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L ANe : Lighting-Aware Neural Fields for Compositional Scene Synthesis
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Figure 1: We present Lighting-Aware Neural Fields (LANe) for compositional scene synthesis. With the disentanglement of
a class-specific object model (Column 1) and the learned world model (Column 2), LANe can arbitrarily compose objects
into different scenes (Column 3 and 4). Our novel light field modulated object model can be composed into scenes in a
lighting-aware manner. The figure above shows the same world model used as background scenes on each row, and object
models composed into them in arbitrary poses under different lighting conditions. Note that the composed objects are shaded
appropriately based on the local lighting condition at the placed location, which shows LANe’s spatially varying lighting-

aware compositional synthesis capabilities.
Abstract

Neural fields have recently enjoyed great success in rep-
resenting and rendering 3D scenes. However, most state-
of-the-art implicit representations model static or dynamic
scenes as a whole, with minor variations. Existing work
on learning disentangled world and object neural fields do
not consider the problem of composing objects into different
world neural fields in a lighting-aware manner. We present
Lighting-Aware Neural Field (LANe) for the compositional
synthesis of driving scenes in a physically consistent man-
ner. Specifically, we learn a scene representation that disen-
tangles the static background and transient elements into a
world-NeRF and class-specific object-NeRFs to allow com-
positional synthesis of multiple objects in the scene. Fur-

*equal contribution

thermore, we explicitly designed both the world and ob-
Jject models to handle lighting variation, which allows us to
compose objects into scenes with spatially varying lighting.
This is achieved by constructing a light field of the scene
and using it in conjunction with a learned shader to mod-
ulate the appearance of the object NeRFs. We demonstrate
the performance of our model on a synthetic dataset of di-
verse lighting conditions rendered with the CARLA simula-
tor, as well as a novel real-world dataset of cars collected at
different times of the day. Our approach shows that it out-
performs state-of-the-art compositional scene synthesis on
the challenging dataset setup, via composing object-NeRFs
learned from one scene into an entirely different scene
whilst still respecting the lighting variations in the novel
scene. For more results, please visit our project website
https://lane-composition.github.io/.


https://lane-composition.github.io/

1. Introduction

Controllable synthesis of a wide variety of road scenes is
of particular interest for training and validating autonomous
driving perception systems. Specifically, tasks such as re-
simulation and synthesis of rare scenarios require control of
a wide variety of 3D scene properties. Precise and control-
lable 3D scene generation has been a long-standing chal-
lenge in computer vision. While there has been significant
progress in developing traditional photo-realistic rendering
engines [8], they still suffer from the synthetic to real do-
main gap. Furthermore, significant effort is expended to au-
thor photo-realistic 3D assets. This often requires consider-
able artistic skill and expertise, not to mention cost. In con-
trast, existing model-based simulators [5, 9] provide con-
trollable synthesis of scenes and images without the need
for digital artists. However, they still suffer from a distribu-
tion shift with respect to real world images.

Neural Radiance Fields (NeRFs), a state-of-the-art neu-
ral rendering technique, offer a promising solution to this
problem. NeRFs have been leveraged for learning 3D
scene representations for both simple synthetic scenes as
well as complex, in-the-wild, multi-view image datasets
[21, 41, 26, 35, 43, 10]. However, most NeRF research ad-
dresses the problem of modelling a 3D scene as a whole,
which does not allow for composition.

As shown in Fig. 1, we investigate the task of inserting
cars into driving scenes, where both the scene and the car
are represented by 3D neural representations learned from
2D image sequences. Our scene and object representations
are lighting aware. This allows us to insert objects in novel
poses and novel scenes, while modulating their appearance
to be locally consistent with the lighting of the scene.

