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Abstract

The statistical consistency of surrogate losses for discrete prediction tasks is often
checked via the condition of calibration. However, directly verifying calibration
can be arduous. Recent work shows that for polyhedral surrogates, a less arduous
condition, indirect elicitation (IE), is still equivalent to calibration. We give the
first results of this type for non-polyhedral surrogates, specifically the class of
convex differentiable losses. We first prove that under mild conditions, IE and
calibration are equivalent for one-dimensional losses in this class. We construct a
counter-example that shows that this equivalence fails in higher dimensions. This
motivates the introduction of strong IE, a strengthened form of IE that is equally
easy to verify. We establish that strong IE implies calibration for differentiable
surrogates and is both necessary and sufficient for strongly convex, differentiable
surrogates. Finally, we apply these results to a range of problems to demonstrate
the power of IE and strong IE for designing and analyzing consistent differentiable
surrogates.

1 Introduction

In supervised learning problems, the goal of the learner is to output a model that accurately predicts
labels on unseen feature vectors. These problems are specified by target losses, metrics intended to
reflect model error. Natural choices for target losses arise in discrete prediction tasks like classification,
ranking, and structured prediction. As minimizing discrete target losses directly is generally NP-hard,
a convex surrogate loss is typically used instead. A link function maps surrogate reports (predictions)
to target reports. Beyond ease of optimization, the surrogate and link must be statistically consistent
with respect to the target loss, meaning that minimizing the surrogate should closely approximate
minimizing the target given sufficient training data. In the finite-outcome setting, consistency turns
out to be equivalent to a simpler condition called calibration [Bartlett et al., 2006, Tewari and Bartlett,
2007, Ramaswamy and Agarwal, 2016]. In particular, calibration has been central to the design of
new consistent surrogates, serving as the key condition which must be satisfied.

While simpler than consistency, directly verifying calibration is often cumbersome. In particu-
lar, calibration requires that all sequences of reports converging to the surrogate minimizers (i.e.,
minimizers of the expected surrogate loss), eventually link to target minimizers (Figure 1). This
complexity of verifying calibration in turn impedes the design of consistent surrogates. What easily
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Figure 1: Calibration vs. Indirect Elicitation. Calibration requires surrogate minimizers, as well
as all sequences converging to surrogate minimizers link to target minimizers. In general, it is not
trivial to choose a universal threshold past which the sequences link as desired. Determining such
a threshold requires careful reasoning about the relative positions of surrogate minimizers across
different outcome distributions, i.e., Γ(p) relative to Γ(q) for q ̸= p. IE is analytically easier to verify,
as it only requires that surrogate minimizers link to target minimizers. Moreover, IE can be thought of
as a geometric condition on the probability simplex, which can directly lead to design insights (§4).

verifiable conditions still imply calibration for important classes of surrogate losses? One promising
candidate is indirect elicitation (IE), which only requires that surrogate minimizers be linked to target
minimizers (Figure 1). Finocchiaro et al. [2019] established an equivalence between calibration and
IE for polyhedral surrogates, which paved the way for the design of novel, consistent surrogates
for several open target losses of interest [Wang and Scott, 2020, Thilagar et al., 2022, Finocchiaro
et al., 2022b]. Whether or not this equivalence extends to other classes of surrogates has remained
open. More generally, beyond the polyhedral case, we still lack simpler conditions for calibration that
support the design of new surrogates. We give the first such results—IE-like conditions which are
easier to verify than calibration—for the broad and practically relevant class of convex, differentiable
losses. We then demonstrate the power of these conditions to streamline the design process.

Theoretical Contributions. We first show that IE and calibration are equivalent for 1-d convex,
differentiable losses (§ 3).2 In higher dimensions, however, IE no longer implies calibration, even for
strongly convex surrogates (Example 2). To address this disparity, we propose a novel strengthening of
IE we call strong indirect elicitation (strong IE; see Definition 6 in § 3.4). Strong IE is as easy to verify
as IE, as it only depends on surrogate minimizers and not on the surrounding sequences (§ 4.1). We
prove that under mild technical assumptions, strong IE implies calibration for differentiable surrogates
(Theorem 2). Moreover, for the important class of strongly convex, differentiable surrogates, we show
that strong IE is both necessary and sufficient for calibration (Theorem 3). All our calibration proofs
are constructive, providing explicit link functions as part of the argument. Taken together, our results
deepen our understanding of the conditions required for statistical consistency of surrogate losses.

Significance for Design. We illustrate with two examples that proving IE or strong IE is strictly
simpler than directly proving calibration, thus drastically shortening the pathway to establishing
consistency (§4). We then demonstrate how the geometric insights from these simpler conditions
enable the construction of consistent, 1-d differentiable surrogates for any orderable target loss
(Theorem 4). As an application of Theorem 4, we construct a novel 1-d surrogate that is convex,
differentiable and consistent with respect to the ordinal regression loss. Together, these applications
offer instructive proofs of concept and highlight how IE and strong IE can guide efficient surrogate
design. We conclude with important future directions (§5).

Related Work. Previous works have also studied easier-to-verify conditions that imply calibration for
certain classes of surrogate losses; our work is unique in proposing conditions for arbitrary discrete
targets that are broadly applicable to the class of differentiable surrogates. The first conditions for
calibration were studied for the important case of multi-class classification, where the target loss
is the 0-1 loss. For binary classification, Bartlett et al. [2006] study 1-d surrogates and show that
these are calibrated if and only if the loss, in margin form ϕ(uy), is differentiable at 0 and ϕ′(0) < 0.
In multi-class classification, Tewari and Bartlett [2007] study higher dimensional surrogates with
symmetric superprediction sets [Williamson and Cranko, 2023]. They establish a technical condition
on these sets that allows for easier conditions for calibration such as ensuring that the optimizer sets
are singletons. The first to formally study the relationship between IE and calibration were Agarwal
and Agarwal [2015]. However, their results do not apply to general discrete targets. For polyhedral

2The statement does not hold if one relaxes differentiability; see Example 1.
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losses, Ramaswamy and Agarwal [2016] showed that an IE-like condition is sufficient for calibration
and Finocchiaro et al. [2024] showed that IE is equivalent to calibration for arbitrary discrete targets.
Specific applications where IE influenced the design and analysis of surrogates/calibration include
Finocchiaro et al. [2022b,a], Wang and Scott [2020], Nueve et al. [2024]. Our study of 1-d surrogates
is heavily informed by the structure and elicitation of the target properties elucidated in Lambert et al.
[2008], Lambert [2011], Steinwart et al. [2014], Finocchiaro and Frongillo [2018].

2 Background and Preliminaries

Symbol Description Symbol Description

Y = [n] Set of labels R = [k] Set of target reports
ℓ : R → Rn Discrete target loss function L : Rd → Rn Surrogate loss function
ψ : Rd → R Link function ∆n Probability simplex
γ : ∆n ⇒ R Property elicited by ℓ Γ : ∆n ⇒ Rd Property elicited by L

γr Level-set for γ at r Γu Level-set for Γ at u

Table 1: Summary of key notation

2.1 Targets, Surrogates and Link Functions

Given a finite label space Y and a finite report space R, let ℓ : R → R|Y| be a discrete target
loss associated with some prediction task. ℓ(·)y represents the loss when the label is y ∈ Y . Unless
specified otherwise, we assume Y = [n] and R = [k], for n, k ≥ 2. We denote the probability
simplex over Y by ∆n := {p ∈ Rn|pi ≥ 0,∀i ∈ [n], p⊤1n = 1}. As in Finocchiaro et al. [2020,
2024], we assume that the target loss under consideration is non-redundant, i.e., every report r ∈ R
uniquely minimizes the expected loss for some distribution, i.e., ∀r ∈ R,∃p ∈ ∆n such that
argminr′∈R⟨p, ℓ(r′)⟩ = {r}.
Since ℓ is discrete and non-convex, it is hard to optimize. Our objective then, is to replace ℓ with
a surrogate loss, defined over a continuous prediction space, say Rd. Denote the surrogate by:
L : Rd → Rn. For y ∈ [n], let L(·)y : Rd → R denote the yth component of L. To enable
optimization of the surrogate, we assume that each component of the surrogate is convex, i.e.,
L(·)y : Rd → R is convex for each y ∈ Y . Furthermore, since we are interested in analyzing
differentiable surrogate losses, we will also assume that L(·)y is differentiable for each y ∈ Y . For
all our theoretical results, we will make the following assumption:
Assumption 1. argminu∈Rd L(u)y is non-empty and compact for each y ∈ [n].

Within the class of differentiable functions, Assumption 1 encompasses an important range of
surrogates—including those with strongly convex components and strictly convex minimizable
components. It also covers more nuanced cases, such as the surrogate described in Example 7 in
Appendix A, which features two Huber-like components. Although each component is uniquely min-
imizable, not all their convex combinations are. We demonstrate in Section 4 that a one-dimensional
instantiation of this loss is calibrated with respect to the ordinal regression target loss.

As the objective is to minimize ℓ, we must systematically map predictions in Rd back toR. To do so,
we introduce a link function ψ : Rd → R.

2.2 Property Elicitation, Calibration and Indirect Elicitation

Any set-valued function defined on ∆n is called a property. We say a loss elicits a property, if it maps
each distribution to the minimizer of the expected loss under said distribution. We work with two key
properties, denoted γ and Γ, which we define below:
Definition 1 (Target Property, Elicits, Level Sets). The target loss ℓ : R → Rn is said to elicit the
property γ : ∆n ⇒ R, or in short-hand γ := prop[ℓ] if

γ(p) := argmin
r∈R

⟨p, ℓ(r)⟩ .
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For any r ∈ R, denote γr ⊆ ∆n as the level-set for γ at r, i.e., γr := {p ∈ ∆n|r ∈ γ(p)}. SinceR
is a finite set, we say γ is a finite property.

Definition 2 (Surrogate Property, Elicits, Level Sets). The surrogate loss L : Rd → Rn is said to
elicit the property Γ : ∆n ⇒ Rd, or in short-hand Γ := prop[L] if

Γ(p) := argmin
u∈Rd

⟨p, L(u)⟩ .

For any u ∈ Rd, denote Γu ⊆ ∆n as the level-set for Γ at u, i.e., Γu := {p ∈ ∆n|u ∈ Γ(p)}.

In order to ensure that a surrogate-link pair is actually solving the target problem, we need to ensure
that statistical consistency holds. In the finite outcome setting, it is well known that consistency
reduces to the simpler notion of calibration [Bartlett et al., 2006, Tewari and Bartlett, 2007, Ra-
maswamy and Agarwal, 2016]. We thus focus on calibration throughout this paper. Given some
distribution p ∈ ∆n, and the corresponding surrogate minimizer(s) Γ(p), calibration roughly requires
that all sequences of approximate minimizers link to the optimal target report.
Definition 3 (Calibration). Given a discrete target ℓ, a surrogate-link pair (L,ψ) is calibrated if
∀p ∈ ∆n:

inf
u∈Rd:ψ(u)/∈γ(p)

⟨p, L(u)⟩ > inf
u∈Rd
⟨p, L(u)⟩ .

We also say L is calibrated, if there exists a link ψ, such that (L,ψ) is calibrated.

We next define indirect elicitation, a condition even weaker than calibration (see Theorem 6 in
Appendix B for a proof).
Definition 4 (Indirect Elicitation). A surrogate-link pair, (L,ψ) indirectly elicits a discrete target ℓ,
if ∀u ∈ Rd, Γu ⊆ γψ(u). We also say L indirectly elicits ℓ, if ∀u ∈ Rd,∃r ∈ R such that Γu ⊆ γr.

For polyhedral surrogates, Finocchiaro et al. [2024] established that indirect elicitation and calibration
are equivalent. This result is striking, as indirect elicitation is significantly easier to verify than
calibration. The latter requires ensuring that, for each distribution p ∈ ∆n, any sequence of reports
minimizing ⟨p, L(·)⟩ in the limit, eventually links to γ(p). Equivalently, it demands that any sequence
converging to Γ(p) ultimately links to γ(p) (see Lemma 17 in Appendix C). In contrast, verifying
indirect elicitation only necessitates linking optimal surrogate reports to optimal target reports.
Specifically, if Γu = ∅ for some report u then IE holds trivially and there is nothing to check.
Otherwise, if p ∈ Γ(u), IE demands that ψ(u) ∈ γ(p). Thus, IE is fully determined by the structure
of the minimizing reports, i.e., Γ(∆n) := {Γ(p)|p ∈ ∆n}, whereas calibration requires analyzing
Γ(p) along with the local behavior of reports around it.

3 Motivating Counterexamples and Main Results

Our primary aim is to identify simpler conditions that yield calibration for differentiable surrogates.
IE seems to be an ideal candidate: it is substantially easier to verify, is known to be equivalent for
polyhedral losses, and all previously studied calibrated convex surrogates satisfy IE. However, it
is not quite strong enough in general. We present two novel counterexamples (Example 1 in 3.1,
Example 2 in 3.3) that demonstrate why IE is insufficient for calibration. These examples are far from
pathological, and thus demonstrate exactly why IE is too weak for this setting. Example 2 motivates
a new condition, strong IE that we go onto show implies calibration for convex, differentiable
surrogates, and is both necessary and sufficient if the surrogate has strongly convex components.

3.1 Indirect elicitation and calibration are not equivalent

All previously studied convex surrogates that are known to indirectly elicit a target loss are calibrated
for some link function ψ.3 The literature has therefore treated both conditions as roughly equivalent
to each other. Yet, this is not generally true. We identify the first known example of a loss that
satisfies IE but cannot be calibrated for any choice of link function.

3For example, consider the hinge surrogate for 0-1 loss, Y = R = {−1, 1} and L(u)y = max(0, 1− uy).
If the link boundary is at u = 1, ψ(u) = 1 ⇐⇒ u ≥ 1, (L,ψ) satisfies IE but is not calibrated. However, if
the link boundary is moved to u = 0, then (L,ψ) is calibrated.
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Figure 2: The expected loss for two surrogates for abstain loss. Left: EpLcusp at p = (0.5, 0.5), it is
clear that no link yields calibration for the abstain target (Example 1). Right: Ep[Lsmooth], a smoothed
version of Lcusp that is calibrated, again depicted at p = (0.5, 0.5) (Example 6, Appendix A).

Example 1 (Cusp). Let ℓabs : {−1,⊥, 1} → R2 be the target loss for binary classification with
abstain level 1

4 using the label space Y = {−1, 1} [Bartlett and Wegkamp, 2008].

ℓabs(r)y =


0 r = y

1/4 r = ⊥
1 r = −y

.

Let Lcusp : R→ R2 be the surrogate loss with Lcusp(u)y = (1− uy)2 + |u|, and ψ(u) = sign(u) for
u ̸= 0 and ψ(0) = ⊥ (abstain). The expected loss of Lcusp, Ep[L(u)] at p = (0.5, 0.5) is plotted in
Figure 2 (left).

It is target-optimal to abstain whenever the most likely outcome occurs with a probability of at most
3/4, i.e., γ⊥ := {p ∈ ∆2 : max{p1, p2} ≤ 3/4} = {p ∈ ∆2|p1 ∈ [1/4, 3/4]}. Now, (Lcusp, ψ)
indirectly elicits ℓ as Γ0 = γ⊥. Note that for any link to satisfy IE, it must agree with ψ in [−0.5, 0.5].
However, calibration is not satisfied for any p1 ∈ (1/4, 3/4), for example: set p = (0.5, 0.5).
Consider any positive sequence {ut > 0}t≥0 with ut → 0. Then, limt→∞⟨p, ut⟩ = infu∈R⟨p, L(u)⟩.
However, each ut links to 1 and never the correct report, ⊥. Indeed any link that satisfies IE exhibits
this behavior (the sequence {ut} eventually links to 1). Thus, there is no other choice that could yield
calibration. To restore calibration, it suffices to “smooth out” the non-differentiable cusp at u = 0,
to get a differentiable surrogate as in Figure 2. See Example 6 in Appendix A.

