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Abstract
Platforms design the form of presentation by which sellers are

shown to the buyers. This design not only shapes the buyers’ ex-

perience but also leads to different market equilibria or dynamics.

One component in this design is through the platform’s mediation

of the search frictions experienced by the buyers for different sell-

ers. We take a model of monopolistic competition and show that,

on one hand, when all sellers have the same inspection costs, the

market sees no stable price since the sellers always have incen-

tives to undercut each other, and, on the other hand, the platform

may stabilize the price by giving prominence to one seller chosen

by a carefully designed mechanism. This calls to mind Amazon’s

Buy Box design. We study natural mechanisms for choosing the

prominent seller, characterize the range of equilibrium prices im-

plementable by them, and find that in certain scenarios the buyers’

surplus improves as the search friction increases.

CCS Concepts
• Theory of computation→Market equilibria.

Keywords
Do, Not, Us, This, Code, Put, the, Correct, Terms, for, Your, Paper

ACM Reference Format:
Anonymous. 2018. Price Stability and Improved Buyer Utility with Presen-

tation Design: A Theoretical Study of The Amazon Buy Box. In Proceedings
of The Web Conference (WWW ’25). ACM, New York, NY, USA, 19 pages.

https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Platforms that enable transactions between buyers and providers

have become major venues of the e-commerce. As a few salient

examples, Amazon and eBay allow buyers to purchase from a vast

body of sellers, and Airbnb connects travelers and hosts. An im-

portant activity on these websites is for one side of the market to

search on the other side for a service or good. Search is sequential

and time-consuming, and usually cannot be exhaustive. The way in

which the platform presents products and services to be searched

by the buyers, therefore, crucially affects the market dynamics and

outcomes. In most platforms, the providers/sellers set their own

prices — third-party sellers on Amazon, for example, set up their
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own prices, and so do hosts on Airbnb. In wielding its power to

mediate the interface, the platform must take into consideration

both the sellers’ pricing strategies and the buyers’ search policies.

Our starting point is a monopolistic competition model where

symmetric but differentiated sellers post their prices visible to all; a

buyer must incur an inspection cost to determine her value for any

specific seller, and this cost is the same for each seller.
1
We observe

that such a market does not have a pure equilibrium, i.e., no prices

are stable, because the sellers are incentivized to undercut each

other to be searched first by the buyer. In practice, price volatility

caused by “algorithmic pricing” has been voiced by the media [8, 19]

and has been a concern of consumers.

In this work, we analyze a particularly simple scheme of presen-

tation, wherein one seller is made prominent, with drastically re-

duced inspection cost, while all the other sellers are treated equally.

The platform’s rule for choosing the prominent seller sets up a

mechanism, in response to which the sellers strategically set their

prices. We show that this presentation scheme, coupled with ap-

propriate mechanisms, can stabilize prices at pure equilibria. We

further analyze the range of prices achievable at equilibria, and de-

rive implications on welfare and consumer surplus. An interesting

discovery, among others, is that an increased inspection cost often

increases the consumers’ surplus, because the higher search barrier

can induce sellers to lower their prices in order to gain prominence.

Before detailing our contributions, we take a moment to intro-

duce Amazon’s so-called Buy Box, a typical interface design that

features one prominent seller. The Buy Box serves as amajormotiva-

tion for our work; in the rest of the paper we refer to the prominent

seller as the one in the Buy Box.

The Amazon Buy Box. When a buyer reaches a page on Amazon

for a particular product, a Buy Box is shown (red box in Figure 1).

There are typically multiple sellers for the product, but the Buy Box

shows only one seller, with that seller’s price and the buttons to

press (either “Add to Cart" or “Buy now with 1-click") if the buyer

were ready to purchase from the Buy Box seller.

Below the Buy Box (and not always readily visible to a typical

buyer), is an additional link outside Buy Box (the green box in Fig-

ure 1) to the other sellers of the same product (bottom of Figure 1),

with some information about the prices they offer.

By presenting the sellers in this way, Amazon de facto reduces

the inspection cost for the Buy Box seller, and hence increasing

the chance of a sale to this seller. For the other sellers of this same

product, Amazon has, for all practical purposes, increased the search

cost.

For the same product, the sellers’ offers differ in aspects such as

shipping time, location of seller, return and refund policy, product

1
As we explain later, this is essentially the classical model by Wolinsky [21], except

that in our setting the prices are visible prior to search. We note that prices usually do

not take much effort to see in most online platforms.
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Figure 1: Illustration of Amazon’s Buy Box.
Top: The Buy Box is highlighted in red. To view other sellers not in

the Buy Box, a buyer needs to scroll down and click on the link we

highlight in green.

Bottom: A view of sellers not in the Buy Box.

description (especially for used items), and whether they are “ful-

filled by Amazon”. For any particular seller, a buyer can be certain

that her value should be in a certain interval, but must spend effort

to determine her exact value, according to her preference.

Placement in the Buy Box has a large impact on the demand for a

seller’s product, and Amazon’s Buy Box mechanism for determining

the Buy Box seller has drawn attention from both the industry [13]

and academic works [9]. The precise mechanism Amazon uses is

proprietary information, and is generally considered to depend on

many factors, including the sellers’ prices, their past performances,

etc.. Pricing on Amazon has long been known to involve software

that helps to update prices dynamically; at least part of the drive

for the incessant price changes is to compete for the Buy Box.

Wild price fluctuation on Amazon has been well documented [8,

17, 19]; Chen et al. [9] showed by simulation and by empirical

observation that “sellers that use algorithmic strategies to maintain

low prices relative to their competitors are likely to gain a large

advantage in the struggle to win the Buy Box”. With fluctuating

prices, not only should the sellers be constantly ready to change

their prices, but buyers have also the added burden of uncertainty

and should be strategic on the time of purchase.

In this work we build a theoretical framework and study a sim-

plified scenario where the Buy Box mechanism only reacts to the

prices set by the sellers. We show that the mechanism which re-

wards the Buy Box to the most competitive price is intrisically

unstable in that no pure equilibrium exists. We propose mecha-

nisms that do support pure equilibria, study the range of equilibria

prices, and derive welfare and surplus implications.

Our Contributions. In a monopolistic competition,𝑚 sellers offer

differentiated goods/services at prices set by themselves. For each

seller 𝑖 , a buyer has value 𝑣𝑖 drawn i.i.d. from a known distribution

𝐹 . We normalize values so that 𝐹 is supported on [𝑉 ,𝑉 +1] for some

𝑉 > 0; for many results we assume 𝑉 ≥ 2, and 𝑐 < E [𝑣𝑖 ] −𝑉 . For

scenarios such as online retail platforms, these assumptions seem

realistic. (See further discussion in Section 2.) The buyer knows 𝐹

and can see the prices, but must incur an inspection cost 𝑐 to be

certain of any particular 𝑣𝑖 . The buyer performs a sequential search,

with free recall, in order to maximize her expected utility. The

optimal search policy is given by Weitzman [20]’s renowned index-

based policy, which we describe in detail in Section 2. One feature

of sequential search is that, whenever the buyer has found a value

“high enough”, she should stop the search. Sellers that are inspected

earlier therefore have an advantage.

We start with a model we call plain presentation (without a Buy

Box), the buyer’s optimal policy goes over the sellers in the order of

decreasing prices, and this gives the sellers incentives to undercut

each other. We formally show that this market admits no pure sym-

metric equilibrium.
2
Interestingly, for a market with two sellers,

when 𝑉 ≥ 2, we are able to show that no asymmetric pure equilib-

rium exists either. For this result (Theorem 1), we use a technique

from Armstrong and Zhou [4], which allows a nontrivial derivation

of the sellers’ respective probabilities of selling had they been at an

equilibrium; a contradiction ensues from this calculation.

When prominence is given to a seller, e.g. in the form of a Buy

Box, we assume for simplicity that this seller has no inspection

cost, i.e., a buyer always knows her value for this seller before any

search, whereas every other seller still incurs an inspection cost 𝑐 .

As many platforms claim to aim for the lowest, most competitive

prices, it is tempting to use a Buy Box mechanism to induce low

prices, e.g. by giving prominence to only the seller with the lowest

2
Armstrong and Zhou [3]mention in passing that “this framework, where a consumer’s

match utility is independently distributed across firms, apparently does not lead

to a tractable solution for how firms choose prices”. Our proof may be seen as a

formalization of this observation.
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price. It is not difficult to see that such an approach gives even more

incentive for the sellers to undercut each other, and non-existence

of equilibrium from the plain presentation persists.

We therefore explore mechanisms that admit pure equilibria. The

first mechanism we consider is a dictator — the platform stipulates a

price 𝑡 , and the Buy Box is awarded to only sellers that post price 𝑡 ;

if there are multiple of them, pick one uniformly at random. The

mechanism is somewhat unnatural, but we show that it has the

advantage that it encompasses all equilibria, in the sense that, if

any natural mechanism (Definition 3) admits a pure symmetric

equilibrium, the dictator mechanism admits the same equilibrium

(by stipulating that price). In Section 4.2, we completely characterize

the range of equilibria realizable in the dictator mechanism (and

hence all possible symmetric equilibria in natural mechanisms).

Our main finding is that, the prices implementable at equilibrium

always constitute an interval. The higher the inspection cost 𝑐 , the

more likely a pure equilibrium exists, and, when it does, the smaller

the lower end of the interval, that is, the smaller the lowest price

implementable at equilibrium. For the case of two sellers, we show

more crisply that, as 𝑐 increases, the set of implementable prices

grows inclusion-wise. These findings suggest that, if a platform uses

prominence solely to drive down prices, it is effective to increase

the inspection cost for non-prominent sellers.

Towardsmore practical mechanisms, we then consider the thresh-
old mechanisms, which stipulate a price 𝑡 and award the Buy Box to

sellers that post prices below 𝑡 ; again, if there are multiple of them,

pick one uniformly at random. The threshold 𝑡 acts like a reserve

price in auctions, but unlike in optimal auctions, the mechanism

does not discriminate among sellers setting prices below 𝑡 . This

makes it possible for the threshold mechanism to admit pure equi-

libria. If the platform uses a threshold mechanism and means to

drive down prices, it may lower the threshold 𝑡 (to the extent that

equilibrium still exists), rather than directly encourage competition

among the sellers. We again characterize the range of prices imple-

mentable at equilibria in threshold mechanisms (Theorem 5). It is

not surprising that there are settings where the dictator mechanism

implements a larger range of prices than the threshold mechanism

(Proposition 7); what we do find interesting is that, whenever the

threshold mechanism admits an equilibrium, the lowest price it is

capable of maintaining at equilibrium is the same as that of the

dictator mechanism (Corollary 2). This suggests that, if the platform

aims to drive down prices, the more practical-looking threshold

mechanism is just as powerful as the stringent dictator mechanism,

as long as the inspection cost is calibrated to a level that allows

equilibria to exist.

Finally, we discuss welfare and consumer surplus at equilibria un-

der the Buy Box mechanisms. Since the inspection cost is a “burned”

effort, and prices paid by the buyer and received by the sellers

cancel out, the social welfare decreases as 𝑐 increases (Theorem 6).

The case of consumer surplus is more complex and interesting. As

𝑐 increases, the lowest possible price implementable at equilibrium

by a Buy Box mechanism decreases, but it is also more costly for the

consumer to search. The two factors work in opposite directions for

the consumer surplus. For many value distributions we experiment

with, the consumer surplus largely increases as 𝑐 increases, but it

is not necessarily the case that the surplus attains its maximum

when 𝑐 is as large as possible. In Theorem 7, we derive a sufficient

condition on 𝐹 under which the consumer surplus is maximized at

an inspection cost not at its maximum, if the platform implements

the lowest equilibrium price. We see this result as a proof of concept,

illustrating that the relationship between the consumer surplus and

the inspection cost is a complicated one.

Related Works
The two works most closely related to the current work are Arm-

strong et al. [2] and Armstrong and Zhou [3], as both explicitly

considered monopolistic competitions with search frictions and

with prominent sellers, but both have key differences from our

work. Armstrong et al. [2] considers a market where the a seller’s

price is invisible to the buyer unless the seller is inspected. Price

changes therefore do not directly affect the buyer’s search order,

which allows pure equilibria to exist. We observe that in most online

platforms the buyer sees sellers’ prices quite easily, and take this

as our starting point. Armstrong and Zhou [3] Section 2 consider

markets with visible prices, but circumvented the trouble of nonex-

istence of equilibria by considering negatively correlated values,

which are stylized in a Hotelling model. For online shopping, we

consider such negative correlation less well motivated, and stick to

the classical i.i.d. setting. Moreover, we emphasize the mechanism

design aspect in assigning the Buy Box, in addition to static equi-

librium analysis. For other works on markets with search frictions,

we refer the reader to Armstrong [1] for a beautiful survey.

There has been a small but growing number of works on plat-

forms’ presentation of sellers or products which explicitly model

buyers’ search behavior. Chu et al. [10], e.g., consider the rank-

ing of heterogeneous products for a buyer whose search order is

determined by this ranking, and they consider a multiobjective

optimization that includes surplus and sales revenue. Derakhshan

et al. [11] propose a two-stage search policy motivated by empirical

evidence, and study product ranking in response to such search

in order to maximize welfare and purchase probability. Branco

et al. [7] proposes a continuous inspection procedure for a buyer

to evaluate a single seller, and studies the seller’s optimal pricing

in response. Interestingly, in this setting very different from ours,

it is also observed that increased search cost can sometimes benefit

the buyer in equilibrium, due to the lower price set by the seller.

The way we normalize the support of 𝐹 to [𝑉 ,𝑉 + 1] and a

proof in Section 3 both follow Armstrong and Zhou [4], although

the problem they study is on consumers’ private signaling, quite

distant from our setting.

Organization
The rest of the paper is organized as follows. In Section 2, we

present the monopolistic competition with search frictions, with

a description of the buyer’s optimal search procedure. Section 3

formally proves that the plain presentation sees no stable prices in

equilibrium. Section 4 defines Buy Box mechanisms and presents

the prices implementable at equilibria by the two mechanisms we

study. Section 5 analyzes welfare and consumer surplus with the

Buy Box. Most proofs are relegated to the appendix.
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2 Model and Preliminaries
Consider a unit-demand buyer (she) who looks to buy an item from

one of𝑚 sellers (them) on a platform. The buyer has potentially

different values for purchasing from different sellers; her value 𝑣𝑖
for each seller 𝑖 is a random variable drawn i.i.d. from a distribu-

tion 𝐹 . The prior 𝐹 is public knowledge to both the buyer and all

the sellers, but neither party knows the realization 𝑣𝑖 . We assume

that 𝐹 (·) is continuous and supported on [𝑉 ,𝑉 + 1] for some𝑉 > 0,

an assumption also made by Armstrong and Zhou [4]. Also follow-

ing [4], for much of the paper, we assume 𝑉 ≥ 2. Each seller 𝑖 sets

their price 𝑝𝑖 , visible to the buyer.

To learn her value 𝑣𝑖 for seller 𝑖 , the buyer may pay an inspection
cost 𝑐𝑖 . The inspection takes place in a sequential manner. Namely,

at any time, the buyer may inspect the value of a seller of her choice

(and incur a cost), or to buy from one of the inspected sellers and

quit, or to quit without purchase. The inspection costs obviously

affect a buyer’s behavior, and are controlled by the platform. The

three parties therefore participate in a game, whose order of actions

we detail below.

Order of Actions. The platform, the sellers and the buyer take

actions in the following order.

• Stage 1: The platform specifies a mechanism M that maps

seller prices p = (𝑝1, . . . , 𝑝𝑚) to their inspection costs 𝑐1, . . . , 𝑐𝑚 .

• Stage 2: The sellers, aware ofM and knowing that buyers

will screen sellers and purchase in accordance with their

optimal search strategy (described in detail below), decide

and commit to their prices 𝑝1, . . . , 𝑝𝑚 .

• Stage 3: M maps the prices p to inspection costs 𝑐1, . . . , 𝑐𝑚 .

• Stage 4: The buyer performs an optimal sequential search

given the value prior 𝐹 , the prices p, and the inspection costs.

Utilities and Objectives. Each seller 𝑖 tries to maximize their ex-

pected revenue, which is their price 𝑝𝑖 times the probability the

buyer buys from them. The buyer tries to maximize her expected

payoff, which is the value of the item she eventually buys minus its

price, minus all the inspection costs she pays along the way. For-

mally, for each 𝑖 ∈ [𝑚], let 𝑍𝑖 be the indicator random variable for

the event that the buyer inspects seller 𝑖 , and𝑌𝑖 the indicator for the

buyer purchasing from seller 𝑖 , then at price profile p = (𝑝1, . . . , 𝑝𝑚)
and inspection costs 𝑐1, . . . , 𝑐𝑚 , the buyer’s expected utility is

CS := E


∑︁
𝑖∈[𝑚]

𝑌𝑖 (𝑣𝑖 − 𝑝𝑖 )
 − E


∑︁

𝑖∈[𝑚]
𝑐𝑖𝑍𝑖

 ;

This is sometimes referred to as the consumer surplus. The social
welfare is the sum of the sellers’ revenues and the consumer surplus.

