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ABSTRACT

While table understanding increasingly relies on pixel-only settings where tables
are processed as visual representations, current benchmarks predominantly use
synthetic renderings that lack the complexity and visual diversity of real-world ta-
bles. Additionally, existing visual table understanding (VTU) datasets offer fixed
examples with single visualizations and pre-defined instructions, providing no ac-
cess to underlying serialized data for reformulation. We introduce TABLET, a
large-scale VTU dataset with 4 million examples across 20 tasks, grounded in 2
million unique tables where 88% preserve original visualizations. Each exam-
ple includes paired image-HTML representations, comprehensive metadata, and
provenance information linking back to the source datasets. Fine-tuning vision-
language models like Qwen2.5-VL-7B on TABLET improves performance on seen
and unseen VTU tasks while increasing robustness on real-world table visualiza-
tions. By preserving original visualizations and maintaining example traceability
in a unified large-scale collection, TABLET establishes a foundation for robust
training and extensible evaluation of future VTU models

1 INTRODUCTION

The field of table understanding focuses on techniques for representing and interpreting tabular
data to support a wide range of practical tasks such as question answering, summarization, and
information extraction. Research in this area has traditionally representated tables as structured text,
encoding their content and layout through linearized or graph-based representations (see Figure[Tb;
Herzig et al.|[2020; [Zhang et al.[2020; Liu et al.[2022)). While this unimodal view remains effective
in certain domains, many tables found in documents and webpages contain irregular structures, rely
on visual formatting (e.g., merged cells, background colors, font variations), or embed multimodal
elements such as images (see Figure [Th). Advances in Vision-Language Models (VLMs; [Radford
et al.|2021} |Liu et al.[2023) have provided impetus for treating tables as images, eschewing the step
of rendering them as text sequences (like Markdown or HTML). The conceptual simplicity of this
approach, coupled with improved performance on several tabular tasks (Alonso et al., [2024; [Zhou
et al.,2025) has driven significant research interest (Zheng et al., 2024b; Su et al., |2024} Jiang et al.}
2025) in Visual Table Understanding (also known as Multimodal Table Understanding). Visual
representations of tables are not only merely convenient but in many cases necessary, particularly
for VLM agents that interact with the world exclusively through pixels (e.g., on a screen) and must
interpret tables directly in their visual form (Deng et al.| 2023 Zheng et al., [2024a; |Lu et al.| [2024)).

Despite the growing relevance of VTU, there are few resources that support training models directly
on image-based representations of tables. Existing benchmarks like MMTab (Zheng et al., 2024b)
consist of web tables (e.g., from Wikipedia which is a common source for many tabular datasets),
that are serialized and subsequently rendered as synthetic images (see Figures[Ip,c). These images
do not preserve the original visual characteristics of the tables and do not reflect the diversity and
complexity of real-world layouts. As aresult, models trained on such data face a train-test mismatch,
since the visual patterns learned from serialized renderings do not generalize well to naturally occur-
ring tables failing to capture critical visual cues like subtle ruling lines, intricate merged cell layouts,
background colors, font variations, or embedded images that are inherent to real-world table com-
prehension (compare Figure [Th and [Ic). An exception is WikiDT [Shi et al.| (2024), which provides
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Figure 1: Previous datasets render table images from serialized tables, losing original visual details.
In contrast, TABLET locates and retrieves the original table visualizations across 14 tabular datasets,
resulting in 4M examples grounded in 2M unique tables.

access to original table visualizations from web pages but focuses exclusively on table question an-
swering. Likewise, datasets designed for processing PDF documents or screenshots (Zhong et al.,
2020; Lu et al.,|2023)) preserve original table visualizations but support only a single task.

In this work, we introduce TABLE alarge-scale dataset designed to enable vision-language models
to learn generalizable skills for table understanding by leveraging visual features from table images.
Unlike existing datasets that focus on a single task or use synthetic renderings, TABLET preserves
lossless representations of real-world table images and spans a diverse set of tasks, including table-
to-text generation (Parikh et al., [2020), table fact verification (Chen et al., |2020b), and table-based
question answering (Pasupat & Liang, 2015). TABLET facilitates training and evaluation on table
formats that align with those encountered in downstream applications, particularly in pixel-based
agents that process visual input directly. It contains 4 million examples across 20 tasks, derived
from 2 million unique tables, 88% of which retain their original visualization. To promote flexibility
and foster future research, we provide both image and HTML representations of tables, together with
metadata and links to the source datasets. Pairing table images with HTML enables models to learn
from naturally occurring and synthetic table images when the former are not available. TABLET’s
large-scale and task aggregation provide a unique, foundational resource that complements research
integrating textual and visual modalities for training and reasoning (Liu et al.l 2025} Jiang et al.,
2025). We experimentally demonstrate that fine-tuning on TABLET improves performance on in-
and out-of-domain benchmarks. Our work makes the following contributions:

» TABLET addresses a critical gap in large-scale, visually faithful datasets for VTU, with
4 million examples and 2 million tables, most of which are preserved in their original form.

» We show that supervised fine-tuning on TABLET enhances VLM performance across seen
and unseen table understanding tasks. We release a VLM model trained on TABLET that
achieves state-of-the-art results on 10 out of 14 table understanding benchmarks.

» TABLET is designed for extensibility: all tasks are provided in a unified format, paired with
HTML table serializations that can be rendered back into the original visualization, along
with example metadata and links to the source datasets to facilitate reuse and reformulation.

2 RELATED WORK

Early work approached the problem of table understanding from a unimodal perspective, treating
tables as structured text and developing general-purpose models that generalized across multiple
tasks (Li et al., |2023; Zhang et al., [2024). Recent progress in natural image understanding afforded
by increasingly better VLMs (Radford et al., 2021} [Liu et al., [2023) has led to development of
models that can successfully process visually rendered text beyond natural imagery and perform
table understanding holistically, within a multimodal framework (Kim et al., 2022} |Lee et al., 2023
Zhang et al.,[2023; [Ye et al., 2023} [Hu et al.,|2024; |/Alonso et al.| 2024 [Jiang et al.| 2025} [Su et al.,
2024} Zhao et al., 2024; Zheng et al.| 2024bj [Su et al., 2024).

2QOur dataset is called TABLET partly as a nod to the Scottish sugary confection which is often cut into
uniform squares or rectangles, resembling a table.
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To this effect, several benchmarks have been proposed recently to evaluate progress in VTU. For
instance, TableVQA-Bench (Kim et al.,|2024) focuses on visual table question answering but relies
on synthetic table images. In contrast, MMTBench (Titiya et al., |2025) includes original table
visualizations, along with visually rich images and interleaved charts. While both are valuable for
evaluation, they are limited in scope and do not provide large-scale training data, restricting their
utility for developing generalizable models.

Larger training datasets (with training splits) have historically focused on image-based Table Struc-
ture Recognition (TSR), including PubTabNet (Zhong et al.,[2020), TableBank (L1 et al.,|2020), and
TabComp (Gautam et al.,[2025)). Beyond TSR, |Alonso et al.|(2024) created image-rendered versions
of existing datasets like ToTTo (Parikh et al.l [2020), relying on lossy renderings that discard visual
features. WikiDT (Shi et al., [2024) preserves original table visualizations but only targets Visual
TableQA. MMTab (Zheng et al.,[2024b) is a large VTU dataset, with 150k TSR pre-training exam-
ples and 232k instruction examples across 19 tasks. While MMTab is a useful resource that we build
upon, it relies on synthetic renderings of serialized tables, lacks traceability to original data sources,
and remains limited in size compared to the scale needed for general-purpose VTU.

In this work, we do not introduce a task-specific dataset or model. Instead, we create a large-scale
resource aimed at enhancing table understanding in general-purpose vision-language models like
Gemma-3 (Team et al., 2025)) or Qwen2-VL (Wang et al.| [2024), under the assumption that tables
for many tasks are seen as images, and therefore can be naturally processed by these models. This
distinguishes TABLET from many recent efforts that introduce task-specific datasets or specialized
architectures as it is designed to be a holist resource for advancing VLM capabilities for tables.

3 THE TABLET DATASET

3.1 OVERVIEW

TABLET is a large-scale dataset that aggregates a total of 4,066,545 examples, combining 20
TU tasks sourced from 14 datasets (see Section [3.3] for a breakdown of examples per task).
TABLET includes 2,031,256 unique table images with visualizations from Wikipedia (61.5%), Pub-
TabNet (25.1%; [Zhong et al.|[2020), TabMWP (1.9%; |Lu et al.|2023, and synthetically rendered
images (11.5%) from serialized tables (see Section@]for details).