Lcusp is a remarkably simple non-polyhedral loss: it is strongly convex, one-dimensional, and
differentiable everywhere except for a single cusp at u = 0. It is as ‘nice’ as a non-differentiable loss
can be. Yet, despite indirectly eliciting ℓabs, it still fails to satisfy calibration. Since smoothing out the
cusp yields a calibrated loss, a natural question arises: does differentiability, combined with indirect
elicitation, always imply calibration? Differentiable losses are well-structured and extensively
studied in machine learning as they are optimization-friendly and enjoy fast convergence rates. This
makes the question of understanding the connection between IE and calibration under differentiability
all the more compelling.

3.2 Differentiability and IE imply calibration for d = 1

In 1-dimension, we answer the above question affirmatively: IE does imply calibration for differen-
tiable real-valued surrogates. We provide a proof sketch of our theorem in this section.

To set the stage, we recall that a target loss ℓ that is indirectly elicited by a 1-d surrogate (differentiable
or not) possesses special structure. In particular, Finocchiaro et al. [2020] showed that the property
γ := prop[ℓ] corresponding to such a target satisfies a condition known as orderability, which roughly
states that there exists a connected, 1-dimensional path that crosses each of the target level-sets.
Definition 5 (Orderable [Lambert, 2011]). A finite property γ : ∆n ⇒ R is orderable, if there is
an enumeration of R = {r1, r2, ..., rk} such that for all i ≤ k − 1, we have that γrj ∩ γrj+1 is a
hyperplane intersected with ∆n.
Theorem 1. Let L : R→ Rn be a convex, differentiable surrogate that indirectly elicits ℓ. Under
Assumption 1, L is calibrated with respect to ℓ.

Proof sketch: We first show that for each j ∈ [k− 1], the boundary between adjacent target cells, i.e.,
γrj∩γrj+1

overlaps completely with some surrogate level-set. So, for some uj ∈ R, Γuj = γrj∩γrj+1
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Figure 3: Let Y = {1, 2, 3}, R = {1, 2}. Three candidate target losses ℓ1, ℓ2, ℓ3 : R → R3, that
LCE (Example 2) could be a surrogate for. For each i ∈ {1, 2, 3}, ℓi(1) = (1, 1, 1). Whereas,
ℓ1(2) = (5/2, 5/4, 0), ℓ2(2) = (2, 1, 0) and ℓ3(2) = (5/3, 5/6, 0). The target boundary elicited
by ℓ1 (resp. ℓ3) is the red line segment joining qa1 and qb1 (resp. qa3 and qb3). The target boundary
elicited by ℓ2 is the red line segment joining p and (0, 1, 0). The level sets of LCE are the blue
points. All level sets of LCE are single points, barring Γ(0,0), which is the entire segment spanning
from p = (1/2, 0, 1/2) to (0, 1/2, 1/2) (blue line segment). Left: no IE. The segment level set
crosses the target boundary, so LCE cannot indirectly elicit ℓ1. Center: IE. The segment level set
does not cross, but just touches the target boundary, so IE holds, however, strong IE does not hold.
Right: strong IE. The segment level set lies entirely within the target cell, so strong IE holds. Note:
qa1 = (0, 0.8, 0.2), qb1 = (0.4, 0, 0.6), qa3 = (0.2, 0.8, 0), qb3 = (0.6, 0, 0.4).

(Lemma 20). We then establish that for any two distributions p, q ∈ ∆n that lie on either side of the
target boundary γrj ∩ γrj+1 , optimal reports Γ(p),Γ(q) must lie on either side of uj (Lemma 21).
Together, these results establish the existence of a connected, 1-dimensional path through surrogate
minimizers that faithfully mirrors any connected 1-dimensional path traversing the target level sets.
This naturally induces a link ψ that tracks the paths by mapping uj to either of {rj , rj+1}, and
mapping Γ(p) and Γ(q) to rj and rj+1 (Theorem 10).
The full proof and constructive link ψ are presented in Appendix D. It differs significantly from the
polyhedral case, since barring convexity, differentiable and polyhedral losses have no commonality
in their underlying structure.

3.3 Differentiability and IE do not imply calibration for d > 1

Unfortunately, there is no direct analogue of Theorem 1 in higher dimensions. In particular, the
following 2-dimensional surrogate is differentiable and satisfies IE for a target, but is not calibrated.
Example 2 (Counterexample: IE without calibration). Let Y = {1, 2, 3},R = {1, 2} and consider
LCE : R2 → RY , where

LCE(u) =

 u21 + u1 + u22 + 2u2
2u21 + u1 + 2u22 + 2u2
3u21 − u1 + u22 − 2u2

 .

Each component of LCE is differentiable and strongly convex - and so LCE is minimizable. LCE
indirectly elicits the target ℓ2 : R → R3 shown in Figure 3 (center, red). However, there is no link
function ψ : R2 → R, such that the pair (LCE, ψ) is calibrated with respect to ℓ2. In particular, there
exists a sequence of reports that uniformly link to 1, but converge to (0, 0), which has to link to 2.

More formally, define for 0 < ϵ ≤ 1, pϵ := (1/2+ ϵ/2, 0, 1/2− ϵ/2). Then Γ(pϵ) =
{(

−ϵ
5−ϵ ,

−2ϵ
3+ϵ

)}
.

Notice that γ(pϵ) = {1} =⇒ ψ(Γ(pϵ)) = 1 necessarily. Simultaneously, Γ(0,0) ⊆ γ2 and
Γ(0,0) ̸⊆ γ1, =⇒ ψ((0, 0)) = 2. Denote p∗ := (0, 1/2, 1/2) ∈ Γ(0,0) and observe that γ(p∗)
= {2}. Then, since Γ(pϵ) → (0, 0) as ϵ → 0, it follows by continuity that ⟨p∗, LCE(Γ(pϵ))⟩ →
⟨p∗, LCE((0, 0))⟩ = infu∈R2⟨p∗, L(u)⟩. Thus, LCE violates calibration for any choice of link ψ.

Similarly to Lcusp, the surrogate LCE is extremely well-behaved. Each of its components are differen-
tiable, strongly convex, minimizable, and the minimizing reports are always compact sets. Yet, LCE
violates calibration despite satisfying IE with respect to ℓ2.

Turning our attention again to Figure 3 (center), where level-sets are depicted in blue: we see that
geometrically, the violation stems from the location of Γ(0,0), where Γ = prop[LCE]. Every surrogate
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level-set is a singleton, except Γ(0,0) (blue line segment). Notice that Γ(0,0) just touches the (red)
target boundary γ1 ∩ γ2 at the distribution (1/2, 0, 1/2). Shifting γ1 ∩ γ2 to the right to get ℓ1
immediately violates IE, since Γu ̸⊆ γr for any r ∈ {1, 2}, when γ = prop[ℓ1] (Figure 3, left). On
the other hand, shifting the boundary γ1 ∩ γ2 by any amount to the left yields a target loss of form ℓ3,
for which LCE is calibrated (Figure 3, right). So, while indirect elicitation requires that the segment
level set be contained within γ2, calibration is only achieved for LCE when Γ(0,0) is bounded away
from the target boundary.

3.4 Strong indirect elicitation

Example 2 suggests that while calibration fails under IE, bounding the level set away from the
target boundary resolves the problem. We formalize this idea with a new condition, strong indirect
elicitation, which is a strengthening of indirect elicitation (see Theorem 5 in Appendix B).

Definition 6 (Strong Indirect Elicitation). Given a target loss ℓ, let γ∗S = {p : γ(p) = S}. A
surrogate L strongly indirectly elicits ℓ if ∀u, ∃S ⊆ R such that Γu ⊆ γ∗S; equivalently, if for every
u ∈ Rd and every p, q ∈ Γu, γ(p) = γ(q).

Revisiting Example 2: Notice that LCE does not satisfy strong IE with respect to ℓ2, since
γ(p) = {1, 2}, while γ((0, 1/2, 1/2)) = {2} and both p, (0, 1/2, 1/2) ∈ Γ(0,0). However,
γ(p) = γ((0, 1/2, 1/2)) = {2}, when γ = prop[ℓ3]. Thus, LCE satisfies strong IE with respect to ℓ3.

Though close to IE in definition, strong IE turns out to be much more powerful for differentiable
surrogates, in that it implies calibration.4

Theorem 2. Let L be a convex, differentiable surrogate that strongly indirectly elicits ℓ. Under
Assumption 1, L is calibrated with respect to ℓ.

Proof sketch: Fix p ∈ ∆n. Key to our proof is establishing that the minimizers “surrounding” Γ(p)
link to γ(p). Define the level-set bundle at p to be the collection of all level-sets passing through p, i.e.,
ΓΓ(p) := ∪u∈Γ(p)Γu. Repeated applications of strong IE establish the following: for a sufficiently
small ϵp > 0, the surrogate minimizers of distributions in ‘ϵp-proximity’ to the level-set bundle at
p link to γ(p) (Lemma 29). For simplicity, denote this set of minimizers as the ϵp-minimizers. We
have thus far that any valid link ψ must ensure that ψ(ϵp-minimizers) ∈ γ(p). By establishing upper-
hemicontinuity of the set-valued map Γ(·) : Rd ⇒ R (Lemma 26), we show that for some δp > 0
there exists a δp-neighborhood around Γ(p) wherein all minimizers are ϵp-minimizers (Lemma 27).
Thus, all minimizers surrounding Γ(p) link to γ(p). In effect, this means that surrogate minimizers
that link to different target reports are well-separated in space which is imperative for calibration.
We conclude via an explicit construction to extend this link ψ to a calibrated link defined for all
surrogate reports, including the nowhere-optimal ones (Theorem 11). The reader may refer to Figure
7 in Appendix F for visual intuition of the proof.

Finally, we show that restricting to surrogates with strongly convex components makes strong IE
necessary for calibration, and thus strong IE and calibration are equivalent for these surrogates.

Theorem 3. Let L : Rd → Rn be a surrogate, such that L(·)y : Rd → R is strongly convex and
differentiable for each y ∈ [n]. Then, L is calibrated with respect to ℓ if and only if it strongly
indirectly elicits ℓ.

Proof sketch: Strong convexity and differentiability together imply Assumption 1. The sufficiency
of strong IE thus follows by Theorem 2. For necessity, we show that violating strong IE implies
violating calibration. If IE is violated, calibration is violated immediately. So let us assume we have
IE but not strong IE. We show that under strong convexity, Γ is continuous and single-valued (see
Lemma 35 for a proof). Next, we show the existence of a report u ∈ Rd and a pair of distributions
p, q ∈ Γu, such that γ(p) ⊂ γ(q) (see Lemma 36). Thus, ∃r ∈ R : r ∈ γ(q), however, r /∈ γ(p). We
then show that there exists a sequence of reports qt → q, such that γ(qt) = r. As Γ is single-valued
there exists ut = Γ(qt),∀t. By continuity of Γ, qt → q =⇒ Γ(qt)→ Γ(q) ⇐⇒ ut → u. Further,
by the continuity of ⟨p, L(·)⟩, ⟨p, L(ut)⟩ → ⟨p, L(u)⟩ = infv∈Rd⟨p, L(v)⟩ since p ∈ Γu. However,
since γ(qt) = {r}, ψ(ut) = r necessarily. At the same time, r /∈ γ(p). Hence, calibration is violated
at p. See Theorem 12 in Appendix G for a full proof.

4Interestingly, no polyhedral surrogate satisfies strong IE; see Theorem 7 in Appendix B
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4 Applications

As IE and strong IE are easier to verify than calibration (Figure 1), our main results above lead to
improved analytical methods to analyze and design consistent surrogates, which we now demonstrate.

4.1 Ease of verification

IE and strong IE are both completely characterized by the relation of optimal surrogate reports to
optimal target reports. Importantly, neither condition requires analyzing sequences converging to
optimal reports. Thus both conditions are strictly simpler to verify than calibration. While strong
IE is a more stringent requirement than IE, checking strong IE is just as easy as checking IE at the
individual-report level (see Proposition 1 in Appendix B).

We now present two examples illustrating how concluding calibration via IE or strong IE can
significantly simplify the analysis: whereas direct calibration proofs require characterizing minimizers
and analyzing nearby sequences, establishing IE or strong IE only requires reasoning about the
minimizers themselves. (see also Figure 1 for visual intuition)
Example 3 (Universally calibrated surrogate). Lemma 11 of Ramaswamy and Agarwal [2016]
proposes a n − 1-dimensional, strongly convex, differentiable surrogate that is calibrated for all
discrete targets. After the first claim in their proof (see pages 29-30 Ramaswamy and Agarwal
[2016]):

Proof via strong IE

Fix p ∈ ∆n. Minimizing ⟨p, L(u)⟩ = ∑n−1
j=1

(
pj(uj − 1)2 + (1 − pj)u2j

)
yields the unique

minimizer u∗ = (p1, . . . , pn−1)
⊤. Hence |Γ(p)| = 1 and Γu = {p}. Immediately, L satisfies

strong IE, and thus L is calibrated by Theorem 2.

Our approach shortens the proof from an entire page to a few lines. We also obviate the need for
subtle arguments regarding the convergence of sequences that were required in the original proof.

Example 4 (Subset-ranking surrogates). Theorem 3 of Ramaswamy et al. [2013] proposes a low-
dimensional calibrated surrogate for subset-ranking targets common in information retrieval. Our
results significantly shorten their calibration proof (see pages 3-4, Ramaswamy et al. [2013]):

Proof via strong IE

The surrogate is strongly convex and differentiable, so strong IE suffices for calibration. Pick
any u ∈ Rd and any p,q ∈ Γu. To prove strong IE, it suffices to show that γ(p) = γ(q). u is
the unique minimizer for ⟨p, L(·)⟩ and ⟨q, L(·)⟩ =⇒ (∗) up = uq = u. By line 1 of page 4,
pT ℓt = (up)⊤βt + c. Similarly, q⊤ℓt = (uq)⊤βt + c. By (∗),p⊤ℓt = q⊤ℓt for any t ∈ T
(target reports). Thus, argmint∈T p

⊤ℓt = argmint∈T q
⊤ℓt. So, γ(p) = γ(q).

This bypasses all subsequent proof steps (25 lines) following the first line of page 4 wherein intricate
reasoning to show all sequences converging to minimizer sets are appropriately linked.

4.2 Design of 1-dimensional surrogates

Example 3 demonstrates the existence of an n− 1 dimensional surrogate that is calibrated for any
target loss with n outcomes. However, the complexity of several optimization algorithms is often
linear, or even quadratic in the domain dimension. Thus, a major research goal of the surrogate
loss literature is the design of dimension-efficient surrogates (ideally d << n− 1 for large n) when
possible [Ramaswamy and Agarwal, 2012, Ramaswamy et al., 2013, 2015, Finocchiaro et al., 2019,
Blondel, 2019, Finocchiaro et al., 2021]. Recall that Theorem 1 established the equivalence between
IE and calibration for 1-d differentiable surrogates. This equivalence enables us to construct a 1-d
surrogate that is convex and differentiable, for any orderable target loss. We formalize this statement
below in Theorem 4 and provide a proof sketch that highlights the key ideas behind the construction.
Theorem 4. Given an orderable target ℓ : R → Rn, there exists a convex, differentiable surrogate
L : R→ Rn satisfying Assumption 1, which is calibrated with respect to ℓ.
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Figure 4: Let Y = R = {1, 2, 3}. The solid-peach colored lines depict the target boundaries elicited
by the ordinal regression loss ℓord : R → R3. The dotted-blue lines depict the level-sets of the
surrogate LH : R→ R3 defined in Example 5. Since no level-set of LH : R→ R3 crosses from one
target cell to another, IE holds. By Theorem 1 calibration follows.

