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ABSTRACT 

Traumatic brain injury (TBI) is a major cause of death and disability in the United States. Time to treatment is often 

related to patient outcome. Access to cerebral imaging data in a timely manner is a vital component of patient care. 

Current methods of detecting and quantifying intracranial pathology can be time-consuming and require careful review 

of 2D/3D patient images by a radiologist. Additional time is needed for image protocoling, acquisition, and processing. 

These steps often occur in series, adding more time to the process and potentially delaying time-dependent management 

decisions for patients with traumatic brain injury. 

 

Our team adapted machine learning and computer vision methods to develop a technique that rapidly and automatically 

detects CT-identifiable lesions. Specifically, we use scale invariant feature transform (SIFT)1 and deep convolutional 

neural networks (CNN)2 to identify important image features that can distinguish TBI lesions from background data. Our 

learning algorithm is a linear support vector machine (SVM)3. Further, we also employ tools from topological data 

analysis (TDA) for gleaning insights into the correlation patterns between healthy and pathological data. The technique 

was validated using 409 CT scans of the brain, acquired via the Progesterone for the Treatment of Traumatic Brain 

Injury phase III clinical trial (ProTECT_III) which studied patients with moderate to severe TBI4. CT data were 

annotated by a central radiologist and included patients with positive and negative scans. Additionally, the largest lesion 

on each positive scan was manually segmented. We reserved 80% of the data for training the SVM and used the 

remaining 20% for testing. Preliminary results are promising with 92.55% prediction accuracy (sensitivity = 91.15%, 

specificity = 93.45%), indicating the potential usefulness of this technique in clinical scenarios. 

 

Keywords: Traumatic Brain Injury (TBI), Scale Invariant Feature Transform (SIFT), Convolutional Neural Networks 
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1. INTRODUCTION 

In the United States, traumatic brain injury (TBI) is responsible for disability in 5.3 million people, 2.8 million 

emergency department visits per year, and one third of all trauma-related mortality5. TBI diagnosis and severity 

classification are commonly evaluated via mechanism of injury, brain function (Glasgow Coma Score), and medical 

imaging6,7. Severe TBI is often complicated by intracranial hemorrhage8. Such hemorrhages can be dynamic and expand 

over time, worsening injury9,10. Clinical experience has shown that prompt treatment of patients with severe TBI is 

directly related to improved patient outcome11,12.  

 

Neuroimaging is often instrumental in confirming the presence of brain trauma soon after a patient arrives at the 

emergency department. Qualities of brain hemorrhage identified on neuroimaging, such as estimated lesion volume and 
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location, are considered valuable data for prognostication and patient management13–15. In patients arriving at the 

emergency department within 24 hours of injury, and for whom neuroimaging is indicated, computed tomography (CT) 

is usually considered the first choice for assessing suspected TBI16–18. Advances in image processing and diagnostics 

will reduce time to treatment after TBI and improve survival. 

 

Interpretation of brain CT images is most often dependent on the availability of a neuro-radiologist. While their expertise 

is advantageous, a process that can rapidly and automatically provide information regarding the need for emergent 

intervention – such as an expanding hematoma, would provide added value to the emergency care team. Moreover, the 

current techniques used by most radiologists to estimate hemorrhage volume from imaging data may be inaccurate, 

especially for large and more irregularly-shaped lesions19,20. Significant discrepancy has also been shown between the 

clinical interpretation of head CT by emergency medicine teams and by more specialized neuroradiologists, suggesting 

some level of inconsistency in CT interpretation across providers21. Even among neuroradiologists, statistically 

significant differences in interpretation have been shown22,23, though the clinical impact of these differences might be 

slight24. There is also an inevitable delay in patient care caused by waiting for the scan to be reviewed. Such concerns 

motivate a more efficient method of identifying brain pathology from CT while maintaining or improving accuracy.  

 

A potential solution is an automatic TBI detection tool that can accurately identify hemorrhage presence and volume 

from CT data in terms of injury severity and lesion characteristics. There have been several previous studies that attempt 

to automatically detect TBI characteristics25,26 as well as predict TBI severity score and intracranial pressure. Other 

research has demonstrated the viability of various machine learning approaches to detecting or delineating ischemic and 

hemorrhagic lesions in CT data27–30. However, these studies have been conducted on relatively small data sets (with 62 

or fewer manually segmented positive cases), and performance of these methods on larger CT data sets has not been 

thoroughly explored. There have also been several attempts at automated segmentation and classification of hemorrhagic 

lesions or tumors from magnetic resonance (MR) data31–38. Recent results from MR have been promising, but MR is not 

readily available in most trauma centers and is more expensive. 