Examples in TABLET are framed as instructions, leveraging the benefits of instruction-tuning for
large language models. TABLET does not introduce new data instances; rather it repurposes examples
from existing datasets, referred to as seed datasets, rephrasing their tasks into an instruction format.
Examples are drawn from 14 seed datasets: TURL (Deng et al.,2020), ToTTo (Parikh et al.,|2020),
TabFact (Chen et al.,2020a), WikiTableQuestions (Pasupat & Liang| 2015), HybridQA (Chen et al.,
2020b), HiTab (Cheng et al., [2022), PubTabNet (Zhong et al.| [2020), TabMWP (Lu et al. [2023),
TAT-QA (Zhu et al.| [2021)), InfoTabs (Gupta et al., [2020), WikiBIO (Lebret et al., |2016)), FeTaQA
(Nan et al., 2022), MMTab Zheng et al.| (2024b), and DocStruct4M (Hu et al.| 2024).

Datasets that include only images and fixed prompts restrict researchers to the provided visualiza-
tions and instruction formulations, limiting the exploration of new prompting techniques or the use
of table data to create additional examples. To avoid this, each example in TABLET is provided in a
unified format, including the instruction used in this work, its corresponding atomic data, the HTML
version of the table, the original source ID, and additional metadata (detailed in Appendix{7.4).

3.2 IMAGE SOURCES

Wikipedia Tables Wikipedia tables generally follow a hierarchical table structure and are often
rich in visual information. 61.5% of the tables in TABLET are lossless visualizations sourced from
Wikipedia (See Appendix [7.2] for a breakdown of image sources per task). These tables are refer-
enced in 67.4% of all examples in the dataset. Each table from the seed datasets was traced back
to its original visualization in the corresponding Wikipedia article and captured in a screenshot
A key challenge in retrieving the original visualizations was that the seed datasets were created at

3Table images were rendered using Firefox in headless mode (version 142.0.1 with GeckoDriver version
0.36.0) at an effective rendering density of 96 PPI (which stands for Pixels Per Inch).
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Task Seeds Train Dev Test

ent_link TURL 1,236,128 (35.3%) 74,282 (35.4%) 213,494 (60.8%)
col_type TURL 602,406 (17.2% 13,188 (6.3%) 12,802 (3.6%)
struct_aware_parse M3 513,482 (14.6%) 9,115 4.3%) 1,102 (0.3%)
wikibio WikiBIO 582,659 (16.6%) 72,831 (34.7%) 72,831 (20.7%)
hybridqa HybridQA 62,670 (1.8%) 3,466 (1.7%) 3,463 (1.0%)
fetaqa ToTTo 3,006 (0.1%) 577 (0.3%) 1,079 (0.3%)
hitab NSF, StatCan, ToTTo 7,417 (0.2%) 1,670 (0.8%) 1,584 (0.5%)
infotabs InfoTabs 16,538 (0.5%) 1,800 (0.9%) 5,400 (1.5%)
tabfact TabFact 87,717 2.5%) 12,389 (5.9%) 12,326 (3.5%)
tabmwp TabMWP 23,059 (0.7%) 7,686 (3.7%) 7,686 (2.2%)
tat-qa TAT-QA 2,201 (0.1%) 278 (0.1%) 277 (0.1%)
totto ToTTo 110,934 (3.2%) 7,077 (3.4%) 7,084 (2.0%)
wikitq WikiTableQuestions 14,152 (0.4%) 3,537 (1.7% 4,344 (1.2%)
rel_extraction TURL 60,615 (1.7%) 2,145 (1.0%) 2,030 (0.6%)
table_instruction M! 136,944 (3.9%) 0 (0.0%) 0 (0.0%)
row_column_extraction ~M' 7,721 (0.2 0 (0.0%) 957 «
table_cell_extraction M! 7,727 (0.2 0 (0.0%) 966 (0.3%)
table_cell_location M! 7,708 (0.2%) 0 (0.0%) 956 (0.3¢
table_recognition M! 6,927 (0.2%) 0 (0.0% 912 (0.3%)
table_size_detection Mm! 7,800 (0.2%) 0 (0.0%) 950 (0.3%
merged_cell_detection ~ M? 7,500 (0.2%) 0.0 950 (0.3%)
Total 3,505,311 210,041 351,193

Table 1: TABLET splits, tasks, and seed datasets; M': InfoTabs, NSF, StatCan, TabMWP, TAT-QA,
TabFact, ToTTo, WikiBIO, WikiTableQuestions; M?: InfoTabs, NSF, StatCan, TAT-QA, TabFact,
ToTTo, WikiBIO; M?3: PubTabNet, TabFact, WikiTableQuestions. Proportion of examples in each
set (train/dev/test) is shown in gray within parentheses.

different times, while Wikipedia articles are continuously updated. To address this, we relied on the
metadata released with the seed datasets and also reached out to their authors to find out when the
tables were harvested (see Appendix [7.3). We used Wikipedia’s archiving API to retrieve each arti-
cle as it appeared at the time of crawling. All Wikipedia tables in TABLET are linked to their source
via both the page identifier and the corresponding revision identifier (oldid). As Wikipedia pages
often contain multiple tables, we needed to identify which one corresponded to the seed example.
We did this by computing the |Levenshtein| (1966) edit distance between Wikipedia tables and seed
tables, both represented in markdown format, and selecting those with the highest similarity value.
We set a minimum similarity threshold of 0.70; in cases without a match, the serialized seed table
was rendered as an image.

Synthetic Tables Wikipedia tables that could not be retrieved, either due to low similarity scores
or other issues, were synthetically generated by converting their serialized format to HTML and
rendering them using the same browser configuration used for the original Wikipedia tables. These
synthetic tables account for 11.5% of the dataset, contributing 747,002 additional examples (18.4%
of the total). In Section [5] we show that combining original table images with synthetic visualiza-
tions during training allows for an increase in example count and visualization diversity that leads
to better model performance compared to using synthetic or original tables alone.

Document Tables We also incorporate tables from other domains to improve model generalization.
These include tables from scientific articles in PubTabNet (Zhong et al.,|2020) and rendered tables
from TabMWP (Lu et al.| [2023)). PubTabNet contributes 509,892 tables to our dataset (25.1% of the
total), accounting for 97.5% of the structure-aware learning task incorporated from DocStruct4M
(Hu et al .| 2024). TabMWP adds 38,431 tables (1.9% of the total); while smaller in scale, TabMWP
offers valuable coverage of numerical reasoning examples.

3.3 TABLE UNDERSTANDING TASKS

TABLET aggregates a total of 20 TU tasks grouped into 7 broad categories: Table Interpretation,
Question Answering, Table-to-Text Generation, Table Numerical Reasoning, Table Natural Lan-
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guage Inference (NLI), and Table Structure Understanding. Subtasks within each category require
different skills and demonstrate various degrees of complexity, ranging from basic table structure
understanding to downstream tasks that combine tabular reasoning with other skills, such as infor-
mation retrieval, numerical reasoning, or natural language inference. Table [I] provides a breakdown
of examples per task and their source dataset. We briefly describe each task below and provide more

details in Appendix

Table Interpretation comprises three tasks, namely Column Type Annotation, Entity Linking, and
Relation Extraction (ent_link, col_type, and rel_extraction in Table . Sourced from TURL (Deng
et al.| [2020), these tasks do not represent downstream applications but target basic table understand-
ing skills essential for tackling more complex tasks. All instructions for these tasks were aggregated
from TURL. They constitute the largest group in our training set, with 1,899,149 examples (54.2%).

Table Question Answering is represented by Free-form Table QA (FeTaQA, Nan et al.[[2022),
Hierarchical Table QA (HiTabQA; (Cheng et al.|2022), Hybrid QA (HybridQA;|Chen et al.[[2020b),
and Table QA (WikiTableQuestions; Pasupat & Liang|2015). These tasks range from simple question
answering over table content to multi-hop reasoning that combines textual and tabular information.
They also vary in terms of table complexity and the expected answer format. Question answering
represents 2.5% of TABLET'’s training set (87,245 examples).

Table-to-Text Generation is exemplified by two subtasks, namely Highlighted Cell Text Generation
(ToTTo; Parikh et al.|2020) and Wikipedia Biography Generation (WikiBio;|Lebret et al.|2016). Both
tasks involve generating text based on table content, concise biographies in the case of WikiBio, and
short descriptions based on visually highlighted cells, in the case of ToTTo. Together, they account
for 693,593 training examples (19.8%).

Table Numerical Reasoning combines Tabular Math Word Problem Solving (TabMWP; |Lu et al.
2023) and Hybrid-context Financial QA (TAT-QA;|Zhu et al.[2021)). Given a table and a mathemati-
cal question, the model must perform reasoning over table values. This type of numerical reasoning
represents 0.8% of TABLET’s training set (25,260 examples).

Table NLI includes two entailment tasks: Table Fact Verification (TabFact; |Chen et al.|2020a) and
Infobox Natural Language Inference (InfoTabs; Gupta et al.[2020) where statements as supported or
refuted based on table content. They represent 104,255 examples (3%) in TABLET’s training set.