Our work builds upon recent works that have also ad-
dressed the problem of compositional scene modeling with
NeRFs by separating scene and object models. Neural
Scene Graphs[22] learned a scene graph to model the driv-
ing scene, with world and object models represented by im-
plicit representations, but were limited to the same source
lighting conditions. Panoptic neural fields[16] includes rep-
resentations like semantic and instance segmentation allow-
ing for more fine grained addition and removal of objects
in the scene. Several other works such as [37, 38], repre-
senting dynamic scenes present frameworks to separate the
static and dynamic components. Most of these frameworks
ground the dynamic component either to a time variable or
to a learnt latent variable. This assumption restricts the vari-
ation in object compositions that can be performed with re-
spect to scene. However, in all such previous works, the
composition is not lighting-aware (i.e the object’s appear-
ance is inconsistent with the scene’s lighting conditions).

The limitations of prior work [22, 16, 37, 38] fail to
produce realistic results by lacking lighting-aware compos-
ability. We directly address these shortcomings with our

novel approach for scene modeling and object insertion in
a lighting-aware manner, without explicitly modelling the
materials of the objects and the scenes. To summarize, the
contributions of our work are as follows,

1. We present a 3D neural scene representation that repre-
sents the scene with a world-NeRF for the background
and class-specific object-NeRFs for the dynamic ele-
ments, both of which are lighting dependent.

2. We propose a novel approach to modulate the color
of the rendered objects in unseen poses and scenes,
by augmenting the scene with a spatially varying light
field and the object with a lighting-dependent shader.

2. Related Works
2.1. 2D methods

2D approaches address the problem of compositional
synthesis by alpha compositing different elements of the
scene in a layered manner. Omnimatte[|9] separates static
and dynamic elements of a video and associates correlated
dynamic effects to the corresponding element. Layered
neural rendering separates out the scene and dynamic ele-
ments. Alhaija et al.[1] uses digital assets rendered onto a
scene followed by a network to harmonize the inserted ob-
ject using an adversarial loss. Whilst all these approaches
demonstrate the state-of-the-art performance on scene syn-
thesis and composition, they lack 3D scene understanding
and the level of controllability of scene manipulation. With
3D geometry and lighting awareness, our approach models
both the dynamic and static elements of the scene as im-
plicit representations, allowing for controllable composition
of elements into arbitrary locations.

2.2. Explicit 3D methods

Several approaches [25, 45, 11] have since used explicit
3D models for compositional scene synthesis. Specifically,
Raj et al.[25] use a mesh proxy to represent the dynamic
human avatar and compose it into arbitrary scene using de-
ferred neural rendering. Neural light field for object com-
position demonstrate it with explicit mesh while estimat-
ing lighting of real scenes. From a single 2D image, SIM-
BAR [45] models the scene as a 3D mesh to explicitly rep-
resent scene geometry, followed with shadow refinement
network to produce realistic shadows. Granskog et al [11]
propose a technique to compose neural scene representation
for shading inference, which explicitly distentangles light-
ing, material, and geometric information using illumination
buffers. These discussed explicit 3D methods lack object-
aware composition capability with the scene.

2.3. Implicit 3D methods

Several recent methods study the problem of compos-
ing scene elements with implicit representation[2 1, 31, 41,



, 39, 24], which have gained a great success in model-
ing scenes. Particularly, ObjectNeRF [37] consists of an
object model that is used to represents parts of the scene
other than the background, and a scene model that is re-
sponsible for recomposing the decomposed objects to the
scene. Neural Scene Graphs (NSG) [22] models driving
scenes with a world model and object models of learned
scene graph representation, which encodes object transfor-
mation and radiance. Panoptic Neural Fields [15] extends
NSG to predicts panoptic-radiance field that encodes color,
density and semantic segmentation labels of the objects in
the scene. However, most of the models do not model effect
of lighting changes on the scene or objects.

2.4. Lighting-aware representations

Several approaches [3, R , 4] have worked on
lighting-aware manipulation for single objects or scenes.
Particularly, NeRF-OSR[28] leveraged scene geometry sur-
face property modeling to account for outdoor scenes cap-
tured under varying illumination, but it was restricted
mostly to static building architecture. NeRFactor[44] mod-
eled the lighting effect on objects using a BRDF represented
by an implicit representation. Zhang et al. [42] proposed to
learn object surfaces and use the Phong shading model [23]
to capture lighting variations. However, none of these meth-
ods address the interactions of objects with their surround-
ing world, namely, for NeRD, it assumes light sources are at
infinity and needs observations of the object at a certain lo-
cation to build an environment map, or an environment map
of the scene at the particular pose that needs to be rendered.
Such an approach has the limitation that it is computation-
ally intensive to compute environment maps at each pose.

