
Logit–Entropy Adaptive Stopping Heuristic for
Efficient Chain-of-Thought Reasoning

Mohammad Atif Quamar
Independent Researcher
atif7102@gmail.com

Mohammad Areeb
Purdue University

mareeb@purdue.edu

Abstract

Chain-of-Thought (CoT) prompting is a key technique for enabling complex rea-
soning in large language models. However, generating full, fixed-length rationales
is computationally wasteful, inflating both token usage and latency. We introduce
LEASH: Logit-Entropy Adaptive Stopping Heuristic, a training-free decoding
algorithm that adaptively halts rationale generation. LEASH monitors two intrin-
sic signals: the slope of token-level entropy and the improvement in the top-logit
margin. It terminates the generation once both signals plateau, indicating the model
has reached a stable reasoning state. Across four instruction-tuned models on the
GSM8K and AQuA-RAT benchmarks, LEASH reduces average token generation
by ≈ 30–35% and latency by ≈ 27%, while incurring a ≈ 10 p.p. accuracy drop
relative to CoT. LEASH is model-agnostic and requires no additional training or
supervision, offering a simple and efficient alternative to CoT decoding.

1 Introduction

Large language models solve many reasoning problems more reliably when prompted to “think out
loud” using chain-of-thought (CoT) decoding [1]. Yet those rationales are costly: Vanilla CoT and
vote-heavy schemes inflate token usage and tail latency, which limits deployment under tight budgets
and interactive constraints. The core challenge is to decide, online and per question, when enough
reasoning has been generated, early enough to save tokens, but not so early that accuracy suffers.

Existing approaches offer unsatisfying trade-offs. Fixed budgets ignore instance difficulty and
routinely over-generate [2]. Heuristic triggers (e.g., stopping on “Therefore,” or punctuation patterns)
are brittle and prompt-dependent [3]. Multi-sample reranking improves quality but wastes compute on
full sequences that were already off-trajectory [4]. What is missing is a training-free, model-agnostic
criterion that uses signals already available at decoding time to adaptively halt reasoning without
extra models, supervision, or architectural changes.

We introduce Logit–Entropy Adaptive Stopping Heuristic (LEASH), a simple decoding-time
algorithm that monitors two intrinsic indicators of reasoning convergence: the local slope of token-
level entropy and the improvement in the top-logit margin. LEASH generates a brief rationale and
halts when both signals plateau within a short sliding window after a small minimum length, then
elicits a concise final answer. Because LEASH relies only on logits already produced by the base
model, it is gradient-free, drop-in, and compatible with greedy or sampled decoding, quantized or
full-precision inference, and common toolchains.

Prior efforts to curb over-generation in CoT either truncate at a fixed depth, add auxiliary heads
or verifiers, or stop on a level signal such as an absolute entropy threshold over an explicit answer
set [5]. In contrast, we use intrinsic token-level signals available under standard top-p sampling: the
windowed slope of next-token entropy and the trend in the top-logit margin, together with a pmax

saturation guard, to detect convergence. As our approach operates on logits already computed during
decoding, it integrates with existing APIs, supports quantized inference, and extends to free-form

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Efficient Reasoning.

mailto:atif7102@gmail.com
mailto:mareeb@purdue.edu

numeric reasoning without additional scaffolding. Empirically, this instance-wise token-granular
rule yields large reductions in generated tokens and latency while maintaining competitive accuracy,
offering a training-free alternative to answer-entropy halting.

Our empirical study focuses on grade-school math, where CoT is standard. On GSM8K [6] with four
instruction-tuned models, LEASH retains ≈ 85% of vanilla CoT accuracy, while using ∼ 30− 35%
fewer tokens and cutting end-to-end latency by ∼ 25− 30%.

To probe the generality of our findings, we report results on the test split of the AQuA-RAT dataset [7].
On this benchmark, LEASH closely tracks the accuracy of vanilla-CoT while reducing compute. We
also examine robustness across sampling temperatures and decoding settings, finding that LEASH
maintains performance without per-task retuning. Taken together, these results position LEASH as a
practical, training-free alternative to vanilla CoT: it adapts rationale length to item difficulty, preserves
accuracy under tight budgets, and delivers immediate token and latency savings for real-world
deployments.