Table Structure Understanding is an umbrella category for tasks designed to facilitate structural
understanding of tables: Merged Cell Detection, Row and Column Extraction, Table Cell Extrac-
tion, Table Cell Location, Table Recognition, Table Size Detection, and Structure-aware Parsing in
Table [T). Examples for the first seven tasks are aggregated from MMTab, while Structure-aware
Parsing is derived from DocStruct4M (Hu et al., 2024). These tasks are based on tables from mul-
tiple seed datasets (see rows with seeds M?Z, M', and M?3), including InfoTabs (Gupta et al., |2020),
NSF (National Center for Science and Engineering Statistics, [2019)), StatCan (Statistics Canadal,
2024)), TabMWP (Lu et al., |2023), TAT-QA (Zhu et al., 2021), TabFact (Chen et al.,[2020a), ToTTo
(Parikh et al.l [2020), WikiBio (Lebret et al.l [2016), WikiTableQuestions (Pasupat & Liang| |2015)),
and PubTabNet [Zhong et al.| (2020). While we maintain the original MMTab instructions, we use
our own table visualizations. This group contributes 558,865 examples (15.8%) to our training.

Instruction Following To facilitate evaluation, we fine-tune and evaluate all models using instruc-
tions that explicitly require the final answer to be encapsulated in a JSON object, regardless of
any additional tokens the model may generate. To increase instruction diversity and mitigate catas-
trophic forgetting, we include a dedicated instruction-following set from MMTab. These instructions
rephrase a subset of examples from the above tasks using a different template and do not require the
JSON output format. While not a task in itself, this set adds instruction diversity and reduces over-
fitting to a single output style. We aggregate these examples directly from MMTab while using our
visualizations. This set contributes 136,944 training examples (3.9%).

3.4 LINKING TO SOURCES AND HIGHLIGHTING

TABLET is designed with extensibility in mind. Existing datasets such as Tablelnstruct (Zhang
et al [2024), DocStruct4M (Hu et al., |2024), and MMTab (Zheng et al. [2024b) do not provide
a clear reference to the original examples from which their instructions were derived. However,
the absence of such pointers, makes reuse, modification, and augmentation difficult. Additionally,
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image-based datasets such as MMTab lack serialized table versions in text format, providing only
rendered images as representations. To address these issues, each example in TABLET includes
both the identifier of the original example and the identifier of the corresponding table from the
source dataset. Identifiers follow a simple, human-readable format, and the released code provides
a function to retrieve the original examples given their IDs.

To support future extensions and new tasks, TABLET also provides serialized versions of its tables
in HTML. For the tables successfully retrieved from Wikipedia, this HTML corresponds to the
raw table object in the original HTML of the article. These tables can be rendered with their full
visualization using Wikipedia’s official CSS stylesheets or through the rendering functions provided
with our code. The remaining tables are either provided as HTML in the seed datasets or converted
into HTML from their serialized representations.

This feature is particularly useful in tasks involving cell pointing or highlighting. Prior work has
shown that models can achieve competitive results by relying uniquely on highlighted values (An
et al., |2022; |Alonso et al.l |2024). We also observed in our experiments that as long as highlighted
cell values are mentioned in the prompt, models are able to perform the task (e.g., Column Type An-
notation, Entity Linking, Relation Extraction, FeTaQA, and ToTTo) regardless of the table provided.
In other words, the model learns to ignore the table during training, which can be detrimental for
tasks requiring genuine table understanding. We mitigate this, by exploiting the HTML serialization
to directly locate the highlighted cells in the source tables. By cross-referencing the highlighted
spans from the seed datasets with the actual table content, we generate versions of the tables with
explicit highlights while preserving the original visual features.

3.5 COMPARISON WITH MMTAB

MMTab (Zheng et al. 2024b)) is also a dataset for visual table understanding; however, unlike
TABLET, it does not include the full set of training examples from the original datasets (e.g., only
12.4% of ToTTo compared to our 91.8%; see Appendix [7.6), and it provides no development splits.
MMTab covers 20 tasks while TABLET covers 21 (inculding instruction tuning); four tasks are
unique to the former and five to the latter, and overall our dataset is 9.36 times larger (compris-
ing 4,066,545 examples compared to MMTab’s approximate 433,376 examples). Moreover, only a
few tasks in MMTab include identifiers that can be linked back to their source examples, limiting
developers to the provided instruction text. While MMTab relies on synthetically rendered tables
with predefined styles, which omit original formatting and embedded images, TABLET retains the
original visualizations, enabling models to exploit a fuller range of visual features.

4 EXPERIMENTAL SETTING

Our experiments are motivated by two questions: (1) Does training VTU models with lossless table
visualizations improve performance on VTU tasks? and (2) Is TABLET diverse enough so that super-
vised fine-tuning (SFT) improves generalization on unseen VTU tasks? We also examine whether
training only with original visualizations performs better than mixing original and synthetic ones,
whether a balanced task distribution is preferable to the full dataset distribution, and whether includ-
ing various table interpretation tasks contributes to VTU performance.

Backbone Model All experiments employ the same backbone model, namely Qwen2.5-VL with
7B parameters (Qwen et al., [2025). This model provides a good tradeoff between performance and
computational requirements. Together with InternVL3 (Zhu et al.||2025)), it was the best-performing
open-weight VLM in its class, setting a new benchmark for Single Page Document VQA (Mathew
et al., [2021) at the time of writing. Exploring the best backbone model for VTU or advanced SFT
strategies is outside the scope of this work. Full SFT configurations are detailed in Appendix [}
results for other open-weight models on TABLET (test set) are reported in Appendix

Evaluation We evaluate fine-tuned models on eight held-in tasks: three focus on Table QA (Wik-
iTableQuestions, HiTabQA, FeTaQA), two on text generation (WikiBio, ToTTo), two on Table Nu-
merical Reasoning tasks (TabMWP, TAT-QA), and one on Table NLI (TabFact). To test generaliza-
tion, we further evaluate on six held-out tasks: HybridQA, InfoTabs, TabMCQ (Jauhar et al.l|2016),
AIT-QA (Katsis et al.| [2022), Table Recognition, and PubHealthTab (Akhtar et al., 2022)). The last
four are directly extracted from MMTab and use instructions generated with their own templates,
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WikiBio ToTTo WikiTQ TabMWP  HiTAB TabFact FeTaQA  TAT-QA
Model synth org | synth org ‘synth org‘ org synth org | synth org ‘synth org‘ org

0-Shot 20 25| 108 89 | 577 50.8 51.9 1.1 25704 594 99 98 48.7
TABLET-Bgynn | 11.3 4.8 | 12.4 144 | 584 56.5 84.3 335 16.0| 63.1 655| 28.6 27.9 334
TABLET-Borg 9.6 115 13.7 159 585 56.2 84.2 35.1 247|621 63.7| 284 284 33.0
TABLET-Bpix 103 12.0| 125 14.1| 58.9 56.5 84.4 385 269 | 682 70.0| 28.6 28.5 52.5

Table 2: Comparison of Qwen2.5-VL-7B-Instruct models fine-tuned on different TABLET-B vari-
ants and in zero-shot mode; models are evaluated on original (lossless) table visualizations and
synthetic ones across held-in benchmarks. Results for TabMWP and TAT-QA exclude the mixed
setting, as all tables already use original visualizations. We report exact match accuracy for Wik-
iTQ, TabMWP, TabFact, and TAT-QA; BLEU for WikiBio, ToTTo, and FeTaQA; and F1 for HiTab.
ToTTo results are reported on its development set. Best model per setting (synth/org) shown in bold.

adding diversity in both table and instruction styles. Although included in TABLET, the 86,135 train-
ing examples from HybridQA, InfoTabs, and Table Recognition were excluded from fine-tuning
to enable held-out evaluation. Models trained on the full dataset would potentially achieve even
stronger results than those reported here.

5 RESULTS AND ANALYSIS

Lossless vs Synthetic Table Visualizations We first assess whether models benefit from being
trained with original table visualizations, in particular when exposed to real-world tabular images
rather than synthetic ones at test time. This experiment was conducted on a subset of TABLET cor-
responding to MMTab as this benchmark represents the current state of the art in multimodal table
understanding. We refer to this subset as TABLET-BASE (TABLET-B). We replaced all Wikipedia-
based table images in MMTab with their original visualizations and kept tables that did not un-
dergo lossy serialization unchanged (TabMWP, PubHealthTab, TabMCQ, AIT-QA); we also left
MMTab’s instructions unaltered. We refer to this partition of the dataset as TABLET-B,,, and con-
trast it with TABLET-Bgynn which is the same version but with synthetic table images. TABLET-B
contains 238,980 examples (in both original and synthetic versions). We also create TABLET-B i«
which combines original with synthetic tables. Specifically, we extend TABLET-B,, with all ex-
amples whose original visualizations could not be retrieved, using our synthetic renders. This set
contains 371,292 examples (43.5% original visualizations and 35.6% synthetic). We perform full
fine-tuning (without LoRA) on Qwen2.5-VL-7B for 3 epochs and evaluate in the 8 held-in tasks
and 4 held-out tasks mentioned above. These tasks contain either original visualizations or synthetic
ones to simulate various test cases (e.g., a model has seen only synthetic/original table images but is
tested on original/synthetic ones).