Formally,

SW := E

[∑︁
𝑖

(𝑣𝑖𝑌𝑖 − 𝑐𝑖𝑍𝑖 )
]
.

Optimal Sequential Search. The buyer’s optimal sequence of ac-

tions is given by the optimal policy for the Pandora’s Box problem,

first discovered by Weitzman [20]. We describe below this optimal

policy, and refer the reader to Kleinberg et al. [16] for a proof of its

correctness.

(1) For each seller 𝑖 , compute an index 𝜃𝑖 , which is the unique

solution to the equation:

E𝑣𝑖∼𝐹
[
[𝑣𝑖 − 𝑝𝑖 ]+ − 𝜃

]+
= 𝑐𝑖 ,

where [𝑥]+ := max(𝑥, 0). Tag each seller 𝑖 with the index 𝜃𝑖 .

(2) Among all sellers whose tags are non-negative indices, in-

spect seller 𝑖 with the highest index 𝜃𝑖 , see the value 𝑣𝑖 and

replace the tag by the utility of buying from seller 𝑖: 𝑣𝑖 − 𝑝𝑖 .

(3) If at any point the largest tag on a seller is a utility (instead

of an index), purchase from that seller and quit; otherwise

go back to the previous step. If all the sellers have been

inspected, then

• if any seller’s price is below their value, make a purchase

from the seller that yields the highest utility;

• otherwise leave without any purchase.

Amoment of thought shows that, following this policy, the buyer

ends up buying from the seller 𝑖 that maximizes 𝜅𝑖 := min(𝑣𝑖 −
𝑝𝑖 , 𝜃𝑖 ), if max𝑖 𝜅𝑖 ≥ 0. This policy is also known as the Weitzman’s
algorithm,

Plain Presentation Without BuyBox. When the platform presents

the sellers “plainly”, only their prices p := (𝑝1, 𝑝2, . . . , 𝑝𝑚) are
shown to the buyer. Each seller’s inspection cost is 𝑐𝑖 = 𝑐 , no matter

what prices they set.

Presentation with Buy Box. In a presentation with Buy Box, one

seller is prominent, i.e., with inspection cost 0, and all the other

sellers’ inspection costs are set to some 𝑐 > 0. The prominent seller

is said to be in the Buy Box. We assume all the sellers’ prices are

visible to the buyer, but she only sees her value for the seller in the

Buy Box unless she performs (costly) inspection. The identity of

the seller in the Buy Box is the result of the platform’s mechanism,

which we define formally in Section 4.

For a seller not in the Buy Box, we often use 𝜃0 (𝑐) to denote

their Weizman index if they post price 0, i.e., 𝜃0 (𝑐) is the solution
to the equation E𝑣𝑖∼𝐹 [𝑣𝑖 − 𝜃 ]+ = 𝑐 . When the inspection cost 𝑐 is

clear from the context, we omit it and write 𝜃0.

Assumption of Non-degeneracy. Throughout the paper we as-
sume 𝜃0 > 0: when this is not the case, a seller not in the Buy

Box is never inspected even if they post price 0, and the setting

degenerates to a monopoly of the seller in the Buy Box. For most

results in the paper, we further assume 𝜃0 > 𝑉 . When this is not

the case, the inspection cost 𝑐 is larger than E [𝑣𝑖 ] −𝑉 , which is the

uncertainty the buyer has about her value for a seller. For one thing,

search frictions in online shopping are typically not this big. For

another, when an inspection costs more than the expected uncer-

tainty a buyer has about the value, it is realistic that the buyer may

make a purchase without inspection, an option interesting by itself

[5, 6, 12, 14, 15] but not captured by Weitzman’s algorithm. This

work focuses on the regime with inspection costs small relative

to the value uncertainty. Let 𝑐 be the cost such that 𝜃0 (𝑐) = 𝑉 .

Assuming 𝜃0 > 𝑉 is equivalent to assuming 𝑐 < 𝑐 .

A seller with a negative index is never considered by the buyer.

We therefore mostly restrict our attention to prices low enough to

guarantee nonnegative indices. For such prices, the calculation of

Weizman indices is simplified by the following proposition:

Proposition 1. If 𝜃𝑖 ≥ 0 under price 𝑝𝑖 , then 𝜃𝑖 = 𝜃0 − 𝑝𝑖 .
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Proof. For 𝜃𝑖 ≥ 0, E[[𝑣𝑖 − 𝑝𝑖 ]+ − 𝜃𝑖 ]+ = [𝑣𝑖 − 𝑝𝑖 − 𝜃𝑖 ]+. By
definition of 𝜃𝑖 , E[𝑣𝑖 − 𝑝𝑖 − 𝜃𝑖 ]+ = 𝑐; comparing this with E[𝑣𝑖 −
𝜃0]+ = 𝑐 gives the proposition. □

Equilibria. With or without the Buy Box, the expected revenue

of any seller 𝑖 may be calculated from the price profile: let 𝐷𝑖 (p)
be the probability the buyer buys from seller 𝑖 if the price profile is

p, then the seller’s revenue is Rev𝑖 (p) = 𝑝𝑖𝐷𝑖 (p). A price profile p
constitutes a pure Nash equilibrium if, for any seller 𝑖 ∈ [𝑚],

Rev𝑖 (p) ≥ Rev𝑖 (𝑝′𝑖 , p−𝑖 ),∀𝑝
′
𝑖 .

3 Non-Existence of Pure Equilibria in Plain
Presentations

We show that a plain presentation without a Buy Box generally

does not admit pure Nash equilibria. The argument is most intuitive

for the non-existence of symmetric equilibria (Proposition 2), where

the stability of any symmetric positive price profile is broken by

the sellers’ incentives to undercut each other. It may come as a

surprise that, under mild technical assumptions, even asymmetric

equilibria do not exist for two sellers (Theorem 1). This follows

from a nontrivial argument similar to a proof from Armstrong and

Zhou [4]. Both results contrast with monopolistic competitions

without inspection costs, where pure equilibria often exist [18].

Proposition 2. For any 𝑝 > 0, p = (𝑝, . . . , 𝑝) is not an equilibrium in
a plain presentation. When 𝜃0 > 𝑉 , there is no symmetric equilibrium
in a plain presentation.

The proposition is intuitive: when every seller posts the same

price 𝑝 , a seller may slightly cut down their price andmake sure they

are inspected first by the buyer, which produces a jump increase in

their demand. The proof lower bounds this increase, and argues that

a small enough undercutting guarantees strict revenue increase.

For two sellers, we can show that even asymmetric equilibrium
does not exist.

Theorem 1. In a plain presentation with two sellers, whose values
are supported on the interval [𝑉 ,𝑉 + 1] for 𝑉 ≥ 2, there is no pure
Nash equilibrium.

The proof is technically interesting and involved. To prove by

contradiction, one may assume an asymmetric equilibrium exists

and write the equilibrium condition for the two sellers: either seller,

if deviating to a different price, should see weakly less revenue.

These give upper and lower bounds on the demand function of a

seller as they vary their price. We derive in our setting Lemma 1,

similar to one by Armstrong and Zhou [4], which allows us to

express the bounds and the demand all in terms of one common

variable, so that the demand is sandwiched between the two bounds.

Another crucial observation by Armstrong and Zhou [4] (made in

a different setting) is that, since the three functions coincide at

the equilibrium point, their derivative at that point must be equal.

This immediately allows one to express precisely the demand of

the sellers at the equilibrium, which leads to a contradiction. (See

Figure 2 for an illustration.)

Lemma 1. In a plain presentation, for 𝐹 supported on [𝑉 ,𝑉 + 1]
with 𝑉 ≥ 2, the buyer always makes a purchase if the the sellers’
prices reach an equilibrium.

Figure 2: Illustration for a step in the proof of Theorem 1.
The equilibrium conditions, together with Lemma 1, require that

seller 1’s demand, as the seller varies their price, is sandwiched

between an upper bound𝑔1 and a lower bound𝑔2, all three functions

expressed in a common variable Δ′
𝑝 . They coincide at the point

Δ′
𝑝 = Δ𝑝 , which is the hypothetical equilibrium point. The three

functions must have the same derivative at Δ′
𝑝 = Δ𝑝 .

The lemma has analogs in later settings we consider as well, but

requires more conditions and modifications.

We can further show that even 𝜖-approximate symmetric equi-
librium does not exist in plain presentations with two players.

Theorem 2. In a plain presentation, for any 𝐹 supported on [𝑉 ,𝑉 +1]
and any 𝑐 > 0, there exists a Δ > 0, such that for any positive 𝜖 < Δ,
there is no pure symmetric 𝜖-equilibrium.

4 Buy Box Mechanisms
As set up in Section 2, the Buy Box gives prominence to one seller,

who is chosen by a mechanism in response to the price profile. This

mechanism, called the Buy Box mechanism, is at the crux of the

three-party game. We formally define it below, and quickly observe

that the most naïve mechanism gives no more price stability than a

plain presentation. In Section 4.1, we introduce a family of powerful

mechanism called dictators, and show them to encompass all price

equilibria; that is, any symmetric equilibrium implementable by

a standard mechanism is implementable under a dictator mecha-

nism. Then in section 4.2, we give a full characterization of the

range of prices implementable at equilibria. In Section 4.3, we in-

troduce threshold mechanisms, which are less stringent and more

natural looking. We characterize the equilibria implementable in

threshold mechanisms, and compare the range with that of dictator

mechanisms.

Buy Box Mechanisms. A Buy Box mechanism M maps a price

profile p = (𝑝1, 𝑝2, . . . , 𝑝𝑚) to xM (p) := (𝑥1, 𝑥2, . . . , 𝑥𝑚), with∑
𝑥𝑖 ≤ 1, where 𝑥𝑖 denotes the probability with which seller 𝑖 wins

the Buy Box.
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If the platform aims to lower the equilibrium price, it is tempting

to simply reward the Buy Box to the seller with the lowest price:

Definition 1. The Lowest Price First (LPF) Mechanism assigns
the Buy Box to the seller offering the lowest price, with ties broken
uniformly at random.

It takes only a moment of thought to realize that, compared with

the plain presentation, LPF only offers more incentive for the sellers

to undercut each other, and can no better sustain pure equilibria.

Proposition 3. (a) For any 𝑝 > 0, the symmetric price profile p =

(𝑝, . . . , 𝑝) is not an equilibrium under the LPF mechanism. If
𝜃0 ≥ 𝑉 , LPF admits no symmetric equilibrium.

(b) With two sellers, the LPF mechanism admits no pure equilibrium.

4.1 The Dictator Mechanisms
We now introduce a family of powerful mechanisms, where a seller

has to post a price dictated by the platform to be in the Buy Box. It

turns out that thesemechanisms encompass all symmetric equilibria

in a natural family of mechanisms (Definition 3, Theorem 3).

Definition 2 (Dictator-𝑡 mechanism). The Dictator-𝑡 mechanism

is a mechanism parameterized with a target price 𝑡 > 0. It assigns the
Buy Box to sellers who set their prices at 𝑡 , breaking ties uniformly at
random. Formally, for any price profile p = (𝑝1, 𝑝2, . . . , 𝑝𝑚), the Buy
Box allocation vector x(p) is

xDictator-𝑡 (p) =
(
I[𝑝1 = 𝑡]

𝑁𝑡
,
I[𝑝2 = 𝑡]

𝑁𝑡
, . . . ,

I[𝑝𝑚 = 𝑡]
𝑁𝑡

)
,

where 𝑁𝑡 =
∑
𝑖∈[𝑚] I[𝑝𝑖 = 𝑡] counts the number of sellers pricing at

𝑡 , and I[·] is the indicator function.

Definition 3. A Buy Box mechanism is said to be
(a) anonymous, if for any permutation 𝜎 on [𝑚] and any price

profile p := (𝑝1, 𝑝2, . . . , 𝑝𝑚), the allocation satisfies 𝑥𝑖 (p) =
𝑥𝜎 (𝑖 ) (𝑝𝜎 (1) , . . . , 𝑝𝜎 (𝑚) ) for every 𝑖 ∈ [𝑚];

(b) always allocating, if for any price profile p,
∑𝑚
𝑖=1

𝑥𝑖 (p) = 1.
A mechanism is said to be standard if it is both anonymous and
always allocating.

Theorem 3. For any standard Buy Box mechanism M, if p =

(𝑝, . . . , 𝑝) is a symmetric equilibrium, then p is also an equilibrium
for the Dictator-𝑝 mechanism.

The theorem is proved by observing that, in any standard mech-

anism, at a symmetric pure equilibrium price 𝑝 , each seller must be

in the Buy Box with probability
1

𝑚 , the same as in the Dictator-𝑝

mechanism. It remains only to show that a deviation in the dictator

mechanism cannot be more profitable than the deviation in any

other standard mechanism.

4.2 Implementable Prices
In this section we characterize prices implementable at symmetric

equilibria by standard mechanisms. Throughout the rest of the

paper, we assume 𝑉 ≥ 2 and 𝜃0 > 𝑉 , i.e., 𝑐 < 𝑐 . We have discussed

these conditions in Section 2 (Assumption of Non-Degeneracy).

Definition 4. A Buy Box price 𝑡 is implementable if there exists
a standard Buy Box mechanism under which the price profile p =

(𝑡, . . . , 𝑡) is an equilibrium. Let 𝑇 (𝑐) denote the set of implementable
prices when the inspection cost is 𝑐 .

By Theorem 3, to characterize 𝑇 (𝑐), it suffices to characterize

equilibria under the dictator mechanisms. 𝑇 (𝑐) turns out to be an

interval, whose endpoinds are best expressed as the extreme values

of two functions. The following demand function for deviations is

crucial in expressing these endpoints.

Lemma 2. [Demand for a Seller Deviating from the Symmetric
Equilibrium under the Dictator Mechanism] For 𝑐 ∈ (0, 𝑐), consider a
symmetric equilibrium price 𝑡 . If a seller deviates to a price 𝑝 , then
their demand is a function of the amount of deviation 𝑥 = 𝑝 − 𝑡 .
Specifically, the demand after deviating to 𝑝 is

D𝑐 (𝑥) :=



1, if 𝑥 ≤ −1,∫ 𝜃0 (𝑐 )−𝑥
𝑉

[∫ 𝑉+1

max(𝜃0 (𝑐 )+𝑥,𝑣2+𝑥 ) d𝐹 (𝑣1) d𝐹 (𝑣2)

+
∫

max(𝜃0 (𝑐 )+𝑥,𝑣2+𝑥 )
𝑣2+𝑥 𝐹𝑚−2 (𝑣1 − 𝑥) d𝐹 (𝑣1)

]
d𝐹 (𝑣2),

if − 1 < 𝑥 < 0,∫ 𝜃0 (𝑐 )−𝑥
𝑉

(1 − 𝐹 (𝑣 + 𝑥)) d𝐹𝑚−1 (𝑣),
if 0 ≤ 𝑥 < 𝜃0 (𝑐) −𝑉 ,

0, if 𝜃0 (𝑐) −𝑉 ≤ 𝑥 .

(1)

Theorem 4. For 𝑐 ∈ (0, 𝑐), the set of implementable prices 𝑇 (𝑐) is a
closed interval determined by the inspection cost 𝑐 :

𝑇 (𝑐) = [𝑡∗ (𝑐), 𝑡 (𝑐)],

if 𝑡∗ (𝑐) ≤ 𝑡 (𝑐), where 𝑡∗ (𝑐) := sup𝑥>0

{
𝑥D𝑐 (𝑥 )

1

𝑚
−D𝑐 (𝑥 )

}
and 𝑡 (𝑐) := inf𝑥<0

{(
(−𝑥 )D𝑐 (𝑥 )
D𝑐 (𝑥 )− 1

𝑚

)+}
\ {0}.

When 𝑡∗ (𝑐) > 𝑡 (𝑐), no standard mechanism admits any symmetric
equilibrium.

As an example, for the uniform distribution 𝐹 = 𝑈 [2, 3] and two

sellers, we work out this interval. For this distribution, 𝑐 = 1

2
. For

𝑐 ∈ (0, 𝑐),

𝑡∗ (𝑐) =

√︂
−((2

√
2𝑐 − 2𝑐) + 1

2
) +

√︃
2(2

√
2𝑐 − 2𝑐) + 1

4

1

2

√︃
2(2

√
2𝑐 − 2𝑐) + 1

4
− 1

× 1

2

(
3

2

−
√︂

2(2
√

2𝑐 − 2𝑐) + 1

4

)
𝑡 (𝑐) = 2.

For any 𝑐 ∈ (0, 𝑐), 𝑡∗ (𝑐) < 𝑡 (𝑐). Therefore for all small enough 𝑐 ,

the dictator mechanism admits a pure equilibrium.

Proposition 4. [Properties of lowest implementable price] For 𝑐 ∈
(0, 𝑐), 𝑡∗ (𝑐) is continuous and monotonically decreasing in 𝑐 . More-
over,

(i) lim𝑐→𝑐− 𝑡
∗ (𝑐) = 0;
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(ii) lim𝑐→0
+ 𝑡∗ (𝑐) = 𝑡0, if a symmetric equilibrium (𝑡0, . . . , 𝑡0) ex-

ists for the monopolistic competition without cost of inspection.