Proof sketch. Since γ := prop[ℓ] is orderable, there is an orderable enumeration (r1, . . . , rk) of
reports (Def. 5). By Theorem 11 of Finocchiaro et al. [2020], there exist vectors v1, . . . , vk−1 ∈ Rn
such that (i) for each j ∈ [k − 1], ⟨p, vj⟩ = 0 for all p ∈ γrj ∩ γrj+1

, and (ii) the coordinates are
monotone, i.e., vi,y ≤ vi+1,y for every i ∈ [k − 2] and y ∈ [n].

Let V ∈ Rn×(k−1) have columns v1, . . . , vk−1, and write V j for the j-th row. For each j ∈ [n],
define L(·)j := LinIntGrad(V j) (Subroutine 1, Appendix H). The subroutine first specifies a
map gj : R → R on [1, k − 1] by linear interpolation of the values V j [1], . . . , V j [k − 1], so that
gj(i) = V j [i] for all integers i ∈ {1, . . . , k − 1}; hence gj is continuous and nondecreasing on
(1, k − 1). It then extends gj outside [1, k − 1]. In particular, for x ≤ 1, gj(x) = X[1] + (x − 1).
And for x ≥ k − 1, gj(x) = X[k − 1] + (x − (k − 1)). The construction ensures that continuity
and monotonicity of gj are preserved across R. Furthermore, gj crosses 0 either at a singleton, or at
a compact interval. Finally, the subroutine sets L(u)j =

∫ u
1
gj(t) dt, so (L(·)j)′ = gj . Lemma 37

proves that each L(·)j is convex, belongs to C1(R), has nonempty compact minimizers (the sets
{g−1
j (0)|j ∈ [n]}), and so L satisfies Assumption 1. Moreover, at integers i ∈ {1, . . . , k − 1} we

have ∇L(i) = vi. In Theorem 13 of Appendix H, we show that these properties imply L indirectly
elicits ℓ. Hence L is calibrated with respect to ℓ by Theorem 1.

As an application of Theorem 4, we present a novel surrogate for the ordinal regression target loss in
Example 5. While previous works have proposed surrogates for ordinal regression [Ramaswamy and
Agarwal, 2016, Pedregosa et al., 2017, Finocchiaro et al., 2019], none of the surrogates therein are
simultaneously convex, differentiable, minimizable and 1-dimensional.

Example 5 (Huber-like surrogate for ordinal regression). Here Y = R = {1, 2, 3}. Predictions
farther away from the true outcome are more heavily penalized. The 3-class ordinal regression loss is
ℓord(y, r) := |y − r|, for y, r ∈ {1, 2, 3}. Then an application of Theorem 4 yields the surrogate

LH : R→ R3;LH(x) = [f(x− 2), h(x), f(x+ 2)],

where h(x) = x2

2 and f(x) = x2

2 for −1 ≤ x ≤ 1 and f(x) = |x| − 0.5 otherwise.

LH indirectly elicits ℓord and is therefore calibrated with respect to it. Figure 4 depicts the target
(peach colored lines) and surrogate (blue dotted lines) level-sets for ℓord and LH. The target ℓord poses
a non-trivial challenge. In particular, for a 1-d convex, differentiable surrogate L to indirectly elicit
ℓord, it must admit a non-unique minimizer at (0, 1/2, 0) since the two target-boundaries intersect
at this point. On the other hand, the minimizers elsewhere must be unique. LH is precisely such a
minimizer. For LH, Γ((1/2, 0, 1/2)) = [−1, 1], whereas for every other p ∈ ∆3, |Γ(p)| = 1.

5 Discussion and Future Directions

Our results are the first to establish general calibration conditions on the widely used class of convex
differentiable surrogate losses in relation to arbitrary discrete target losses. We anticipate that the
generality of our results will aid further advances in application and theory. Our conditions are
inspired by the equivalence of IE and calibration for polyhedral surrogates. Like IE, strong IE is
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substantially easier to verify than checking calibration directly. Hence, strong IE for differentiable
losses could play a similar role to IE for polyhedral losses, where IE has been used to establish
convex calibration dimension bounds [Ramaswamy and Agarwal, 2016] and to design and analyze
numerous surrogates [Finocchiaro et al., 2022b,a, Wang and Scott, 2020, Nueve et al., 2024]. Indeed,
we already make first steps in regards to design, by proposing a generalized construction for designing
differentiable 1-dimensional surrogates for orderable targets.

Lower bounds. A promising direction for future work is to use strong IE to study prediction
dimension. We believe it can establish lower bounds on the prediction dimension of calibrated
surrogates for important target losses. Finocchiaro et al. [2021] leverage IE as a tool to establish
such lower bounds. Recall that strong IE is necessary for calibration for the class of strongly convex,
differentiable surrogate. At the same time, strong IE imposes more stringent constraints on surrogates
than IE. We therefore believe strong IE offers promise to establish novel lower bounds in this setting.

Relaxing Assumption 1. Theorems 1 and 2 assume that argminu∈Rd L(·)y is non-empty and
compact for each y ∈ [n]. Theorem 8 in Appendix C shows that Assumption 1 is equivalent to
the condition that Γ(p) is non-empty and compact for every p ∈ ∆n. The non-emptiness, i.e.,
minimizability of the functions {⟨p, L(·)⟩|p ∈ ∆n} is mathematically well-motivated. Indeed, if
minimizability fails for some distribution p ∈ ∆n, then Γ(p) is empty. In this case, checking
calibration at p necessitates analyzing sequences of form {ut}t∈N+ such that limt→∞⟨p, L(ut)⟩ =
infu∈Rd⟨p, L(u)⟩. Thus, while understanding calibration for non-minimizable losses is an important
and interesting direction in its own right, IE and strong IE are not the appropriate tools to do so.
We speculate instead that the recently developed theory on astral spaces [Dudík et al., 2022] can be
leveraged for this direction. Our assumption of compactness on Γ(p) is technical and necessary for
our proof approach, but may not be strictly necessary for strong IE to yield calibration. Differentiable
surrogates with unbounded (and thus non-compact) minimizers are common in practice (for example:
the squared hinge loss, the modified Huber loss, etc.) Relaxing this assumption is therefore a valuable
direction for future research and could potentially enhance the practical appeal of strong IE.
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Figure 5: The figure on the left plots the superprediction set, {L(u) : u ∈ R+}, of a surrogate loss
that IEs but is not calibrated. To see non-calibration, notice that there is only one possible link.
Fix p = [0.5, 0.5]⊤. The optimal loss is achieved by arg infv∈{L(u):u∈R+} ⟨v, p⟩. Thus the loss is
optimized by v⊥ which must link to the abstain report ⊥. However, consider the points to the left of
v⊥, which link to +1. The infimum of the loss over these points for p is equal to the loss of v⊥, thus
violating calibration.

Example 6. Let the target loss be binary classification with abstain level 1
4 , Lsmooth : R→ R2.

Lsmooth(u)y := (1− uy)2. (1)

This is the smooth loss plotted on the right side of Figure 5. For any p ∈ [0, 1], Γ((p, 1−p)) = 2p−1.
Hence Γu = {( 1+u2 , 1−u2 )}. Clearly, each component of Lsmooth is strongly convex and differentiable.
Thus, if Lsmooth strongly indirectly elicits ℓ, then Lsmooth is calibrated with respect to ℓ by Theorem
3. Since Γu is a singleton, strong IE follows trivially by definition, and so Lsmooth is calibrated with
respect to ℓ. "Smoothening out" Lcusp from Example 1 thus resolves calibration.

Example 7 (Convex Combinations of Huber losses). For u ∈ Rd, let

fH(u) =

{∥u∥2 − 1
2 ∥u∥2 ≥ 1

1
2∥u∥22 ∥u∥2 ≤ 1

be the Huber loss in Rd. Define

LH(u) =

(
fH(u+ (2, 0, . . . , 0))
fH(u− (2, 0, . . . , 0))

)
be the sum of two Huber losses. Then, for p = 1/2, Γ(p) = [−1, 1]× {0}d−1. For p > 1/2, Γ(p) is
a single point in (1, 2]× {0}d−1. For p < 1/2, Γ(p) is a single point in [−2,−1)× {0}d−1. We can
see this visually for d = 1 in Figure 6.

12



Figure 6: The plot of ⟨p, LH(u)⟩ for 3 different values of p with d = 1. In higher dimensions, the
loss is minimized by exactly the same points, since by construction the minima will always lie on the
u1-axis. Left: p = 1/4, the ⟨p, LH(u)⟩ has a unique minimum at u = −5/3. Center: p = 1/2, the
⟨p, LH(u)⟩ is minimized by any choice of u ∈ [−1, 1]. Left: p = 3/4, the ⟨p, LH(u)⟩ has a unique
minimum at u = 5/3.

Lemma 1. rank(∇LCE(u)) is 1 when u = (0, 0) and 2 otherwise.

Proof.

∇LCE(u) =

(
2u1 + 1 2u2 + 2
4u1 + 1 4u2 + 2
6u1 − 1 2u2 − 2

)
.

Let v1 and v2 denote the first and second column of∇LCE(u) respectively. rank(∇LCE(u)) = 0 if
and only if v1 = v2 = 0. However, there is no choice of u1 or u2 such that either v1 or v2 are 0, so
rank(∇LCE(u)) ≥ 1 everywhere.

rank(∇LCE(u)) = 1 if and only if λv1 = v2 for some λ ∈ R. For this to hold for the first row of
∇LCE(u) we must have 2λu1 +λ = 2u2 +2, so u2 = λu1 +

λ
2 − 1. Similarly, using the second row

of∇LCE(u) implies u2 = λu1 +
λ
4 − 1

2 . This gives two equivalent expressions for u2, so we must
have λ

2 − 1 = λ
4 − 1

2 , so λ = 2. Plugging this into either of the expressions for u2 yields u2 = 2u1.
Finally, using these values of λ and u2 the last row of ∇LCE(u) becomes 12u1 − 2 = 4u1 − 2, so
u1 = 0, and thus u2 = 2u1 = 0 as well. Therefore, rank(∇LCE(u)) = 1 only when u = (0, 0).

For any other value of u, we then have rank(∇LCE(u)) ≥ 2, but since u ∈ R2, rank(∇LCE(u)) ≤ 2
everywhere. Therefore, for all u ̸= (0, 0), rank(∇LCE(u)) = 2.

B Property Elicitation, Level Sets and Minimizing Sets

Lemma 2. Let A,B ⊆ ∆n : A ⊂ B. Then Γ(A) ⊆ Γ(B)

Proof. Since A ⊆ B, we have that ∀a ∈ A, a ∈ B. So, ∀a ∈ A,Γ(a) ⊆ ∪b∈BΓ(b) = Γ(B). Thus,
Γ(A) = ∪a∈AΓ(a) ⊆ Γ(B)

Lemma 3. Consider any convex, differentiable L : Rd → Rn. Let p ∈ ∆n and u ∈ Rd. Then,
u ∈ Γ(p) ⇐⇒ ∇L(u)⊤p = 0d. Equivalently, Γu = {p ⊆ ∆n|∇L(u)⊤p = 0d}.

Proof. Since Ly is convex for every y ∈ [n], it follows that the function ⟨p, L(·)⟩ : Rd → R is convex
for any p ∈ ∆n. Now, since the domain of ⟨p, L(·)⟩ is open and the minimum is attained at some
u ∈ Rd, it follows that ∇⟨p, L(u)⟩ = 0d =⇒ ∇L(u)⊤p = 0d. Conversely, if ∇⟨p, L(u)⟩ = 0d,
then u ∈ Γ(p) by convexity of ⟨p, L(·)⟩.

Lemma 4. Any convex, differentiable surrogate L : Rd → Rn that indirectly elicits a target
ℓ : R → Rn satisfies rank(∇L(u)⊤) > 0 for every u ∈ Rd.

Proof. Assume to the contrary, i.e., ∃u ∈ Rd, such that, rank(∇L(u)⊤) = 0. By the rank-nullity
theorem, this means null(∇L(u)⊤) = n. So ∇L(u)⊤p = 0d is satisfied by any p ∈ ∆n. From
Lemma 3, we get that Γu = ∆n. We assume k = |R| ≥ 2. If not, the prediction problem is trivial,
so {1, 2} ⊆ R for any problem of interest. First consider the pair of discrete reports (1, 2). By the
non-redundancy of discrete reports, ∃p1 ∈ γ1, p2 ∈ γ2, such that ⟨p1, ℓ(·)⟩ is uniquely optimized
by the discrete prediction 1 and ⟨p2, ℓ(·)⟩ is uniquely optimized by the discrete prediction 2. Since
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Γu = ∆n, it follows that p1, p2 ∈ Γu. This means Γu ̸⊆ γ1, since p2 /∈ γ1, and similarly Γu ̸⊆ γ2.
Similarly, for any j ∈ R : j /∈ {1, 2}, consider the reports (1, j) and repeat the same rationale to
establish that Γu ̸⊆ γj . Thus, ∃u ∈ Rd such that Γu ̸⊆ γr, ∀r ∈ R, implying L does not indirectly
elicit ℓ by the definition of indirect elicitation.

Lemma 5. Let L : Rd → Rn be a convex, but not necessarily differentiable surrogate. Then for any
u ∈ Rd, Γu is compact.

Proof. Pick any u ∈ Rd. Since Γu ⊆ ∆n and ∆n is compact, it is clear that Γu is bounded. So it
suffices to show that Γu is closed. Let {pt}t∈N+

⊆ Γu and suppose that pt → p. We want to show that
p ∈ Γu. First note that since pt ∈ ∆n for each t, it follows that p ∈ ∆n by compactness of ∆n. Now,
pick any v ∈ Rd. It holds for each t ∈ N+ that ⟨pt, L(u)⟩ ≤ ⟨pt, L(v)⟩. Taking the limit as t→∞
on both sides, it holds that ⟨p, L(u)⟩ ≤ ⟨p, L(v)⟩ for any v ∈ Rd. Thus, u ∈ Γ(p) =⇒ p ∈ Γu.
Hence, Γu is closed.

Theorem 5. Let L : Rd → Rn be a surrogate that strongly indirectly elicits a target loss ℓ : R → Rn.
Then L indirectly elicits ℓ.

Proof. Pick any u ∈ Rd. By definition, there exists some S ⊆ R, such that γ(p) = S for every
p ∈ Γu. Equivalently, p ∈ ∩r∈Sγr for every p ∈ Γu. Thus, Γu ⊆ ∩r∈Sγr =⇒ ∃r ∈ R, such that
Γu ⊆ γr.
Theorem 6. Let L : Rd → Rn be a surrogate that is calibrated with respect to ℓ : R → Rn. Then L
indirectly elicits ℓ.

Proof. Since L is calibrated with respect to ℓ, there exists a link function ψ : Rd → R, such that,
(L,ψ) is calibrated with respect to ℓ. Suppose u ∈ Rd. If u /∈ Γ(∆n), then Γu = ∅ =⇒ Γu ⊆ γr,
∀r ∈ R yielding indirect elicitation. Now, suppose u ∈ Γ(∆n). We show that Γu ⊆ γψ(u).
Assume to the contrary. Then, there exists some p ∈ Γu, such that p /∈ γψ(u) =⇒ ψ(u) /∈ γ(p).
Then, infv∈Rd:ψ(v)/∈γ(p)⟨p, L(v)⟩ ≤ ⟨p, L(u)⟩ = infv∈Rd⟨p, L(v)⟩ since p ∈ Γu, hence violating
calibration. Thus, Γu ⊆ γψ(u) and so (L,ψ) indirectly elicit ℓ =⇒ L indirectly elicits ℓ.