Our results in Table [2] (held-in tasks) show that lossless models outperform synthetic ones in two
tasks (WikiBio, HiTab), match performance in four (WikiTQ, TabMWP, FeTaQA, TAT-QA), and
underperform in one (TabFact). For reference, we also report the 0-shot performance of Qwen2.5-
VL-7B. The fact that there is no pronounced difference between lossless and synthetic visualizations
is perhaps not surprising since most benchmarks were originally designed around serialized, text-
only representations, without paying heed to visual cues (TURL, WikiBIO, ToTTo, TAT-QA). Thus,
while lossless visualizations contain more information, current benchmarks do not test whether mod-
els benefit from them. Developing benchmarks with high visual variability and challenging layouts
would better highlight scenarios where lossless visualizations offer a distinct advantage.

When comparing models trained with lossless table visualizations (TABLET-B,,) against a mix-
ture of lossless and synthetic (TABLET-B,,;x), we find that mixed training improves results on four
tasks (WikiBio, HiTab, TabFact, TAT-QA) and obtains equivalent performance on three (WikiTQ,
TabMWP, FeTaQA). However, note that this improvement could be due to TABLET-Bx having
more samples compared to the other partitions. In general, we observe that model performance
degrades when evaluating on original visualizations. This setting appears to be consistently more
challenging, but robustness improves when adding original tables into the training (see TABLET-
Bmix row in table 2). We measure degradation as the average percentage-point change in perfor-
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Held-in Datasets
WikiBio ToTTo WikiTQ TabMWP Hitab TabFact FeTaQA TAT-QA

0-Shot 25 9.1 53.4* 59.1% 312 73.9* 7.0* 6.9*
1-Shot 4.4 16.1*  49.8% 57.7* 37.3*  72.8% 8.5* 10.1*
MMTab 6.4* 12.6*  48.7* 80.4* 415 57.0* 1.7* 9.4*

TABLET-S 2.9 28.9 56.8 84.0 64.8 78.9 28.7 27.8
TABLET-M 3.1 29.3 56.6 84.0 67.0 79.5 30.7 31.0
TABLET-L 3.8 30.4 55.5 84.5 67.5 79.5 31.5 32.5

Table 3: Evaluation on eight held-in datasets with Qwen2.5-VL-7B-Instruct in 0/1-shot mode
and fine-tuned on MMTab and different TABLET sizes. Results for ToTTo correspond to evaluation
on the development set. We report exact match accuracy for WikiTQ, TabMWP, TabFact, and TAT-
QA; BLEU for WikiBio, ToTTo, and FeTaQA; and F1 for HiTab. Best performing model per task is
shown in bold; we mark with * models significantly different (p < 0.05, using bootstrap resampling)
from those trained on TABLET (highlighted in gray). Models that perform significantly better within
the TABLET group are underlined.

[ RelExtraction

E rabmwp

13 =1nnnb

Held-out-Datasets } ' Do

Infotabs TabMCQ AIT-QA PubHealthTab HybridQA TabRec A EC»ITypek

EnTLinl

0-Shot 64.5* 844  51.7* 64.7* 342%  245* V B wikivio
1-Shot 65.5*  61.0° 43.1* 70.0* 30.5%  27.9* Drtridoa
MMTab 56.9* 89.1  56.6* 63.9* 27.1 43.6* DT;[,“
TABLET-S 572 882 589 64.7 228 439 Bsiucsvarcruse

TABLET-M 615 883 624 66.3 277 441 Dl tptenstc
TABLET-L 614 879 708 70.2 25.1 454 a.TABLET-M b. TABLET-L

Table 4: Left: Evaluation on five held-out datasets with Qwen2.5-VL-7B-Instruct (0/1-shot) and
fine-tuned on MMTab and different TABLET sizes. We report Tree-Edit- Distance-based Similarity
for Table Recognition (TabRec) and accuracy for all other benchmarks. HybridQA results are re-
ported on the development set. Best performing model per task is shown in bold; we mark with
models significantly different (p < 0.05, using bootstrap resampling) from those trained on TABLET
(highlighted in gray). Models that perform significantly better within the TABLET group are under-
lined. Right: Distribution of examples per task in TABLET-L (b) and TABLET-M (a).

mance between original and mixed visualizations. The baseline model degrades the most, with a
drop of 28.9 percentage points, particularly in tasks like HiTab and TabFact. The model trained on
TABLET-Bgynt degrades by 22.35 points, compared to 6.63 and 7.87 points for models trained on
TABLET-Bor and TABLET-Bpiy, respectively. The model trained purely with lossless tables is most
robust, maintaining stable performance when exposed to both original and synthetic styles (a de-
tailed breakdown of degradation per task and model is in Appendix [8.2). On held-out tasks models
trained on TABLET-By,;x have a slight advantage (see Appendix .

Performance on Unseen VTU Tasks with TABLET We next evaluate whether TABLET’s task di-
versity improves performance on unseen datasets. While fine-tuned models are expected to per-
form better on tasks seen during training, improved performance on held-out datasets would sug-
gest that training on TABLET enhances the model’s VTU capabilities Tables [3] l and [4] l report our
results on held-in and held-out tasks, respectively. We present comparisons between zero- and one-
shot Qwen2.5-VL- 7BE] and its fine-tuned instantiations trained on MMTab and different sizes of
TABLET. For MMTab, all Wikipedia-sourced images are synthetic (61.8% of all tables in their
dataset), whereas all TABLET versions use a mix of original (88%) and synthetic (12%) (See Ap-
pendix[7.2]for the distribution of image sources per task). For now, we focus solely on TABLET-L (a
shorthand for TABLET-LARGE), which is our biggest dataset comprising 4M examples (we discuss
smaller sizes in the next sections).

We observe that the model fine-tuned on TABLET-L performs overwhelmingly better on held-in and
held-out datasets. It dominates in all QA benchmarks except HybridQA, where long-context profi-

*We should note that Qwen2.5-VL-7B is a competitive baseline that has undergone extensive pre-training
and instruction-tuning, achieving top scores in many TU and Visual Document Understanding benchmarks.
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ciency is likely reduced since its training set was excluded from fine-tuning. Notably, in tasks such
as HiTab, FeTaQA, and TAT-QA, where TABLET includes fewer training examples than MMTab,
the model still performs considerably better, suggesting benefits from transfer across tasks, original
visualizations, or simply due to a higher-quality subset of examples. Finally, tasks that include hier-
archical table structures such as ToTTo and HiTab show clear gains. Table cell hierarchy is not lost
in synthetic tables, but it is often conveyed more clearly in their original visualizations. Our results
are encouraging, particularly when considering that portions of the held-out datasets, including test
sets, may have been encountered during petraining. Models trained on TABLET outperform 0/1-shot
Qwen2.5-VL-7B on 12 out 14 (held-in and held-out) tasks.

Interestingly, our gains extend beyond unseen tasks. For instance, ToTTo, HiTab, TabFact, FeTaQA,
and TAT-QA contain the same number of training examples across all TABLET variants, yet perfor-
mance consistently improves as additional tasks are incorporated. This suggests that fine-tuning on
a broader task set facilitates transfer learning, yielding improvements even on tasks where the model
was already competitive.

Optimal TABLET Size Since training on 4M examples is resource-intensive, and tasks in
TABLET-L exhibit substantial variation in size (see (b) pie chart in Table E]), we evaluate whether
a smaller but more balanced dataset might perform comparably. We create TABLET-M (a short-
hand for TABLET-MEDIUM) by capping each task at 140k examples. For benchmarks exceeding
this cap (Column Type Annotation, Entity Linking, WikiBio), a random 140k subset is sampled and
included as representative for that task. This results in a dataset with 1,117,217 training examples.
We exclude HybridQA, InfoTabs, and Table Recognition from the training set to allow for held-out
evaluation, leaving 1,031,082 examples in TABLET-M and 3,419,176 in the full dataset of our ex-
periments. The capped distribution is shown in pie chart (b), Table ] and further details on training
sets are in Appendix

The model trained on TABLET-M performs competitively and in some cases, even better than
TABLET-L (see Table |4, rows in gray), offering a compelling trade-off between dataset size and
model effectiveness. That said, the full dataset still yields slightly better performance overall and
remains a valuable resource for future work that can benefit from large-scale, lossless training.

The Benefit of Training on Table Interpretation Tasks Table Interpretation tasks represent 54.2%
of the training examples in TABLET-L, making them the largest category by volume and the second
longest in instruction length, following HybridQA (see Appendix [8.1). While Deng et al.| (2020)
demonstrated the benefits of these tasks for textual TU, it is unclear whether this carries over to
VTU. If these tasks prove unhelpful, removing them would save significant resources.