For compositional synthesis, prior models have not con-
sidered whether incident lighting is dependent on the target
location for composition within the overall world model.
This is an important question is not addressed by work be-
fore LANe. Our work is similar in spirit to OSF[12], which
is also evaluated primarily on synthetic scenes; however, we
note that OSF only primarily works on point light sources in
indoor scenes under known lighting conditions. In contrast,
our method uses lighting information gathered directly from
the scene, and tackles the much harder problem of outdoor
scenes. Furthermore, in contrast to methods that model the
material properties explicitly, our approach learns the light-
ing effect as a multiplicative term on top of the learnt ra-
diance without the need to model accurate BRDF material
properties. Furthermore, our approach eschews the expen-
sive requirements to compute a lighting representation at
each rendered pose, and can interpolate between training
poses.

Generating data using continuous composition with spa-
tially varying lighting in outdoor driving scenes, it allows us
to facilitate the data need of autonomous driving perception

systems. This is the main differentiator between our ap-
proach and the existing methods. LANe is able to compose
dynamic moving objects(vehicles) and continuously chang-
ing outdoor environments in a lighting-aware manner.

3. Approach
3.1. Preliminaries

We base our representations on NeRFs[2 1, 2], which use
MLPs to learn a 3D volumetric model from posed images.
Specifically, given a set of images {I;}¥_; with known
camera locations {o0;}¥_,, we learn a scene representation
N : R™ — R* such that pixel value observed along a par-
ticular direction d is obtained by casting aray r(¢) = o+td
and performing volumetric integration along the ray as fol-
lows:

trar
c= [ rotrt)croye )
tnear

where (¢, o) are the outgoing radiance and density at a
3D point modelled by the NeRF (N), (tnear, tfar) are the
near and far plane boundaries along the ray, and T is the
accumulated transmittance along the ray, given by T'(t) =
exp(— [/ (a(r(s))ds)

In practice, the discrete version of the integration is per-
formed by quadrature approximation during volume render-
ing as given by [20].

3.2. Overview

Following [22, 15], as illustrated in Fig. 2, we decom-
pose the scene into a world-NeRF N,,,,14 (Sec. 3.3) and an
object-NeRF N, (Sec. 3.4) to represent the static and dy-
namic components respectively. Additionally, we train both
our object and world models in a lighting aware manner,
under multiple lighting conditions, to disentangle geometry
and albedo from lighting effects. Particularly, our datasets
comprise a set of images of multiple scenes {I z-(lj ) MK un-
der lighting conditions [; € L.

For world-NeRFs in driving scenes, we assume a sin-
gle light source at infinity and model the lighting effects
on the world as a function of azimuth and elevation angle
(6,¢). As indicated in Fig. 3, the scene model produces
spatially-varying intermediate lighting features f; that are
fed to the object-NeRF to condition the object’s appearance
on spatially-varying lighting cues.

3.3. World-NeRF

The scene is modeled by a lighting agnostic network
Nuworia and lighting aware Neural Light field Might [32].
Particularly,

C,0 = Nworld(x) (2)

cir = Niignt(0,d; f) (3)



Position
information

Lighting

information

World Model

» Geometry

Shaded
color

Global
lighting
features

Coordinates

Global

Sample rays
Learnt appearance code

Frame info

Weather conditioning

Coordinates
Relative

Rotations
lighting

features

ii;

Object Model

Geometry

Shaded
color

Figure 2: Overview of the proposed approach. We model the scene with a seperate world-NeRF, which lighting-aware
by training on the same scene under different lighting conditions. (Sec. 3.3) and a class specific object-NeRF, which use
information from the scene-NeRF to train the object NeRF. Nobj (Sec. 3.4)
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Figure 3: LANe can synthesize scenes with object models that respect spatially varying lighting. This figure shows the object
model moving through the scene with spatially varying lighting, we observe that the object gets brighter as it enters a region
of light from a region of shadow.



where x is a sample along the ray, o and d are ray origins
and directions, and f is a latent feature that parameterizes
the scene lighting. This could either be learned or set from
physical lighting parameters (sun azimuth and elevation).