Theorem 7. Let L : Rd → Rn be a polyhedral surrogate that indirectly elicits some target loss
ℓ : R → Rn. Then L does not strongly indirectly elicit ℓ.

Proof. We know from [Finocchiaro et al., 2024] that any polyhedral surrogate has a finite represen-
tative set S, i.e., S ⊂ Rd, such that S has a finite number of elements and that for any p ∈ ∆n,
there exists some u ∈ S, such that p ∈ Γu. We leverage this fact to prove our claim. Assume by
contradiction that L strongly indirectly elicits ℓ. Suppose WLOG that S = {u1, u2, ..., um}. Since
∪i∈[m]Γui

= ∆n, it follows that there exists some S′ ⊆ S, such that relint(γ1) ⊆ ∪v∈S′Γv. In
particular, S′ ⊆ S and the level-sets of the reports in S′ cover relint(γ1). Since S is finite, there
must exist a minimal subset of S, the level sets of whose elements cover relint(γ1). Assume S′ is
such a minimal covering subset. First, we claim that for any v ∈ S′, p ∈ Γv =⇒ γ(p) ∩ {1} ̸= ∅.
Assume not. Then ∃v ∈ S′, such that γ(p) ∩ {1} = ∅ for some p ∈ Γv. By strong IE, it holds
that γ(p) ∩ {1} = ∅,∀p ∈ Γv. Thus, if v ∈ S′, S′ can’t be minimal. Next, we claim that for
any v ∈ S′, p ∈ Γv =⇒ γ(p) = {1}. Assume not, then ∃v ∈ S′ : {1} ⊂ γ(p) for some
p ∈ Γv. By strong IE, it follows that ∀p ∈ Γv, {1} ⊂ γ(p) =⇒ ∀p ∈ Γv, p /∈ relint(γ1). Thus,
if v ∈ S′, S′ can’t be minimal. Hence, for every v ∈ S′, p ∈ Γv =⇒ γ(p) = {1}. Therefore,
relint(γ1) ̸⊂ ∪v∈S′Γv =⇒ relint(γ1) = ∪v∈S′Γv. However, S′ being a subset of finite S is itself
finite, and by Lemma 5, ∪v∈S′Γv is a finite union of closed sets implying that ∪v∈S′Γv itself must be
closed. On the other hand, relint(γ1) is not closed by definition and so relint(γ1) ̸= ∪v∈S′Γv . Hence,
L strongly indirectly eliciting ℓ yields a contradiction.

Lemma 6. Consider any convex, differentiable L : Rd → Rn. Suppose u ∈ Rd. Then Γu is a
polytope. If L : Rd → Rn indirectly elicits any target ℓ : R → Rn, then affdim(Γu) ≤ n− 2.

Proof. Recall by Lemma 3 that Γu = {p ∈ ∆n|∇L(u)⊤p = 0d}. In other words, Γu = ∆n ∩
ker(∇L(u)⊤). So Γu is the intersection of a polytope and a subspace, implying that Γu is itself a
polytope [Henk et al., 2017].
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Next, suppose L indirectly elicits some target ℓ. Then by Lemma 4, it holds that

d ≥ rank(∇L(u)⊤) > 0. Thus, 1 ≤ nullity(L(u)⊤) < n. So, Γu is the intersection of a set of
affine dimension n− 1 (i.e., ∆n) and a subspace of dimension at least 1 (i.e., ker(∇L(u))⊤). Thus,
affdim(Γu) ≤ n− 2.

Lemma 7. Suppose ℓ : R → Rn is an elicitable target loss, and that Y andR are finite sets. Suppose
further that each r ∈ R is non-redundant. Then for any r ∈ R, γr is a convex polytope, such that
affdim(γr) = n− 1.

Proof. This can be observed directly from the fact that any finite target is elicitable if and only
its cells γr (where, r ∈ R) form a power diagram [Lambert et al., 2008]. Power diagrams are
essentially weighted Voronoi diagrams. For more details on power diagram, we refer the reader to
[Aurenhammer, 1987].

Lemma 8. Let L : Rd → Rn be a convex, differentiable surrogate. Let ℓ : R → Rn. Let u ∈ Rd.
Suppose p, p′ ∈ Γu and that ∃S ⊆ R such that γ(p) ∩ γ(p′) = S ̸= ∅. Then, γ(q) ⊆ S, where
q := p+p′

2 .

Proof. First note that by convexity of Γu, q ∈ Γu =⇒ q ∈ ∆n. For i ∈ R, denote ℓi :=
(ℓ(1, i), ℓ(2, i), ..., ℓ(n, i)) as the loss vector corresponding to prediction i. Say j ∈ γ(q) =⇒
q⊤ℓj ≤ q⊤ℓi,∀i ∈ R. Now, suppose j /∈ S. Let t ∈ S =⇒ t ∈ γ(p) ∩ γ(p′). So, p′⊤ℓt ≤ p′⊤ℓj
and p⊤ℓt ≤ p⊤ℓj , with at least one inequality strict (as if both were equalities, then j ∈ S). So,
summing the strict inequality with the other inequality, we get that (p′ + p)⊤ℓt < (p′ + p)⊤ℓj =⇒
(p′+p)

2

⊤
ℓt <

(p′+p)
2

⊤
ℓj =⇒ q⊤ℓt < q⊤ℓj , which contradicts our supposition that j ∈ γ(q). Thus,

j ∈ S =⇒ γ(q) ⊆ S.

Lemma 9. Let L : Rd → Rn be a convex, differentiable surrogate. Let ℓ : R → Rn. Let u ∈ Rd,
such that, γ(p) ∩ γ(p′) ̸= ∅ for any p, p′ ∈ Γu. Let pm ∈ Γu : |γ(pm)| ≤ |γ(p)| for every p ∈ Γu.
Then, γ(pm) ⊆ γ(p),∀p ∈ Γu.

Proof. Suppose not. We know that γ(pm)∩ γ(p) ̸= ∅, so ∃S ⊆ R : γ(pm)∩ γ(p) = S ̸= ∅. Clearly,
S ⊂ γ(pm) and S ⊂ γ(p), since S ̸= γ(pm). Now, pick q = p+pm

2 . Since Γu is convex, q ∈ Γu.
Now, we know from Lemma 8 that γ(q) ⊆ S =⇒ |γ(q)| ≤ |S| < |γ(pm)| =⇒ |γ(q)| < |γ(pm)|.
However, since q ∈ Γu, this yields a contradiction.

Lemma 10. Let L : Rd → Rn be a convex, differentiable surrogate. Let ℓ : R → Rn. L indirectly
elicits ℓ if and only if ∀u ∈ Rd, it holds that γ(p) ∩ γ(p′) ̸= ∅, for any p, p′ ∈ Γu.

Proof. We first show the =⇒ direction. Since L indirectly elicits ℓ, it holds that ∀u ∈ Rd,∃r ∈ R,
such that Γu ⊆ γr. Pick any p, p′ ∈ Γu. Clearly, p, p′ ∈ γr =⇒ r ∈ γ(p) ∩ γ(p′) =⇒
γ(p) ∩ γ(p′) ̸= ∅, for any p, p′ ∈ Γu.

We now prove the ⇐= direction. Suppose that for any u ∈ Rd, it holds that γ(p) ∩ γ(p′) ̸= ∅
for any p, p′ ∈ Γu. Let pm ∈ Γu : |γ(pm)| ≤ |γ(p)|,∀p ∈ Γu. We know from Lemma 9, that
γ(pm) ⊆ γ(p),∀p ∈ Γu. This implies that ∃r ∈ R : r ∈ γ(pm) =⇒ r ∈ γ(p),∀p ∈ Γu =⇒
∃r ∈ R : p ∈ γr,∀p ∈ Γu =⇒ ∃r ∈ R : Γu ⊆ γr.
Lemma 11. Let L : Rd → Rn be a convex, differentiable surrogate. Let Cu ⊆ Γu be the set of
corners of Γu. Let ℓ : R → Rn. Suppose r ∈ R. Then, p ∈ γr for every p ∈ Cu ⇐⇒ Γu ⊆ γr.

Proof. Recall from Lemma 6 that for any u ∈ Rd, Γu is a polytope. Thus, a finite set Cu ⊆ Γu exists
such that Cu are the corners of Γu. Say ∃r ∈ R, such that p ∈ γr, ∀p ∈ Cu. Pick any q ∈ Γu. Clearly,
q ∈ conv(Cu) ⊆ γr, as γr is convex by Lemma 7. Thus, q ∈ γr =⇒ Γu ⊆ γr. For the reverse
direction, suppose Γu ⊆ γr. Let p ∈ Cu ⊆ Γu. Then p ∈ γr.
Lemma 12. Let L : Rd → Rn be a convex, differentiable surrogate. Let Cu ⊆ Γu be the set of
corners of Γu for any u ∈ Rd. Let ℓ : R → Rn. If ∃S ⊆ R : γ(p) = S for every p ∈ Cu then L
strongly indirectly elicits ℓ.
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Proof. Suppose γ(p) = S ⊆ R, for every p ∈ Cu. This implies that p ∈ relint(∩r∈Sγr) for
each p ∈ Cu =⇒ Cu ⊆ relint(∩r∈Sγr). Since γr is a convex polytope for each r ∈ S, the set
∩r∈Sγr is convex and so is the set relint(∩r∈Sγr). Hence, conv(Cu) ⊆ relint(∩r∈Sγr) =⇒ Γu ⊆
relint(∩r∈Sγr) =⇒ p ∈ relint(∩r∈Sγr),∀p ∈ Γu =⇒ γ(p) = S, ∀p ∈ Γu =⇒ γ(p) =
γ(p′),∀p, p′ ∈ Γu =⇒ strong indirect elicitation is satisfied.

Proposition 1. Let L : Rd → Rn be a convex, differentiable surrogate and let ℓ : R → Rn be
a target. Let u ∈ Rd be a report and suppose Cu is the finite set of corners for Γu. Then the set
{γ(p)|p ∈ Cu} suffices to check both indirect elicitation and strong indirect elicitation at u.

Proof. The proof follows by Lemmas 11 and 12.

C Properties of convex, differentiable functions

Lemma 13. Let f : Rd → R be a convex, differentiable function. Then argminu∈Rdf(u) is convex.

Proof. If argminu∈Rdf(u) = ∅, the result follows vacuously. Else, suppose f∗ = minu∈Rdf(u) and
that x, y ∈ argminu∈Rdf(u). Then for any λ ∈ [0, 1], f(λx+(1−λ)y) ≤ λ ·f(x)+(1−λ) ·f(y) =
λ · f∗ + (1− λ) · f∗ = f∗ =⇒ λ · x+ (1− λ) · y ∈ argminu∈Rdf(u),∀λ ∈ [0, 1].

Lemma 14. Let f : Rd → R be a convex finite function on Rd. Then argminu∈Rdf(u) is closed. If
argminu∈Rdf(u) is bounded, argminu∈Rdf(u) is compact.

Proof. By [Rockafellar, 1970, Corollary 10.1.1] f is continuous. By [Hiriart-Urruty and Lemaréchal,
1996, Prop 3.2.2] every sublevel-set of f is closed.

Lemma 15. Let f : Rd → R be a convex, differentiable function. Then f is continuously differen-
tiable.

Proof. See Corollary 25.5.1 of [Rockafellar, 1970].

Lemma 16. Let f : Rd → R be a convex, differentiable function. Suppose also that f is
minimizable and that the set argminu∈Rdf(u) is bounded. Let U∗ := argminu∈Rdf(u) and let
f∗ := minu∈Rdf(u). Then, for δ > 0, it holds that:

infu∈Rd\Bδ(U∗)f(u) = infu∈∂B̄δ(U∗)f(u) = minu∈∂B̄δ(U∗)f(u) > f∗

Proof. First, notice that since U∗ is bounded, it is compact by Lemma 14. Thus, B̄δ(U∗) \Bδ(U∗)
:= ∂B̄δ(U∗) is also compact. Since f is differentiable, it is continuous everywhere, and thus f attains
its infimum over the compact set ∂B̄δ(U∗). This proves that

inf
u∈∂B̄δ(U∗)

f(u) = min
u∈∂B̄δ(U∗)

f(u) > f∗,

where the final inequality holds as ∂B̄δ(U∗) ∩ U∗ = ∅. We are left to show that

inf
u∈Rd\Bδ(U∗)

f(u) = min
u∈∂B̄δ(U∗)

f(u).

Clearly, infu∈Rd\Bδ(U∗) f(u) ≤ minu∈∂B̄δ(U∗) f(u), so for the equality to fail, we would need
infu∈Rd\B̄δ(U∗) f(u) < minu∈∂B̄δ(U∗) f(u). This, in turn, requires that there exist u′ ∈ Rd \ B̄δ(U∗)
such that

f(u′) < min
u∈∂B̄δ(U∗)

f(u).

Pick any u∗ ∈ U∗ and consider the line segment conv(u∗, u
′
), connecting u∗ and u′. There exists

some v ∈ ∂B̄δ(U∗) such that v ∈ conv(u∗, u
′
). It holds that

f(v) > f(u′) > f(u∗),

which violates convexity of f since v ∈ conv(u∗, u
′
), completing the proof.
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Lemma 17. Let f : Rd → R be a convex, differentiable function. Suppose also that f is minimizable
and that the set U∗ := argminu∈Rdf(u) is bounded. Let f∗ := minu∈Rdf(u). Let {ut}t∈N+ be a
sequence in Rd. Then:

limt→∞d(ut,U∗) = 0 ⇐⇒ limt→∞f(ut) = f∗

Proof. We first show that:

lim
t→∞

d(ut,U∗) = 0 =⇒ lim
t→∞

f(ut) = f∗

Since U∗ is bounded, it is compact by Lemma 14. Pick δ > 0. There exists Tδ ∈ N+ such that for
every t ≥ Tδ ,

d(ut,U∗) < δ.

In particular, for each t ≥ Tδ , there exists u∗t ∈ U∗ such that

∥ut − u∗t ∥ < δ.

This implies ut ∈ Bδ(U∗) ⊆ B̄δ(U∗) for every t ≥ Tδ. Since U∗ is compact, B̄δ(U∗) is also
compact.

Now, f is differentiable and therefore continuous everywhere. Since B̄δ(U∗) is compact, f is
uniformly continuous within B̄δ(U∗). Pick ϵ > 0. It suffices to show the existence of some T ∈ N+

such that
|f(ut)− f∗| < ϵ, ∀t ≥ T.

By uniform continuity, there exists δϵ > 0 such that

|f(u)− f(v)| < ϵ, whenever ∥u− v∥ < δϵ and u, v ∈ B̄δ(U∗).

If δϵ ≥ δ, then for any ut with t ≥ Tδ ,
∥ut − u∗t ∥ < δ ≤ δϵ,

where u∗t ∈ U∗, implying ut, u∗t ∈ B̄δ(U∗). Thus, for any t ≥ Tδ ,
|f(ut)− f(u∗t )| = |f(ut)− f∗| < ϵ.

Otherwise, if δϵ < δ, pick Tδϵ ∈ N+ such that d(ut,U∗) < δϵ for every t ≥ Tδϵ . Then, for each
t ≥ Tδϵ , there exists u∗t ∈ U∗ such that

∥ut − u∗t ∥ < δϵ, ut, u
∗
t ∈ B̄δ(U∗).