 

In this work, we propose a machine learning approach to rapidly and automatically detect the presence of hyperdense 

regions indicative of brain hemorrhage in a large (n=409) CT data set. With the motivation that the TBI lesions differ 

from healthy tissue in their intensity characteristics on CT, we employ the scale-invariant feature transform (SIFT) and 

convolutional neural networks (CNN) for extracting intensity features. We then train a linear SVM for automatically 

detecting TBI lesion in CT. The two different features are compared in terms of accuracy, sensitivity, and specificity of 

classification performance. Further, we employ novel tools from topological data analysis to examine the topological 

characteristics of our data set and derive conclusions that confirm our SVM results. Our methodologies could be 

implemented in parallel with standard image processing to precede diagnostic interpretation by the radiologist. Findings 

which are potentially of concern would be flagged for immediate review by the physician specialist, leading to a 

reduction in the time to identify and treat intracranial pathology detected on brain imaging.  

2. METHODS 

Data 

The CT volumes used in this study were collected during the ProTECTIII phase 3 multicenter clinical trial designed to 

test the efficacy of intravenous progesterone on patient outcome following moderate to severe TBI4. All DICOM data 

used in this study were captured within four hours of injury and subsequently anonymized. The initial slice thickness of 

these data ranges from 1.5 to 5 mm. Imaging reveals the contrast between high-density regions representing localized 

intracranial hemorrhage and normal density regions representing non-pathological brain tissue. A heterogeneous cross-

section of hemorrhage types is represented in this data set. Each case was individually examined by a central 

neuroradiologist as part of the ProTECTIII trial and marked as positive or negative for TBI-related pathology.  

 

Of the 882 baseline scans, 409 were chosen for this study. Each selected image that was marked positive underwent 

advanced image analysis via manual segmentation by a trained research assistant under the supervision of physicians in 

diagnostic imaging. The largest lesion in each positive case was segmented using 3D Slicer39, as seen in figure 1, after 

the data were normalized through resampling. Of the 409 cases in our study, 222 cases featured visible lesions and the 

remaining 187 cases did not feature visible lesions on initial CT imaging. 80% of the cases were randomly selected for 

training the machine learning algorithm, and the remaining 20% of cases were used for testing the algorithm. As our 
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ground truth, each CT slice was labeled as positive if it contained a pathological lesion identified by the neuroradiologist 

and via manual segmentation. CT slices from cases identified as negative for visible pathology by the neuroradiologist, 

were labeled as negative, and did not undergo resampling. 

 

This data set was subjected to rigorous physiologic monitoring of subjects and documentation of patient outcomes, 

potentially of interest to future studies. In addition to the baseline scans used in this study, the larger data set includes 

over 2200 follow-up scans captured at regular time intervals post-injury. The volumetric resampling and illustration 

protocol developed as part of this study (which will eventually be applied to all of the scans of the data set) was as 

follows: first, thick-slice positive CT volumes were re-thinned to a uniform slice thickness of 1.5mm and symmetrized 

about the midsagittal plane of the brain, both using Aquarius (TeraRecon Inc, 2012). The largest lesion in each positive 

case, identified by the neuroradiologist, was then traced by hand on each CT slice using 3D Slicer (v.4.5), producing 

ground truth lesion labels for all volumes positive for pathology. The resulting processed data is a well-curated set of 

valuable clinical and volumetric information that was uniformly collected for ease of comparison. 

 

         

(a)            (b)               (c) 

Figure 1. Semi-automated 3D Illustration: (a) Axial computed tomography (CT) image containing a hyperdense 

region representing a traumatic intraparenchymal hemorrhage (IPH) located in the right frontal lobe (b) The same CT 

image, in which the lesion has been traced and labelled using 3D Slicer (c) Three-dimensional rendering of the same 

IPH generated using 3D Slicer, oriented within the DICOM volume of the patient’s skull; the letters A, S, P, and I 

correspond with anatomical directions about the patient’s skull (anterior, superior, posterior, and inferior, respectively). 
 

Methodology 

Given CT slices from all the training cases with positive (with lesion) and negative (no lesion) ground truth annotations, 

our goal was to predict whether new slices contained a lesion. Further, using the slice predictions, we wanted to predict 

whether a new case (i.e. a whole CT volume) contains pathology. We divide our prediction methodology into two stages: 

feature extraction and machine learning algorithm, as explained below. We then briefly describe the topological data 

analysis methodology.  