Proposition 5. When there are two sellers, for 𝑐 ∈ (0, 𝑐), 𝑡 (𝑐) is
continuous and monotonically decreasing in 𝑐 .

Corollary 1. For a market with two sellers, if 0 < 𝑐 < 𝑐′ < 𝑐 , then
𝑇 (𝑐) ⊆ 𝑇 (𝑐′).

An extension of Lemma 1 to the Buy Box setting plays an impor-

tant role in these characterizations.

Lemma 3. If 𝑉 ≥ 2 and 𝑐 ≤ 𝑐 , then under any equilibrium of any
Buy-Box mechanism, the buyer always makes a purchase.

The assumption 𝑐 < 𝑐 is necessary for this extension, and hence

the assumption throughout Section 4.2. The proof of Proposition 6

constructs a Buy Box mechanism where prices well above 𝑉 are

sustained as an equilibrium for sufficiently large 𝑐 .

Proposition 6. For sufficiently large 𝑐 , there exists a Buy Box mech-
anism with an equilibrium at which prices are all higher than 𝑉 .

4.3 Threshold Mechanisms
Dictator mechanisms encompass all pure symmetric equilibria, but

are unnatural, and seem to abuse the platform’s power. In this

section we consider threshold mechanisms, which we consider

more practical. A threshold mechanism only sets a price upper

bound for sellers to be eligible for the Buy Box, but otherwise does

not discriminate among the eligible sellers.

We again completely characterize the range of prices imple-

mentable at equilibria by the threshold mechanisms (Theorem 5),

and compare it with that of the dictator mechanisms. An interesting

finding is that, even though the threshold mechanisms’ range of

equilibria prices is generally smaller, and more prone to be empty,

whenever an equilibrium does exist, the lowest price implementable

at equilibrium is the same as that of the dictator mechanisms (and

hence of all standard mechanisms).

Definition 5. For a price 𝑡 > 0, the Threshold-𝑡 mechanism selects
a seller uniformly at random from those whose prices are no higher
than 𝑡 for placement in the Buy Box. If all prices are higher than 𝑡 , no
seller is in the Buy Box.

For inspection cost 𝑐 , let 𝑇 (𝑐) denote the set of prices imple-

mentable at symmetric equilibria under a threshold mechanism.

Theorem 5. For 𝑐 ∈ (0, 𝑐), 𝑇 (𝑐) is an interval, given by

𝑇 (𝑐) = [𝑡∗ (𝑐), 𝑡 (𝑐)],

where 𝑡∗ (𝑐) = sup𝑥>0

𝑥D𝑐 (𝑥 )
1

𝑚
−D𝑐 (𝑥 )

is the same as in Theorem 4, and

𝑡 (𝑐) = sup𝑥<0

(−𝑥 ) ˜D𝑐 (𝑥 )
˜D𝑐 (𝑥 )− 1

𝑚

, where ˜D𝑐 (𝑥) is defined for 𝑥 < 0:

˜D𝑐 (𝑥 ) =
1

𝑚
D𝑐 (𝑥 ) +

(
1 − 1

𝑚

)
×(

1 − 𝐹 (𝜃0 (𝑐 ) + 𝑥 ) +
∫ 𝜃0 (𝑐 )−𝑥

𝑉

(1 − 𝐹 (𝑣 + 𝑥 ) ) d𝐹𝑚−1 (𝑣)
)
.

If 𝑡∗ (𝑐) > 𝑡 (𝑐), 𝑇 (𝑐) = ∅.

Figure 3: Illustration of implementable prices with threshold
mechanisms. For two sellers, with 𝐹 supported on [2, 3] and pdf

proportional to 𝑒𝑣−2
, the magenta area illustrates the range of prices

implementable with the threshold mechanism as the inspection

cost 𝑐 varies. The blue area is the range of prices implementable

with the dictator mechanism but not with the threshold mechanism.

The following is immediate from Theorem 5 and Theorem 4.

Corollary 2. Given 𝑐 ∈ (0, 𝑐), if 𝑇 (𝑐) ≠ ∅, then the lowest equi-
librium price implementable by any standard mechanism is imple-
mentable by a threshold mechanism.

The upper endpoint of the range, 𝑡 (𝑐), is generally strictly smaller

than 𝑡 (𝑐), the upper endpoint of 𝑇 (𝑐). We give the following con-

crete example.

Proposition 7. There is an instance where the Threshold-𝑡 mecha-
nisms do not encompass all symmetric equilibria.

The instance has two sellers, where the value distribution, sup-

ported on [2, 3], has pdf 𝑓 (𝑣) ∝ 𝑒𝑣−2
. In Figure 3,we visualize 𝑇 (𝑐),

the range of prices implementable by the threshold mechanism,

and compare it with𝑇 (𝑐), the range of prices implementable by the

dictator mechanism. Note that the lowest price implementable by

the two mechanisms is the same. In this particular example, both

mechanisms admit pure equilibria for any 𝑐 ∈ (0, 𝑐).

5 Analysis of Welfare and Surplus
This section analyzes social welfare and consumer surplus at equi-

librium under the Buy Box mechanisms. We pay special attention to

the impact of the inspection cost changes on welfare and consumer

surplus.

By our assumptions of non-degeneracy and Lemma 3, the buyer

always makes a purchase. Price change therefore does not directly

affect the welfare. This allows us to show that, at a given inspection

cost 𝑐 , the social welfare does not depend on the price at equilibrium.

Theorem 6. For 𝑐 < 𝑐 , under any standard Buy-Box mechanism and
any symmetric equilibrium price 𝑡 implemented the mechanism, the
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social welfare is determined by 𝑐 only, and monotonically decreases
as 𝑐 increases. Consumer surplus CS = SW−𝑡 .

Proof. Consider any symmetric pure equilibrium of some stan-

dard Buy Box mechanism, where the price is 𝑡 . We show that the

welfare does not depend on 𝑡 . By Lemma 3, we have 𝑡 ≤ 𝑉 , i.e., the

buyer always makes a purchase.

Without loss of generality, assume seller 1 is in the Buy Box.

By Proposition 1, the index of each seller 𝑖 not in the Buy Box is

𝜃𝑖 (𝑡) = 𝜃0 (𝑐) − 𝑡 , and the index of seller 1 is 𝜃1 (𝑡) = 𝑉 + 1 − 𝑡 .

Recall from Section 2 that the buyer’s surplus is E [max𝑖 𝜅𝑖 (𝑡)]+,
where 𝜅𝑖 (𝑡) = min(𝜃𝑖 (𝑡), 𝑣𝑖 − 𝑡). Since 𝜃0 ≥ 𝑉 by assumption (as

𝑐 < 𝑐), and since 𝑡 ≤ 𝑉 , we see that 𝜅𝑖 (𝑡) ≥ 0 for each 𝑖 . For any

other equilibrium price 𝑡 ′, we have 𝜃𝑖 (𝑡 ′) − 𝜃 (𝑡) = 𝑡 − 𝑡 ′ for each 𝑖 ,
and hence 𝜅𝑖 (𝑡 ′) − 𝜅𝑖 (𝑡 ′) = 𝑡 − 𝑡 ′. Therefore, E [max𝑖 𝜅𝑖 (𝑡 ′)]+ −
E [max𝑖 𝜅𝑖 (𝑡)]+ = 𝑡−𝑡 ′. That is to say, the consumer surplus changes

linearly in the opposite direction with the equilibrium price.

On the other hand, the total revenue of the sellers is exactly

the equilibrium price since the buyer always makes a purchase.

Therefore the welfare does not depend on the equilibrium price.

The fact that the welfare decreases monotonically as 𝑐 increases

is immediate from the argument above, by noticing that 𝜃0 (𝑐) de-
creases with 𝑐 . □

By the theorem, we may write the social welfare at any symmet-

ric equilibrium under a standard mechanism as a function SW(𝑐).

Corollary 3. Given 𝑐 ∈ (0, 𝑐), the highest consumer surplus achiev-
able under any standard Buy Box mechanisms at a symmetric equi-
librium is SW(𝑐) − 𝑡∗ (𝑐).

For a platform that aims to maximize its customers’ surplus, how

large the search friction 𝑐 should it set? As 𝑐 increases, on the one

hand, the lowest equilibrium price 𝑡∗ (𝑐) decreases, which is good for
the surplus; on the other hand, search becomes most costly, which

hurts the surplus. We experimented with many distributions, and

saw that, for most of them, the consumer surplus largely increases

as 𝑐 increases for small values of 𝑐 . For some distributions, the

surplus increases all the way as 𝑐 approaches 𝑐 , whereas for others,

the surplus takes its maximum at an intermediate value of 𝑐 , as we

illustrate in Figure 4. The next theorem gives a sufficient condition

for the latter to be the case.

Theorem 7. For two sellers, a sufficient condition for the consumer
surplus to be optimized at an intermediate level of inspection cost is
𝑓 (𝑉 +) < 1

13
𝑓 ′ (𝑉 +).

The proof of the theorem is rather technical. One step in the

proof that makes use of there being only two sellers is the following

relatively succinct expression for the social welfare.

Lemma 4. Under standard Buy Box mechanism with inspection
cost 𝑐 ∈ (0, 𝑐), at any symmetric equilibrium, for𝑚 = 2 sellers,

SW(𝑐) =
∫ 𝜃0 (𝑐 )

𝑉

𝐹 (𝑠) (1 − 𝐹 (𝑠)) d𝑠 + E[𝑣] . (2)

6 Conclusion
This work builds on a classical model of monopolistic competition

with search friction and studies market outcomes when a promi-

nent position is allotted to a seller by a mechanism. We find that

Figure 4: Illustration of trade-off between consumer surplus
and seller revenue. For any 𝑐 , the consumer surplus is maximized

when prices are lowest at 𝑡∗ (𝑐). For two sellers with 𝐹 = 𝑈 [2, 3],
we plot the Pareto frontier between the maximum consumer sur-

plus and the corresponding seller revenue, as the inspection cost 𝑐

varies on (0, 1

2
). In this example, the consumer surplus largely in-

creases with the inspection cost 𝑐 , but attains its maximum before

𝑐 reaches 𝑐 .

visibility of prices, in presence of search frictions, may cause fluc-

tuation in prices, and this can be exacerbated by a mechanism that

unobstructedly encourages competition by rewarding prominence.

We show that properly designed mechanisms for prominence can

stabilize prices. We analyze the range of prices implementable at

equilibrium, and propose the threshold mechanism which is detail

free, easy to implement, and moderately encouraging competition.

With the sellers competing for prominence, the consumer surplus

may sometimes increase with higher search friction, the disutil-

ity of search being offset by the price decrease due to heightened

competition.

Amazon’s Buy Box is a salient example of platform-mediated

prominence mechanisms and largely motivates this work. We rec-

ognize that the Buy Box mechanism in practice is far more compli-

cated, and reacts to much more information than prices set by the

sellers. This work takes an analytical approach towards a theoreti-

cal understanding: keeping most factors unchanged or symmetric,

singling out one factor, that of prices, and studying its behavior in

response to the Buy Box mechanisms.

Even though, to derive our analytic results, we specify the buyer’s

search policy (Weitzman’s index-based policy in this case), we be-

lieve that certain insights we obtain do not rely on this particular

policy. For instance, any policy that searches in the order of de-

creasing price and does not necessarily exhaust all sellers, is likely

to incentivize sellers to undercut each other in order to be searched

early.

Prominence in presentation, exemplified by the Amazon Buy

Box, is a design simpler than many other forms of presentation,

and arguably lends itself more readily for modeling and analysis.

We see our work as taking a step towards a fuller understanding of

its design principles.
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A Omitted Proofs from Section 3
Proposition 2. For any 𝑝 > 0, p = (𝑝, . . . , 𝑝) is not an equilibrium in
a plain presentation. When 𝜃0 > 𝑉 , there is no symmetric equilibrium
in a plain presentation.

Proof. Consider any symmetric price profile p = (𝑝, . . . , 𝑝).
If 𝑝 > 0, we show that there exists a 𝑝′ < 𝑝 to which some seller

may deviate and improve their revenue. Let𝜃 be theWeitzman index

of a seller posting price 𝑝 . Let 𝐴 be the event that there are at least

two sellers from whom the buyer has value at least 𝜃 + 𝑝 . For 𝑐 > 0,

Pr[𝐴] > 0. When 𝐴 happens, the index algorithm always leads the

buyer to buy from such a seller. No matter how the tie is broken,

there exists a seller 𝑖 such that, the probability that the buyer buys

from 𝑖 when 𝐴 happens is at most Pr [𝐴]/𝑚. On the other hand, let

𝐵 be the event that 𝑣𝑖 ≥ 𝜃 + 𝑝 . Then Pr [𝐵 ∩ 𝐴] > Pr [𝐴]/𝑚. If 𝑖

deviates to any 𝑝′ < 𝑝 , with a new index 𝜃 ′ > 𝜃 , then whenever 𝐵

happens, the buyer buys from 𝑖 . In particular, when both 𝐴 and 𝐵

happens, the buyer buys from 𝑖 . When 𝑣𝑖 < 𝜃 + 𝑝 , the buyer buys

from seller 𝑖 with a probability no less than before the deviation.

Therefore, for any 𝑝′ < 𝑝 , the demand from seller 𝑖 jump increases

by at least Δ := Pr [𝐵 ∩𝐴] − Pr [𝐴]
𝑚 > 0. Let 𝐷 be the demand from

seller 𝑖 before the deviation. There must exist 𝑝′ ∈ (0, 𝑝) such that

𝑝′ (𝐷 + Δ) > 𝑝𝐷 . Such a 𝑝′ is a profitable deviation for seller 𝑖 .

For 𝑝 = 0 and 𝜃0 > 𝑉 , there is a small enough 𝑝′ > 0 such

that the index 𝜃 ′ corresponding to 𝑝′ is still strictly positive. A

seller 𝑖 deviating to 𝑝′ sells their product when 𝜅𝑖 > 𝜅 𝑗 for all 𝑗 ≠ 𝑖 .

This is true at least when 𝑣𝑖 − 𝑝′ ≥ 𝜃 ′ (in which case 𝜅𝑖 = 𝜃 ′) and
𝑣 𝑗 < 𝜃 ′ < 𝜃0 (in which case 𝜅 𝑗 = 𝑣 𝑗 ). So seller 𝑖’s demand is at least

(1− 𝐹 (𝜃 ′ +𝑝′))𝐹𝑚−1 (𝜃 ′) = (1− 𝐹 (𝜃0))𝐹𝑚−1 (𝜃 ′). If 𝜃0 > 𝑉 , 𝜃 ′ can
be taken to be greater than𝑉 , so that this demand is strictly positive,

in which case the deviation to 𝑝′ is profitable for seller 𝑖 . □

Theorem 1. In a plain presentation with two sellers, whose values
are supported on the interval [𝑉 ,𝑉 + 1] for 𝑉 ≥ 2, there is no pure
Nash equilibrium.

Proof. By Proposition 2, we only need to further show that

asymmetric equilibria do not exist. For the sake of contradiction,

suppose (𝑝1, 𝑝2), with 𝑝1 > 𝑝2, is an equilibrium. Then, 𝜃2 > 𝜃1 ≥ 0.

It is straightforward to see that the buyer buys from seller 1 with

probability at most
1

2
. We show that (𝑝1, 𝑝2) being an equilibrium

would contradict this fact.

The buyer first inspects seller 2, after which, she only inspects

seller 1 if 𝑣2 − 𝑝2 < 𝜃1 = 𝜃0 − 𝑝1 (Proposition 1). Lastly, after

inspecting seller 1, she buys from seller 1 if 𝑣2 < 𝑣1 − (𝑝1 − 𝑝2).
(Recall from Lemma 1 that the buyer must buy from one of the

sellers.) Therefore, the demands of the two sellers are determined

by the difference of their prices, Δ𝑝 := 𝑝1 − 𝑝2:

𝐷1 (Δ𝑝 ) :=

∫ 𝜃0−Δ𝑝

𝑉

[
1 − 𝐹 (𝑣 + Δ𝑝 )

]
d𝐹 (𝑣),

𝐷2 (Δ𝑝 ) := 1 − 𝐷1 (Δ𝑝 ).

Consider small unilateral deviations by the two sellers, respec-

tively. Let Δ′
𝑝 be close but not equal to Δ𝑝 . Let 𝑝

′
1
= 𝑝2 + Δ′

𝑝 and

𝑝′
2
= 𝑝2 (for seller 1’s deviation), and 𝑝′

2
= 𝑝1 − Δ′

𝑝 and 𝑝′
1
= 𝑝1

(for seller 2’s deviation). When seller 1 deviates, 𝑝2 remains 𝑝2 < 2

by Lemma 1. When seller 2 deviates to 𝑝′
2
= 𝑝2 − (Δ′

𝑝 − Δ𝑝 ), as

https://www.splinter.com/how-to-not-get-screwed-on-amazon-1793862519
https://www.splinter.com/how-to-not-get-screwed-on-amazon-1793862519
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long as Δ′
𝑝 is close enough to Δ𝑝 , 𝑝

′
2
< 2 still holds. Therefore, the

buyer is still guaranteed to always make a purchase after either of

these deviations. Therefore, the demands for both sellers’ can still

be expressed in terms of the price difference Δ′
𝑝 :

𝐷1 (Δ′
𝑝 ) :=

∫ 𝜃0−Δ′
𝑝

𝑉

[
1 − 𝐹 (𝑣 + Δ′

𝑝 )
]

d𝐹 (𝑣),

𝐷2 (Δ′
𝑝 ) := 1 − 𝐷1 (Δ′

𝑝 ) .