Since Ny,r1q4 only takes the spatial position as input but
is trained across different lighting conditions, it essentially
learns an average color across all lighting variations. The
final color of the world scene given by a multiplicative ef-
fect of the lighting agnostic scene geometry and the lighting
aware scene model. Particularly, we use f, the light-field la-
tent, to learn a lighting-specific multiplier.

&= c* Ny(f) “)

Where N, represents a shader function that learns a multi-
plicative factor to obtain the lighting specific scene radiance
from the lighting agnostic color. The light field outputs cj¢
are also used to shade the inserted object models are de-
scribed in 3.4.

3.4. Object-NeRF

The object model, similar to the world model, has two
components: a scene-agnostic representation for density
and color (albedo) Nobj, and a scene-dependent shader for
radiance N, shading- The coordinate inputs to the models
N, obj and N, shading are represented in normalized object co-
ordinate frames[36]. Their weights are shared across ob-
ject instances of the same semantic class (cars) with differ-
ent colors and shapes, by using instance-specific shape and
color codes inspired by [14, 18].

Specifically, the scene-agnostic representation is mod-
eled as:

C,0 = Nobj (¢(Xobject)) (5)

c above is the lighting-agnostic radiance of the object.
The lighting conditioned radiance is obtained by multiply-
ing ¢ with a shading coefficient s, predicted by N hading-

C=cC*x* Scar (6)

We then use ¢ during volumetric rendering as in [21].
¢ is the position encoding applied to its inputs, as is stan-
dard practice for neural fields. We explore different shader
architectures optimized for two different downstream appli-
cations: for composing objects into new locations within
the same scene, and for composing into new scenes. These
reflect two methods for feeding information from the world
representation to the object shading representation.

3.4.1 Composing into known scenes

For composing an object model into new locations in scenes
where it has already been observed, the input coordinates

has been fed in the global frame in addition to the coordi-
nates in object coordinate information to represent a light-
ing aware object model. Specifically, given the 3D bound-
ing box of the car with parameters R¢ar and t.,,-, we trans-
form the rays cast into the scene into object coordinate sys-
tem as follows.

Xobject = [Rcar |tcar}xscene (7)

Then the shading network is modelled as:

Scar = Nshading((yb(xobject)v ¢(Xscene)a ¢(Rca!‘)a T) (8)

where T is a learnable scene specification that allows us
to share weights for NV, shading between scenes. The shading
network learns to shade the point at X,y . differently based
on its global state (Xscene, Rear)-

3.4.2 Composing into unknown scenes

To insert our object model into scenes where the object has
not been observed during training, we need a shading model
that does not specifically memorize the scene. To this end,
we learn a generalizable shader that uses the light-field of
the target scene Might to compute S.q Recollect that the
rendering equation for the output radiance at a point can be
written as follows:

Lout(wo) :/ . f(wi7wo)Lin(wi)(ﬁ.a)dw 9)

Where, w; and w, are incoming and outgoing ray direc-
tions respectively, 1 is the normal calculated at the surface
and d = —w, is the viewing direction. Here, we model
L;y, (w;) with the scene light-field NV;4¢. We also assume
a Lambertian model of the object, which reduces f(w,, w;)
to a constant. We approximate the integral by a weighted
sum. In particular, for each point on the surface of the ob-
ject to be rendered p, we cast secondary rays to evaluate the
incoming light as

ld = Mz’ght (p7 d) (10)

Since the normals from the density fields can be noisy,
we use attention layers, with the local car coordinates as
queries, and the incident lighting values 14 along with di-
rections d as keys and values, t0~summarize the incident
lighting at each point in a feature f;. More details about the
attention mechanism are provided in supplementary.