2.1.1 Feature Extraction  

Feature extraction is one of the key components in computer vision. In this study, one of the goals was to identify the 

right image features that can help distinguish between pathological and healthy brain tissue. We observed that lesion-

containing regions differ from normal brain tissue in their CT intensity (Hounsfield) pattern (see figures 1(a) and 1(b)). 

We also observed that the lesion detector should be invariant to scale (i.e. independent of the size of the lesion), invariant 

to rotation, and invariant to translation (i.e. independent of the specific orientation or location of the lesion). With these 

conditions in mind, we employed two different types of image features: SIFT1 and CNN2. Below, we briefly describe 

how the features are computed. 

 

SIFT features are computed by first extracting key points in the CT slices that are local extrema of the difference of 

Gaussian filter response across space and scales. The characteristic scale of the key point and the dominant gradient 
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direction (in the neighborhood of the key point) are assigned to each key point. Then SIFT descriptors are computed at 

all the key points by concatenating histograms of image gradient orientations around each key point. Each SIFT 

descriptor is a 128-dimensional vector encoding the local image intensity gradient orientation information. To represent 

each CT slice using SIFT features, we use the bag of visual words model for images40. We first pool all SIFT descriptors 

from all the training slices, gathered from the training cases, and vector quantize them using the K-means clustering 

algorithm. This gives us K cluster centers, each of which is a 128-dimensional vector. Then for each CT slice, we assign 

its SIFT features to their closest cluster centers and build a histogram of the SIFT features assigned to each of the 

clusters. This histogram is further normalized such that it adds to 1. This K dimensional histogram is our final 

representation for each CT slice.  

 

A CNN is a multi-layered artificial neural network with alternating convolutional and pooling filters in its different 

layers. The CNN is trained by minimizing the loss function that penalizes the deviation between the predicted and true 

labels using the back propagation algorithm. In this work, we used the AlexNet, which is a network with 5 convolutional 

layers and 3 fully connected layers41. As a first step towards employing CNNs in our work, we experimented using the 

network weights pre-trained on the ImageNet (natural images) data set42. Each CT slice was then fed independently into 

this network and the output of the first fully connected layer was used as the feature vector for the slice.  

 

2.1.2 Machine Learning Algorithm 

Our machine learning algorithm is a linear SVM3. The SVM objective function consists of the average hinge loss to 

measure data fidelity and the norm of the weight vector to impose regularization. This convex objective function was 

minimized using the stochastic gradient descent algorithm to find the optimal hyperplane that separates the positive 

(with lesion) from the negative (no lesion) CT slices in the training data. We classified our testing data (slices from the 

testing cases) as positive or negative and computed our prediction accuracy by comparing them with the ground truth 

slice annotations. Furthermore, to incorporate the observation that lesions always appear on CT slices that are 

contiguous, we use a simple neighborhood voting rule to decide if a slice prediction is to be retained. If both the above 

and below neighbor slice predictions match, then the prediction of the slice under consideration is also set to match its 

neighbor predictions. To transition from slice based prediction to case based prediction, we predict the whole case as 

positive if its CT scan has at least 6 mm of lesion in the axial dimension. This criterion is based on the estimation that the 

smallest segmented lesion visible in our data set was approximately 6 mm in the axial dimension. 

 

2.1.3 Topological Data Analysis 

Recently, techniques from the fields of algebraic topology and the study of large finite metric spaces have led to novel 

applications in analyzing the topological properties of data. This field of study, called topological data analysis (TDA)43, 

enables us to understand the “shape” of the data, i.e. how the data clusters (patterns of correlation), and if there are 

structures that correlate with certain characteristics, e.g. clinical outcomes. Here, we apply TDA methodologies to glean 

insights into the correlation patterns among healthy and pathological CT slices. Specifically, we use the Ayasdi 

software44,45 to build the so called simplicial complex representation of the SIFT visual word histogram data obtained 

above from CT slices. This involves first choosing a function called the lens function, which transforms the data to a 

lower dimensional space. Then the co-domain of the lens function is divided into overlapping intervals, whose domains 

are further clustered using a chosen distance metric in the original data (SIFT visual word histograms in our case) space. 

Clusters that have common data points are connected through links. The obtained connectivity pattern is visualized by 

2D projection onto the computer screen. 

3. RESULTS 

For all our experiments, we used MATLAB46 software for all computations. We used the vlfeat library47 for both SIFT 

feature extraction and SVM training. The value of K for computing the bag of visual words was empirically set to 200. 