Since (𝑝1, 𝑝2) is assumed to be an equilibrium, we have:

Seller 1: 𝑝′
1
𝐷1 (Δ′

𝑝 ) = (𝑝2 + Δ′
𝑝 )𝐷1 (Δ′

𝑝 ) ≤ 𝑝1𝐷1 (Δ𝑝 );
Seller 2: 𝑝′

2
𝐷2 (Δ′

𝑝 ) = (𝑝1 − Δ′
𝑝 )𝐷2 (Δ′

𝑝 ) ≤ 𝑝2𝐷2 (Δ𝑝 ) .

Since 𝐷1 (Δ′
𝑝 ) + 𝐷2 (Δ′

𝑝 ) ≡ 1, we can combine these inequalities:

1 −
𝑝2𝐷2 (Δ𝑝 )

𝑝′
2

≤ 𝐷1 (Δ′
𝑝 ) ≤

𝑝1𝐷1 (Δ𝑝 )
𝑝′

1

. (3)

As Δ′
𝑝 approaches Δ𝑝 , the left hand side and the right hand side

both approach D1 (Δ𝑝 ) (Figure 2). For these inequalities to hold

in a neighborhood of Δ𝑝 , the derivatives of the left-hand side and

right-hand side with respect to Δ′
𝑝 at Δ𝑝 must be equal, implying:

−
𝑝2𝐷2 (Δ𝑝 )

(𝑝2)2
= −

𝑝1𝐷1 (Δ𝑝 )
(𝑝1)2

.

Solving this along with 𝐷1 (Δ𝑝 ) + 𝐷2 (Δ𝑝 ) = 1 (Lemma 1), we find

that 𝐷1 (Δ𝑝 ) =
𝑝1

𝑝1 + 𝑝2

>
1

2

(since 𝑝1 > 𝑝2 by assumption), which

contradicts the earlier observation that 𝐷1 (Δ𝑝 ) ≤
1

2

.

Therefore, (𝑝1, 𝑝2) with 𝑝1 > 𝑝2 cannot be an equilibrium. Over-

all, under plain presentationwithout a Buy Box, no pure equilibrium

exists in the presence of inspection costs for two i.i.d. sellers. □

Lemma 1. In a plain presentation, for 𝐹 supported on [𝑉 ,𝑉 + 1]
with 𝑉 ≥ 2, the buyer always makes a purchase if the the sellers’
prices reach an equilibrium.

Proof. Suppose p := (𝑝1, 𝑝2, . . . , 𝑝𝑚) is an equilibrium.Without

loss of generality, suppose 𝑝1 ≥ 𝑝2 ≥ . . . ≥ 𝑝𝑚 , and 0 ≤ 𝜃1 ≤ . . . ≤
𝜃𝑚 .

• If there is some 𝑝𝑖 = 0, then 𝑝𝑚 = 0. and 𝜅𝑚 ≥ 0 by our

assumption on the inspection cost. In this case, the buyer

would at least inspect seller 𝑚 and obtain positive utility

𝑣𝑚 − 𝑝𝑚 = 𝑣𝑚 ≥ 𝑉 if purchasing from seller𝑚.

• If ∀𝑖, 𝑝𝑖 > 0, notice that any seller 𝑖 should have strictly

positive revenue Rev𝑖 (p) > 0 in an equilibrium. This is

because, fixing all others’ prices, seller 𝑖 can always post a

positive price smaller than all others’ to be inspected first

and to guarantee some revenue.

Now, any seller 𝑖 must have 𝑝𝑖 ≤ 𝑝𝑚 + 1, otherwise a buyer

always prefers seller𝑚 to 𝑖 (since 𝑣𝑖 ≤ 𝑣𝑚 + 1 with proba-

bility 1, and seller𝑚 is inspected before 𝑖), and 𝑖’s demand

must be zero. On the other hand, if any seller deviates to a

price lower than 𝑝𝑚 − 1, he would get all the demand. In an

equilibrium, since any seller cannot be better off with this

deviation, we have 𝑝𝑖𝐷𝑖 (p) ≥ 𝑝𝑚 − 1,∀𝑖 ∈ [𝑚]. Summing

these inequalities over 𝑖 , we have:

𝑚 ≥ 𝑚𝑝𝑚 −
∑︁

𝑖∈[𝑚]
𝑝𝑖𝐷𝑖 (p)

≥ 𝑚𝑝𝑚 −
∑︁

𝑖∈[𝑚]
𝑝1𝐷𝑖 (p)

≥ 𝑚𝑝𝑚 − 𝑝1 ≥ 𝑚𝑝𝑚 − 1 − 𝑝𝑚,

which gives 𝑝𝑚 ≤ 𝑚+1

𝑚−1
< 2. Therefore, the buyer at least

finds seller𝑚’s product desirable (i.e. 𝑣𝑚 − 𝑝𝑚 > 0,∀𝑣𝑚 ∈
[𝑉 ,𝑉 + 1] for 𝑉 ≥ 2), and must make a purchase from some

seller.

□

Theorem 2. In a plain presentation, for any 𝐹 supported on [𝑉 ,𝑉 +1]
and any 𝑐 > 0, there exists a Δ > 0, such that for any positive 𝜖 < Δ,
there is no pure symmetric 𝜖-equilibrium.

Proof. Consider symmetric price profile (𝑝, 𝑝, . . . , 𝑝), we will
show that this cannot be any 𝜖-equilibrium for any 𝜖 ≤ Δ. Δ is

given by

Δ = min

(
1

𝑚
𝑟 (𝑥∗), (𝑚 − 1)𝑟 (𝑥∗)

(
Pr[𝐵0 ∩𝐴0] −

Pr[𝐴0]
𝑚

))
where

• 𝑟 (𝑥) as will be shown later, corresponds to seller 𝑖’s post-

deviate demand:

𝑟 (𝑥) := 𝑥

∫ 𝜃0−𝑥

𝑉

(1 − 𝐹 (𝑣 + 𝑥)) d𝐹𝑚−1 (𝑣).

And, 𝑥∗ = arg max𝑥≥0 𝑟 (𝑥).
• 𝐴0 is the event that there are at least two sellers from whom

the buyer has value at least 𝜃0. 𝐵0 is the event that 𝑣𝑖 ≥ 𝜃0,

for a given seller 𝑖 .

We will now show that any price 𝑝 cannot support symmetric

𝜖-equilibrium (𝑝, . . . , 𝑝) for 𝜖 < Δ. Discuss over the value of 𝑝:

• Case: 𝑝 ≤ (𝑚 − 1)𝑟 (𝑥∗):
When seller 𝑖 deviates to 𝑝𝑖 > 𝑝 , she will be inspected last

in plain presentation. Her demand is

𝐷𝑖 (𝑝𝑖 ;𝑝−𝑖 = 𝑝)

=

∫ 𝜃0−(𝑝𝑖−𝑝 )

𝑉

(1 − 𝐹 (𝑣 + 𝑝𝑖 − 𝑝)) d𝐹𝑚−1 (𝑣) .

Take 𝑥 = 𝑝𝑖 − 𝑝, 𝑥 > 0, notice that

𝑟 (𝑥) = (𝑝𝑖 − 𝑝)𝐷𝑖 (𝑝𝑖 ;𝑝−𝑖 = 𝑝)
Observe that 𝑥∗ = arg max𝑥≥0 𝑟 (𝑥) > 0 because first, 𝑟 (𝑥) <
1. And at least if we take, say 𝑥 = 𝑉 + 𝜃0

2
, we have

𝑟 (𝑥) = 𝑥

∫ 𝑉+ 𝜃
0

2

𝑉

(1 − 𝐹 (𝑣 + 𝑥)) d𝐹𝑚−1 (𝑣)

≥ 𝑥

∫ 𝑉+ 𝜃
0

2

𝑉

(1 − 𝐹 (𝜃0)) d𝐹𝑚−1 (𝑣)

=

(
𝑉 + 𝜃0

2

)
𝜃0

2

(1 − 𝐹 (𝜃0))𝐹𝑚−1

(
𝑉 + 𝜃0

2

)
> 0 = 𝑟 (0) .

So, it’s safe to conclude that 𝑥∗ > 0 and 𝑟 (𝑥∗) > 0.
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At symmetric price 𝑝 , seller 𝑖 can deviates to 𝑝𝑖 = 𝑝 + 𝑥∗ to
obtain at least Δ-more revenue: (notice that, at symmetric

price 𝑝 , every seller’s revenue is less than
1

𝑚𝑝)

Rev𝑖 (𝑝, . . . , 𝑝) + Δ ≤ 1

𝑚
𝑝 + Δ

≤ 𝑚 − 1

𝑚
𝑟 (𝑥∗) + 1

𝑚
𝑟 (𝑥∗)

= 𝑟 (𝑥∗) (let 𝑝𝑖 = 𝑥∗ + 𝑝)

= (𝑝𝑖 − 𝑝)𝐷𝑖 (𝑝𝑖 ;𝑝−𝑖 = 𝑝)
≤ 𝑝𝑖𝐷𝑖 (𝑝𝑖 ;𝑝−𝑖 = 𝑝) .

In other words, this breaks the 𝜖-equilibrium for 𝜖 < Δ.
• Case: 𝑝 > (𝑚−1)𝑟 (𝑥∗) and 𝜃 ≤ 0: for price profile (𝑝, . . . , 𝑝),
all seller’s revenue would be zero because the buyer does not

even care to inspect any seller. For seller 𝑖 , by posting price

𝑝𝑖 = 𝑉 , by assumption 𝜃0 > 𝑉 , her index becomes positive:

E[(𝑣𝑖 −𝑉 ) − 0]+ ≥ E[𝑣𝑖 − 𝜃0]+ = 𝑐.

Then, every buyer would inspect and buy from seller 𝑖 , so

that seller 𝑖’s revenue rises to 𝑉 . So this deviate breaks the

𝜖-equilibrium.

• Case: 𝑝 > (𝑚 − 1)𝑟 (𝑥∗) and 𝜃 > 0:

Similar as in proof A of Proposition 2, let 𝐴 be the event

that there are at least two sellers from whom the buyer has

value at least 𝜃 + 𝑝 . Let 𝐵 be the event that 𝑣𝑖 ≥ 𝜃 + 𝑝 . By

Proposition 1, 𝜃 = 𝜃0 − 𝑝 . So 𝐴0 = 𝐴 and 𝐵0 = 𝐵.

As demonstrated earlier in in proof A of Proposition 2, the

demand for seller 𝑖 when he deviates to some 𝑝𝑖 < 𝑝 , fix all

other 𝑝−𝑖 = (𝑝, . . . , 𝑝), increases at least by Pr[𝐵∩𝐴]− Pr[𝐴]
𝑚 .

Assume seller 𝑖 deviates to 𝑝 − 𝛿 :

Rev𝑖 (𝑝, . . . , 𝑝) + Δ (4)

≤ Rev𝑖 (𝑝, . . . , 𝑝) + (𝑝 − 𝛿)
(
Pr[𝐵 ∩𝐴] − Pr[𝐴]

𝑚

)
(5)

≤ Rev𝑖 (𝑝𝑖 = 𝑝 − 𝛿, 𝑝−𝑖 = (𝑝, . . . , 𝑝)) (6)

Inequality (4) holds by the assumption we made for Δ. In-
equality (5) holds as 𝛿 → 0

+
. (6) holds from proof A of

Proposition 2.

Therefore, in any cases for symmetric price profile 𝑝 , it cannot be

an 𝜖-equilibrium for 𝜖 < Δ. □

B Omitted Proofs from Section 4
Proposition 3. (a) For any 𝑝 > 0, the symmetric price profile p =

(𝑝, . . . , 𝑝) is not an equilibrium under the LPF mechanism. If
𝜃0 ≥ 𝑉 , LPF admits no symmetric equilibrium.

(b) With two sellers, the LPF mechanism admits no pure equilibrium.

Proof. (a) Consider any symmetric price profile p = (𝑝, . . . , 𝑝).
Compared with presentation without Buy Box, deviating to a

lower price is even (weakly) more profitable, and so, for 𝑝 > 0,

an argument identical to that of Proposition 2 shows that there

exists a profitable deviation 𝑝′ < 𝑝 .

For 𝑝 = 0 and 𝜃0 > 𝑉 , we show there is a small enough 𝑝′ > 0

such that the index𝜃 ′ corresponding to 𝑝′ is still strictly positive.
A seller 𝑖 deviating to 𝑝′ sells their product when 𝜅𝑖 > 𝜅 𝑗 for all

𝑗 ≠ 𝑖 . The only difference from the proof of Proposition 2 is that

here seller 𝑗 maybe in the Buy Box, in which case their index is

𝑉 + 1. We see that essentially the same argument goes through:

we have 𝜅𝑖 > 𝜅 𝑗 at least when 𝑣𝑖 − 𝑝′ ≥ 𝜃 ′ (in which case

𝜅𝑖 = 𝜃 ′) and 𝑣 𝑗 < 𝜃 ′ < max(𝜃0,𝑉 + 1) (in which case 𝜅 𝑗 = 𝑣 𝑗 ).

So seller 𝑖’s demand is at least (1 − 𝐹 (𝜃 ′ + 𝑝′))𝐹𝑛−1 (𝜃 ′) =

(1 − 𝐹 (𝜃0))𝐹𝑛−1 (𝜃 ′). If 𝜃0 > 𝑉 , 𝜃 ′ can be taken to be greater

than 𝑉 , so that this demand is strictly positive, in which case

the deviation to 𝑝′ is profitable for seller 𝑖 .
(b) This directly follows from Theorem 1. For i.i.d. sellers, the LPF

mechanism prioritizes the lower-priced seller, who is also in-

spected first in scenarios without a Buy Box. The behavior

under plain presentation without the Buy Box is analogous to

that under the LPF mechanism (Lemma 1). Consequently, if no

equilibrium exists in the plain presentation scenario, it follows

that no equilibrium can be sustained under the LPF mechanism

either.

□

Theorem 3. For any standard Buy Box mechanism M, if p =

(𝑝, . . . , 𝑝) is a symmetric equilibrium, then p is also an equilibrium
for the Dictator-𝑝 mechanism.

Proof. Consider the probability that the buyer purchases from

a seller priced at 𝑞, when all other sellers are priced at 𝑝 : if the seller

with price 𝑞 is in the Buy Box, let this probability be denoted as

𝐷BB (𝑝, 𝑞); otherwise it is denoted by 𝐷NBB (𝑝, 𝑞). (Note that in the

latter case, one of the sellers who post price 𝑝 is in the Buy Box.) It

is evident that 𝐷BB (𝑝, 𝑞) ≥ 𝐷NBB (𝑝, 𝑞) for all 𝑝 and 𝑞.

Since M is anonymous and always allocates, if all sellers post

price 𝑝 , they are in the Buy Box each with probability 1/𝑚; the same

is true for the Dictator-𝑝 mechanism. So at price profile p, each
seller’s revenue inM is the same as in the Dictator-𝑝 mechanism.

If any seller unilaterally deviates to price 𝑞 in M, with certain

probability the seller is in the Buy Box, in which case her demand

is 𝐷BB (𝑞, 𝑝), and with the rest of the probability the seller is not

in the BuyBox, while another seller with price 𝑝 is shown in the

BuyBox, in which case the seller’s demand is 𝐷NBB (𝑞, 𝑝). The same

deviation to 𝑞 in the Dictator mechanism would result in demand

𝐷NBB (𝑞, 𝑝) with probability 1. Since 𝐷NBB (𝑞, 𝑝) ≤ 𝐷BB (𝑞, 𝑝), if 𝑞
is not a profitable deviation inM, it is not profitable in the Dictator

mechanism either.

□

Lemma 3. If 𝑉 ≥ 2 and 𝑐 ≤ 𝑐 , then under any equilibrium of any
Buy-Box mechanism, the buyer always makes a purchase.

Proof. Suppose p = (𝑝1, 𝑝2, . . . , 𝑝𝑚) is an equilibrium price

profile, ordered such that 𝑝1 ≥ 𝑝2 ≥ · · · ≥ 𝑝𝑚 . We consider two

cases based on the value of the lowest price 𝑝𝑚 :

• Case 1: 𝑝𝑚 ≤ 𝑉 .
In the Buy-Box mechanism, the buyer is first presented with

the Buy-Box seller’s value 𝑣 and price 𝑝 without incurring

the inspection cost. The buyer’s utility from the Buy-Box

seller is 𝑢BB = 𝑣 − 𝑝 .