We therefore remove all Table Interpretation tasks from TABLET-M and fine-tune on this smaller
version (we use TABLET-S as a shorthand for TABLET-SMALL) which excludes any tasks related
to Column Type Annotation, Entity Linking, and Relation Extraction resulting in a dataset with a
total of 690,467 training examples (67% of the example count in TABLET-M). As shown in Table
there are benefits to be gained from including these tasks. Models trained on TABLET-M outperform
those trained on TABLET-S on six out of 8 held-in benchmarks (Table [3)) and achieve comparable
performance on the remaining two. Similar gains are observed in four out of five held-out tasks
(Table El]) These findings demonstrate that the benefits observed in the textual domain (Deng et al.|
2020) extend to multimodal VTU.

6 CONCLUSIONS

In this work, we introduced TABLET, a large-scale dataset for Visual Table Understanding that ag-
gregates 4 million examples across 20 tasks and 2 million unique tables. Unlike prior resources,
TABLET preserves original table visualizations whenever possible, provides both HTML and im-
age representations, and maintains full traceability to the source datasets. Extensive experiments
showed that (1) training on TABLET increases robustness to real-world tables compared to synthetic
renderings; (2) models fine-tuned on TABLET consistently outperform those trained on related VTU
datasets across held-in and held-out tasks; and (3) TABLET brings improvements on unseen bench-
marks, which suggests that its diversity supports transfer across VTU tasks. We hope TABLET will
foster further research on Visual Table Understanding, including the design of new tasks and the
evaluation of models in settings that reflect real-world tabular data.
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7 APPENDIX

7.1 TABLET TRAINING SET STATISTICS

While the full released version of TABLET includes all available data, our experiments used different
partitions. Specifically, to allow for held-out evaluation, we excluded HybridQA, InfoTabs, and
Table Recognition from the training set; in addition, we created three training sets varying in size
(TABLET-L, TABLET-M, TABLET-S) to explore various research questions. The statistics for these
training sets are reported in Table [ The development and test sets remain identical to the ones
mentioned in the paper.

Examples Tasks Original Images

TABLET-S 690,467 14 521,032 (75.5%)
TABLET-M 1,031,082 17 812,748 (78.8%)
TABLET-L 3,419,176 17 2,795,485 31.8%)

Table 5: Training set statistics for TABLET-L, TABLET-M, and TABLET-S used to fine-tune
Qwenn2.5-VL 7B in our experiments. We report the number of examples (Examples), the tasks
used (Tasks), and the number of examples with original table visualizations.

7.2 IMAGE SOURCE PER TASK

Figure [3| shows the distribution of images per task included in TABLET. Images are sourced from
Wikipedia, TabMWP, PubTabNet or are syntehtically rendered from information in the seed dataset.

7.3 DATASET CRAWLING DATES

We determined data collection dates for each dataset through vari-
ous sources and methodologies. TURL originates from the TabEl

dataset (Bhagavatula et al., [2015), which was crawled from the Dataset Date
November 2013 English Wikipedia dump. For ToTTo, we ob- TURL 2013-11-01
tained the collection date through direct correspondence with Ankur ToTTo 2019-03-01

Parikh. TabFact’s timeline was established based on email corre- TabFact 2019-06-30
spondence with Wenhu Chen and the initial arXiv publication date. HybridQA  2020-01-31

. . . Infotabs 2019-10-10
For HybridQA, we conducted a comprehensive analysis of all dates WikiBio 2015-09-01

present within the dataset tables and observed a significant decrease
in data frequency from February 2020 onward, indicating the col-
lection cutoff point. InfoTabs’ crawling year is documented at the
bottom of their GitHub repository page, though the specific day
represents our estimation. WikiBio’s GitHub documentation indi-
cates that their tables are sourced from the Common Crawl snapshot
enwiki-20150901.

Table 6: Data collection time-
line for benchmarks included
in TABLET.

7.4 DATASET EXAMPLE
For reference, we show an example from TABLET for the ToTTo table-to-text task. Note that ex-
amples for every other task follow the same format. We provide the instructions used in our exper-

iments, together with the corresponding example metadata, and links to the corresponding example
and table from the source dataset.

7.5 DEFINITION OF TASKS REPRESENTED IN TABLET

As mentioned in Section[3.3] TABLET includes 20 TU tasks. We provide more detailed descriptions
for each below.
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Figure 2: Image source distribution in TABLET, broken down by task. That is, source of the image
referred by each example in each task. While the distribution resembles that of the unique image
pool, it is computed at the example level (e.g., if the same Wikipedia image appears in two examples
of a task, it is counted twice). Wikipedia are original visualizations form Wikipedia. Seed render
are synthetic images rendered form information in the seed dataset.

Column Type Annotation In this task, the model is required to identify the data type of the val-
ues in a highlighted table column. The model selects from a set of 255 randomly shuffled candidate
data types. There can be multiple correct types per column. The column is visually highlighted
to ensure that the model attends to the table itself rather than relying solely on the textual instruc-
tion to infer the answer. Examples for this task were obtained from TURL. Our dataset includes
602,406/13,188/12,802 (train/dev/test) instructions for this task. An example of this task is shown

in Figure

Entity Linking For this task, the model is given a table with a visually highlighted cell along with
a set of up to 100 candidate entities and descriptions and must identify which entity and description
corresponds to the entity in the selected cell. This task was aggregated from the TURL dataset. Our
dataset includes 1,236,128/74,282/213,494 (train/dev/test) instructions for this task. An example of
this task is shown in Figure 3]
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"example_id": "e@af904e6617d@ab211lae76e62f7308c",

"html_path": "html/highlighted/ToTTo/totto/train/254d984c233855f5be6814c6d1388c92_e0af904e6617ddab211ae76e62f7308c.html",

"img_path": "img/highlighted/ToTTo/totto/train/254d984c233855f5be6814c6d1388c92_e@af904e6617d0ab211ae76e62f7308c.png",

"html_raw_path": "html/raw/ToTTo/totto/254d984c233855f5be6814c6d1388c92.html",

"img_raw_path": "img/raw/ToTTo/totto/train/254d984c233855f5be6814c6d1388c92.png",

"img_source": "wikipedia",

"input": "Taking into account the table information on 'List of 8/9 PM telenovelas of Rede Globo', section '2000s', produce a
single-sentence summary focused on the highlighted cells and format it within the following JSON object {\"answer\": \"YOUR
ANSWER\"}.",

"output": "{\"answer\": \"A Favorita is the telenovela aired in the 9 pm timeslot.\"}",

"metadata": {"table_page_title": [46, 86], "table_section_title": [98, 103], "final_sentence": [12, 68]},

"seed_table_id": "1762238357686640028:train:0",

"split": "train",

"src_example_ids": {

"ToTTo": "1762238357686640028:train:0"

1,

"table_id": "254d984c233855f5be6814c6d1388c92",

"table_page_title": "List of 8/9 PM telenovelas of Rede Globo",

"table_section_title": "2000s",

"table_seed_dataset": "ToTTo",

"table_variant": "highlighted",

"task": "totto",

"table_wiki_page_id": "45544626",

"table_wiki_old_id": 876845524,

}

Figure 3: Example of a TABLET example for the ToTTo table-to-text task.

Relation Extraction This task requires the model to select appropriate relations between two
visually highlighted columns of a table from a set of candidates. This task is derived from the
TURL dataset. Our dataset includes 60,615/2,145/2,030 (train/dev/test) instructions for this task.
An example of this task is shown in Figure

Structure Aware Parsing In this TSR task, the model needs to parse the table into markdown
format. This task comes from Docstruct4M, using tables from PubTabNet, TabFact, and WikiTable-
Questions. Our dataset includes 513,482/9,115/1,102 (train/dev/test) instructions for this task. An
example of this task is shown in Figure[9]

Free-form Table Question Answering (FeTaQA) In this task, the model generates free-form an-
swers to questions about Wikipedia tables, often requiring integration of information from discontin-
uous sections of the table. Unlike datasets with shorter text spans, FeTaQA emphasizes higher-level
understanding through long-form answers. Examples for this task come from FeTaQA dataset. Our
dataset contains 3,006/577/1,079 (train/dev/test) instructions for this task. An example of this task
is shown in Figure 6]

Hierarchical Table QA (HiTabQA) This question-answering task involves hierarchical tables
(with different headers across the table) and sometimes includes numerical reasoning, such as sums,
averages, maximum, minimum, and counting, among others. Examples for this task were obtained
from HiTabQA, with tables from ToTTo, StatCan, and NSF seed datasets. Our dataset contains
7,417/1,670/1,584 (train/dev/test) examples. An example of this task is shown in Figure @

Table Fact Verification (TabFact, Infotabs) Also known as Table Entailment, this task involves
classifying statements as supported or refuted based on table content. Examples for these two tasks
come from TabFact and Infotabs seed datasets. Our dataset includes 87,717/ 12,389 / 12,326 (train
/ dev / test) TabFact examples and 16,538 / 1,800 / 5,400 (train / dev / test) Infotabs examples. An
example of one of these tasks is shown in Figure[T1]

Table Numerical Reasoning (TabMWP, TAT-QA) Given a table and a mathematical question,
the model must answer using mathematical reasoning over table values. Instructions were based on
examples from TabMWP and TAT-QA. Our dataset includes 23,059 / 7,686 / 7,686 for TABMWP
and 2,201 / 278 / 277 (train / dev / test) examples. An example of one of these tasks is shown in
Figure