This accumulated feature fj is fed into a shading MLP
along with the coordinates of the point in the local car coor-
dinates Xopject to predict a shading value.

Scar = /Vshading (fb P) (1 1)



3.5. Training

We train the object-NeRF and world-NeRF with the fol-
lowing objectives:

Photo-metric loss: This encourages the rendered pixel
to match the color of the ground truth pixel color C.

L, =|/C(r)—C| (12)

Mask-loss : We find that the mask loss is necessary to
separate out the objects from the scene.

Lomask = ||M(x) — M|| (13)

where M (r) and M represents the accumulated alpha value
along a ray r and ground truth mask respectively.

Depth guidance : In datasets where we have access to
depth/lidar information, we leverage depth for the training
rays in the world-NeRF as in [6, 27].

Laepn = ||2(r) — 2] (14)

Ground Truth

Figure 4: Our Object model rendered under different light-
ing conditions (Top row) and corresponding ground (Bot-
tom row). We observe that our multiplicative model cap-
tures spatially varying lighting effects despite not explicitly
modeling normals.

Furthermore, we find that, coarse to fine grained opti-
mization helps in improving the quality of the learnt object
model.

The loss for the world model is then given as follows:

Eworld = )\pﬁéworld) + )\depthﬁ&q:;;id) (15)

And the corresponding object model is given by:

‘cobject _ /\pﬁ]()object) + )\mas]c[/(ObjeCt) (16)

mask

The lighting-agnostic object and world models can be
trained independently as we have annotations for the static
and dynamic components of the scene. The training of the
object model uses the light field component of the world
model.

4. Experiments

Our experiments evaluate the quality of images rendered
when composing LANe models into unseen poses (Fig. 3)
within both seen and unseen worlds. For seen environ-
ments, we report metrics for both the local-global coordi-
nate shader (Sec. 3.4.1) as well as the light-field conditioned
shader (Sec. 3.4.2), although the main benefit of the latter is
its ability to generalize to unseen environments.

4.1. Architecture details

World NeRFs Our world NeRF NV,,,,14 is represented as
a standard NeRF with 8 MLP layers and a parallel branch
with 4 MLP layers NV, to control the lighting of the asso-
ciated scene. We use a similar 8-layer MLP to learn a light
field network /\/}Z-ght for the scene.

Object NeRFs Our base object NeRF Ny jec; follows a
similar 8-layer MLP architecture.

Object Shader In known scenes, the shader network
is simply another MLP that accepts the global coordinates
and the orientation of the car as a quaternion. The shader
network for unknown scenes is modeled as an attention-
conditioned MLP with the local coordinate attending over
sampled light field directions and values.

4.2. Datasets

Synthetic CARLA dataset We use the CARLA simu-
lator [7] to render images of multiple urban scenes under
varying lighting conditions with vehicles in different poses
in the scene. We render 8 scenes under different lighting
conditions with 5 different car instances observed in 40 dif-
ferent locations in each scene. We divide the scenes into
6 training scenes and 2 test scenes for evaluating compo-
sition into novel scenes. Within each scene, we also hold-
out 20% of the locations, to evaluate composition in known
scenes. Unlike many other NeRF datasets, our camera ori-
entation does not vary significantly, to be representative of
real-world car data.

Real world dataset To evaluate the applicability of our
approach to real world images, we collect a real world
multi-view dataset of 4 different cars at 10 different times
of the day. Each instance comprises videos from a hand-
held mobile camera revolved around the car. 100 frames
are extracted from each video to train object and world
models. We estimate the camera poses using COLMAP
[29, 30], predict 2D instance segmentation masks using an
off-the-shelf model [13], and manually label approximate
3D bounding boxes from COLMAP reconstruction.

4.3. Baselines

NeRF We compare our method against lighting agnostic
compositional 3D scene synthesis methods [22, 15] by us-
ing a vanilla NeRF model as the object representation. Al-



Figure 5: A comparison of our models for lighting aware object-composition. Column 1: new object model inserted but
unshaded; Column 2: local-global network; Column 3: light field conditioned model; Column 4: ground truth.