– If 𝑢BB ≥ 0, the buyer will at least purchase from the Buy-

Box seller.
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– If 𝑢BB < 0, the buyer considers inspecting seller𝑚. The

expected utility gain from inspecting seller𝑚 is:

E [𝑣𝑚 − 𝑝𝑚]+ − 𝑐

= E[𝑣𝑚] − 𝑝𝑚 − 𝑐

≥ E[𝑣] −𝑉 − 𝑐 ≥ 0.

The above inequalities come from the assumptions 𝑝𝑚 ≤
𝑉 and 𝑐 ≤ 𝑐 = E[𝑣] −𝑉 .

In this case, when the lowest-price seller is not presented

in the Buy-Box, if the buyer finds the Buy-Box seller’s

offer to be of negative utility, the buyer finds herself better

off to further inspect seller𝑚. After inspection, the buyer’s

utility from purchasing from seller𝑚 is at least 𝑣𝑚 −𝑝𝑚 ≥
0, so the buyer will make a purchase from seller𝑚.

• Case 2: 𝑝𝑚 > 𝑉 .We will show that this case cannot occur

in equilibrium.

Consider a seller deviating to 𝑝𝑚 − 1. If this seller is in the

Buy-Box, the buyer would simply purchase from this seller.

But, even if the seller is not in the Buy-Box, the buyer would

always opt to inspect and purchase from this deviating seller.

This is because as shown below, the expect utility gain from

inspecting this deviating seller is positive, regardless of what

the Buy Box offers:

E [𝑣 − (𝑝𝑚 − 1) − 𝑢BB]+ − 𝑐

≥ E [𝑣 − (𝑝𝑚 − 1) − (𝑉 + 1 − 𝑝𝑚)]+ − 𝑐

= E [𝑣 −𝑉 ]+ − 𝑐 ≥ 0.

After inspecting this deviating seller, the buyer will prefer

the deviating seller’s product since the price is lower:

𝑣 − (𝑝𝑚 − 1)
≥ 𝑉 − (𝑝𝑚 − 1)
= (𝑉 + 1) − 𝑝𝑚

≥ max

𝑖
(𝑣𝑖 − 𝑝𝑖 ) .

Therefore, similar to Lemma 1, assuming 𝑝𝑚 > 𝑉 , when any

seller deviates and sets their price to 𝑝𝑚 − 1, their demand

increases to 1. For the equilibrium condition to hold, it is re-

quired that each seller does not find this deviation profitable;

that is, for any seller 𝑖 ∈ [𝑚],
Rev𝑖 (p) = 𝑝𝑖𝐷𝑖 (p) ≥ 𝑝𝑚 − 1

Notice the seller’s equilibrium revenue is supposed to be

strictly positive, given we assumed that 𝑝𝑚 − 1 ≥ 𝑉 − 1 ≥ 0.

Summing these inequalities over 𝑖 , we have

𝑚∑︁
𝑖=1

𝑝𝑖𝐷𝑖 (p) ≥ 𝑚(𝑝𝑚 − 1).

On the other hand, any seller must have 𝑝𝑖 ≤ 𝑝𝑚+1. Because

otherwise, 𝑝𝑖 > 𝑝𝑚 + 1 > 𝑉 + 1 and this seller’s demand and

revenue would be zero. So

𝑚∑︁
𝑖=1

𝑝𝑖𝐷𝑖 (p) ≤
𝑚∑︁
𝑖=1

(𝑝𝑚 + 1)𝐷𝑖 (p) ≤ 𝑝𝑚 + 1,

Combining the inequalities B and B, we get

𝑝𝑚 ≤ 𝑚 − 1

𝑚 + 1

≤ 2.

This contradicts the assumption that 𝑝𝑚 > 𝑉 ≥ 2.

To conclude, the second case 𝑝𝑚 > 𝑉 cannot occur in equilibrium.

Thus, in equilibrium, 𝑝𝑚 ≤ 𝑉 , and from the above analysis of Case

1, the buyer always makes a purchase at those prices. □

Proposition 6. For sufficiently large 𝑐 , there exists a Buy Box mech-
anism with an equilibrium at which prices are all higher than 𝑉 .

Proof. Consider the Dictator’s Mechanism that sets the target

price at the monopoly price:

𝑝★ := arg max

𝑝
𝑝 (1 − 𝐹 (𝑝)) .

As long as the inspection cost is high enough (𝑐 > E[𝑣] − 𝑝★

𝑚 ), it is

optimal for every seller to maintain the monopoly price 𝑝★. This is

because any seller deviating to a price 𝑝′ ≠ 𝑝★ would lose the Buy-

Box status and could only be inspected if all other sellers’ values

satisfy (𝑣 − 𝑝★)+ ≤ 𝜃0 − 𝑝′. This requires that 𝑝′ is low enough:

𝑝′ ≤ 𝜃0. Therefore, the deviating seller’s revenue is at most 𝜃0.

Furthermore, as long as the monopoly profit satisfies:

𝑝★

𝑚
≥ 𝜃0,

and under our assumption of a high enough inspection cost 𝑐:

E
[
(𝑣 − 𝜃0)+

]
= 𝑐 > E

[(
𝑣 − 𝑝★

𝑚

)+]
=⇒ 𝑝★

𝑚
≥ 𝜃0,

the monopoly price vector ®𝑝★ = (𝑝★, . . . , 𝑝★) will be an equilibrium.

□

Lemma 2. [Demand for a Seller Deviating from the Symmetric
Equilibrium under the Dictator Mechanism] For 𝑐 ∈ (0, 𝑐), consider
a symmetric equilibrium price 𝑡 . If a seller deviates to a price 𝑝 , then
their demand is a function of the amount of deviation 𝑥 = 𝑝 − 𝑡 .
Specifically, the demand after deviating to 𝑝 is

D𝑐 (𝑥) :=



1, if 𝑥 ≤ −1,∫ 𝜃0 (𝑐 )−𝑥
𝑉

[∫ 𝑉+1

max(𝜃0 (𝑐 )+𝑥,𝑣2+𝑥 ) d𝐹 (𝑣1) d𝐹 (𝑣2)

+
∫

max(𝜃0 (𝑐 )+𝑥,𝑣2+𝑥 )
𝑣2+𝑥 𝐹𝑚−2 (𝑣1 − 𝑥) d𝐹 (𝑣1)

]
d𝐹 (𝑣2),

if − 1 < 𝑥 < 0,∫ 𝜃0 (𝑐 )−𝑥
𝑉

(1 − 𝐹 (𝑣 + 𝑥)) d𝐹𝑚−1 (𝑣),
if 0 ≤ 𝑥 < 𝜃0 (𝑐) −𝑉 ,

0, if 𝜃0 (𝑐) −𝑉 ≤ 𝑥 .

(1)

Proof. Since the equilibrium is symmetric, without loss of gen-

erality, assume that the deviating seller is seller 1. We may occa-

sionally omit the seller subscript when there is no ambiguity. Let

𝑥 = 𝑝′ − 𝑡 , where 𝑝′ is the deviated price. We will analyze the

demand case by cas with respect to 𝑥 ’s value.

• Case 𝑥 ≤ −1 (i.e., 𝑝′ < 𝑡 + 1). This scenario is covered in the

proof of Lemma 3. In this case, the seller’s demand is equal

to 1.
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• Case −1 < 𝑥 < 0 (i.e., 𝑡 − 1 < 𝑝′ < 𝑡 ). Note that, in general,

𝑝′ could be less than 0. However, this does not affect our

analysis of the demand, although setting such a price would

result in negative revenue for the seller.

Under the Dictator Mechanism, the deviating seller does

not receive any Buy Box allocation. Since all other sellers

are identical, to analyze the deviating seller’s demand, we

assume that seller 2 receives the Buy Box. There are two

mutually exclusive scenarios in the buyer’s search behavior

that result in a purchase from seller 1:

– Scenario 1: The buyer sees seller 1 in the Buy Box, in-

spects seller 2, buys from seller 1, and then leaves. This

requires:

(i) The buyer chooses to inspect seller 1 after observing

seller 2’s value in the Buy Box:

𝑣2 − 𝑡 < 𝜃0 (𝑐) − 𝑝′ ⇔ : 𝑣2 < 𝜃0 (𝑐) − 𝑥 .

(ii) After inspecting seller 1, the buyer prefers seller 1 over

seller 2:

𝑣1 − 𝑝′ ≥ 𝑣2 − 𝑡 ⇔ 𝑣1 ≥ 𝑣2 + 𝑥 .

(iii) After inspecting seller 1, the buyer does not inspect any

additional sellers:

max(𝑣1 − 𝑝′, 𝑣2 − 𝑡) ≥ 𝜃0 (𝑐) − 𝑡

⇔ max(𝑣1 − 𝑥, 𝑣2) = 𝑣1 − 𝑥︸                          ︷︷                          ︸
by condition ii

≥ 𝜃0 (𝑐) .

The demand contribution from this scenario is∫
max(𝜃0 (𝑐 )−𝑥,𝑉 )

𝑉

∫ 𝑉+1

max(𝜃0 (𝑐 )+𝑥,𝑣2+𝑥 )
d𝐹 (𝑣1) d𝐹 (𝑣2) .

– Scenario 2: The buyer sees seller 1 in the Buy Box, first

inspects seller 2, then inspects all sellers, compares all

products, and finally buys from seller 1 before leaving.

This requires:

(i) The buyer chooses to inspect seller 1 after observing

seller 2’s value in the Buy Box:

𝑣2 − 𝑡 < 𝜃0 (𝑐) − 𝑝′ ⇔ 𝑣2 < 𝜃0 (𝑐) − 𝑥 .

(ii) After inspecting all sellers, the buyer prefers seller 1’s

product:

𝑣1 − 𝑝′ ≥ max

𝑖=2,...,𝑚
{𝑣𝑖 − 𝑡}

⇔ 𝑣1 − 𝑥 ≥ max

𝑖=2,...,𝑚
{𝑣𝑖 }.

(iii) The buyer chooses to inspect all remaining sellers (𝑖 =

3, . . . ,𝑚):

max

(
𝑣1 − 𝑝′, max

𝑖=2,...,𝑚
{𝑣𝑖 − 𝑡}

)
≥ 𝜃0 (𝑐) − 𝑡

⇔ max

(
𝑣1 − 𝑥, max

𝑖=2,...,𝑚
{𝑣𝑖 }

)
= 𝑣1 − 𝑥︸                                       ︷︷                                       ︸

by condition ii

≥ 𝜃0 (𝑐) .

The demand contribution from this scenario is∫
max(𝜃0 (𝑐 )−𝑥,𝑉 )

𝑉

∫
max(𝜃0 (𝑐 )+𝑥,𝑣2+𝑥 )

𝑣2+𝑥

𝐹𝑚−2 (𝑣1 − 𝑥) d𝐹 (𝑣1) d𝐹 (𝑣2) .

These two scenarios are mutually exclusive. Therefore, the

total demand of the deviating seller when setting the price

𝑝′ = 𝑡 + 𝑥 for 𝑥 ∈ (−1, 0) is

D𝑐 (𝑥) :=∫
max(𝜃0 (𝑐 )−𝑥,𝑉 )

𝑉

∫ 𝑉+1

max(𝜃0 (𝑐 )+𝑥,𝑣2+𝑥 )
d𝐹 (𝑣1) d𝐹 (𝑣2)

+
∫

max(𝜃0 (𝑐 )−𝑥,𝑉 )

𝑉

∫
max(𝜃0 (𝑐 )+𝑥,𝑣2+𝑥 )

𝑣2+𝑥

𝐹𝑚−2 (𝑣1 − 𝑥) d𝐹 (𝑣1) d𝐹 (𝑣2) .

• Case 0 ≤ 𝑥 < 𝜃0 (𝑐) −𝑉 (i.e., 𝑡 ≤ 𝑝′ < 𝜃0 (𝑐)). In this case,

particularly for 𝑝′ = 𝑡 and define D𝑐 (0) := lim𝑥→0
+ D𝑐 (𝑥).

For 𝑥 ∈ (0, 𝜃0 (𝑐) − 𝑉 ), since the deviating seller’s price

𝑝′ = 𝑡 +𝑥 > 𝑡 , they are inspected last only if the values of all

other sellers 𝑖 = 2, . . . ,𝑚 satisfy 𝑣𝑖 ≤ 𝜃0 (𝑐) − 𝑥 . Additionally,

the deviating seller 1 is purchased from only if

𝑣1 − 𝑝′ ≥ max

𝑖=2,...,𝑚
{𝑣𝑖 − 𝑡}.

These conditions translate to

D𝑐 (𝑥) =
∫ 𝜃0 (𝑐 )−𝑥

𝑉

(1 − 𝐹 (𝑣 + 𝑥)) d𝐹𝑚−1 (𝑣) .

• Case 𝑥 ≥ 𝜃0 (𝑐) − 𝑉 (i.e., 𝑝′ > 𝜃0 (𝑐)). In this scenario,

the deviating seller 1 will never be inspected. Suppose that

seller 2 in the Buy Box yields a value 𝑣2:

𝑣2 − 𝑡 ≥ 𝑉 − 𝑡

= 𝑉 − (𝑝′ − 𝑥) = 𝑉 − 𝑥 − 𝑝′ ≥ 𝜃0 (𝑐) − 𝑝′ .

Since buyers will never choose to inspect seller 1, the seller’s

demand is zero.

This concludes the proof. The deviating seller’s demand is thus

expressed as a function of the deviation 𝑥 = 𝑝′−𝑡 , independent from
𝑡 , where 𝑝′ is the deviated price and 𝑡 is the symmetric equilibrium

price of the remaining sellers. □

Theorem 4. For 𝑐 ∈ (0, 𝑐), the set of implementable prices 𝑇 (𝑐) is a
closed interval determined by the inspection cost 𝑐 :

𝑇 (𝑐) = [𝑡∗ (𝑐), 𝑡 (𝑐)],

if 𝑡∗ (𝑐) ≤ 𝑡 (𝑐), where 𝑡∗ (𝑐) := sup𝑥>0

{
𝑥D𝑐 (𝑥 )

1

𝑚
−D𝑐 (𝑥 )

}
and 𝑡 (𝑐) := inf𝑥<0

{(
(−𝑥 )D𝑐 (𝑥 )
D𝑐 (𝑥 )− 1

𝑚

)+}
\ {0}.

When 𝑡∗ (𝑐) > 𝑡 (𝑐), no standard mechanism admits any symmetric
equilibrium.

Proof. Theorem 3 states that it is sufficient to consider dictator’s

mechanism for any implementable equilibrium price. Consider

Dictator mechanism setting target price at 𝑡 , inducing symmetric

equilibrium (𝑡, 𝑡, . . . , 𝑡).
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If any seller deviates to 𝑝′ = 𝑡 +𝑥 , Lemma 2 gives the seller’s post-

deviate demand expressed in 𝑥 : D𝑐 (·). The equilibrium condition

can then be expressed as:

(𝑥 + 𝑡)︸ ︷︷ ︸
𝑝′=𝑥+𝑡

· D𝑐 (𝑥)︸ ︷︷ ︸
seller 1’s demand

≤ 1

𝑚
𝑡︸︷︷︸

Eq. revenue

, ∀𝑥 ∈ R (7)

By transforming this condition algebraically, we obtain(
1

𝑚
− D𝑐 (𝑥)

)
𝑡 ≥ 𝑥D𝑐 (𝑥) . (8)

Discuss over potential value of 𝑥 (i.e. 𝑝′ = 𝑡 + 𝑥 ).

• Case 𝑥 > 0 (i.e. 𝑝 = 𝑥 + 𝑡 > 𝑡 ). It’s evident that post-deviate

demand D𝑐 (𝑥) < 1

𝑚 . Hence the above condition translates

to

𝑡 ≥ 𝑥D𝑐 (𝑥)
1

𝑚 − D𝑐 (𝑥)
,∀𝑥 > 0.

This gives a lower bound for implementable price 𝑡 .

• Case 𝑥 < 0 (i.e. 𝑝 = 𝑥 + 𝑡 < 𝑡 ). Notice that the left-hand-

side of the inequality 8, 𝑥D𝑐 (𝑥) < 0 — so the condition

automatically holds for
1

𝑚 − D𝑐 (𝑥) ≥ 0. Now considers 𝑥

such that D𝑐 (𝑥) > 1

𝑚 , inequality 8 translates to

𝑡 ≤ (−𝑥)D𝑐 (𝑥)
D𝑐 (𝑥) − 1

𝑚

, ∀𝑥 < 0 and

1

𝑚
− D𝑐 (𝑥) < 0

.

And this sums up to be the condition for the theorem. □

As an example, for the uniform distribution 𝐹 = 𝑈 [2, 3] and two

sellers, we work out this interval. For this distribution, 𝑐 = 1

2
. For

𝑐 ∈ (0, 𝑐),

𝑡∗ (𝑐) =

√︂
−((2

√
2𝑐 − 2𝑐) + 1

2
) +

√︃
2(2

√
2𝑐 − 2𝑐) + 1

4

1

2

√︃
2(2

√
2𝑐 − 2𝑐) + 1

4
− 1

× 1

2

(
3

2

−
√︂

2(2
√

2𝑐 − 2𝑐) + 1

4

)
𝑡 (𝑐) = 2.