Thus, for all t ≥ Tδϵ ,
|f(ut)− f(u∗t )| = |f(ut)− f∗| < ϵ.

We now prove the reverse direction

lim
t→∞

f(ut) = f∗ =⇒ lim
t→∞

d(ut,U∗) = 0.

Assume to the contrary that this implication does not hold. Then, there exists some δ > 0 such that
for every T ∈ N+, there exists t ≥ T such that

d(ut,U∗) ≥ δ.
This implies the existence of a subsequence {utj}j∈N+ such that

d(utj ,U∗) ≥ δ, ∀j ∈ N+.

For every j ∈ N+,
f(utj ) ≥ inf

u∈Rd\Bδ(U∗)
f(u) = inf

u∈∂B̄δ(U∗)
f(u).

By Lemma 16,
inf

u∈∂B̄δ(U∗)
f(u) = min

u∈∂B̄δ(U∗)
f(u) > f∗.

Thus, for every j ∈ N+,

f(utj )− f∗ ≥ min
u∈∂B̄δ(U∗)

f(u)− f∗ > 0.

This contradicts the assumption that f(ut)→ f∗ as t→∞, completing the proof.
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Lemma 18. Let f1, f2 : Rd → R be convex finite functions such that S1 = argminx∈Rd f1(x)
and S2 = argminx∈Rd f2(x) are compact and nonempty. Let g(x) = f1(x) + f2(x). Then,
S = argminx∈Rd g(x) is also compact and nonempty.

Proof. By Lemma 14, S is closed, so it suffices to show it is bounded and nonempty. Fix any x1 ∈ S1

and x2 ∈ S2. Let y1 = f1(x1) and y2 = f2(x2) be the minimia achieved by f1 and f2. Now, choose
any xg ∈ Rd and let y = g(xg). Note that by construction we must have y ≥ y1 + y2. Therefore, let
δ := y − (y1 + y2) ≥ 0.

Now, let d1 = diam(S1) be the maximum distance between any two points in S1. Then ∂B2d1(x1),
the set of points distance 2d1 from x1, must be disjoint from S1, so f1 does not achieve its
minimum on this set. However, since the set is compact, we can still minimize f1 on it. Let
x∗1 = argminx∈∂B2d1

(x1) f1(x), and y∗1 = f1(x
∗
1) > y1. By convexity, the segment between

(x1, y1) and any other point in the epigraph of f1 must be entirely contained within the epigraph.
In particular, for any x outside the ball of radius 2d1, the line connecting (x1, y1) and (x, f(x))
must pass through or above (x′, y∗1) for some x′ ∈ ∂B2d1(x1). Essentially, this tells us that outside
the 2d1-ball the epigraph of f1 lies above the cone of slope y∗1−y1

2d1
centered at x1. Algebraically,

this means that for any x ̸∈ B2d1(x1), f1(x) ≥ y∗1−y1
2d1
∥x − x1∥ + y1. In particular, if we let

r1 = max(2d1,
δ2d1
y∗1−y1

), then for any x ̸∈ Br1(x1),

f1(x) >
y∗1 − y1
2d1

r1 + y1 ≥ y1 + δ .

We can repeat the same process for x2 and f2, letting d2 = diam(S2),

x∗2 = argminx∈∂B2d2
(x2) f2(x), and y2 = f2(x

∗
2), and r2 = max(2d2,

δ2d2
y∗2−y2

), we have for any

x ̸∈ Br2(x2),
f2(x) > y2 + δ .

Let B = Br1(x1) ∪Br2(x2). Combining the previous two equations, we have that for any x ̸∈ B,

g(x) = f1(x) + f2(x) > (y1 + δ) + (y2 + δ) ≥ y .

Recall that y = g(xg) was chosen arbitrarily. In particular, we must have infx∈Rd g(x) ≤ y.
Therefore, g can achieve its minimum only onB, so we can equivalently define S = argminx∈B g(x).
Finally, since B is bounded, S must be as well, and since it is closed the argmin of g must be achieved
somewhere, so S is nonempty.

Theorem 8. Let L : Rd → Rn. If for each y ∈ [n], L(·)y : Rd → R is convex, and
argminu∈Rd L(u)y is non-empty and compact, then Γ(p) is non-empty and compact for each p ∈ ∆n.

Proof. Pick any p ∈ ∆n. Then, for each y ∈ [n], py · L(·)y is convex. Further, notice that
since py · L(·)y is just L(·)y scaled by a positive scalar, it follows that arg minu∈Rdpy · L(·)y =
arg minu∈RdL(·)y, and thus, arg minu∈Rdpy · L(·)y is non-empty and compact for each y ∈ [n].
Applying Lemma 18 inductively, it follows that arg minu∈Rd⟨p, L(·)⟩ is non-empty and compact.
Since we picked p arbitrarily, it follows that Γ(p) is non-empty and compact for each p ∈ ∆n.

D One-Dimensional Surrogate Losses

Definition 7. (Orderable) [Lambert, 2011] A finite property γ : ∆n ⇒ R is orderable, if there
is an enumeration of R = {r1, r2, ..., rk} such that for all i ≤ k − 1, we have γrj ∩ γrj+1

is
a hyperplane intersected with ∆n. We say that the ordered tuple Eγ := (r1, r2, ..., rk) is the
enumeration associated withR.

Without loss of generality, we assume for the rest of this section that for any finite orderable property
γ, it holds that, γj ∩ γj+1 is a hyperplane intersected with ∆n,∀j ∈ [k − 1]. In particular, the
enumeration associated withR will always assumed to be Eγ = (1, 2, ..., k − 1, k).
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Theorem 9. [Finocchiaro et al., 2020] If a convex surrogate loss L : R→ Rn indirectly elicits a
target loss ℓ : R → Rn, then the property γ = prop[ℓ] is orderable.
Definition 8. (Intersection Graph) [Finocchiaro et al., 2020] Given a discrete loss ℓ : R → Rn
and associated finite property γ = prop[ℓ], the intersection graph has verticesR and edges (r, r′) if
γr ∩ γr′ ∩ relint(∆n) ̸= ∅.
Lemma 19. [Finocchiaro et al., 2020] A finite property γ is orderable if and only if its intersection
graph is a path, i.e., a connected graph where two nodes have degree 1 and all other nodes have
degree 2.
Lemma 20. Let L : R→ Rn be a convex, differentiable surrogate and suppose ℓ : R → Rn. If L
indirectly elicits ℓ, then there exist disjoint sets I1, I2, ..., Ik−1 ⊂ Rd, where for each j ∈ [k − 1],
Ij := {u∗ ∈ R|Γu∗ = γj ∩ γj+1}. For each j ∈ [k − 1], the set Ij is either a singleton {uj} or a
closed compact interval [uj,1, uj,2].

Proof. Since L indirectly elicits ℓ, it follows by Theorem 9 that γ is orderable. Thus, for each
j ∈ [k − 1], γj ∩ γj+1 is a hyperplane intersected with ∆n. Denote Tj := γj ∩ γj+1. By the non-
redundancy of target reports, it holds for any j ∈ [k−1] that affdim(γj) = n−1, affdim(Tj) = n−2
and that relint(Tj) ⊂ relint(∆n). Fix j ∈ [k−1]. Suppose p ∈ relint(Tj) =⇒ p ∈ relint(∆n). By
minimizability of ⟨p, L(·)⟩, there exists a uj ∈ R, such that p ∈ Γuj . Since L indirectly elicits ℓ, it
follows from Lemma 4 that rank(∇L(uj)) = 1. Further, since p ∈ Γuj ∩ relint(∆n), it follows that
affdim(Γuj ) = n− 2. Now, we claim that Γuj = Tj . We first show that Γuj ⊆ Tj . Assume to the
contrary. Then, ∃p′ ∈ Γuj , such that p′ /∈ Tj . Since Γuj is convex, it follows that conv(p′, p) ⊆ Γuj .
Since γ is orderable, we know from Lemma 19 that no 3 target cells intersect in relint(∆n). Then,
since p lies on the interior of the common boundary between (n− 2 dimensional) polytopes γj and
γj+1, there must be a sufficiently small ϵ > 0, such that Bϵ(p) ∩∆n is fully contained in relint(γj)
in one halfspace defined by the hyperplane Tj and is fully contained in relint(γj+1) in the other
halfspace defined by Tj . It follows that ∃q ∈ conv(p′, p), such that q ∈ relint(γj) or q ∈ relint(γj+1).
Suppose WLOG that q ∈ relint(γj). This means that ∃q ∈ Γuj : γ(q) = {j}. So, by indirect
elicitation, it must hold that Γuj ⊆ γj and that Γuj ̸⊆ γr for any r ̸= j. However, since Γuj

is the intersection of the subspace ker(∇L(uj)⊤) with ∆n, Γuj must have extremal points at the
boundaries of ∆n. This means that Γuj cannot terminate at p and must extend beyond p into γj+1.
Thus, ∃q′ ∈ relint(γj+1), such that q

′ ∈ Γuj . This violates Γuj ⊆ γj and hence violates indirect
elicitation. So, Γuj ⊆ Tj .
For the reverse inclusion, assume to the contrary that Γuj ⊂ Tj . This means that Γuj must have
an extremal point p ∈ relint(Tj), which in turn means that p∗ ∈ relint(∆n). However, Γuj is the
intersection of a subspace with ∆n, so its extremal points must be on the boundary of ∆n. Thus,
Γuj = Tj .

Now, define Ij := {u∗ ∈ R|Γu∗ = γj ∩ γj+1}. It follows that u∗ ∈ Ij =⇒ u∗ ∈ Γ(p) since
p ∈ γj ∩ γj+1. Thus, Ij ⊆ Γ(p). However, choosing uj ∈ Γ(p) arbitrarily, we proved that
Γuj = γj ∩ γj+1. Thus, Γ(p) ⊆ Ij . Therefore, Ij = Γ(p) which always exists by minimizability
of ⟨p, L(·)⟩. Further, since Γ(p) is compact (by assumption), it follows that Ij is either a singleton,
or a compact interval in R. Similarly, by picking j′ ∈ [k − 1] : j′ ̸= j, we can establish the
existence of (a singleton or compact interval set) Ij

′
, such that Γuj′ = γj′ ∩ γj′+1. To see that,

Ij ∩ Ij′ = ∅,∀j, j′ ∈ [k − 1] : j ̸= j′, assume to the contrary that there exists some v ∈ Ij ∩ Ij′ .
Then, Γv = γj ∩ γj+1 = γj′ ∩ γj′+1. However, γj ∩ γj+1 ̸= γj′ ∩ γj′+1 for any j ̸= j′ and so the
sets Ij and I

′

j must be disjoint.

Throughout the rest of this section, we will inherit from Lemma 20, the notation Ij for the set
{u∗ ∈ R|Γu∗ = γj ∩ γj+1}
Lemma 21. Let L : R → Rn be a convex, differentiable surrogate and suppose ℓ : R → Rn.
Suppose L indirectly elicits ℓ. Let p, q ∈ ∆n : γ(p) = {j} and γ(q) = {j + 1}, where j ∈ [k − 1].
Let up ∈ Γ(p) and uq ∈ Γ(q). Then, up < min(Ij) ≤ max(Ij) < uq, or uq < min(Ij) ≤
max(Ij) < up.

Proof. Fix j ∈ [k − 1]. Pick any uj ∈ Ij . For p : γ(p) = {j}, q : γ(q) = {j + 1}, and
up ∈ Γ(p), uq ∈ Γ(q), we will show that exactly one of the following holds: up < uj < uq or
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uq < uj < up. Now, from the definition of Ij and from Lemma 3, we know that Γuj = γj ∩ γj+1 =
{p′ ⊆ ∆n|∇L(uj)⊤p′ = 0}. Since p ∈ relint(γj) and q ∈ relint(γj+1), it follows that p and q are
on different sides of the hyperplane {x ∈ Rn|∇L(uj)⊤x = 0}. So, it must hold that∇L(uj)⊤p < 0
and ∇L(uj)⊤q > 0, or that∇L(uj)⊤p > 0 and ∇L(uj)⊤q < 0.

Assume WLOG that ∇L(uj)⊤p < 0 and∇L(uj)⊤q > 0. Now, notice that ∇⟨p, L(·)⟩ = ∇L(·)⊤p
and similarly, ∇⟨q, L(·)⟩ = ∇L(·)⊤q. Since the function ⟨p, L(·)⟩ is convex and differentiable, it
holds from the monotonicity of gradients of convex functions that, ⟨∇L(uj)⊤p−∇L(up)⊤p, uj −
up⟩ ≥ 0 =⇒ ⟨∇L(uj)⊤p, uj − up⟩ ≥ 0 =⇒ uj − up ≤ 0, since ∇L(uj)⊤p < 0. Clearly,
uj ̸= up and so, uj − up < 0. Similarly, we can show that uj − uq > 0. We have thus shown that
uq < uj < up. Since uj was arbitrarily chosen from Ij , it holds that uq < min(Ij) ≤ max(Ij) < up.
Now, for j ∈ R, denote U j := {u ∈ R : u ∈ Γ(p), γ(p) = {j}}.
If instead ∇L(uj)⊤p > 0 and ∇L(uj)⊤q < 0, it would follow that up < min(Ij) ≤ max(Ij) < uq
by the same argument.

Denote by U j := {u ∈ R|u ∈ Γ(p), γ(p) = {j}}. Let u1 ∈ U1, u2 ∈ U2, ..., uk ∈ Uk. Then
by Lemma 21, we know that, u1 < min(I1) ≤ max(I1) < u2 < min(I2) ≤ max(I2) <
u3... < uk−2 < min(Ik−2) ≤ max(Ik−2) < uk−1 < min(Ik−1) ≤ max(Ik−1) < uk,
or, u1 > max(I1) ≥ min(I1) > u2 > max(I2) ≥ min(I2) > u3... > uk−2 >
max(Ik−2) ≥ min(Ik−2) > uk−1 > max(Ik−1) ≥ min(Ik−1) > uk. This means, that ei-
ther max(I1) < min(Ik−1), or max(Ik−1) < min(I1). We assume WLOG from hereon, that
max(I1) < min(Ik−1). Thus, we have shown that min(Ij) is a uniform, strict upper bound on U j
and that max(Ij−1) is uniform, strict lower bound on U j .

Theorem 10. Let L : R → Rn be a convex, differentiable surrogate and suppose ℓ : R → Rn.
Under Assumption 1, L is calibrated with respect to ℓ. Then (L,ψ) is calibrated with respect to ℓ, for
any link ψ : R→ R, that satisfies

ψ(u) ∈


{j, j + 1} if u ∈ Ij for any j ∈ [k − 1]

{1} if u < min(I1)

{j} if u ∈ (max(Ij−1),min(Ij)), j ∈ 2, . . . , k − 1

{k} if u > max(Ik−1)

. (2)

Proof. For the entirety of this proof, we define γ0 = γk+1 = I0 = Ik+1 = ∅. Let ψ : R→ R be any
link of the form proposed in the theorem statement. We first show calibration for p ∈ ∆n : γ(p) = {j}
for some j ∈ R. We know from Lemma 21, that max(Ij−1) < up < min(Ij) for any up ∈ Γ(p).
We have that ψ(u) ̸= j for any u < min(Ij−1) and any u > max(Ij). Whereas, u ∈ Ij−1 can be
linked to either j − 1 or j, and u ∈ Ij can be linked to either j or j + 1. The remaining reports
always link to j.

infu∈R:ψ(u)/∈γ(p)⟨p, L(u)⟩ = infu∈R:ψ(u)̸=j⟨p, L(u)⟩
≥infu∈R:u≤max(Ij−1) or u≥min(Ij)⟨p, L(u)⟩
=min{infu∈R:u≤max(Ij−1)⟨p, L(u)⟩, infu∈R:u≥min(Ij)⟨p, L(u)⟩}
=min{⟨p, L(max(Ij−1))⟩, ⟨p, L(min(Ij))⟩} > infu∈R⟨p, L(u)⟩

The final equality follows from convexity of the function ⟨p, L(·)⟩. The final strict inequality follows
from the fact that max(Ij−1) < up < min(Ij) for any up ∈ Γ(p). The same argument holds for
any other distribution p′ : γ(p′) = {j}. In fact, since j was picked arbitrarily fromR, the argument
extends to any q : γ(q) = {j′}, for any j′ ∈ R. So, we have established calibration at all distribution
lying in the relative interiors of target cells. We still need to prove calibration for distributions lying
on target boundaries.