Table-to-Text (ToTTo) In this task, the model needs to generate a description based on the visually
highlighted cells in a given table. Instructions were generated based on examples from ToTTo. Not
all examples from the original dataset were retrieved, as we could not trace all highlighted cells from
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the dataset to the retrieved table for 8.1% of the examples. These examples were discarded to avoid
adding noise to the dataset. Our dataset contains 110,934/7,077/7,084 (train/dev/test) examples. An
example of this task is shown in Figure[12]

Hybrid QA (HybridQA) This multi-hop question-answering task requires integrating structured
table data with unstructured hyperlinked passages. Given a Wikipedia table and texts linked to
the table’s entities, the model must answer multi-hop questions by reasoning across both modal-
ities. Instructions were generated using HybridQA’s examples, resulting in a dataset containing
62,670/3,466/3,463 (train/dev/test) examples. An example of this task is shown in Figure

Table QA (WikiTableQuestions) Given a Wikipedia table and a question, the model must answer
based on the table’s content. For this task, WikiTableQA’s examples are phrased as instructions in
our dataset. Our dataset includes 14,152/3,537/4,344 (train/dev/test) instructions. An example of
this task is shown in Figure

Wikipedia Biography Generation (WikiBio) Given a Wikipedia infobox of an entity, the model
is prompted to generate a concise biography of this entity using the information in the infobox.
This task’s examples are aggregated from WikiBio. Our dataset includes 582,659/72,831/72,831
(train/dev/test) instructions. An example of this task is shown in Figure[I3]

MMTab’s Structure Understanding tasks TABLET includes all tasks from MMTab that are
meant to instill table structure understanding in the model. These include: Merged Cell Detection,
Row & Column Extraction, Table Cell Extraction, Table Cell Location, Table Recognition, Table
Size Detection, and instruction following pre-training tasks. We refer toZheng et al.|(2024b)’s work
for a description of these tasks. Instructions for these tasks are directly aggregated from MMTab and
tables come from the following seed datasets: InfoTabs, NSF, StatCan, TabMWP, TAT-QA, TabFact,
ToTTo, WikiBIO, WikiTableQuestions. TABLET maintains the same instructions as in MMTab but
uses our visualizations for the table images. As instructions originate from MMTab, and no dev
set is provided in this dataset, TABLET does not include any example for these tasks in the devel-
opment set. Our dataset includes the following examples: Merged Cell Detection (7,500/0/950),
Row & Column Extraction (7,721/0/957), Table Cell Extraction (7,727/0/966), Table Cell Location
(7,708/0/956), Table Recognition (6,927/0/843), Table Size Detection (7,800/0/950), and instruction
following pre-training tasks (136,944/0/0). An example of one of these tasks is shown in Figure

7.6 MMTAB vS TABLET

Table [/| provides a detailed comparison between MMTab and TABLET across tasks and example
counts (in training, development and test sets).

8 SUPERVISED FINE-TUNING DETAILS

All supervised fine-tuning (SFT) experiments were carried out with the same hyperparameters across
models; the only varying factor was the dataset used for training. We fine-tuned Qwen2.5-VL-7B-
Instruct using their official implementationE] Our code will be released alongside the dataset in
their project repository.

Hyperparameters All runs used the following common configuration:

* Training setup: DeepSpeed ZeRO-3, bf16 precision

* Epochs: 3

* Batch size: 2 (per device), gradient accumulation steps: 4

* Optimizer: AdamW, learning rate: 2e-7, weight decay: 0.01
* Scheduler: cosine decay with warmup ratio 0.03

* Gradient clipping: 1.0

Shttps://github.com/QwenLM/Qwen2.5-VL/tree/main/qwen—-vl-finetune
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Train Dev Test

Task MMTab ~ TABLET | MMTab TABLET | MMTab TABLET
wikibio 4,994 582,659 0 72,831 1,000 72,831
wikitq 17,689 14,152 0 3,537 4,344 4,344
totto 15,000 110,934 0 7,077 7,700 7,084
tabmwp 30,745 23,059 0 7,686 7,686 7,686
tabfact 31,321 87,717 0 12,389 6,845 12,326
hitab 11,941 7,417 0 1,670 3,160 1,584
infotabs 18,338 16,538 0 1,800 5,400 5,400
fetaga 8,327 3,006 0 577 2,003 1,079
tat-qa 5,920 2,201 0 278 772 277
table_instruction 37,204 136,944 0 0 0 0
table_cell_extraction 8,000 7,727 0 0 1,000 966
table_cell_location 8,000 7,708 0 0 1,000 956
table_size_detection 8,000 7,800 0 0 1,000 950
merged_cell_detection 8,000 7,500 0 0 1,000 950
row_column_extraction 8,000 7,721 0 0 1,000 957
table_recognition 8,000 6,927 0 0 1,000 912
rotowire 3,400 0 0 0 334 0
col_type 0 602,406 0 13,188 0 12,802
ent_link 0 1,236,128 0 74,282 0 213,494
rel_extraction 0 60,615 0 2,145 0 2,030
hybridqa 0 62,670 0 3,466 0 3,463
struct_aware_parse 0 513,482 0 9,115 0 1,102
OOD 0 0 0 0 1,250 0
TabMCQ 0 0 0 0 1,029 0
AIT-QA 0 0 0 0 511 0
PubHealthTab 0 0 0 0 1,942 0
All 232,879 3,505,311 0 210,041 49,976 351,193

Table 7: Comparison of MMTab and TABLET: tasks and examples across training, development,
and test splits.

* Sequence length: 8192 tokens
* Vision input size: max_pixels = 50,176, min_pixels = 784

e Other: data_flatten = False, data_packing = False, tune.mm_vision
= False, tunemmmlp = True, tunemm_11lm = True

Compute Usage Table[§|reports the total GPU hours consumed by each experiment. All runs were
conducted on clusters equipped with NVIDIA A100 GPUs.

8.1 INSTRUCTION SEQUENCE LENGTH
Figure E] shows how instruction length (measured in terms of tokens) varies across tasks in TABLET.

As can be seen, HybridQA has the longest instructions, followed by Column Type, Entity Linking,
and Relation Extraction.

8.2 PERFORMANCE DEGRADATION: ORIGINAL VS SYNTHETIC IMAGES

Let each task ¢ belong to one of the metric families B (BLEU), A (accuracy), or F (F1). For a given
model m, we compute the raw difference:
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Dataset Setup GPU Hours
TABLET-Borg 15h x 16 GPUs 240
TABLET-Bgyntn 15h x 16 GPUs 240
TABLET-Bmix 21h x 16 GPUs 336
MMTab 21h x 16 GPUs 336
TABLET-S 28h x 32 GPUs 896
TABLET-M 40h x 32 GPUs 1280
TABLET-L 125h x 32 GPUs 4000
Inference (TABLET-Borg) 21h x 8 models 168
Inference (TABLET-Bgynth) ~ 21h x 8 models 168
Inference (TABLET-Bix) 24h x 8 models 192
Inference (MMTab) 24h x 8 models 192
Inference (TABLET-B,) 34h x 8 models 272

Table 8: GPU hours for supervised fine-tuning and prediction runs. For the predictions, the 8 models
are the 7 SFT models and the baseline model.
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Figure 4: Instruction length distribution across tasks in TABLET.
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Negative values indicate that the model performs worse when evaluated on the original visualizations
compared to the synthetic ones. Because the metrics differ in scale, we normalize each by the
corresponding synthetic score to report results in terms of percentage change:

Ap
Ot = — L % 100.

- synth
Score,;, ¢

Next, for each metric family F' € B, A, F, we compute the family mean (M/). Finally, the Degrada-
tion Score for model m is defined as the unweighted average of the family means:

1
DegScore = 3 (Mm,p, + My, 4+ Mm);).
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This guarantees that BLEU, accuracy, and F1 contribute equally, regardless of how many tasks are
included in each family. Our results are summarized in Table[9|below where we show the Degration
Score per dataset and overall. Results are reported only for tasks with synthetic and original images.
InfoTabs is held-out, all other tasks are held-in. As can be seen in the table, the 0-shot model
performs worse when evaluated on original visualizations, followed by Qwen2.5-VL-7B fine-tuned
on TABLET-Bgynih. Models which have seen original images during fine-tuning perform best (see
TABLET-Borg and TABLET-Bpx.

