced to an increasingly more interdisciplinary 520

community. 521

4 Discussion 522

Our finding shows that high-resource research 523

teams have been focusing on trending AI topics, 524

while low-resource teams focus on declining AI 525

topics. This might suggest that access to resources 526

such as high-performance computing infrastruc- 527

ture and large-scale datasets could influence which 528

research directions are feasible to pursue. Low- 529

resource institutions may be constrained to explore 530

research directions that do not require extensive 531

computational power, even if those areas are be- 532

coming less relevant to the AI research commu- 533

nity (Togelius and Yannakakis, 2023). Our study 534

also shows that research produced by high-resource 535

teams is becoming increasingly difficult for other 536

researchers, especially those from low-resource in- 537

stitutions, to utilize or build upon. 538

This phenomenon has long-term consequences 539

for the diversity of AI research. If certain topics 540

and methods become inaccessible due to resource 541

constraints, researchers with fewer resources may 542

struggle to contribute meaningfully to emerging 543

research areas. This could lead to an increased 544

concentration of influence within a small group of 545

well-resourced institutions, limiting the diversity 546

of perspectives and innovation in AI (Abdalla et al., 547

2023; Togelius and Yannakakis, 2023). 548
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This raises important questions about the role549

of high-resource organizations, such as industry550

companies, in shaping the AI research landscape.551

Industry research teams have played a critical role552

by developing large-scale computational infrastruc-553

ture, curating extensive datasets, and publishing554

impactful AI research. Industry-academia collab-555

orations have traditionally been seen as a means556

of technology transfer—where academic discover-557

ies are translated into practical applications. The558

current dynamics suggest that industry research559

may be operating in a way that restricts, rather560

than facilitates, knowledge dissemination. If left561

unaddressed, this could exacerbate disparities in562

AI research and limit opportunities for researchers563

outside of well-funded institutions (Ahmed et al.,564

2023).565

Given these findings, this study highlights the566

need for actions from researchers, universities,567

companies, policymakers, funding agencies, to568

bridge the gap between high-resource and low-569

resource institutions. Our result could better inform570

strategies to ensure that the field remains accessi-571

ble, diverse, and open to innovation from a broader572

range of contributors.573

5 Conclusion574

In this work, by analyzing the research topics and575

citation intent, we investigate the disparities be-576

tween low-resource and high-resource institutions577

in the natural language processing research com-578

munity. Our findings indicate that high-resource579

teams have been focusing on research topics that580

are gaining popularity, whereas low-resource teams581

have been more likely to work on topics that are582

becoming less prominent. This suggests that ac-583

cess to resources such as computational power and584

large datasets plays a significant role in determining585

what research topic a team can study. Furthermore,586

our result reveals that research produced by high-587

resource teams is becoming increasingly difficult588

for other researchers to build upon. Such results589

suggest a growing divide in AI research, where ad-590

vancements driven by high-resource industry corpo-591

rations and universities may inadvertently limit the592

accessibility of cutting-edge research to those with593

fewer resources. These findings indicate the need594

for more inclusive research practices and collabo-595

rative efforts to ensure that AI innovation remains596

accessible to a broader research community. Fu-597

ture work should explore potential strategies for598

bridging this gap. 599

Limitations 600

We are only focusing on research work before 2023 601

due to the limitations of the ACL-OCL dataset. 602

However, we would argue that with the newer ad- 603

vancements such as GPT-4 and ChatGPT (Ma et al.; 604

OpenAI, 2023), the trend we observed in this study 605

should remain valid if not more severe. While we 606

compared low-resource and high-resource teams, 607

researchers with different affiliations, such as in- 608

dustry companies and academia universities, do re- 609

search for different reasons, and the funding mech- 610

anisms for different institutions are different. Our 611

findings do not account for such differences. On 612

the other hand, impact from high-resource teams is 613

not only present in publications, but also in other 614

means, such as software packages. In our work, us- 615

ing only citations, we cannot account for the use of 616

software packages. Lastly, most findings from this 617

work are correlational rather than causal, yet we 618

believe our results could provide evidence future 619

work could build upon. 620
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A Appendix 786

Table 3: ACL submission topics

Topic Name

Machine Translation
Dialogue and Interactive Systems
Sentiment Analysis
Information Extraction
Question Answering
Syntax: Tagging, Chunking and Parsing / ML
Summarization
Semantics: Sentence-level Semantics, Textual Inference and Other areas
NLP for Biomed
Speech recognition, text-to-speech and spoken language understanding
Computational Social Science and Cultural Analytics
Language Model
Semantics: Sentence-level Semantics, Textual Inference and Other areas
Multimodality and Language Grounding to Vision, Robotics and Beyond
Syntax: Tagging, Chunking and Parsing / ML
Discourse and Pragmatics
Phonology, Morphology and Word Segmentation
Grammar Correction
Resources and Evaluation
Generation
Argument Mining
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Table 4: Feature importance for the random forest model

Feature Name Feature Importance

Number of citations 0.339028
Number of publications 0.172261
Number of venue-level references 0.083720
Number of venue-level references 0.083224
Number of works referenced 0.050995
Average researcher h-index 0.048643
Number of co-institutions 0.035174
Number of institutions cited 0.033076
Number of institution-level references 0.032882
Maximum researcher h-index 0.028772
Number of researchers 0.027982
Number of institution-level references 0.026424
Median researcher h-index 0.025503
Number of authors cited 0.012300
Minimum researcher h-index 0.000015

Table 5: Bibliometric features used for predicting research expenditures for information and computing science.

Name Description

Number of publications The number of publications affiliated with the institu-
tion of interest

Number of citations The number of citations received by publications
affiliated with the institution of interest

Number of co-institutions The number of other institutions collaborating with
the institution of interest on a publication

Number of researchers The number of researchers affiliated with the institu-
tion of interest

Average researcher h-index Average h-index of researchers affiliated with the
institution of interest

Maximum researcher h-index Maximum h-index of researchers affiliated with the
institution of interest

Minimum researcher h-index Minimum h-index of researchers affiliated with the
institution of interest

Median researcher h-index Median h-index of researchers affiliated with the in-
stitution of interest

Number of works cited The number of works cited by publications affiliated
with the institution of interest

Number of author-level citations The number of times authors not affiliated with the
institution of interest got cited by work affiliated with
the institution of interest

Number of authors cited The number of authors cited by publications affiliated
with the institution of interest

Number of venue-level citations The number of times other venues got cited by work
affiliated with the institution of interest

Number of venues cited The number of venues cited by publications affiliated
with the institution of interest

Number of institution-level citations The number of times other institutions got cited by
work affiliated with the institution of interest

Number of institutions cited The number of institutions cited by publications affil-
iated with the institution of interest
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