Again, start by fixing some j ∈ [k−1]. Suppose p ∈ relint(γj ∩γj+1). Then, since γ is orderable, we
know from Lemma 19 that no 3 target cells can intersect in the relative interior of the simplex. Thus,
γ(p) = {j, j + 1}. We have that ψ(u) /∈ {j, j + 1} for any u < min(Ij−1) and any u > max(Ij+1).
Whereas, u ∈ Ij−1 can be linked to either j − 1 or j and u ∈ ∪Ij+1 can be linked to either j or
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j + 1. The remaining reports always link to one of j − 1 or j.

infu∈R:ψ(u)/∈γ(p)⟨p, L(u)⟩ = infu∈R:ψ(u)/∈{j,j+1}⟨p, L(u)⟩
≥infu∈R:u≤max(Ij−1) or u≥min(Ij+1)⟨p, L(u)⟩
=min{infu∈R:u≤max(Ij−1)⟨p, L(u)⟩, infu∈R:u≥min(Ij+1)⟨p, L(u)⟩}
=min{⟨p, L(max(Ij−1))⟩, ⟨p, L(min(Ij+1))⟩} > infu∈R⟨p, L(u)⟩

The final equality follows from convexity of the function ⟨p, L(·)⟩. The final strict inequality follows
by noting that γj−1∩γj and γj+1∩γj+2 are disjoint from relint(γj∩γj+1) and hence max(Ij−1) and
min(Ij+1) are suboptimal for p ∈ relint(γj ∩ γj+1). The same argument extends to all distributions
lying in the relative interiors of target boundaries. Thus, we have established calibration for all
distributions, barring distributions on target boundaries that are not inside the relative interiors of the
boundaries.

Suppose p ∈ ∆n, such that p lies on some target boundary, however, p does not lie in the relative
interior of the target boundary. Such points can lie within the intersection of 2 or more target cells. In
case, p ∈ ∩j∈Rγj , γ(p) = R and calibration follows trivially, since the set u ∈ R : ψ(u) /∈ γ(p) is
empty. Otherwise, suppose, γ(p) = S, for some S ⊂ R. It must be that discrete reports within S
are consecutive integers. That is, suppose j ∈ S and j′ ∈ S. Then, either |j − j′| ≤ 1, or else, if
|j− j′| > 1, then j∗ ∈ S for any j∗ : min{j, j′} < j∗ < max{j, j′}. This follows from the fact that
γ is orderable, and we are assuming the enumeration associated withR is Eγ = (1, 2, ..., k − 1, k).
Thus, suppose that γ(p) = S ⊂ R : S = {j, j + 1, ..., j + t}, where t ≥ 1. We have that ψ(u) /∈ S
for any u < min(Ij−1) and for any u > max(Ij+t). Whereas, u ∈ Ij−1 may be linked to either
j− 1 /∈ S or j ∈ S, and u ∈ Ij+t may be linked to either j+ t ∈ S or j+ t+1 /∈ S. The remaining
surrogate reports always link to some discrete report in S.

infu∈R:ψ(u)/∈γ(p)⟨p, L(u)⟩ = infu∈R:ψ(u)/∈S⟨p, L(u)⟩
≥infu∈R:u≤max(Ij−1) or u≥min(Ij+t)⟨p, L(u)⟩
=min{infu∈R:u≤max(Ij−1)⟨p, L(u)⟩, infu∈R:u≥min(Ij+t)⟨p, L(u)⟩}
=min{⟨p, L(max(Ij−1))⟩, ⟨p, L(min(Ij+t))⟩} > infu∈R⟨p, L(u)⟩

The final equality follows from convexity of the function ⟨p, L(·)⟩. The final strict inequality follows
by noting that p /∈ γj−1 ∩ γj and p /∈ γj+t ∩ γj+t+1 by construction. Thus, (L,ψ) is calibrated at p.
The same argument extends to any distribution that lies on some target boundary, but not its relative
interior.

E Correspondences

We consolidate basic definitions and results about correspondences in this section. Note that different
authors can have slightly differing terminology and conventions related to correspondences. We
direct the reader to Border [2013] and references therein for a more detailed discussion on different
conventions. We adopt the conventions, definitions and terminology used in Border [2013].
Definition 9. (Correspondence, graph, image, domain) [Border, 2013] A correspondence φ from
X to Y associates to each point in X a subset φ(x) of Y . We write this as φ : X ⇒ Y . For a
correspondence φ : X ⇒ Y , let grφ denote the graph of φ, which we define to be

grφ = {(x, y) ∈ X × Y : y ∈ φ(x)}.

Let φ : X ⇒ Y , and let F ⊂ X . The image φ(F ) of F under φ is defined to be

φ(F ) =
⋃
x∈F

φ(x).

The value φ(x) is allowed to be the empty set, but we call {x ∈ X : φ(x) ̸= ∅} the domain of φ,
denoted domφ.

The terms multifunction, point-to-set mapping, and set-valued function are also used for a correspon-
dence.
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Definition 10. (Metric upper hemicontinuity) [Border, 2013] Let X be a metric space equipped
with the metric dX : X ×X → R. A correspondence φ : X ⇒ Y is said to satisfy metric upper
hemicontinuity at a point x ∈ X if for every ϵ > 0, ∃δ > 0, such that

d(x, z) < δ =⇒ φ(z) ⊆ Bϵ(φ(x))

Metric upper hemicontinuity is a special case of the more general, topological notion of upper
hemicontinuity which requires that the pre-image of open neighborhoods of φ(x) be open sets
(see [Border, 2013] for a formal definition). However, metric upper hemicontinuity at x and the
topological notion of upper hemicontinuity at x are equivalent when φ(x) is compact (see Proposition
11 of [Border, 2013]). For our purposes, this will always be the case. So, we simply work with the
simpler, metric based notion of upper hemicontinuity.

Definition 11. (Closed at x, Closed correspondence)[Border, 2013] The correspondence φ :
X ⇒ Y is closed at x ∈ X if whenever xn → x, yn ∈ φ(xn), and yn → y, then y ∈ φ(x). A
correspondence is closed if it is closed at every point of its domain, that is, if its graph is closed.

Lemma 22. [Border, 2013] If the correspondence φ : X ⇒ Y is closed at x ∈ X , then φ(x) is a
closed set.

Lemma 23. [Border, 2013] Suppose Y is compact and φ : X ⇒ Y is closed at x ∈ X , then φ is
upper hemicontinuous at x.

We say a correspondence φ : X ⇒ Y is compact-valued if φ(x) is compact for every x ∈ X .

Lemma 24. [Border, 2013] Let K ⊂ X be a compact set and suppose φ : X ⇒ Y is upper
hemicontinuous and compact-valued. Then φ(K) is compact.

F Sufficiency of Strong Indirect Elicitation

We start by presenting a couple of helper results, that we will leverage in our main proofs.

Lemma 25. Lebesgue’s Number Lemma: (see Thm. IV.5.4 of Hu [1966]) Let (X , d) be a compact
metric space. Let A be an arbitrary index set, and U = ∪α∈AUα be an open cover of X . Then, there
exists a number δL > 0, such that for any x ∈ X , BδL(x) ⊂ Uαx , where αx ∈ A

Given an open cover U compact set X , a constant δL > 0 that satisfies the condition of Lemma 25 is
known as a Lebesgue Number for the cover [Hu, 1966]. We state and prove a simply corollary of
Lemma 25, which we will make use of later.

Corollary 1. Let m ∈ Z+, δL > 0 be a Lebesgue number for some open cover U = ∪α∈AUα of a
compact set X ⊆ Rm. Then, BδL/2(X ) ⊆ U

Proof. Let v ∈ BδL/2(X ). This means, there exist u ∈ X and b ∈ BδL/2(0m), such that, v = u+ b,
i.e., v ∈ BδL/2(u) ⊂ BδL(u). Now, by Lemma 25, ∃α ∈ A : BδL(u) ⊂ Uα ⊆ U . So, v ∈ U . Since
v was arbitrarily chosen from BδL/2(X ), it follows that BδL/2(X ) ⊆ U
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Figure 7: Visual intuition for the proof of sufficiency of strong IE. Let n = 3,Y = {1, 2, 3} and
R = {1, 2, 3} (white block with blue border - right). Let p ∈ ∆n (black point within triangle -
left). ΓΓ(p) is the level-set bundle at p (dark purple region - left). Here, γ(p) = {2}. Lemma 29
ensures the existence of ϵp > 0: The image of Γ(Bϵp(ΓΓ(p))) (gray region - center) under Γ(·) is
fully contained within γ2 (gray region - left). By Lemma 27, ∃δp > 0 : Γ(∆n) ∩Bδp(Γ(p)) (light
green region - center) is contained within Γ(Bϵp(ΓΓ(p))) (gray region - center). Thus, every report
within the light green region necessarily links to γ(p) (red block - right). So any sequence of reports
{ut}t∈N+ ⊆ Γ(∆n) (light pink region - center), for which limt→∞ ut → Γ(p), must eventually
link to γ(p). Further, Theorem 11 shows how to link nowhere optimal reports without violating
calibration. Thus, Γ(p) is ’protected’ in the calibration sense.

Suppose L : Rd → Rn is a convex, differentiable surrogate loss. We assume throughout that for
every p ∈ ∆n,Γ(p) := argminu∈Rd⟨p, L(u)⟩ exists and that Γ(p) is compact. Note that, since the
function ⟨p, L(·)⟩ is convex, Γ(p) is closed by Lemma 14. Thus, it suffices to say Γ(p) is bounded,
though we will usually say compact for clarity.

To prove the sufficiency of strong indirect elicitation, we first establish basic properties about the
surrogate level sets {Γu|u ∈ Rd}. To do so, we adjust our lens slightly, and view Γu as the image
of a correspondence at a point u in its domain. In particular, we denote Γ(·) : Rd ⇒ ∆n as the
correspondence that maps surrogate reports to the set of distributions they optimize.

Lemma 26. The correspondence Γ(·) : Rd ⇒ ∆n is closed at every u ∈ Γ(∆n). In fact, Γ(·) is
upper hemicontinuous at every u ∈ Γ(∆n).

Proof. Suppose u ∈ Γ(∆n) =⇒ Γu ̸= ∅. Let {ui}i∈N be a sequence in Rd and let {pi}i∈N be
a sequence in ∆n such that pi ∈ Γui

∀i ∈ N and suppose pi → p ∈ ∆n and ui → u ∈ Rd. To
prove Γ(·) is closed, we need to show p ∈ Γu (see Definition 11). Let i ∈ N. Since pi ∈ Γui

,
∇L(ui)T pi = 0d. Now, notice that:

∥∇L(ui)T pi −∇L(u)T p∥ ≤ ∥∇L(ui)T pi −∇L(ui)T p∥+ ∥∇L(ui)T p−∇L(u)T p∥
≤ ∥∇L(ui)∥ · ∥pi − p∥+ ∥∇L(ui)−∇L(u)∥ · ∥p∥

Observe that limi→∞pi = p (by construction), and limi→∞∇L(ui) = ∇L(u) (since ui → u by
construction, and since∇L(·) is continuous). Thus,

limi→∞∥∇L(ui)∥ · ∥pi − p∥+ ∥∇L(ui)−∇L(u)∥ · ∥p∥ = 0

=⇒ limi→∞∇L(ui)T pi = ∇L(u)T p = 0d =⇒ p ∈ Γu

We have thus shown that Γ(·) is closed at u. Since the target space, ∆n is compact, the fact that Γ(·)
is closed at u implies that Γ(·) is upper hemicontinuous at u (by Lemma 23).
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Lemma 27. Let p ∈ ∆n. For every ϵ > 0, there exists δ > 0, such that:

Γ(∆n) ∩Bδ(Γ(p)) ⊆ Γ(Bϵ(ΓΓ(p)))

Proof. Pick any p ∈ ∆n. Since Γ(·) is upper hemicontinuous at u ∈ Γ(p) by Lemma 26, we have
that for every ϵ > 0, ∃δu > 0 for each u ∈ Γ(p) such that:

Γu′ ⊆ Bϵ(Γu),∀u′ ∈ Bδu(u)
=⇒ ∪u′∈Bδu

Γu′ = ΓBδu (u) ⊆ Bϵ(Γu)
=⇒ ∪u∈Γ(p) ΓBδu (u) ⊆ ∪u∈Γ(p)Bϵ(Γu) = Bϵ(∪u∈Γ(p)Γu) = Bϵ(ΓΓ(p))

So, we have shown that ∪u∈Γ(p)ΓBδu (u) ⊆ Bϵ(ΓΓ(p)). It follows by Lemma 2 that:

Γ(∪u∈Γ(p)ΓBδu (u)) ⊆ Γ(Bϵ(ΓΓ(p))) (3)

Now, suppose u′ ∈ Γ(∆n) ∩ Bδu(u). Let p′ ∈ Γu′ . Then, p′ ∈ Γu′ ⊆ ΓBδu (u). So u′ ∈ Γ(p′) ⊆
Γ(ΓBδu (u)). Since u′ was picked arbitrarily in Γ(∆n) ∩Bδu(u), it follows that:

Γ(∆n) ∩Bδu(u) ⊆ Γ(ΓBδu (u))

=⇒ Γ(∆n) ∩ ∪u∈Γ(p)Bδu(u) ⊆ ∪u∈Γ(p)Γ(ΓBδu (u)) ⊆ Γ(∪u∈Γ(p)ΓBδu (u))

The final inclusion, i.e., ∪u∈Γ(p)Γ(ΓBδu (u)) ⊆ Γ(∪u∈Γ(p)ΓBδu (u)), holds by the following rationale:
Suppose v ∈ ∪u∈Γ(p)Γ(ΓBδu (u)). This means ∃u′ ∈ Γ(p) : v ∈ Γ(ΓBδ

u′ (u
′)) =⇒ ∃pv ∈

ΓBδ
u′ (u

′) : v ∈ Γ(pv). Now, since pv ∈ ΓBδ
u′ (u

′), pv ∈ ∪u∈Γ(p)ΓBδu (u) as u′ ∈ Γ(p). Thus,
v ∈ Γ(∪u∈Γ(p)ΓBδu (u)). So, we have shown that:

Γ(∆n) ∩ ∪u∈Γ(p)Bδu(u) ⊆ Γ(∪u∈Γ(p)ΓBδu (u)) (4)

Observing that the RHS of inclusion (4) and the LHS of inclusion (3) are the same, we combine the
inclusions to get that:

Γ(∆n) ∩ ∪u∈Γ(p)Bδu(u) ⊆ Γ(Bϵ(ΓΓ(p))) (5)

Let us denote ∪u∈Γ(p)Bδu(u) by U . Now, notice that Γ(p) ⊆ U . Further, U is a union of open sets
and is thus open itself. This means, U is an open cover of Γ(p). Since Γ(p) is compact, due to
Lemma 25, there exists a Lebesgue number δL > 0 for U . Set δ := δL/2. Then, by Corollary 1,
Bδ(Γ(p)) ⊆ U .