Model  WikiBio ToTTo WikiTQ HiTab TabFact FeTaga Infotabs (BLEU) (acc) (F1) DegScore

0-Shot +0.5 -1.9 -6.9 -8.6 -11.0 -0.1 -4.6 -1.5 225  -8.6 -28.90
TABLET-Bgynin -6.5 +2.0 -1.9  -175 +2.4 -0.7 -0.6 52 -01 -175 -22.35
TABLET-Bor, +19 +2.2 -23  -104 +1.6 +0.0 -2.7 +4.1 -34 -104 -6.63
TABLET-Bix +1.7 +1.6 24 -11.6 +1.8 -0.1 -4.8 +32 54 -11.6 -7.87

Table 9: Comparison of Qwen2.5-VL-7B-Instruct models fine-tuned on different TABLET-B vari-
ants and in zero-shot mode; models are evaluated on original (lossless) table visualizations and
synthetic ones across held-in benchmarks. Totals are summed separately for BLEU, accuracy (acc),
and F1; the average percentage-point change (DegScore) is a unit-less normalized aggregate (more
negative is worse).

8.3 TABLET-B HELD-OUT EVALUATION RESULTS

In Table we present results on held-out portions of TABLET-B, with Qwen2.5-VL-7B fine-
tuned on original table images (TABLET-B,), synthetic ones (TABLET-Bgyyn), and a mixture
(TABLET-Bpix).

Infotabs TabMCQ AIT-QA PubHealthTab

Model ‘ mix org ‘ org ‘ org ‘ org
TABLET-Bgynm | 524 51.8 87.8 64.4 57.6
TABLET-Boy | 514 487 87.7 63.8 55.0
TABLET-Bnix | 60.3 55.5 88.3 59.5 61.6

Table 10: Comparison of Qwen2.5-VL-7B fine-tuned on different MMTab variants evaluated on
purely lossless (org) table visualizations and a mix of both across held-out benchmarks. Results
for TabMWP, AIT-QA, and PubHealthTab do not include mix because the tables in these tasks are
original visualizations. We report accuracy for all benchmarks.

8.4 OPEN-WEIGHT MODEL EVALUATION ON TABLET

Finally, in Tables and we report results on TABLET for open-weight VLMs other than
Qwen2.5-VL-7B, in the zero-shot setting.

WikiBio ToTTo WikiTQ TabMWP HiTab TabFact FeTaQA TAT-QA

Table-LLaVA 7B (Zheng et al.||2024b) 5.7 16.3 17.7 475 10.6 53.6 7.5 1.8
Qwen2.5-VL 7B (Qwen et al.|[2025) 2.5 9.1 534 59.1 312 73.9 7.0 6.9
DocOwI2 8B (Hu et al.|[2025) 1.8 1.2 18.9 0.5 9.5 54.3 9.6 29
InternVL3 8B (Zhu et al.;[2025) 4.6 11.9 453 839 408 64.3 3.8 13.0
InternVL3 14B (Zhu et al.|[2025) 6.3 12.4 51.6 86.8 52.0 75.1 6.6 11.9
Gemma-3 12B (Team et al.|[2025) 5.1 54 39.1 723 242 69.5 20.3 2.5

Table 11: Open-weight VLMs evaluated on TABLET held-in datasets (zero-shot setting).
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Infotabs TabMCQ AIT-QA PubHealthTab HybridQA

Table-LLaVA 7B (Zheng et al.|[2024b) 61.5 59.1 4.7 50.2 —
Qwen2.5-VL 7B (Qwen et al.|[2025) 64.5 84.4 51.7 64.7 342
DocOwl2 8B Hu et al.|(2025) 15.5 63.0 36.8 14.6 —
InternVL3 8B (Zhu et al.|[2025) 59.6 88.5 524 64.2 33.1
InternVL3 14B (Zhu et al.|[2025) 67.4 88.8 523 74.9 46.7
Gemma-3 12B (Team et al.|[2025) 65.5 88.9 48.7 64.7 352

Table 12: Open-weight VLMs evaluated on TABLET held-out datasets (zero-shot setting). Results
for HybridQA are not reported for Table-LLaVA 7B and DocOwl12 8B due to their VRAM require-
ments, which do not scale well to the long contexts needed for our dataset.

Table:

Place Athlete Time Qual.
1 &8 Mel Brock (CAN) 1:57.0 Qs
2 == Ted Meredith (UsA) Qs
3 &m John Victor (RsA)

EE Alan

- IPatterson (GBR) I DNF
Instruction:

For the Wikipedia table from the
article 'Athletics at the 1912
Summer Olympics Men's 800 metres'
see 'Heats', select the proper
entity that matches the highlighted
table value given the following
possible entities (<name /
description / type>): <Alan
Patterson / Wikipedia
disambiguation page / None>, <Alan
Patterson / British athlete /
owl#Thing>, <Alan Patterson / UK MP
/ Person>, [...]. Return only the
identifier or name of the chosen
entity as JSON: {"answer": "YOUR
ANSWER"} .

R A A A

Expected output:

{"answer": "<Alan Patterson / British
— athlete / owl#Thing>"}

Figure 5: Example for Entity Linking task based on highlighted table cell.

9 LIMITATIONS

While TABLET is the largest resource for Visual Table Understanding to date, it has several lim-
itations. Firstly, some original visualizations could not be retrieved due to missing or changed
Wikipedia pages, and some embedded resources (e.g., images) were inaccessible. Secondly, we did
not conduct a full ablation of the contribution of each task due to computational constraints, focus-
ing instead on broader questions such as task balancing and dataset inclusion. Thirdly, most seed
datasets are from Wikipedia, which, despite differing in visual format, are common in pretraining
corpora, raising the possibility of data contamination. Finally, our fine-tuning focused on a single
model (Qwen2.5-VL 7B), with zero-shot evaluation on others; future work should explore a broader
range of architectures, especially those with reasoning or self-reflection capabilities.
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Table:

Year Competition % Venue +  Position Event +# Notes ¢
Representing @ Soviet Union

1976 Olympic Games Montreal, Canada 3rd 4 x 100 m relay
1978 W European Indoor Championships Milan, Italy 1st 60 metres

Instruction:

According to the table titled Nikolay Kolesnikov
(sprinter), section Achievements, write a short
sentence answer to the question: How did Nikolay
Kolesnikov do at the 1976 Olympics and at the 60
metres at the 1978 European Indoor Championships?
Output only the correct answer as {"answer": "YOUR
ANSWER"} .

A

Expected output:

{"answer": "Nikolay Kolesnikov won a bronze medal at
— the 1976 Olympics and won the 60 metres at the
— 1978 European Indoor Championships."}

Figure 6: Example for Free-form Table Question Answering task based on highlighted table cells
(FeTaQA).

Table:
INationaIityI Player | Ranking*  Seeding
= ISR Dudi Sela 56 1
[]TPE Lu Yen-hsun 62 2
= USA Bobby Reynolds |93 3
mm GER Michael Berrer 111 4
E=3 BERA Thiago Alves 120 5
N GER Benjamin Becker | 126 6
B 1 FRA Nicolas Mahut 137 7
mm RUS Michail Elgin 138 8
Instruction:
For the table found in the article '2009 israel
— open' (section 'seeds') on Wikipedia, determine
— which relation holds between the two
— highlighted columns among these relation
— candidates:
— base.wikipedia_infobox.video_game.developer,
— organization.organization.headquarters,
— award.award_nominated_work.award_nominations,
« award.award_nomination.award_nominee, [...].
— Provide the correct relation as JSON:
— {"answer": ["RELATION"]} - list multiple
— relations comma-separated if necessary.
Expected output:
{"answer":
— ["people.person.nationality"]}

Figure 7: Example for Relation Extraction task based on highlighted table columns.
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Table:

Practice summary

Fastest lap

Session Day

No. Driver Team Car Time

Practice 1 | Friday | 9 | & David Reynolds | Erebus Motorsport Holden VF Commodore | 1:12.8697

Practice 2 | Friday | 88 | &l Jamie Whincup | Triple Eight Race Engineering | Holden VF Commodore | 1:12.5530

Instruction:

Answer the given question as concisely as possible

— using information from the table. Answers must be

— within a JSON object e.g. {"answer": ["YOUR

< ANSWER"]}. List multiple answers with commas

— inside the list object. Table caption: 'practice'.
— Relying on the table, answer the following: What

— was the time of david reynolds in practice 17?
Expected output:

{"answer": ["1:12.8697"]} ‘

Figure 8: Example for Hierarchical Table QA task (HiTabQA).

Instruction:

s

Semall & Call NHL, NOS
Tetsl

Convert the illustration to Markdown syntax.

Expected output:
<md> | Diagnosis | Cases | Indeterminate | Evaluable
| —— | —— | — | —
| Follicular | 34 | 6/34 (17.6%) | 28/34 (82.4%)
| Mantle cell | 7 | 0/7 (0%) | 7/7 (100%)
| Marginal Zone | 11 | 1/11 (9%) | 10/11 (91%)
| Lymphoplasmacytic | 6 | 0/6 (0%) | 6/6 (100%)
| Diffuse Large B Cell | 15 | 2/15 (13.3%) | 13/15
—  (86.7%) |
| CLL/SLL | 4 | 0/4 (0%) | 4/4 (100%)

| Small B Cell NHL, NOS | 2 | 0/2 (0%) | 2/2 (100%)
| Total | 79 | 9/79 (11.3%) | 70/79 (88.6%) | </md>

Figure 9: Example for Structure Aware Parsing task.