For any 𝑐 ∈ (0, 𝑐), 𝑡∗ (𝑐) < 𝑡 (𝑐). Therefore for all small enough 𝑐 ,

the dictator mechanism admits a pure equilibrium.

Find 𝑡∗ (𝑐), 𝑡 (𝑐) for two uniform seller. For convenience, use

𝜃 to denote 𝜃0 (𝑐). First calculate D𝑐 (𝑥):

D𝑐 (𝑥) =



1 𝑥 < −1

1

2
𝑥2 + 1

2
𝑥 ∈ [−1, 𝜃 − 3)

−𝑥 + 1

2
(𝜃 − 2)2 𝑥 ∈ [𝜃 − 3, 0)

− 1

2
𝑥2 + 1

2
(𝜃 − 2)2 𝑥 ∈ [0, 𝜃 − 2)

0 𝑥 ≥ 𝜃 − 2

Find 𝑡∗ (𝑐) and 𝑡 (𝑐): let

𝜒𝑐 (𝑥) :=
𝑥D𝑐 (𝑥)

1

2
− D𝑐 (𝑥)

then

𝜒𝑐 ′ (𝑥) = 1

( 1

2
− D𝑐 (𝑥))2

(
D𝑐 (𝑥) (

1

2

− D𝑐 (𝑥)) +
1

2

𝑥𝐷′
𝑐 (𝑥)

)
.

Let 𝜒 (𝑥) := D𝑐 (𝑥) ( 1

2
− D𝑐 (𝑥)) + 1

2
𝑥𝐷′

𝑐 (𝑥),

𝜒𝑐 ′ (𝑥) = D′
𝑐 (𝑥) (1 − 2D𝑐 (𝑥)) +

1

2

𝑥D′′
𝑐 (𝑥).

To get 𝑡∗ (𝑐) = sup𝑥>0
𝜒𝑐 (𝑥), notice that only needs to consider

𝑥 ∈ (0, 𝜃 − 2) where D𝑐 (𝑥) > 0. Within this region, D𝑐 (𝑥) < 1

2
,

D𝑐 (𝑥) = −𝑥 < 0 and D′′
𝑐 (𝑥) = −1, therefore

𝜒𝑐 ′ (𝑐) ≤ 0.

And

𝜒𝑐 (𝑥 ) = − 1

4

𝑥4 + ( 1

2

(𝜃 − 2)2 − 1

2

)𝑥2 + 1

2

(𝜃 − 2)2

(
1

2

− 1

2

(𝜃 − 2)2

)
.

So we can solve for the unique interior supremum point 𝑥∗ that
maximizes 𝜒𝑐 (𝑥):

(𝑥∗𝑐 )2 = −( ˆ𝜃 + 1

2

) +
√︂

2
ˆ𝜃 + 1

4

,

where
ˆ𝜃 = 1 − (𝜃 − 2)2

. Plug in 𝑥∗𝑐 into 𝜒𝑐 (𝑥) (because 𝑡∗ (𝑐) =

sup𝑥>0
𝜒𝑐 (𝑥)) we obtain

𝑡∗ (𝑐) = 𝑥∗𝑐D𝑐 (𝑥∗𝑐 )
1

2
− D𝑐 (𝑥∗𝑐 )

=

√︂
−( ˆ𝜃 + 1

2
) +

√︃
2

ˆ𝜃 + 1

4
× 1

2

(
3

2
−

√︃
2

ˆ𝜃 + 1

4

)
1

2

√︃
2

ˆ𝜃 + 1

4
− 1

=

√︂
−((2

√
2𝑐 − 2𝑐) + 1

2
) +

√︃
2(2

√
2𝑐 − 2𝑐) + 1

4

1

2

√︃
2(2

√
2𝑐 − 2𝑐) + 1

4
− 1

× 1

2

(
3

2

−
√︂

2(2
√

2𝑐 − 2𝑐) + 1

4

)
Vice versa, we can directly calculate 𝑡 (𝑐).

For 𝑥 ∈ [𝜃 − 3, 0), let ˜𝜃 = (𝜃 − 2)2
, so D𝑐 (𝑥) = −𝑥 + 1

2

˜𝜃 , and

𝜒𝑐 (𝑥 ) =
𝑥 (−𝑥 + 1

2

˜𝜃 )
1

2
− (−𝑥 + 1

2

˜𝜃 )

= ( 1

2

˜𝜃 − 𝑥 − 1

2

) +
1

4
(1 − ˜𝜃 )

( 1

2

˜𝜃 − 𝑥 − 1

2
)
+ 1 − 1

2

˜𝜃

≥ 2.

As for 𝑥 ∈ [−1, 𝜃 − 3),

𝜒𝑐 (𝑥) =
𝑥 (−𝑥2 + 1

2
)

− 1

2
𝑥2

= −(𝑥 + 1

𝑥
) ≥ 2.

Therefore,

𝑡 (𝑐) ≡ 2.

□

Proposition 4. [Properties of lowest implementable price] For
𝑐 ∈ (0, 𝑐), 𝑡∗ (𝑐) is continuous and monotonically decreasing in 𝑐 .
Moreover,
(i) lim𝑐→𝑐− 𝑡

∗ (𝑐) = 0;
(ii) lim𝑐→0

+ 𝑡∗ (𝑐) = 𝑡0, if a symmetric equilibrium (𝑡0, . . . , 𝑡0) ex-
ists for the monopolistic competition without cost of inspection.
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Proof of Proposition 4. We will first prove that 𝑡∗ (·) is mono-

tonically decreasing and continuous. Then prove its endpoint prop-

erty.

Monotonicity of 𝑡∗ (𝑐). Theorem 4 gives

𝑡∗ (𝑐) := sup

𝑥>0

{
𝑥D𝑐 (𝑥)

1

𝑚 − D𝑐 (𝑥)

}
.

Fix 𝑥 , consider inspection costs 𝑐1 ≤ 𝑐2 with 𝜃0 (𝑐1) ≥ 𝜃0 (𝑐2), we
have, for 𝑥 ≥ 0:

D𝑐1
(𝑥) − D𝑐2

(𝑥) =
∫ 𝜃0 (𝑐1 )−𝑥

𝑉

(1 − 𝐹 (𝑣 + 𝑥)) d𝐹𝑚−1 (𝑣)

−
∫ 𝜃0 (𝑐2 )−𝑥

𝑉

(1 − 𝐹 (𝑣 + 𝑥)) d𝐹𝑚−1 (𝑣)

=

∫ 𝜃0 (𝑐1 )−𝑥

𝜃0 (𝑐2 )−𝑥
(1 − 𝐹 (𝑣 + 𝑥)) d𝐹𝑚−1 (𝑣) ≥ 0.

So, fix 𝑥 ,D𝑐 (𝑥) decreases as 𝑐 increases. Therefore, for any 𝑐1 ≥ 𝑐2,

D𝑐1
(𝑥) ≤ D𝑐2

(𝑥). For any 𝑥 > 0:

𝑥D𝑐1
(𝑥)

1

𝑚 − D𝑐1
(𝑥)

= (−𝑥) +
1

𝑚

1

𝑚 − D𝑐1
(𝑥)

≤ (−𝑥) +
1

𝑚

1

𝑚 − D𝑐2
(𝑥)

=
𝑥D𝑐2

(𝑥)
1

𝑚 − D𝑐2
(𝑥)

.

This implies 𝑡∗ (𝑐2) ≥ 𝑡∗ (𝑐1), hence proving 𝑡∗ (·) monotonically

decreases.

Continuity of 𝑡∗ (𝑐). The expression 𝑡∗ (𝑐) := sup𝑥>0

{
𝑥D𝑐 (𝑥 )

1

𝑚
−D𝑐 (𝑥 )

}
takes supremum over 𝑥 > 0. Because D𝑐 (𝑥) = 0 for 𝑥 ≥ 𝜃0 (𝑐) −𝑉 ,

it suffices to consider the open interval 𝑥 ∈ (0, 𝜃0 (𝑐) −𝑉 ).
Define 𝜙 (𝑐, 𝑥) :=

𝑥D𝑐 (𝑥 )
1

𝑚
−D𝑐 (𝑥 )

. The function 𝜙 is jointly continuous

in (𝑐, 𝑥) for 𝑥 > 0. Given that the supremum point 𝑥∗ that maxi-

mizes𝜙 (𝑐, 𝑥) within the interval (0, 𝜃0 (𝑐)−𝑉 ) is obtained in an inte-
rior point, by pointwise convergence, 𝑡∗ (𝑐) = inf𝑥∈ (0,𝜃0 (𝑐 )−𝑉 ) 𝜙 (𝑐, 𝑥)
will also exhibit continuity.

The limiting convergence as 𝑐 → 𝑐− . Discuss over the region of 𝑥

that we’re taking supremum over for 𝑡∗ (𝑐) := sup𝑥>0

{
𝑥D𝑐 (𝑥 )

1

𝑚
−D𝑐 (𝑥 )

}
:

• 𝑥 ∈ [𝜃0 (𝑐)−𝑉 ,∞),D𝑐 (𝑥) = 0. So this part doesn’t contribute

to 𝑡∗ (𝑐).
• 𝑥 ∈ (0, 𝜃0 (𝑐) −𝑉 ): Look at D𝑐 (𝑥) as 𝑥 → 0

+
:

lim

𝑥→0
+
D𝑐 (𝑥) = lim

𝑥→0
+

∫ 𝜃0 (𝑐 )−𝑥

𝑉

(1 − 𝐹 (𝑣 + 𝑥)) d𝐹𝑚−1 (𝑣)

=

∫ 𝜃0 (𝑐 )

𝑉

(1 − 𝐹 (𝑣)) d𝐹𝑚−1 (𝑣)

=

∫ 𝜃0 (𝑐 )

𝑉

d𝐹𝑚−1 (𝑣) − 𝑚 − 1

𝑚

∫ 𝜃0 (𝑐 )

𝑉

d𝐹𝑚 (𝑣)

= 𝐹𝑚−1 (𝜃0 (𝑐)) −
𝑚 − 1

𝑚
𝐹𝑚 (𝜃0 (𝑐)),

we have, as 𝑥 → 0
+

lim

𝑥→0
+

(
1

𝑚
− D𝑐 (𝑥)

)
=

1

𝑚
−

(
𝐹𝑚−1 (𝜃0 (𝑐)) −

𝑚 − 1

𝑚
𝐹𝑚 (𝜃0 (𝑐))

)
.

Let 𝑔(𝛼) = 1

𝑚 −
(
𝛼𝑚−1 − 𝑚−1

𝑚 𝛼𝑚
)
, for 𝛼 ∈ [0, 1]. 𝑔(1) = 0,

𝑔′ (𝛼) = −(𝑚 − 1)𝛼𝑚−2 (1 − 𝛼) < 0,∀𝛼 ∈ (0, 1). So 𝑔(𝛼) >

0,∀𝛼 ∈ (0, 1). As 𝑐 → 𝑐+, 𝜃0 (𝑐) → 𝑉 so for sure 𝐹 (𝜃0 (𝑐)) ∈
(0, 1) (actually 𝐹 (𝜃0 (𝑐)) is bounded far away from 1). Plug

in 𝛼 = 𝐹 (𝜃0 (𝑐)), we have

lim

𝑥→0
+

(
1

𝑚
− D𝑐 (𝑥)

)
= 𝑔(𝐹 (𝜃0 (𝑐))) > 0.

Notice that as 𝑐 → 𝑐− , 𝜃0 (𝑐) → 𝑉 +
:

lim

𝑐→𝑐−
sup

𝑥∈ (0,𝜃0 (𝑐 )−𝑉 )

{
𝑥D𝑐 (𝑥)

1

𝑚 − D𝑐 (𝑥)

}
≤ lim

𝑐→𝑐−
(𝜃0 (𝑐) −𝑉 ) sup

𝑥∈ (0,𝜃0 (𝑐 )−𝑉 )

{
D𝑐 (𝑥)

1

𝑚 − D𝑐 (𝑥)

}
≤ lim

𝑐→𝑐−
(𝜃0 (𝑐) −𝑉 ) sup

𝑥∈ (0,𝜃0 (𝑐 )−𝑉 )

{
1

1

𝑚 − D𝑐 (𝑥)

}
= 0.

Taking together the two regions of𝑥 discussed above, lim𝑐→𝑐− 𝑡
∗ (𝑐) =

0.

The limiting convergence as 𝑐 → 0
+. First, consider the equilib-

rium without inspection cost. In this case, the demand function

for the deviated seller D𝑐 (𝑥) naturally extends to 𝑐 = 0, when

𝜃0 (0) = 𝑉 + 1:

D0 (𝑥) =
∫ 𝑉+1−𝑥

𝑉

(1 − 𝐹 (𝑣 + 𝑥)) d𝐹𝑚−1 (𝑣).

Denote the equilibrium price as (𝑡0, 𝑡0, . . . , 𝑡0). The equilibrium

condition for any deviate 𝑥 ∈ [max(−1,−𝑡0), 1]:

(𝑡0 + 𝑥)D0 (𝑥) ≤
1

𝑚
𝑡 (9)

⇔ D0 (𝑥) ≤
1

𝑚

𝑡0

𝑡0 + 𝑥
,∀𝑥 ∈ [max(−1,−𝑡0), 1) (10)

Notice that, the inequality is strict at 𝑥 = 0—when D0 (𝑥) = 1

𝑚 =
1

𝑚
𝑡0

𝑡0+𝑥
��
𝑥=0

. And since D0 (𝑥) is continuous, this situation implies

that the slope of D0 and the right-hand side’s equal-revenue curve

coincide, yielding:

𝑡0 =
1

𝑚(𝑚 − 1)
∫ 𝑉+1

𝑉
𝐹𝑚−2 (𝑣) 𝑓 2 (𝑣) d𝑣

.

If (10) holds for 𝑡0, then (𝑡0, . . . , 𝑡0) constitutes the unique symmetric

equilibrium when the market is free of inspection costs.

As for the limiting equilibrium price when inspection cost ap-

proaches zero, 𝑡∗ (0), because 𝑡∗ (𝑐) = inf𝑥 𝜙 (𝑐, 𝑥) is continuous in
𝑐 , all that remains is to verify sup𝑥 𝜙 (0, 𝑥) = 𝑡0. This is confirmed
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at the limit as 𝑥 → 0
+
:

lim

𝑥→0
+
𝜙 (0, 𝑥) = lim

𝑥→0
+

𝑥D0 (𝑥)
1

𝑚 − D0 (𝑥)

=

𝜕
𝜕𝑥 𝑥D0 (𝑥)

𝜕
𝜕𝑥 [

1

𝑚 − D0 (𝑥)]

����
𝑥=0

=
1

𝑚(𝑚 − 1)
∫ 𝑉+1

𝑉
𝐹𝑚−2 (𝑣) 𝑓 (𝑣)2

d𝑣
.

By the monotonicity and continuity of 𝑡∗ (𝑐), it would be contra-

dictory for some 𝑥 > 0 if 𝜙 (0, 𝑥) > 𝑡0, as this would imply, for

some negligible cost of inspection 𝜖 → 0, that 𝜙 (𝜖, 𝑥) > 𝑡0, leading

to a contradiction. Therefore, presuming 𝑡0 exists as a symmetric

equilibrium absent inspection costs, lim𝑐→0
+ 𝑡∗ (𝑐) = 𝑡0. □

Proposition 5. When there are two sellers, for 𝑐 ∈ (0, 𝑐), 𝑡 (𝑐) is
continuous and monotonically decreasing in 𝑐 .

Proof. Theorem 4 states that

𝑡 (𝑐) := inf

𝑥<0

{(
(−𝑥)D𝑐 (𝑥)
D𝑐 (𝑥) − 1

𝑚

)+}
\ {0},

so we focus on 𝑥 < 0 and study the behavior of D𝑐 (𝑥) with respect

to 𝑐 . For convenience, denote

˜ℎ𝑥 (𝑐 ) = D𝑐 (𝑥 )

=

∫ 𝜃0 (𝑐 )−𝑥

𝑉

∫ 𝑉 +1

max(𝜃0 (𝑐 )+𝑥,𝑣2+𝑥 )
d𝐹 (𝑣1 ) d𝐹 (𝑣2 )

+
∫ 𝜃0 (𝑐 )−𝑥

𝑉

∫
max(𝜃0 (𝑐 )+𝑥,𝑣2+𝑥 )

𝑣2+𝑥
𝐹𝑚−2 (𝑣1 − 𝑥 ) d𝐹 (𝑣1 ) d𝐹 (𝑣2 ) .