=⇒ Γ(∆n) ∩Bδ(Γ(p)) ⊆ Γ(∆n) ∩ U
= Γ(∆n) ∩

(
∪u∈Γ(p) Bδu(u)

)
⊆ Γ(Bϵ(ΓΓ(p)))

where the final inclusion follows from inclusion (5), thus concluding our proof.

Lemma 28. For any p ∈ ∆n, suppose Γ(p) is a non-empty, compact set. Then, the set ΓΓ(p) =
∪u∈Γ(p)Γu is closed.

Proof. Fix p ∈ ∆n. We know from Lemma 26 that Γ(·) is closed at any u ∈ Γ(p). This implies that
for any u ∈ Γ(p), Γu is a closed set. Since the target space ∆n is compact, Γu must be bounded, and
thus Γu is compact for each u ∈ Γ(p). So the restriction of Γ(·) to Γ(p), i.e., Γ(·)|Γ(p) : Γ(p) ⇒ ∆n

is upper hemicontinuous and compact-valued, and so by Lemma 24, ΓΓ(p) is compact since Γ(p) is
compact by assumption. Thus, ΓΓ(p) is closed.

Lemma 29. Let L : Rd → Rn be a convex, differentiable surrogate. Suppose Assumption 1 holds .
Let ℓ : R → Rn be a discrete target loss, with finite property γ := prop[L]. If L strongly indirectly
elicits ℓ, then the following holds: For each p ∈ ∆n:

∃ ϵp > 0 : for any v ∈ Γ(Bϵp(ΓΓ(p))), it holds that γ(q) ⊆ γ(p),∀q ∈ Γv
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Proof. Let p ∈ ∆n. Define S := ∪r′∈R\γ(p)γr′ . If S is empty, then γ(p) = R and γ(p′) ⊆
γ(p),∀p ∈ ∆n and then the result follows trivially. Otherwise, notice that γ(q) = γ(p) for any
q ∈ ΓΓ(p), since ∃v ∈ Γ(p) : q ∈ Γv and then γ(p) = γ(q) by strong indirect elicitation. Thus,
γ(q) ∩ S = ∅,∀q ∈ ΓΓ(p), and so S ∩ ΓΓ(p) = ∅. Recall that the target cells, i.e., γr : r ∈ R are
closed by virtue of being convex polytopes as shown in Lemma 7. So, S is a finite union of closed
sets, and is thus closed. In fact S is compact since S ⊆ ∆n. Also, ΓΓ(p) is closed by Lemma 28.
Similarly, ΓΓ(p) is compact since ΓΓ(p) ⊆ ∆n. Since S ∩ ΓΓ(p) = ∅, and both S and ΓΓ(p) are
compact and , it holds that d(S,ΓΓ(p)) > 0. Thus, ∃ϵp > 0 : ∀p′ ∈ Bϵp(ΓΓ(p)), p

′ /∈ S and so:

∃ϵp > 0 : ∀p′ ∈ Bϵp(ΓΓ(p)), γ(p
′) ⊆ γ(p) (6)

Now, suppose v ∈ Γ(Bϵp(ΓΓ(p))). So, there exists p′ ∈ Γv, such that p′ ∈ Bϵp(ΓΓ(p)) =⇒
γ(p′) ⊆ γ(p) due to (6). Now, for any q ∈ Γv, it must hold that γ(q) = γ(p′) by strong indirect
elicitation. Therefore, γ(q) ⊆ γ(p),∀q ∈ Γv . The result follows since v was arbitrarily chosen from
Γ(Bϵp(ΓΓ(p))).

Lemma 30. Let L : Rd → Rn be a convex, differentiable surrogate. Suppose Assumption 1 holds.
Then, Γ(∆n) is closed.

Proof. We show that for any sequence {ut}t∈N+
such that ut ∈ Γ(∆n) for each t ∈ N+, if ut → u,

then it holds that u ∈ Γ(∆n). Since ut ∈ Γ(∆n), ∃pt ∈ ∆n, such that pt ∈ Γut
for each t ∈ N+.

Now, since ∆n is compact, we can extract a subsequence ptj , such that ptj → p ∈ ∆n and that
utj → u. We will show that u ∈ Γ(p). Consider:

∥∇L(utj )⊤ptj −∇L(u)⊤p∥ ≤ ∥∇L(utj )⊤ptj −∇L(u)⊤ptj∥+ ∥∇L(u)⊤ptj −∇L(u)⊤p∥
≤ 1 · ∥∇L(utj )− L(u)∥+ ∥∇L(u)∥ · ∥ptj − p∥

Now, as j → ∞, ∥∇L(utj ) − ∇L(u)∥ → 0 as utj → u (by the continuity of ∇L(·)). Also,
∥ptj − p∥ → 0 by construction. Hence, ∇L(utj )⊤ptj → ∇L(u)⊤p. However, since ptj ∈ Γutj

,
it holds that ∇L(utj )⊤ptj = 0d =⇒ ∇L(u)⊤p = 0d =⇒ u ∈ Γ(p) =⇒ u ∈ Γ(∆n), thus
concluding our proof.

We are now ready to state and prove our main link construction, which in turn proves the sufficiency of
strong IE for calibration under our assumptions. Throughout the proof, let dist(a,B) := infb∈B ∥a−
b∥2, and when the infimum is attained, let projB(a) := {b ∈ B| ∥a − b∥2 = dist(a,B)}, for any
point a and any set B.
Theorem 11. Let L : Rd → Rn be a convex, differentiable surrogate. Let ℓ : R → Rn be a
discrete target loss, with finite property γ := prop[L]. Suppose L strongly indirectly elicits ℓ. Under
Assumption 1, (L,ψ) is calibrated with respect to ℓ, for any link ψ : Rd → R, that satisfies the
following:

ψ(u) ∈ γ(p), for any p ∈ Γv where v ∈ projΓ(∆n)
(u)

Proof. First observe that a link of form ψ exists since for any u ∈ Rd, projΓ(∆n)
(u) is non-empty

and well-defined as Γ(∆n) is closed by Lemma 30. Now, we show that for any such link ψ, (L,ψ)
satisfies calibration with respect to ℓ.

For any p ∈ ∆n, we know from Lemma 29 that there exists some ϵp > 0, such that for any
v ∈ Γ(Bϵp(ΓΓ(p))), it holds that γ(q) ⊆ γ(p),∀q ∈ Γv. Then, we know from Lemma 27, that there
exists δp > 0 such that Γ(∆n) ∩Bδp(Γ(p)) ⊆ Γ(Bϵp(ΓΓ(p))). So,

∀v ∈ Γ(∆n) ∩Bδp(Γ(p)), γ(q) ⊆ γ(p),∀q ∈ Γv . (7)

Now, suppose there exists a link ψ : Rd → R of the form proposed in the theorem statement, such
that (L,ψ) is not calibrated. This means, there exists p ∈ ∆n, such that

infu∈Rd:ψ(u)/∈γ(p)⟨p, L(u)⟩ = infu∈Rd⟨p, L(u)⟩ .
Thus, there exists some sequence {ut}t∈N+

such that ψ(ut) /∈ γ(p) but limt→∞⟨p, L(ut)⟩ →
infu∈Rd⟨p, L(u)⟩. It follows from Lemma 17 in Appendix C, that limt→∞ dist(ut,Γ(p)) → 0.
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Thus, for some t ∈ N+, it holds that dist(ut,Γ(p)) < δp/4. Since Γ(p) is compact, there must be
some u∗ ∈ Γ(p), such that ∥ut − u∗∥2 < δp/4. However, since ψ(ut) /∈ γ(p), there exists some
v ∈ projΓ(∆n)

(ut), such that ∥ut − v∥2 ≤ ∥ut − u∗∥2 < δp/4. Further, by the link definition,
ψ(ut) ∈ γ(q), and since ψ(ut) /∈ γ(p), it holds that γ(q) ̸⊆ γ(p), for q ∈ Γv. However, this
contradicts condition (7) as ∥u∗ − v∥2 ≤ ∥u∗ − ut∥2 + ∥ut − v∥2 < δp/2. Thus, no such sequence
exists and so

infu∈Rd:ψ(u)/∈γ(p)⟨p, L(u)⟩ > infu∈Rd⟨p, L(u)⟩ .

Hence (L,ψ) is calibrated with respect to ℓ.

G Equivalence of Strong Indirect Elicitation and Calibration under Strong
Convexity

Lemma 31. Let L : Rd → Rn be a convex, differentiable surrogate. Consider the function,
FL : ∆n × Rd → R, where FL(p, u) = ⟨p, L(u)⟩. FL is continuous.

Proof. Let {(pt, ut)}t∈N+ be a sequence in ∆n × Rd, such that limt→∞(pt, ut)→ (p, u), for some
p ∈ ∆n, u ∈ Rd. We need to show that limt→∞⟨pt, L(ut)⟩ → ⟨p, L(u)⟩.

|⟨pt, L(ut)⟩ − ⟨p, L(u)⟩| ≤ |⟨pt, L(ut)⟩ − ⟨pt, L(u)⟩|+ |⟨pt, L(u)⟩ − ⟨p, L(u)⟩|
≤ ∥pt∥ · ∥L(ut)− L(u)∥+ ∥pt − p∥ · ∥L(u)∥
≤ 1 · ∥L(ut)− L(u)∥+ ∥L(u)∥ · ∥pt − p∥

Taking the limit as t → ∞, ∥L(ut) − L(u)∥ + ∥L(u)∥ · ∥pt − p∥ → 0 since ∥pt − p∥ → 0 by
construction, and ∥L(ut) − L(u)∥ → 0 as ut → u and Ly(·) is continuous for each y ∈ [n],
and thus Ly(ut) → Ly(u),∀y ∈ [n] =⇒ ∥L(ut) − L(u)∥ → 0. Thus, limt→∞⟨pt, L(ut)⟩ =
⟨p, L(u)⟩, and so limt→∞ FL(pt, ut)→ FL(p, u), whenever limt→∞(pt, ut)→ (p, u). Hence, FL
is continuous.

Lemma 32. Let f : Rd → R be a differentiable, strongly convex function. Then argminu∈Rd f(u)
exists and is a singleton.

Lemma 33. [Boyd, 2004] Let f : Rd → R be µf -strongly convex and let g : Rd → R be µg-strongly
convex. Then f + g is (µf +µg)-strongly convex. For any α > 0, the function α · f is α ·µf -strongly
convex. Also, f is µ-strongly convex for every 0 < µ ≤ µf .

Lemma 34. Let L : Rd → Rn be a convex, differentiable surrogate. Suppose for each y ∈ [n]
Ly : Rd → R is µy-strongly convex, where µy > 0. Let µm := min{µi}ni=1. Then ⟨p, L(·)⟩ is
µm-strongly convex, for every p ∈ ∆n.

Proof. Let p ∈ ∆n. For any y ∈ [n], py · Ly is py · µy-strongly convex by Lemma 33. Also,
⟨p, L(·)⟩ = Σy∈[n]py ·Ly(·) is Σy∈[n]py ·µy- strongly convex by Lemma 33. Notice that, Σy∈[n]py ·
µy ≤ Σy∈[n]py · µm = µm. Thus, ⟨p, L(·)⟩ is µm-strongly convex by Lemma 33.

Lemma 35. Let L : Rd → Rn be a surrogate loss, with strongly convex, differentiable components.
Then, Γ : ∆n ⇒ Rd is single-valued and continuous.

Proof. Suppose for each y ∈ [n] Ly : Rd → R is µy-strongly convex, where µy > 0. Let
µm := min{µi}ni=1. Then we know by Lemma 34, that ⟨p, L(·)⟩ is µm-strongly convex for every
p ∈ ∆n. Fix some p ∈ ∆n. Let {pt}t∈N+

be a sequence of distributions in ∆n, such that
limt→∞ pt → p. We know from Lemma 32 that Γ(pt) exists and is single-valued for each pt since
⟨pt, L(·)⟩ is differentiable and strongly convex. Suppose ut ∈ Rd such that ut = Γ(pt), for each
t ∈ N+. We need to show that limt→∞ ut → u∗ where u∗ = Γ(p) (again, Γ(p) exists and is
single-valued).

Suppose v ∈ Rd. We know from Lemma 31 that the function F : ∆n×Rd, where FL(·, ·) = ⟨·, L(·)⟩
is continuous. Then definemv := minu∈∂B1(v),q∈∆n

⟨q, L(u)⟩ andMv := maxq∈∆n
⟨q, L(v)⟩. Both

mv,Mv exist since FL is continuous, ∂B1(v) × ∆n and ∆n × {v} are compact. Now, pick any
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w ∈ Rd : ∥w∥ = 1. Let β > max{1, 1+ 2·(Mv−mv)
µm

}. Let v1 := v+w and v2 := v+β ·w. Notice,

v1 = β−1
β v + 1

β v2. Next, for any q ∈ ∆n, we have that:

mv ≤ ⟨q, L(v1)⟩

≤ β − 1

β
⟨q, L(v)⟩+ 1

β
⟨q, L(v2)⟩ −

1

2
· µm ·

β − 1

β
· 1
β
· ∥v − v2∥2

=
β − 1

β
⟨q, L(v)⟩+ 1

β
⟨q, L(v2)⟩ −

1

2
· µm · (β − 1)

So we have established that,

mv ≤
β − 1

β
⟨q, L(v)⟩+ 1

β
⟨q, L(v2)⟩ −

1

2
· µm · (β − 1) (8)

The first inequality holds due to the definition of mv. The second inequality follows by µm-strong
convexity and the final equality follows from the definition of v2. Now, we claim that, ⟨q, L(v2)⟩ >
⟨q, L(v)⟩. Assume to the contrary that ⟨q, L(v2)⟩ ≤ ⟨q, L(v)⟩. Since, Mv ≥ ⟨q, L(v)⟩, we get by (8)
that, mv ≤Mv − 1

2 · µm · (β − 1) =⇒ mv −Mv ≤ − 1
2 · µv · (β − 1) =⇒ β ≤ 1 + 2·(Mv−mv)

µm
,

which violates the condition for choosing β > max{1, 1+ 2·(Mv−mv)
µm

}. Thus, ⟨q, L(u)⟩ > ⟨q, L(v)⟩
for any u : ∥v − u∥ > max{1, 1 + 2·(Mv−mv)

µm
} and any q ∈ ∆n, since v2 = v + β · w for

arbitrary w ∈ Rd : ∥w∥ = 1 and β > max{1, 1 + 2·(Mv−mv)
µm

} was chosen arbitrarily, followed
by which q ∈ ∆n was also arbitrarily picked. Thus, for any q ∈ ∆n, Γ(q) must be such that
∥v − Γ(q)∥ ≤ max{1, 1 + 2·(Mv−mv)

µm
} since ⟨q, L(Γ(q))⟩ ≤ ⟨q, L(v)⟩. Thus, Γ(∆n) is uniformly

bounded in a ball around v. And so, the sequence {ut}t∈N+ = Γ(pt)t∈N+ must be bounded as
well. Thus, there exists a u′ ∈ Rd and a subsequence {utj}j∈N+

such that limj→∞ utj → u
′
.