2 LEASH: Training-Free Stopping for Chain of Thought

We consider an instruction-tuned language model that first generates a chain-of-thought (CoT)
rationale and then a short final answer. For a prompt x, let y1:t denote the partial rationale at step t,
and let zt ∈ RV be the next-token logits over a vocabulary of size V .

During rationale generation, end-of-sequence termination is disabled and halting is governed by the
rule in (7). After halting, a second prompt requests a short final answer.

For Numerical stability, we upcast logits to fp32, replace non-finite entries with zero, and clip
componentwise logits to a fixed band [−B,B], i.e., z̃t = clip(finite(zt), −B, B).

Let pt = softmax(z̃t) denote the token probabilities and ℓt = logsoftmax(z̃t) be the log-
probabilities at step t. We monitor two primary intrinsic signals: the token-level entropy Ht and
the top-two log-probability margin Mt. Entropy measures the models uncertainty, while the margin
measures its confidence in the top choice.

Ht = −
V∑

v=1

pt(v) log pt(v) (1)

Mt = ℓ
(1)
t − ℓ

(2)
t (2)

where ℓ
(1)
t and ℓ

(2)
t are the log-probabilities of the top-two tokens. While Mt is algebraically

equivalent to the logit-space margin z
(1)
t − z

(2)
t , we compute it using log-probabilities for numerical

stability. Highly confident steps, where the peak probability pmax(t) = maxv pt(v) exceeds a
threshold τp, are treated as "saturated" and are excluded from our trend analysis. We use an indicator
Σt to mark these steps:

Σt = I[pmax(t) ≥ τp] (3)

Windowed trends. Given a window size k ≥ 1, we compute the k-step entropy slope sH and the
k-step margin improvement ∆M for all non-saturated steps.

sH(t; k) =
Ht −Ht−k

k
(4)

∆M(t; k) = Mt −Mt−k (5)

Adaptive Stopping Criterion. Our stopping rule is determined by a per-step plateau test, Πt, which
is active only for non-saturated steps (Σt = 0). The test passes if the entropy slope has flattened and
the margin improvement has stalled, given small tolerances εH > 0 and δM > 0:

Πt = I
[
sH(t; k) ≥ −εH

]
· I
[
∆M(t; k) ≤ δM

]
· I
[
Σt = 0

]
(6)

The final stopping time τ is the first step t that satisfies three conditions: (i) It is past a minimum
warm-up period, tmin = max(m + w, k + L). (ii) A majority of the last L non-saturated steps

2

Algorithm 1 Logit–Entropy Adaptive Stopping Heuristic (LEASH)
1: Inputs: window k, vote span L, slacks (εH , δM), min/max (m,M), warmup w, saturation

threshold τp, entropy drop γ
2: Initialize state and histories; disable EOS during rationale generation
3: for t = 1 to M do
4: Decode next token to get the logits zt; compute ℓt and pt
5: Compute entropy Ht by Eq.(1), margin Mt by Eq.(2), and the peak probability pmax(t)
6: If first k steps completed, compute the reference entropy Href

7: If t ≥ tmin and the Href −Ht ≥ γ:
8: Compute plateau votes: votes←

∑
j∈JL(t) Πj

9: If votes ≥ ⌈|JL(t)|/2⌉, break
10: end for
11: Query the model for the short final answer conditioned on the generated rationale

(indexed by JL(t)) have passed the plateau test. (iii) An entropy-drop gate, Href − Ht ≥ γ, is
satisfied, preventing premature stops. Href = median(H1, . . . ,Hk) is a reference entropy computed
over the first k steps. The full stopping criterion, capped at a maximum length M , is:

τ = min

 t ≥ tmin :
∑

j∈JL(t)

Πj ≥
⌈
|JL(t)|

2

⌉
∧

(
Href −Ht ≥ γ

) ∧ M (7)

The rationale stage disables EOS, so halting is governed by (7). After stopping at τ , the model is
prompted again to emit only the short final answer. Our complete method is given in Algorithm 1.