Table: Instruction:
Plants per garden The members of the local garden club tallied the
— number of plants in each person's garden. How many
Stem | Leaf — gardens have at least 47 plants?
3 33355 Solve the above problem according to the table called
— 'Plants per garden'. Include your reasoning,
4 6 < which finish with the JSON {"answer": "YOUR
[ A578 — ANSWER"}.
6 |78
7 l2379 Expected output:
8 6809 Find the row with stem 4. Count all the leaves greater

— than or equal to 7.

Count all the leaves in the rows with stems 5, 6,
— and 8.

You counted 13 leaves, which are blue in the
— stem—and-leaf plots above. 13 gardens have at
— least 47 plants. Therefore {"answer": "13"}

Figure 10: Example for Table Numerical Reasoning task (TabMWP).
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Table:

Charles Francis Jenkins

Born August 22, 1867
Dayton, Ohio
Died June 6, 1934 (age 66)
Washington, D.C.
Nationality  American
Education Bliss Electrical School
Occupation  Engineer
Engineering career
Projects Over 400 patents
related to a variety of
inventions
Significant
advance and television
Awards Elliott Cresson Medal
(1897)
John Scott Medal (1913)

Motion picture projector

Instruction:

Consulting the table, state whether the hypothesis is
— entailed, neutral, or refuted. Give your final
— answer in JSON format {"answer": "YOUR ANSWER"}.

Hypothesis: Charles Francis Jenkins has been awarded
— more than one medal.

Expected output:

{"answer": "entailed"}

Figure 11: Example for Table Fact Verification task (Infotabs).

Table:
Date | Time Score Setl|Set2 Set3 Setd4 Set5 Total | Report
20 Jul 19:30' slovakia _I 3-1 I= Netherlands I 2251’ 21‘: 2205’ 2253’ 95-87 | Report
Instruction:
Consulting the following table concerning '2008 Men's

— European Volleyball League'
— section,
— highlighted cells and return it as JSON:
s {"answer":

in the 'Final'
give a one-line statement limited to the

"YOUR ANSWER"}.

Expected output:

{"answer":
— was won by Slovakia,
< 3{1 in the finals."}

"The 2008 Men's European Volleyball League
defeating the Netherlands by

Figure 12: Example for Table-to-Text task based on highlighted table cells (ToTTo).

Table:

Piet van Zyl
Birth name  Piet van zyl
Date of birth May 14, 1979 (age 46)!'/
Place of birth B35 Worcester, South

Africall
Height 1.81m (5 ft11in)1l
Weight 95 kg (209 Ib)1*!

Rugby union career

Position(s) Centre

Senior career
Years Team Apps (Points)
2009-12  Bourgoin 39 14021
Correct as of 21 May 2013

Provincial / State sides

Years Team Apps (Points)
2006-08  Boland Cavaliers 28 3012
Correct as of 21 May 2013

Super Rugby
Years Team
2008-09
Correct as of 21 May 2013

Apps (Points)
Cheetahs 9 0

International career
Years Team Apps (Points)
14 (15)F

Correct as of 9 September 2007

2007- Namibia

Instruction:
Drawing upon the provided infobox of piet van zyl
< —lrb- namibian rugby union player -rrb-, write a

— third-person, encyclopedic biography and format it
— within the following JSON object {"answer": "YOUR
— BIOGRAPHY"}.

Expected output:

{"answer": "Piet van zyl (born 14 may 1979) is a
namibian rugby union player who captained the
boland cavaliers in south africa at provincial
level, and played for the at international level.
Van zyl was in the namibian squad for the 2007
world cup, and scored a try in his nation 's first
match in the competition, in a game against. Van
zyl plays as a centre. Van zyl made his debut in
august 2007 in a friendly match against."}

I

el

Figure 13: Example for Wikipedia Biography Generation task (WikiBio).
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Table: | rank ¢

Gymnasts ¢ Country ¢ Point ¢
1 Attila Katus, Tamas Katus, Romeo Szentgyorgyi == Hungary 16.55
@ Darel Mois, Claudiu Moldovan, Claudiu Varlam Il Romania 16.25
@ Maria Holmgren, Helene Nilsson, Kim Wickman 2= Sweden 15.87
4 Stanislav Marchenkov, Vadim Mikhailov, Denis Belikov | g Russia 15.55
5 Grégory Alcan, Xavier Julien, Olivier Salvan 1 I France 15.00
6 Won-Sil Choi, Hyun-Sung Ki, Kwang-Soo Park ‘e South Korea | 14.95
7 Marie-Catherine Boesa, Jana Heinze, Sandra Schlueter | Bl Germany 14.835
8 Yumi Kobayashi, Kumi Sato, Hiroko Watabe e Japan 13.758
9 Giacomo Piccoli, Giovanna Lecis, Marco Bisciaio 1 1 ltaly 13.044

Instruction:

Taking into account the accompanying table as well as
— the context snippets provided at the end.

Answer the following question:

What is the official

name of the country that finished with the fifth
most points at the 1998 Aerobic Gymnastics World
Championships ? Respond with the correct answer
(omit explanations) in JSON format as {"answer":
"YOUR ANSWER"}. Do not introduce information
beyond the provided sources.

Lol

Hungary 1is a country in [...]

Dorel Moi is a retired [...]

Claudiu Cristian Moldovan is a retired Romanian

— aerobic gymnast [...]

Claudiu Varlam is a retired Romanian aerobic [...]
Romania is a country located [...]

Sweden , officially the Kingdom of Sweden , is [...]
Russia , or the Russian Federation , is a [...]
France , officially the French Republic , is [...]

South Korea ,
s [...
Germany ,
— Germany , is [...]

Japan is an island country located in [...]
Italy ,

officially the Republic of Korea is

]
constitutionally the Federal Republic of

officially the Italian Republic , is [...]

Expected output:

{"answer":

"French Republic"}

Table:

Chen Wu-hsiung

Minister of the Council of
Agriculture of the Executive Yuan
In office
20 May 2008 - 6 February 2012
Preceded by  Su Chia-chyuan
Succeeded by Chen Baodi

Deputy Minister of the Council of
Agriculture of the Executive Yuan
In office
1999-2002
Minister Chen Hsi-huang
Fan Chen-tzung
Personal details
Born 11 March 1944
(age 81)
Taihoku, Taiwan, Empire
of Japan
Bl Republic of China
Political party [0 Kuomintang
Alma mater

Nationality

National Chung Hsing
University

University of lllinois at
Urbana-Champaign

Figure 14: Example for Hybrid QA task (HybridQA).

Instruction:

Based on the table image, extract the value of the
— cell located in the subsequent postion:
the 1st row and the 1lst column

Format the cell value as a JSON, using the structure
— {"row_id":"m", "column_id":"n",
— "cell_value":"<Corresponding Cell Value>"}.

Expected output:

The target cell value in the 1lst row and the 1lst
< column is {"row_id":"1", "column_id":"1",
— "cell_value":"Chen wu-hsiung"}.

Figure 15: Example for Table Cell Extraction.
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Table: Busiest international routes at Manzanillo International
Airport (2013)[1]

Rank City Passengers | Ranking Airline
B United States, Alaska
1 14,749 - o
Los Angeles Airlines
B United States, United
2 5,465 -
Houston Express
g+l Canada, Air Transat,
3 3,761 -
Calgary Westjet
§1+1 Canada,
4 2,282 A4
Saskatoon
I+l Canada, .
5 2,103 - Air Transat
Vancouver
B United States, .
6 ) 1,829 A1l US Airways
Phoenix
I+l Canada, Air Transat,
7 1,202 vl
Toronto Canjet
+0 Canada,
8 e 110
Edmonton
B= United States,
9 107
Oakland

Instruction:

Answer this: How many more passengers flew to los

— angeles than to saskatoon from manzanillo airport
— in 201372 Consult the table and answer. Return your
< answer as JSON: {"answer": "YOUR ANSWER"}. Avoid
— including information not present in the table.
Expected output:

{"answer": "12,467"}

Figure 16: Example for Table QA task (WikiTableQuestions).
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Table:
INationaIityI Player | Ranking* | Seeding
= ISR Dudi Sela 56
[ 1TPE Lu Yen-hsun 62
B USA Bobby Reynolds |93
mm GER Michael Berrer 111
BRA Thiago Alves 120
N GER Benjamin Becker | 126
I 1 FRA Nicolas Mahut 137
mm RUS Michail Elgin 138

0~ | WIN| -

Instruction:

For the table found in '2009 israel open'
- "seeds" section on Wikipedia,
identify the correct column type
labels for the highlighted column
given the following type options:
tv.tv_personality, time.event,
american_football.football_team,
[...]. Provide only the chosen
type (s), separated by commas if
multiple, within the list in this
JSON: {"answer": ["ANSWER"]}.

R

Expected output:

{"answer": ["location.country",
< "location.location"]}

Figure 17: Example for Colum Type Annotation task based on highlighted table columns.
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