To set the regularization parameter for the SVM, we used 10-fold cross validation. For computing the CNN features, we 

used the MatConvNet2 MATLAB library. We extracted the output of the first fully connected layer, a 4096 length 

vector, as the feature for each CT slice. For TDA computations and visualization, we used the Ayasdi software. 

 

We evaluated the classification performance of the SVM in terms of accuracy, sensitivity, and specificity for both SIFT 

and CNN. Table 1 shows our results. The top half of the table shows the slice based prediction performance, i.e. the 
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Accuracy Sensitivity Specificity

Slice Prediction Performance (Positive or Negative)
92.55% 91.15% 93.45%

90.50% 93.96% 88.29%

Case Prediction Performance (Positive or Negative)
SIFT 90.00% 100.00% 79.00%

CNN 82.50% 100.00% 62.00%

Feature

SIFT

CNN

 

 
 

 

ability of the SVM to predict the presence of traumatic lesions on slices of CT data. The bottom half of the table shows 

the case based prediction performance, i.e. the ability of the SVM to predict the presence of traumatic lesion in volumes 

of CT data (whole cases).  

 

 

Table 1: Classifier performance measures. Both slice (2D) and case (3D) prediction results were averaged over 

500 runs of the SVM.  

 

As we can see, the SVM achieves high classification performance across the board for both slice as well as case based 

prediction. In particular, we note that the SIFT features outperform the CNN features. But we wish to remind here that 

the CNN was pre-trained on the ImageNet data. We expect the CNN performance to improve with fine-tuned training on 

our data. Our results for SIFT performance on 2D slice classification were further investigated through ROC curve 

analysis (figure 2). As we observe, we achieve a high area under the curve (AUC) and low equal error rate (EER).  

 

Next, we present results of topological data analysis using Ayasdi software. For the lens function, we used the 

neighborhood lens, which is based on embedding a nearest neighbor graph in 2D Euclidean space. For clustering, we 

used variance normalized Euclidean distance as the metric. Figure 3 shows the 2D visualization of the simplicial 

complex using Ayasdi's algorithm. Nodes in the network represent clusters of bag of visual word histogram features 

from CT slices and edges connect nodes that contain features in common. We want to point out that the actual position 

of the nodes or the length of the edges themselves don't carry any information. The nodes are colored red for 

pathological slices and green for healthy slices. As we can see, the nodes from pathological slices are densely connected 

to each other and so are nodes from healthy slices. This shows that the pathological slices are more similar to each other 

than to healthy slices and vice-versa. We also observe that the pathological and healthy slices form separable clusters in 

the topological space, confirming our SVM results. Some of the nodes have intermediate coloration (neither green nor 

red), like orange, since those nodes have a mix of healthy as well as pathological slices. There is additional information 

contained in the TDA diagram, including loops as well as several outlying nodes, whose analysis will be part of our 

future work.   
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Figure 2. ROC Curve Analysis: We see that the classifier achieves very high area under the curve and very low 

equal error rate.  

 

 

 

Figure 3. Topological Data Analysis (TDA): Analyzing the topological structure of the data, in which nodes 

represent clusters of bag of visual word histogram features from image slices. The edges connect nodes that 

contain features in common. The nodes are colored red for pathological slices and green for healthy slices. As we 

can see, the pathological and healthy slices are densely connected among themselves and form separable clusters 

in the topological space, confirming our SVM results. 

 

4. CONCLUSIONS AND FUTURE WORK 

We present a machine learning approach for detecting the presence of hyperdense lesions in CT data, both in individual 

slices and entire cases, and demonstrate high accuracy, specificity, and selectivity. To our knowledge, this study is the 

first successful use of a data set of this size for automatic detection of lesions due to TBI. As we notice in the results, 

SIFT performs better than the CNN features. This could be due in part to our use of the ImageNET pre-trained CNN 

network. We also applied topological data analysis methodologies and presented visualizations of patterns of correlation 

among healthy and pathological CT slices. These tools further confirm our SVM results. Future work will involve 
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training a CNN on our CT data from scratch, which might improve the performance of the CNN, resulting in more 

accurate predictions. We also plan to incorporate the slice neighborhood constraints and spatial constraints more 

rigorously using probabilistic graphical models and extend our algorithm to automatically segment the lesions in the data 

set. Finally, we plan to investigate the topological properties of the data and their relationship with patient outcomes 

more deeply using TDA methodologies like persistent homology.  
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