Implementation Details. The signals in (1)–(2) reuse logits already computed by the base model.
We maintain ring buffers for the last k values of Ht and Mt, which yields O(1) overhead per token
in time and memory; runtime remains dominated by forward passes. The method exposes several
hyperparameters (e.g., k, L, εH , δM , γ), and concrete settings are reported in the experiments section.

Relation to Baselines. Vanilla CoT omits the adaptive stopping logic and sets τ = M . Multi-
sample reranking expands full-length sequences per sample. LEASH instead makes a per-instance
sequential decision from local convergence signals, adapting the rationale length to the problem.

3 Experimental Setup

Language models. We evaluate LEASH on four instruction-tuned LLMs span-
ning different families and sizes: Llama-3.1-8B-Instruct[8], Mistral-7B-v0.1[9],
Phi-3-Mini-128k-Instruct[10], and Qwen2.5-7B-Instruct[11]. All experiments use
HuggingFace transformers with the models native tokenizers.

Tasks and datasets. We focus on math reasoning with short numeric answers. Our primary
benchmark is GSM8K; we evaluate on a randomly sampled subset of n=300 test problems with a
fixed seed. We also report results on the TEST SPLIT of AQuA-RAT, an algebraic word problem
dataset.

Baselines. We compare LEASH against two decoding schemes: (i) Vanilla-CoT, which generates
its answer using the chain-of-thought reasoning process, then a short final answer (ii) No-CoT, which
directly predicts the final numeric answer with no rationale. All methods have prompts according to
the task they need to perform.

Decoding settings. For the rationale phase we use nucleus sampling with p=0.95 and temperature
0.7 (do_sample=True); for the final answer, we decode with temperature 0.0. LEASH hyperparam-
eters are held fixed across models unless otherwise noted: window k=8, consistency L=5, entropy
slack εH=0.005, margin slack δM=0.05, minimum/maximum rationale lengths m=64, M=320.

3

Table 1: Accuracy Results (↑). We report accuracy (%) on the GSM8K and AQuA-RAT datasets
for our method (LEASH), standard Chain-of-Thought (CoT), and vanilla decoding (No-CoT).

Model GSM8K AQuA-RAT
LEASH CoT No-CoT LEASH CoT No-CoT

Llama-3.1-8B-Instruct 62.32 74.33 14.00 54.68 63.20 27.56
Mistral-7B 38.67 47.20 6.33 19.25 26.38 13.78
Phi-3-Mini-128k-Instruct 69.87 82.67 8.00 50.24 61.67 23.23
Qwen2.5-7B-Instruct 54.85 65.33 21.33 68.15 77.35 37.80

Table 2: Efficiency Savings of LEASH vs. CoT (↑). We report the percent reduction in generated
tokens and end-to-end latency for LEASH relative to standard CoT on GSM8K and AQuA-RAT.

Model GSM8K AQuA-RAT
Token Red. Latency Red. Token Red. Latency Red.

Llama-3.1-8B-Instruct 30.97 29.74 28.60 26.10
Mistral-7B-v0.1 35.12 27.80 34.20 27.50
Phi-3-Mini-128k-Instruct 41.50 25.15 28.30 28.75
Qwen2.5-7B-Instruct 33.45 24.90 28.15 28.10

Metrics. We evaluate all methods on three primary metrics. (i) Accuracy is the exact-match
percentage on the final numeric answer after normalization. (ii) Token Reduction (%) and (iii)
Latency Reduction (%) measure the efficiency gains of LEASH relative to the standard CoT
baseline. Token reduction is based on the count of all generated tokens (rationale + answer), and
latency reduction is based on the end-to-end time (s) per example.

4 Experimental Results

We present our main results in Table 1 (Accuracy) and Table 2 (Efficiency). We analyze the accuracy
trade-offs of our method, followed by its significant efficiency gains.