By definition, ⟨ptj , L(utj )⟩ ≤ ⟨ptj , L(u)⟩ for every u ∈ Rd. Thus, by continuity of FL, we have
that ⟨p, L(u′

)⟩ ≤ ⟨p, L(u)⟩,∀u ∈ Rd. Since ⟨p, L(·)⟩ admits a unique minimizer, it follows that
u′ = u∗ = Γ(p). Thus, every convergent subsequence of {ut}t∈N+

must converge to the same limit
u∗, and as {ut}t∈N+

is bounded, limt→∞ ut = u∗ = Γ(p).

Thus, we have shown that for any p ∈ ∆n and any sequence of distributions {pt}t∈N+
, such that

limt→∞ pt → p, it follows that Γ(pt)→ Γ(p). Thus, Γ is continuous.

Lemma 36. Let L : Rd → Rn be a surrogate loss with strongly convex, differentiable components.
Let ℓ : R → Rn. If L indirectly elicits ℓ, but does not strongly indirectly elicit ℓ, there exists some
report u ∈ Rd, such that γ(pm) ⊂ γ(p), for some pm, p ∈ Γu.

Proof. We claim that ∃p′, q′ ∈ Γu, such that |γ(p′)| ≠ |γ(q′)|. Assume to the contrary that for
every p, q ∈ Γu, |γ(p)| = |γ(q)|. So, we have that ∃u ∈ Rd, such that γ(p∗) ̸= γ(q∗), but
|γ(p∗)| = |γ(q∗)|. Sine L indirectly elicits ℓ, we have by Lemma 10 that γ(p∗) ∩ γ(q∗) ̸= ∅. So
∃S ⊆ R : S ̸= ∅ and S = γ(p∗) ∩ γ(q∗), while S ⊂ γ(p∗) and S ⊂ γ(q∗). In particular, this
means |S| < |γ(p∗|. Now, we know by Lemma 8 that p

∗+q∗

2 is such that γ(p
∗+q∗

2 ) ⊆ S. This means
|γ(p∗+q∗2 )| ≤ |S| < |γ(p∗)| =⇒ |γ(p∗+q∗2 )| < γ(p) which contradicts our assumption since
p∗+q∗

2 ∈ Γu by convexity of Γu. Thus, ∃p′, q′ ∈ Γu, such that |γ(p′)| ≠ |γ(q′)|.
Let pm ∈ Γu : |γ(pm)| ≤ |γ(p)|,∀p ∈ Γu. We know by Lemma 9 that γ(pm) ⊆ γ(p),∀p ∈ Γu. In
fact, ∃p ∈ Γu : |γ(p)| ≠ |γ(pm)| =⇒ |γ(pm)| < |γ(p)| and so γ(pm) ⊂ γ(p).
Theorem 12. Let L : Rd → Rn be a surrogate loss, with strongly convex, differentiable components.
Let ℓ : R → Rn. If L does not strongly indirectly elicit ℓ, then there is no link function ψ : Rd → R,
such that (L,ψ) satisfies calibration with respect to ℓ.

Proof. First, suppose L does not indirectly elicit ℓ. Then straight away, calibration fails since
calibration implies indirect elicitation by Theorem 6. Now, suppose L indirectly elicits ℓ, but does
not strongly indirectly elicit ℓ. We know from Lemma 36, that for some u ∈ Rd, γ(pm) ⊂ γ(p),
where pm, p ∈ Γu. Assume WLOG that γ(pm) = {1, 2, ..., t} and that γ(p) = {1, 2, ..., t, ..., t+ j}
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where j ≥ 1. In particular, p lies on the boundary of the cell γt+1, which is a convex polytope.
Thus, we can pick a sequence {pi}i∈N+ , such that γ(pi) = {t+ 1},∀i ∈ N+, and limi→∞ pi → p.
Define vi := Γ(pi), for every i ∈ N+. Then, we have by Lemma 35 that since each of the
components of L are differentiable and strongly convex, it holds that Γ is continuous and hence
limi→∞ vi = u. To ensure calibration at pm, it is necessary ψ(u) ∈ γ(pm), since u = Γ(pm) and
γ(pm) ⊆ γ(p),∀p ∈ Γu. Also, to ensure calibration at pi it is necessary that ψ(vi) = t+ 1, since
γ(vi) = {t+ 1} for every i ∈ N+. However, despite this, we show calibration fails:

inf
v∈Rd:ψ(v)/∈γ(pm)

⟨pm, L(v)⟩ ≤ inf
v∈Rd:ψ(v)=t+1

⟨pm, L(v)⟩

≤ inf
v∈Rd:v∈{vi}i∈N+

⟨pm, L(v)⟩

≤ lim
i→∞
⟨pm, L(vi)⟩

= ⟨p, L(u)⟩ = inf
v∈Rd
⟨p, L(v)⟩

Hence, we have shown that infv∈Rd:ψ(v)/∈γ(pm)⟨pm, L(v)⟩ = infv∈Rd⟨p, L(v)⟩, thus violating cali-
bration at pm.

H Constructing 1d surrogates for orderable properties

In this section, we provide an explicit construction of a consistent, convex, differentiable surrogate
with domain dimension 1 for a given orderable target loss. Formally, given an orderable target,
ℓ : R → Rn, we prove constructively the existence of a convex, differentiable surrogate L : R→ Rn
that is consistent with respect to ℓ.

Our construction hinges on a subroutine which we will call LinIntGrad(X). Given a vector
X ∈ Rk−1, for some integer k ≥ 2, LinIntGrad constructs a function f : R→ R that is convex,
differentiable and whose gradients match X at inputs {1, 2, .., k− 1}, i.e., f ′(i) = X[i],∀i ∈ [k− 1].
See Subroutine 1 for the detailed construction.

Subroutine 1 LinIntGrad(X)

1: Input: X[1], . . . , X[k−1] (with k ≥ 2)
2: Goal: Define a gradient map g : R→ R and f(x) =

∫ x
1
g(t) dt

3: (A) Define g on (1, k−1) by linear interpolation
4: for j = 1, 2, . . . , k − 2 do
5: For x ∈ (j, j+1] \ {k−1}, set

g(x)← X[j] + (x− j)
(
X[j+1]−X[j]

)
.

6: (B) Left extrapolation on (−∞, 1]
7: For x ≤ 1, set

g(x)← X[1] + (x− 1)

8: (C) Right extrapolation on [k−1,∞)
9: For x ≥ k−1, set

g(x)← X[k − 1] +
(
x− (k − 1)

)
10: (D) Define f

11: f(x)←
∫ x

1

g(t) dt

12: return f

Lemma 37. Given some X ∈ Rk−1, where k ≥ 2 is an integer. Following the notation of Subroutine
1, let g be the gradient-map constructed and let f = LinIntGrad(X). Then:

(i) g is continuous and nondecreasing onR.

(ii) f is convex and C1 onR, with f ′(x) = g(x) for all x.
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(iii) f ′(i) = X[i] for each i ∈ {1, . . . , k − 1}.
(iv) Minimizer location:

• In Case 1 (X[1] ≤ 0 ≤ X[k − 1]), one has argmin f ⊆ [1, k − 1]. If X ≡ 0 on
{1, . . . , k− 1} then argmin f = [1, k− 1]; otherwise g crosses 0 inside [1, k− 1] and the
minimizer lies there (unique if the crossing is strict).

• In Case 2, when X[1] > 0, argmin f = {1−X[1]}
• In Case 3, when X[k − 1] < 0, argmin f = {k − 1−X[k − 1]}.

(v) argmin f is nonempty and compact.

Proof. (i) Continuity and monotonicity of g. First, consider the behavior of g on the interval (1, k−1)
– see (A) in Subroutine 1. On each sub-interval, i.e., on each element of the set {(j, j + 1] \ {k −
1}|j ∈ [k − 2]}, g is either affine with nonnegative slope or constant. Thus, g is continuous on
(j, j + 1), and nondecreasing on (j, j + 1] \ {k − 1},∀j ∈ [k − 2]. Let j ∈ {2, 3, ..., k − 2}.
We have that g(j−) := limx→j−X[j − 1] + (x − (j − 1))(X[j] − X[j − 1]) = X[j], while
g(j+) := limx→j+X[j]+ (x− j)(X[j+1]−X[j]) = X[j]. Thus, g(j−) = g(j+) = X[j] = g(j).
Hence g is continuous on (1, j − 1). We already know g is non-decreasing on each subinterval.
Notice also that, g(j) = X[j] ≤ X[j + 1] = g(j + 1). Hence, g is non-decreasing and continuous
on (1, j − 1).

We now analyze continuity at x = 1; see (B) in Subroutine 1: for x ≤ 1, we set g(x) = X[1]+(x−1).
For x ∈ (1, 2), we have g(x) = X[1] + (x − 1)

(
X[2] −X[1]

)
. Clearly, limx→1−g(x) = X[1] =

limx→1+g(x). Thus g is continuous at x = 1.

A similar check at x = k − 1; see (C) in Subroutine 1: For x ∈ (k − 2, k − 1), g(x) = X[k − 2] +(
x− (k − 2)

)(
X[k − 1]−X[k − 2]

)
. So, limx→(k−1)−g(x) = X[k − 1]. Whereas, for x ≥ k − 1,

g(x) = X[k − 1] + (x− (k − 1)). So, limx→(k−1)+g(x) = X[k − 1]. Hence g is continuous at 1
and k− 1, which means g is continuous on [1, k− 1]. On (−∞, 1), as well as (k− 1,∞), g is affine
with non-negative slope. Thus, g is continuous and non-decreasing on R.

(ii) Convexity and differentiability of f . Since f(x) =
∫ x
1
g(t) dt, f is C1(R) with f ′ = g

everywhere. So f ′ is monotone (since g is nondecreasing), and hence f is convex.

(iii) Gradients match X in [k − 1]. For each j ∈ {1, . . . , k − 1}, the interpolation g(x) =
X[j] +

(
X[j + 1]−X[j]

)
(x− j) gives g(j) = X[j]. Hence f ′(j) = g(j) = X[j].

(iv) Minimizer location. Recall that for differentiable convex f , any minimizer x⋆ satisfies f ′(x⋆) = 0,
and conversely if f ′ changes sign from negative to positive at x⋆, then x⋆ is the unique minimizer.

Case 1 (X[1] ≤ 0 ≤ X[k − 1]): If X[1] < 0, then g(x) = X[1] < 0,∀x ≤ 1. Whereas, if X[1] = 0,
then g(x) = x−1 < 0,∀x < 1. Either way, g(x) ̸= 0 for any x < 0. Similarly, ifX[k−1] > 0, then
g(x) = X[k− 1] > 0,∀x ≥ k− 1. Whereas, if X[k− 1] = 0, g(x) = x− (k− 1) > 0,∀x > k− 1.
Either way, g(x) ̸= 0 for any x > k − 1. Thus, g ̸= 0 on (−∞, 1) ∪ (1,∞).

On [1, k−1], g is continuous and nondecreasing with g(1) = X[1] ≤ 0 and g(k−1) = X[k−1] ≥ 0,
hence any zero of g lies in [1, k − 1]. If X ≡ 0 on {1, . . . , k − 1}, we have g ≡ 0 on [1, k − 1]. If
not, g must cross 0 somewhere in [1, k − 1] due to continuity. Thus, argmin f ⊆ [1, k − 1] and
argmin f ̸= ∅. So argmin f is non-empty and bounded. Since f is convex, argmin f is closed, and
hence compact.

Case 2 (X[1] > 0): First notice that in this case, since X[1] > 0, g(1) > 0 and since g is
nondecreasing it follows that g(x) > 0 for every x ≥ 1. So any zero g attains must be in (−∞, 1).
For x < 1, g(x) = X[1] + (x− 1) = 0 ⇐⇒ x = 1−X[1] < 1. Since g is strictly increasing on
(−∞, 1), it crosses 0 exactly once at 1−X[1]. Thus, argmin f = {1−X[1]} which is non-empty
and compact.

Case 2 (X[k − 1] < 0): First notice that in this case, since X[k − 1] < 0, g(k − 1) < 0 and since
g is nondecreasing it follows that g(x) < 0 for every x ≤ k − 1. So any zero g attains must be in
(k−1,∞). For x > k−1, g(x) = X[k−1]+

(
x−(k−1)

)
= 0 ⇐⇒ x = k−1−X[k−1] > k−1.

Since g is strictly increasing on (k − 1,∞), it crosses 0 exactly once at k − 1 −X[k − 1]. Thus,
argmin f = {k − 1−X[k − 1]} which is non-empty and compact.
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(v) argmin f is non-empty and compact. Follows directly from part (iv).

Construction 2 SURROGATE CONSTRUCTION

1: Inputs: V 1, . . . , V n ∈ Rk−1 (rows of matrix V)
2: Output: Consistent, convex and differentiable surrogate loss L : R→ Rn

3: for all j ∈ [n] do
4: L(·)j ← LinIntGrad(V j)

5: Define L : L(u)← [L(u)1, L(u)2, ..., L(u)n]
6: return L

Theorem 13. Given an orderable target ℓ : R → Rn, there exists a convex, differentiable surrogate
L : R→ Rn satisfying Assumption 1, which is calibrated with respect to ℓ. In particular, Construction
2 yields such a surrogate loss L.

Proof. Since γ = prop[ℓ] is orderable, there exists an orderable enumeration of R, i.e., Eγ =
(r1, r2, ..., rk) (see Definition 7). We know from Theorem 11 of Finocchiaro et al. [2020] that there
exists a set {v1, v2, ..., vk−1} ⊂ Rn such that:

1. The set satisfies coordinate-wise monotonicity. That is, ∀i ∈ [k − 2], y ∈ [n] it holds that,
vi,y ≤ vi+,y.

2. The set of vectors are normal to target boundaries, i.e., ∀p ∈ γri ∩ γri+1 , ⟨p, vi⟩ = 0.

Let us denote by V ∈ Rn×k−1 the matrix with column vectors v1, v2, ..., vk−1 in that or-
der. Let V j , j ∈ [n] denote the jth row of V. These row-vectors are set as inputs to the
surrogate construction described in Construction 2. We now show that the output of L =
SURROGATE CONSTRUCTION(V 1, V 2, ..., V n) is convex, differentiable, satisfies Assumption 1
and is consistent w.r.t. ℓ.

Each component L(·)j , j ∈ [n] defined in Construction 2, is obtained via Subroutine 1. Thus, for
each j ∈ [n], L(·)j is convex, differentiable and satisfies Assumption 1 by Lemma 37. We show that
L indirectly elicits ℓ and the result then follows by Theorem 1.

Assume L does not indirectly elicit ℓ. This means, there exists some u ∈ R, such that Γu ̸⊆ γr,∀r ∈
R. In particular, this means that the level-set Γu crosses from one target cell’s relative interior into
another target cell’s relative interior. By convexity of Γu, there exists some j ∈ [k − 1] and some
p ∈ γrj ∩ γrj+1

such that p ∈ Γu. By construction, ∇L(j) = vj . Clearly, u ̸= j as ∇L(u) ̸= vj .
Assume WLOG that u < j. This means ∇L(u) = ∇L(j)− δ, where δi ≥ 0,∀i ∈ [n] and δi∗ > 0
for some i∗ ∈ [n]. So, ⟨p,∇L(u)⟩ = ⟨p,∇L(j) − δ⟩ = −⟨p, δ⟩ < 0 by the condition on δ. Thus,
p /∈ Γu yielding a contradiction. Hence L must indirectly elicit ℓ.
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are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: [Yes]

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: [Yes]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: There are no experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: There is no data or code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: We use no data.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: We have no data.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: We just used our brains.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: [Yes]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: How could theorists possibly affect society let’s be honest.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We don’t have data or models. We are theorists.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: [Yes]
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]

Justification: We are tragically asset-less.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We didn’t do any experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We didn’t do human trials.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: We only used them for editing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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