Note that this is still inconvenient. Let

ℎ𝑥 (𝜃 ) := ˜ℎ𝑥 (𝑐 ) ◦ 𝜃0 (𝑐 )

=

∫ 𝜃−𝑥

𝑉

∫ 𝑉 +1

max(𝜃+𝑥,𝑣2+𝑥 )
d𝐹 (𝑣1 ) d𝐹 (𝑣2 )

+
∫ 𝜃−𝑥

𝑉

∫
max(𝜃+𝑥,𝑣2+𝑥 )

𝑣2+𝑥
𝐹𝑚−2 (𝑣1 − 𝑥 ) d𝐹 (𝑣1 ) d𝐹 (𝑣2 )

=

∫ 𝜃

𝑉

(1 − 𝐹 (𝜃 + 𝑥 ) ) d𝐹 (𝑣2 )

+
∫ 𝜃

𝑉

∫ 𝜃+𝑥

𝑣2+𝑥
𝐹𝑚−2 (𝑣1 − 𝑥 ) d𝐹 (𝑣1 ) d𝐹 (𝑣2 )

+
∫ 𝜃−𝑥

𝜃

∫ 𝑉 +1

𝑣2+𝑥
d𝐹 (𝑣1 ) d𝐹 (𝑣2 )

= (1 − 𝐹 (𝜃 + 𝑥 ) ) 𝐹 (𝜃 )

+
∫ 𝜃

𝑉

∫ 𝜃+𝑥

𝑣2+𝑥
𝐹𝑚−2 (𝑣1 − 𝑥 ) d𝐹 (𝑣1 ) d𝐹 (𝑣2 )

+
∫ 𝜃−𝑥

𝜃

(1 − 𝐹 (𝑣2 + 𝑥 ) ) 𝑑𝐹 (𝑣2 )

So

ℎ′𝑥 (𝜃 ) = −𝑓 (𝜃 + 𝑥)𝐹 (𝜃 ) +
∫ 𝜃

𝑉

𝐹𝑚−2 (𝜃 ) 𝑓 (𝜃 + 𝑥) d𝐹 (𝑣2)

+ (1 − 𝐹 (𝜃 )) 𝑓 (𝜃 − 𝑥) − (1 − 𝐹 (𝜃 + 𝑥)) 𝑓 (𝜃 )

=

(
𝐹𝑚−2 (𝜃 ) − 1

)
𝑓 (𝜃 + 𝑥)𝐹 (𝜃 ) + (1 − 𝐹 (𝜃 )) 𝑓 (𝜃 − 𝑥).

Since 𝜃0 (𝑐) is the solution for E[𝑣 − 𝜃 ]+ = 𝑐 , 𝜃 ′
0
(𝑐) ≤ 0, and this

implies

˜ℎ′𝑥 (𝑐) = 𝜃 ′
0
(𝑐)ℎ′𝑥 (𝜃 ).

When𝑚 = 2

ℎ′𝑥 (𝜃 ) = (1 − 𝐹 (𝜃 )) 𝑓 (𝜃 − 𝑥) ≥ 0.

This implies that
˜ℎ′𝑥 (𝑐) ≤ 0, and that the demand for deviated seller

with 𝑝′ > 𝑡 would decrease as inspection cost 𝑐 increases. Thus,

𝑐1 ≤ 𝑐2 ⇒ D𝑐1
(𝑥) ≥ D𝑐2

(𝑥),∀𝑥 < 0 when𝑚 = 2. So ∀𝑥 < 0,

(−𝑥)D𝑐1
(𝑥)

D𝑐1
(𝑥) − 1

𝑚

= (−𝑥) +
(−𝑥) 1

𝑚

D𝑐1
(𝑥) − 1

𝑚

(11)

≤ (−𝑥) +
(−𝑥) 1

𝑚

D𝑐2
(𝑥) − 1

𝑚

=
(−𝑥)D𝑐2

(𝑥)
D𝑐2

(𝑥) − 1

𝑚

. (12)

And this implies 𝑡 (𝑐1) ≤ 𝑡 (𝑐2),∀0 < 𝑐1 ≤ 𝑐2 ≤ 𝑐 , thereby confirm-

ing the monotone property of 𝑡 (𝑐). □

Theorem 5. For 𝑐 ∈ (0, 𝑐), 𝑇 (𝑐) is an interval, given by

𝑇 (𝑐) = [𝑡∗ (𝑐), 𝑡 (𝑐)],

where 𝑡∗ (𝑐) = sup𝑥>0

𝑥D𝑐 (𝑥 )
1

𝑚
−D𝑐 (𝑥 )

is the same as in Theorem 4, and

𝑡 (𝑐) = sup𝑥<0

(−𝑥 ) ˜D𝑐 (𝑥 )
˜D𝑐 (𝑥 )− 1

𝑚

, where ˜D𝑐 (𝑥) is defined for 𝑥 < 0:

˜D𝑐 (𝑥 ) =
1

𝑚
D𝑐 (𝑥 ) +

(
1 − 1

𝑚

)
×(

1 − 𝐹 (𝜃0 (𝑐 ) + 𝑥 ) +
∫ 𝜃0 (𝑐 )−𝑥

𝑉

(1 − 𝐹 (𝑣 + 𝑥 ) ) d𝐹𝑚−1 (𝑣)
)
.

If 𝑡∗ (𝑐) > 𝑡 (𝑐), 𝑇 (𝑐) = ∅.

Proof. We investigate the robustness of the Threshold-𝑡 mecha-

nism in sustaining an equilibrium. Assume that symmetric equilib-

rium (𝑡, 𝑡, . . . , 𝑡) holds, where 𝑡 is the threshold below which a seller

would be allocated the Buy Box uniformly at random. Consider

seller 1 who deviates from equilibrium price 𝑡 to 𝑝′
1
= 𝑡 + 𝑥 . When

𝑥 > 0, the buyer will find seller 1’s offer least attractive and only

inspected him at last if all other sellers are not satisfying enough

(exactly similar to the case in Dictator’s mechanism)

𝐷Threshold

1
(𝑝′

1
, 𝑡) = D𝑐 (𝑝′1 − 𝑡) .

When seller 1 deviates to a lower price, i.e. 𝑥 < 0, he gets the Buy

Box with probability 1/𝑚. For the rest 1 − 1/𝑚, he is not in the Buy

Box, conditional on which his demand corresponds to the case as if

he is in Dictator mechanism. We can derive seller 1’s demand as

follows:

𝐷Threshold

1
(𝑝′

1
, 𝑡) = 1

𝑚
𝐷𝐵𝐵 (𝑝′1, 𝑡) + (1 − 1

𝑚
)D𝑐 (𝑥)
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where, 𝐷𝐵𝐵 (𝑝′1, 𝑡) is seller 1’s demand when he is placed in the Buy

Box:

𝐷𝐵𝐵 (𝑝′1, 𝑡 ) = 𝑃 [buyer buys seller 1 without inspecting others]
+ 𝑃 [buyer inspect all sellers and buys 1]

= 𝑃 [𝑣1 − 𝑝′
1
+ 𝑡 ≥ 𝜃 ]

+ 𝑃 [𝑣1 − 𝑝′
1
+ 𝑡 ≥ 𝜃 and 𝑣1 − 𝑝′

1
≥ max

𝑖=2,...,𝑚
𝑣𝑖 − 𝑡 ]

= 𝑃 [𝑣1 − 𝑥 ≥ 𝜃 ] + 𝑃 [𝑣1 − 𝑥 ≥ 𝜃 and 𝑣1 − 𝑥 ≥ max

𝑖=2,...,𝑚
𝑣𝑖 ]

= 1 − 𝐹 (𝜃 + 𝑥 ) +
∫ 𝜃+𝑥

𝑉

(1 − 𝐹 (𝑣 + 𝑥 ) ) d𝐹𝑚−1 (𝑣) .

Notice that, the demand of the deviated seller can again be delin-

eatedw.r.t. the price differential𝑥 . Denote ˜D𝑐 (𝑥) := 𝐷Threshold

1
(𝑝, 𝑡)

as the demand of seller 1. Specifically, for 𝑥 = 0, let
˜D𝑐 (𝑥) = 1

𝑚 𝑡 so

that it’s left-continuous. And
˜D𝑐 (𝑥) can be summarized as:

˜D𝑐 (𝑥 ) =



1

𝑚
D𝑐 (𝑥 ) + (1 − 1

𝑚
)×(

1 − 𝐹 (𝜃0 (𝑐 ) + 𝑥 ) +
∫ 𝜃0 (𝑐 )−𝑥
𝑉

(1 − 𝐹 (𝑣 + 𝑥 ) ) d𝐹𝑚−1 (𝑣)
)

for 𝑥 < 0

D𝑐 (𝑥 ) =
∫ 𝜃−𝑉
𝑉

(1 − 𝐹 (𝑣 + 𝑥 ) ) d𝐹𝑚−1 (𝑣)
for 𝑥 > 0.

Threshold-𝑡 mechanism can sustain a symmetric equilibrium

(𝑡, 𝑡, . . . , 𝑡) if and only if 𝑡 ∈ 𝑇 (𝑐), for 𝑇 (𝑐) being articulated as:

𝑇 (𝑐) :=

{
𝑡 : (𝑥 + 𝑡) ˜D𝑐 (𝑥) ≤

1

𝑚
𝑡,∀𝑥 ∈ [max(−1,−𝑡), 1]

}
.

Following the methodological approach in the proof of Theorem

4, 𝑇 (𝑐), for 𝑡 ∈ ˜(𝑐) should satisfies the following criteria simultane-

ously:

𝑡 ≤ inf

𝑥<0

(−𝑥) ˜D𝑐 (𝑥)
˜D𝑐 (𝑥) − 1

𝑚

,

𝑡 ≥ sup

𝑥>0

𝑥 ˜D𝑐 (𝑥)
1

𝑚 − ˜D𝑐 (𝑥)
.

The set 𝑇 (𝑐) is nonempty, indicating the existence of a symmetric

equilibrium (𝑡, . . . , 𝑡), if and only if:

sup

𝑥>0

𝑥 ˜D𝑐 (𝑥)
1

𝑚 − ˜D𝑐 (𝑥)
≤ inf

𝑥<0

(−𝑥) ˜D𝑐 (𝑥)
˜D𝑐 (𝑥) − 1

𝑚

.

Let 𝑡 (𝑐) := inf𝑥<0

(−𝑥 ) ˜D𝑐 (𝑥 )
˜D𝑐 (𝑥 )− 1

𝑚

, 𝑡∗ (𝑐) := sup𝑥>0

𝑥 ˜D𝑐 (𝑥 )
1

𝑚
− ˜D𝑐 (𝑥 )

. For the

Threshold-𝑡 mechanism with inspection cost 𝑐 , 𝑡 can sustain an

equilibrium if and only if 𝑡∗ (𝑐) ≤ 𝑡 (𝑐). If so, the implementable

region of 𝑡 for Threshold mechanism is given by the following

interval

[𝑡∗ (𝑐), 𝑡 (𝑐)] .
□

Proposition 7. There is an instance where the Threshold-𝑡 mecha-
nisms do not encompass all symmetric equilibria.

Proof. We examin a specific instance of two i.i.d. sellers, where

their valuations are distributed according to the cumulative dis-

tribution function 𝐹 (𝑣) = 1

𝑒−1
(𝑒𝑣−2 − 1), supported on [2, 3]. By

Theorem 3, it suffices to look at Dictator’s mechanism for all sym-

metric equilibrium supported by the class of standard mechanism.

Therefore, for Dictator’s mechanism and Threshold mechanism,

the implementable price regions under symmetric equilibrium is

given by Theorem 5 and Theorem 4:

Dictator 𝑇 (𝑐) = [𝑡∗ (𝑐), 𝑡 (𝑐)]
Threshold 𝑇 (𝑐) = [𝑡∗ (𝑐), 𝑡 (𝑐)]

Wevary inspection cost 𝑐 to investigate the change of implementable

regions, as shown in Figure 3. It can be observed that, the upper

bound 𝑡 (𝑐) of Threshold mechanism is lower than that of Dictator’s

mechanism. This implies, Threshold mechanism cannot sustain any

symmetric equilibrium price above that line, yet Dictator’s mecha-

nism goes far beyond that bound and can sustain even higher prices

in equilibrium. □

C Omitted Proofs from Section 5
Lemma 4. Under standard Buy Box mechanism with inspection

cost 𝑐 ∈ (0, 𝑐), at any symmetric equilibrium, for𝑚 = 2 sellers,

SW(𝑐) =
∫ 𝜃0 (𝑐 )

𝑉

𝐹 (𝑠) (1 − 𝐹 (𝑠)) d𝑠 + E[𝑣] . (2)

Proof. We first solve in closed form for social welfare, and

demonstrate how it might be interpreted as the simplified represen-

tation stated in the theorem.

Before we start we simplify some notations. Because every 𝑐 ∈
[0, 𝑐] corresponds to a unique index value 𝜃0 ∈ [𝑉 ,𝑉 + 1], we
replace 𝑐 and 𝜃0 (𝑐) with shortened expression 𝜃 when there is no

confusion. Also, in some expressions, replace inspection cost 𝑐 ,

𝜃0 (𝑐) with corresponding index 𝜃 . For example, social welfare at a

specific inspection cost level (SW(𝑐)) as SW(𝜃 ). For two i.i.d. sellers,
the match value 𝜈𝑐 (or, denoted as 𝜈𝜃 , equals

𝜈𝜃 = 𝑃 [𝑣2 ≥ 𝜃 ]𝐸 [𝑣2 |𝑣2 ≥ 𝜃 ] + 𝑃 [𝑣2 < 𝜃 ]𝐸 [max(𝑣1, 𝑣2) |𝑣2 < 𝜃 ] .
Social welfare can be expressed as (WLOG assumes seller 2 is in-

spected first),

𝑆𝑊 (𝜃 ) = −𝑃 [𝑣2 ≤ 𝜃 ]𝑐 +𝑢𝜃
= −𝑃 [𝑣2 ≤ 𝜃 ]𝑐
+ 𝑃 [𝑣2 ≥ 𝜃 ]𝐸 [𝑣2 |𝑣2 ≥ 𝜃 ]
+ 𝑃 [𝑣2 < 𝜃 ]𝐸 [max(𝑣1, 𝑣2 ) |𝑣2 < 𝜃 ]

= −𝑐𝐹 (𝜃 )

+
∫ 𝑉 +1

𝜃

𝑣2d𝐹𝑣2

+
∫ 𝜃

𝑉

(
∫ 𝜃

𝑉

max(𝑣1, 𝑣2 ) d𝐹𝑣1 +
∫ 𝑉 +1

𝜃

𝑣1d𝐹𝑣1 )d𝐹𝑣2

= −𝑐𝐹 (𝜃 )

+ (
∫ 𝑉 +1

𝜃

𝑣 d𝐹𝑣) (1 + 𝐹 (𝜃 ) )

+
∫ 𝜃

𝑉

(
∫ 𝑣2

𝑉

𝑣2 d𝐹 (𝑣1 ) +
∫ 𝜃

𝑣2

𝑣1 d𝐹 (𝑣1 ) ) d𝐹 (𝑣2 )

= −𝑐𝐹 (𝜃 )

+ (
∫ 𝑉 +1

𝜃

𝑣 d𝐹𝑣) (1 + 𝐹 (𝜃 ) )

+
∫ 𝜃

𝑉

𝑣2𝐹 (𝑣2 ) d𝐹 (𝑣2 ) +
∫ 𝜃

𝑉

∫ 𝜃

𝑣2

𝑣1 d𝐹 (𝑣1 )d𝐹 (𝑣2 )
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Whereas the last component above

∫ 𝜃

𝑉

∫ 𝜃

𝑣2

𝑣1 d𝐹 (𝑣1) d𝐹 (𝑣2) =∫ 𝜃

𝑉

∫ 𝑣1

𝑉
𝑣1 d𝐹 (𝑣2)d𝐹 (𝑣1) =

∫ 𝜃

𝑉
𝑣1𝐹 (𝑣1) d𝐹 (𝑣1). And also notice that

𝑐 = E[𝑣 − 𝜃 ]+ =
∫ 𝑉+1

𝜃
(𝑣 − 𝜃 ) d𝐹 (𝑣) =

∫ 𝑉+1

𝜃
𝑣 d𝐹 (𝑣) − 𝜃 (1 − 𝐹 (𝜃 )).

Putting together

SW(𝜃 ) = −𝑐𝐹 (𝜃 )

+ (
∫ 𝑉+1

𝜃

𝑣 d𝐹𝑣) (1 + 𝐹 (𝜃 ))

+
∫ 𝜃

𝑉

𝑣2𝐹 (𝑣2) d𝐹 (𝑣2) +
∫ 𝜃

𝑉

𝑣1𝐹 (𝑣1) d𝐹 (𝑣1)

= −𝑐𝐹 (𝜃 ) + (
∫ 𝑉+1

𝜃

𝑣 d𝐹𝑣) (1 + 𝐹 (𝜃 )) + 2

∫ 𝜃

𝑉

𝑣𝐹 (𝑣) d𝐹 (𝑣)

=

∫ 𝑉+1

𝜃

𝑣 d𝐹 (𝑣) + 𝜃𝐹 (𝜃 ) (1 − 𝐹 (𝜃 )) + 2

∫ 𝜃

𝑉

𝑣𝐹 (𝑣) d𝐹 (𝑣)

And

𝜕𝜃 SW(𝜃 ) = −𝜃 𝑓 (𝜃 ) + 𝐹 (𝜃 ) (1 − 𝐹 (𝜃 ))
+ 𝜃 𝑓 (𝜃 ) (1 − 𝐹 (𝜃 )) − 𝜃𝐹 (𝜃 ) 𝑓 (𝜃 ) + 2𝜃𝐹 (𝜃 ) 𝑓 (𝜃 )

= 𝐹 (𝜃 ) (1 − 𝐹 (𝜃 )) ≥ 0

When 𝜃 = 𝑉 , SW(𝜃 ) = E[𝑣]. So that social welfare can be written

in the following simplified form

SW(𝜃 ) = E[𝑣] +
∫ 𝜃

𝑉

𝐹 (𝑠) (1 − 𝐹 (𝑠)) . 𝑑𝑠

□

Theorem 7. For two sellers, a sufficient condition for the consumer
surplus to be optimized at an intermediate level of inspection cost is
𝑓 (𝑉 +) < 1

13
𝑓 ′ (𝑉 +).