Accuracy and Trade-offs. We first report the accuracy of LEASH, standard Chain-of-Thought
(CoT), and direct-answer (No-CoT) in Table 1. As an early-stopping method, LEASH introduces an
accuracy trade-off compared to CoT. We observe a manageable cost, with an average accuracy drop of
≈ 10.9 percentage points on GSM8K and≈ 9.1 percentage points on AQuA-RAT. However, LEASH
substantially outperforms No-CoT in all cases. This demonstrates that it successfully preserves
the core reasoning structure of the CoT process. For instance, on GSM8K, LEASH accuracy on
Llama-3.1-8B (62.32%) and Mistral-7B (38.67%) is 4.4× and 6.1× higher, respectively, than their
No-CoT counterparts (14.00% and 6.33%).

Efficiency Gains. The benefits of this trade-off are the significant efficiency gains detailed in
Table 2. LEASH achieves substantial reductions in both compute and latency across all models. On
average, LEASH reduces the number of generated tokens by 35.3% and end-to-end latency by 26.9%
on GSM8K. The savings are similarly strong on AQuA-RAT, with average reductions of 29.8% in
tokens and 27.6% in latency. We observe that token savings are most pronounced on GSM8K, with
Phi-3-Mini showing the largest reduction at 41.5%. In contrast, latency savings are highly consistent,
particularly on AQuA-RAT, where all models cluster in a 26–29% reduction range. For example,
LEASH reduced the latency for Llama-3.1-8B-Instruct from 4.04s (CoT) to 2.84s, achieving a 29.7%
speed-up while generating 31.0% fewer tokens. These results confirm that LEASH is highly effective
at reducing the computational and latency costs of CoT reasoning.

5 Conclusion

We presented the Logit–Entropy Adaptive Stopping Heuristic (LEASH), a training-free decoding-
time criterion for adaptively halting chain-of-thought generation using only intrinsic signals produced

4

by the language model. LEASH monitors the windowed slope of token entropy together with the
improvement in the top-logit margin and stops when both trends plateau. Across models and datasets,
LEASH consistently reduces generated tokens and lowers end-to-end latency, with a modest reduction
in accuracy. The method is model-agnostic, requires no additional training or reward models, and
integrates seamlessly with standard decoding APIs, including quantized inference.

Limitations and future work. LEASH assumes access to token-level logits and is evaluated on
short-answer math tasks; extending to long-form, non-numeric targets and tool-augmented settings is
a promising direction. Analyzing theoretical stopping guarantees in Chain-of-Thought reasoning is
also a crucial research direction.

References
[1] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi,

Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models, 2023. URL https://arxiv.org/abs/2201.11903.

[2] Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen.
Token-budget-aware llm reasoning. arXiv preprint arXiv:2412.18547, 2024.

[3] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa.
Large language models are zero-shot reasoners. arXiv:2205.11916, 2022. URL https:
//arxiv.org/abs/2205.11916.

[4] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. arXiv:2203.11171, 2022. URL https://arxiv.org/abs/2203.11171.

[5] Yassir Laaouach. Halt-cot: Model-agnostic early stopping for chain-of-thought reasoning via
answer entropy. ICML 2025, 2025. URL https://openreview.net/pdf?id=CX5c7C1CZa.

[6] Karl Cobbe and et al. Training verifiers to solve math word problems. In NeurIPS, 2021.

[7] Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale
generation. In ACL, 2017.

[8] AI @ Meta. The llama 3 herd of models, 2024.

[9] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

[10] Microsoft. Phi-3: Redefining what’s possible with slms, 2024. URL https://arxiv.org/
abs/2404.14219.

[11] An Yang et al. Qwen2.5 technical report. arXiv preprint arXiv:2412.15115, 2024.

5

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2203.11171
https://openreview.net/pdf?id=CX5c7C1CZa
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219

	Introduction
	LEASH: Training-Free Stopping for Chain of Thought
	Experimental Setup
	Experimental Results
	Conclusion