Proof. When the inspection cost takes its upper bound 𝑐 =

E[𝑣] −𝑉 , at which buyers simply ignore all sellers outside the Buy

Box at any symmetric equilibrium, the equilibrium price can be

arbitrarily close to 0 (Proposition 4). In this case, social welfare

coincide with the consumer surplus (Proposition 4, Lemma 4):

SW(𝑐) = CS(𝑐) = E[𝑣] .
By Lemma 4, when the inspection cost 𝑐 drops in the range (0, 𝑐),

social welfare rises to

SW(𝑐) =
∫ 𝜃0 (𝑐 )

𝑉

𝐹 (𝑣) (1 − 𝐹 (𝑣)) d𝑣 + SW(𝑐)

But the lowest equilibrium price 𝑡∗ (𝑐) rises as well (Proposition 4).

Starting at 𝑐 , we wish to decrease inspection cost to increase con-

sumer surplus using the Buy Box mechanism. Lowering inspection

cost increases social welfare, meanwhile we would wish the rise

in (implementable) equilibrium price lowerbound does not offset

the rise in social welfare. Put together the two forces, consumer

surplus would be better off if, for inspection cost 𝑐 that is slightly

around the left-neighbourhood of 𝑐:

SW(𝑐) − SW(𝑐) > 𝑡∗ (𝑐) − 0 (13)

⇔ (14)∫ 𝜃

𝑉

𝐹 (𝑣) (1 − 𝐹 (𝑣)) d𝑣 > sup

𝑥∈ (0,𝜃−𝑉 )

𝑥D𝑐 (𝑥)
1

2
− D𝑐 (𝑥)

(15)

With a slight abuse of notation, define D : [𝑉 ,𝑉 + 1] × R → R as:

D(𝜃, 𝑥) :=

∫ 𝜃0 (𝑐 )−𝑥

𝑉

(1 − 𝐹 (𝑣 + 𝑥)) d𝐹 (𝑣) ≡ D𝑐 (𝑥).

Then, the condition for consumer surplus being better off (15) can

be expressed in the following equivalent form:

∃𝜃 ∈ (𝑉 ,𝑉 + 1), ∃𝑥 ∈ (0, 𝜃 −𝑉 ) such that: (16)

𝑥D(𝜃, 𝑥) + 𝜑 (𝜃 )D(𝜃, 𝑥) − 1

2

𝜑 (𝜃 ) < 0, (17)

where, 𝜑 (𝜃 ) :=
∫ 𝜃

𝑉
𝐹 (𝑣) (1 − 𝐹 (𝑣)) d𝑣 . To find 𝜃, 𝑥 such that (17)

holds, define 𝜇 : R2 → R as

𝜇 (𝜃, 𝑥) :=


𝑥D(𝜃, 𝑥) + 𝜑 (𝜃 )D(𝜃, 𝑥) − 1

2
𝜑 (𝜃 ),

for 𝜃 ∈ (𝑉 ,𝑉 + 1), 𝑥 ∈ (0, 𝜃 −𝑉 );
0,

otherwise.

(18)

Notice that lim𝑥→0 𝜇 (𝜃, 𝑥) = lim𝑥→𝜃−𝑉 𝜇 (𝜃, 𝑥) = 0. Let

𝑥∗ (𝜃 ) :=

{
arg min𝑥 𝜇 (𝜃, 𝑥) 𝜃 ∈ (𝑉 ,𝑉 + 1)
0 otherwise.

𝑥∗ (𝜃 ) is thus awell defined continuous functionwith lim𝜃→𝑉 𝑥∗ (𝜃 ) =
0. Let 𝑔(𝜃 ) := 𝜇 (𝜃, 𝑥∗ (𝜃 )). Then, 𝑔(𝑉 ) = 0. Study the derivative of

𝑔(·) when 𝜃 → 0
+
. By envelope’s theorem

𝑔′ (𝜃 ) = 𝜕𝜇

𝜕𝜃
(𝜃, 𝑥∗ (𝜃 ))

= (𝑥∗ (𝜃 ) + 𝜑 (𝜃 )) 𝜕D
𝜕𝜃

(𝜃, 𝑥∗ (𝜃 )) + 𝜑 ′ (𝜃 ) (D(𝜃, 𝑥∗ (𝜃 )) − 1

2

),

and

𝜕D
𝜕𝜃

(𝜃, 𝑥) = 𝜕

𝜕𝜃

∫ 𝜃−𝑥

𝑉

(1 − 𝐹 (𝑣 + 𝑥)) d𝐹 (𝑣),

= (1 − 𝐹 (𝜃 )) 𝑓 (𝜃 − 𝑥)
𝜑 ′ (𝜃 ) = 𝐹 (𝜃 ) (1 − 𝐹 (𝜃 )),

which jointly implies

𝑔′ (𝜃 ) = (1 − 𝐹 (𝜃 )) 𝑓 (𝜃 − 𝑥∗ (𝜃 )) (𝑥∗ (𝜃 ) + 𝜑 (𝜃 ))

+ 𝐹 (𝜃 ) (1 − 𝐹 (𝜃 )) (D(𝜃, 𝑥∗ (𝜃 )) − 1

2

)

= (1 − 𝐹 (𝜃 ))
(
𝑓 (𝜃 − 𝑥∗ (𝜃 )) (𝑥∗ (𝜃 ) + 𝜑 (𝜃 ))

)
+ (1 − 𝐹 (𝜃 ))

(
𝐹 (𝜃 ) (D(𝜃, 𝑥∗ (𝜃 )) − 1

2

)
)
.

Since 𝜑 (𝑉 ) = 0, 𝑥∗ (𝑉 ) = 0:

lim

𝜃→𝑉 +
𝑔′ (𝜃 ) = 0.

Unfortunately, this implies that we need to study higher order

derivatives of 𝑔 and how they behave around 𝜃 → 𝑉 +
. For conve-

nience, in the subsequent analysis, for any general function 𝑓 (·), de-
note lim𝑥→𝑉 + 𝑓 (𝑥) as 𝑓 (𝑉 +). We first solve 𝑥∗′ (𝑉 +) and 𝑥∗′′ (𝑉 +):

Taking a step back: for general 𝜌 : [𝑉 ,𝑉 + 1] → R, define
D𝜌 (𝜃 ) := D(𝜃, 𝜌 (𝜃 )), so that:

D𝜌 (𝜃 ) =
∫ 𝜃−𝜌 (𝜃 )

𝑉

(1 − 𝐹 (𝑣 + 𝜌 (𝜃 ))) d𝐹 (𝑣)
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and its first-order derivative:

D′
𝜌 (𝜃 ) = (1 − 𝜌′ (𝜃 )) (1 − 𝐹 (𝜃 )) 𝑓 (𝜃 − 𝜌 (𝜃 ))

− 𝜌′ (𝜃 )
(∫ 𝜃−𝜌 (𝜃 )

𝑉

𝑓 (𝑣) 𝑓 (𝑣 + 𝜌 (𝜃 )) d𝑣

)
,

and, second-order derivative:

D′′
𝜌 (𝜃 ) = (1 − 𝐹 (𝜃 )) 𝑓 ′ (𝜃 − 𝜌 (𝜃 )) (1 − 𝜌′ (𝜃 ))2

+ (1 − 𝐹 (𝜃 )) 𝑓 (𝜃 − 𝜌 (𝜃 )) (−𝜌′′ (𝜃 ))

− 𝜌′′ (𝜃 )
∫ 𝜃−𝜌 (𝜃 )

𝑉

𝑓 (𝑣) 𝑓 (𝑣 + 𝜌 (𝜃 )) d𝑣

− 𝜌′ (𝜃 )
[
(1 − 𝜌′ (𝜃 )) 𝑓 (𝜃 − 𝜌 (𝜃 )) 𝑓 (𝜃 )

+
∫ 𝜃−𝜌 (𝜃 )

𝑉

𝑓 (𝑣) 𝑓 ′ (𝑣 + 𝜌 (𝜃 ))𝜌′ (𝜃 ) d𝑣

]
.

Plug in 𝜌 = 𝑥∗, 𝜃 → 𝑉 +
:

D′
𝑥∗ (𝑉 +) = (1 − 𝑥∗′ (𝑉 +)) 𝑓 (𝑉 +) (19)

D′′
𝑥∗ (𝑉 +) = 𝑓 ′ (𝑉 +) (1 − 𝑥∗′ (𝑉 +))2 − 𝑓 (𝑉 +) (𝑥∗′′ (𝑉 +)) (20)

− 𝑥∗′ (𝑉 +) (1 − 𝑥∗′ (𝑉 +)) 𝑓 2 (𝑉 +) (21)

Recall, 𝑥∗ (·) is defined as the 𝑥∗ that achives inf𝑥 𝜇 (𝜃, 𝑥). Since
𝜇 (𝜃, 𝑥) = 0 for 𝑥 ∉ (0, 𝜃 −𝑉 ), fix 𝜃 , 𝜇 (𝜃, 𝑥)’s minimum is attained

at some interior 𝑥 ∈ (0, 𝜃 −𝑉 ), thus for 𝑥∗ (𝜃 ) = arg min𝑥 𝜇 (𝜃, 𝑥):

𝜕𝜇

𝜕𝑥
(𝜃, 𝑥∗ (𝜃 )) = 𝜕D

𝜕𝑥
(𝜃, 𝑥∗ (𝜃 )) (𝑥∗ (𝜃 ) + 𝜑 (𝜃 )) + D(𝜃, 𝑥∗ (𝜃 )) ≡ 0

(22)

Define ℎ(𝜃 ) := 𝜕D
𝜕𝑥 (𝜃, 𝑥∗ (𝜃 )), there is

ℎ(𝜃 ) = −(1 − 𝐹 (𝜃 )) 𝑓 (𝜃 − 𝑥∗ (𝜃 ))

−
∫ 𝜃−𝑥∗ (𝜃 )

𝑉

𝑓 (𝑣) 𝑓 (𝑣 + 𝑥∗ (𝜃 )) d𝑣

ℎ′ (𝜃 ) = 𝑓 (𝜃 ) 𝑓 (𝜃 − 𝑥∗ (𝜃 ))
− (1 − 𝐹 (𝜃 )) 𝑓 ′ (𝜃 − 𝑥∗ (𝜃 )) (1 − 𝑥∗′ (𝜃 ))

−
[
(1 − 𝑥∗′ (𝜃 )) 𝑓 (𝜃 − 𝑥∗ (𝜃 )) 𝑓 (𝜃 )

+
∫ 𝜃−𝑥∗ (𝜃 )

𝑉

𝑓 (𝑣) 𝑓 ′ (𝜃 − 𝑥∗ (𝜃 ))𝑥∗′ (𝜃 ) d𝑣

]
.

Notice that ℎ(𝑉 +) = −𝑓 (𝑉 +), ℎ′ (𝑉 +) = 1

2
𝑓 2 (𝑉 +) − 1

2
𝑓 ′ (𝑉 +). On

the basis of notationℎ(·) the preceding condition (22) of 𝜕𝜇
𝜕𝑥 (𝜃, 𝑥

∗ (𝜃 )) ≡
0 is equivalent to

ℎ(𝜃 ) (𝑥∗ (𝜃 ) + 𝜑 (𝜃 )) + D(𝜃, 𝑥∗ (𝜃 )) ≡ 0,∀𝜃 ∈ (𝑉 ,𝑉 + 1) . (23)

Essentially, taking double derivative of (23) w.r.t. 𝜃 on both side

yields

(once) ℎ′ (𝜃 ) (𝑥∗ (𝜃 ) + 𝜑 (𝜃 )) (24)

+ ℎ(𝜃 ) (𝑥∗′ (𝜃 ) + 𝜑 ′ (𝜃 )) + D′
𝑥∗ (𝜃 ) = 0 (25)

(twice) 2ℎ′ (𝜃 ) (𝑥∗′ (𝜃 ) + 𝜑 ′ (𝜃 )) (26)

+ ℎ′′ (𝜃 ) (𝑥∗ (𝜃 ) + 𝜑 (𝜃 )) (27)

+ ℎ(𝜃 ) (𝑥∗′′ (𝜃 ) + 𝜑 ′′ (𝜃 )) + D′′
𝑥∗ (𝜃 ) = 0. (28)

And 𝜑 ′ (𝜃 ) = 𝐹 (𝜃 ) (1 − 𝐹 (𝜃 )), 𝜑 ′′ (𝜃 ) = 𝑓 (𝜃 ) − 2𝐹 (𝜃 ) 𝑓 (𝜃 ). So, (24),
adding (19) simplifies to

−𝑓 (𝑉 +)𝑥∗′ (𝑉 +) + (1 − 𝑥∗′ (𝑉 +)) 𝑓 (𝑉 +) = 0 ⇒ 𝑥∗′ (𝑉 +) = 1

2

Notice that 𝑥∗ (𝑉 +) + 𝜑 (𝑉 +) = 0, so that we need not further calcu-

late ℎ′′ (𝑉 +). Integrating 𝑥∗′ (𝑉 +) = 1

2
into 20 we obtain

D′′
𝑥∗ (𝑉 +) = 1

4

𝑓 ′ (𝑉 +) − 𝑓 (𝑉 +)𝑥∗′′ (𝑉 +) − 1

4

𝑓 2 (𝑉 +)

plug in 24 solves

𝑥∗′′ (𝑉 +) = − 𝑓 ′ (𝑉 +) + 3𝑓 2 (𝑉 +)
8𝑓 (𝑉 +)

Back to the function 𝑔. 𝑔(𝑉 +) = 0 = 𝑔′ (𝑉 +) = 0. To study its

higher-order derivatives, take 𝑔′ (𝜃 ) = (1 − 𝐹 (𝜃 ))𝛾 (𝜃 ), we’d have

𝛾 (𝜃 ) := 𝑓 (𝜃 − 𝑥∗ (𝜃 )) (𝑥∗ (𝜃 ) + 𝜑 (𝜃 )) + 𝐹 (𝜃 ) (D(𝜃, 𝑥∗ (𝜃 )) − 1

2

)

𝛾 ′ (𝜃 ) = (1 − 𝑥∗′ (𝜃 )) 𝑓 ′ (𝜃 − 𝑥∗ (𝜃 )) (𝑥∗ (𝜃 ) + 𝜑 (𝜃 ))
+ 𝑓 (𝜃 − 𝑥∗ (𝜃 )) (𝑥∗′ (𝜃 ) + 𝜑 ′ (𝜃 ))

+ 𝑓 (𝜃 ) (D𝑥∗ (𝜃 ) − 1

2

) + 𝐹 (𝜃 )D′
𝑥∗ (𝜃 )

𝛾 ′′ (𝜃 ) = (𝑥∗ (𝜃 ) + 𝜑 (𝜃 )) 𝑓 ′′ (𝜃 − 𝑥∗ (𝜃 ))
+ 2𝑓 ′ (𝜃 − 𝑥∗ (𝜃 )) (1 − 𝑥∗′ (𝜃 )) (𝑥∗′ (𝜃 ) + 𝜑 ′ (𝜃 ))

+ 𝑓 (𝜃 − 𝑥∗ (𝜃 )) (𝑥∗′′ (𝜃 ) + 𝜑 ′′ (𝜃 )) + 𝑓 ′ (𝜃 ) (D𝑥∗ (𝜃 ) − 1

2

)

+ 2𝑓 (𝜃 )D′
𝑥∗ (𝜃 ) + 𝐹 (𝜃 )D′′

𝑥∗ (𝜃 )
Interestingly, 𝛾 ′ (𝑉 +) = 0. But

𝛾 ′′ (𝑉 +) = 1

2

𝑓 ′ (𝑉 +) + 𝑓 (𝑉 +) (𝑥∗′′ (𝑉 +) + 𝑓 (𝑉 +)) − 1

2

𝑓 ′ (𝑉 +)

= 𝑓 (𝑉 +)
(
𝑥∗′′ (𝑉 +) + 2𝑓 (𝑉 +)

)
=

1

8

(
13𝑓 2 (𝑉 +) − 𝑓 ′ (𝑉 +)

)
Therefore, when 𝑓 2 (𝑉 +) < 𝑓 ′ (𝑉 +),∃𝜃★ ∈ 𝑁 + (𝑉 ) such that𝑔(𝜃★) <
0, corresponding to 𝜇 (𝜃★, 𝑥∗ (𝜃★) < 0 — that starting from its upper

bound 𝑐 , decrease in inspection cost (at least, with a small amount)

will benefit consumer surplus. □
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