Scene 1 Scene 2 Scene 3
SSIM 1t PSNR 1 LPIPS | | SSIM © PSNR 1 LPIPS | | SSIM 1 PSNR 1 LPIPS |
NeRF 0.783 17.696 +o.94 0.176 0.798 22.115 +o.70 0.188 0.756 19.064 +2.14 0.196
LANe (Single) 0.965 27.754 +o.99 0.151 0.947 26.304 +2.91 0.062 0.939 25.89 1s5.19 0.059
LANe (Multiple) 0.837 22.548 +2.77 0.077 0.857 25.353 +1.95 0.141 0.739 19.791 +6.077 0.213
LANe (LF) 0.864 22.161 +2.10 0.096 0.868 24.353 +2.02 0.103 0.862 22.017 +2.21 0.097

Table 1: A comparison of image quality when composing object models into known world models.

though they are not directly applicable to composable rep-
resentations of dynamic objects, we explore the use of re-
lightable NeRF methods [3] in the supplementary material.

4.4. Known worlds lighting-aware composition

In this experiment (shown in Fig. 4), we evaluate the
quality of composing LANe object models into unseen
poses in 3 environments with both globally as well as lo-
cally varying lighting conditions. These world environ-
ments have been used during training. Our results are re-
ported in Tab. 1. We find that when composing into envi-
ronments seen during training, the local-global architecture
greatly outperforms other approaches.

4.5. Unseen worlds lighting-aware composition

Only the light-field conditioned shading architecture
(LANe-LF) is suitable for composition into unseen world
models. In Fig. 5, we compare this against the vanilla NeRF
model and the local-global architecture (both of which have
used this environment during training) in Table 3. We
find that while LANe-LF is clearly better than a lighting-

agnostic NeRF model, it is still slightly worse, but compa-
rable in quality to a local-global model which was trained
on this world.

4.6. Real-world lighting aware composition

Method SSIMT PSNRT LPIPS J
NeRFonly | 0928 24390  0.081
LANe (LF) | 0.937 26637  0.057

Table 2: Image quality metrics for composition of objects
onto held-out views in the real cars dataset.

For real scenes, the lighting aware object models are
trained along with the world light fields, and composed into
seen and unseen scenes. The results are as shown in Fig. 6.
Note that the unshaded lighting-agnostic object models still
have some lighting artifacts in regions that were well-lit.
The shader compensates for this, and brightens specular and
well-lit regions on the car, while darkening regions that are
not well-lit. The quantitative evaluation on the composition
of the lighting-aware object model on held-out views and
report findings are listed in Tab. 2. The metrics show that



Figure 6: The lighting aware object model trained on real
data composed into scenes with different lighting. Column
1: Lighting agnostic object model, Column 2: Object model
with lighting-aware shading, Column 3: Ground truth.

the model shades the object in a lighting-consistent manner
even in such scenes with challenging lighting and reflec-
tions.

We find that training the attention-based shader archi-
tecture from Sec. 3.4.2 is challenging when objects are
observed in only 7 lighting conditions. We therefore use
global lighting features with the object shader, which cap-
tures inter-scene lighting information, but limits the spatial
variance of object’s appearance within the scene.

4.7. Ablations

Local-Global NeRFs for a single vs multiple objects
From Tab. 1, we observe training instance-specific lighting-
aware models performs better than a shared model condi-
tioned on an instance-specific latent code. Using a latent
space to model multiple instances can however still be use-
ful in practical settings where a single instance may not be
observed in several parts of the scene. The multi-instance
model would be able to share lighting information across
instances.

4.7.1 Local-Global Net architecture
Our proposed local-global net architecture uses the local
coordinates for the density branch and the global coordi-
nates for the radiance branch. We find that this separation of
global and local coordinates is crucial, and that merely us-
ing the global coordinates as an input to the density branch
along with the local coordinates results in the network learn-
ing incorrect densities, especially without a mask loss.

We train a model with a global conditioning code instead
of spatially varying local code as explained in our model.

FID]| SSIM1 PSNR 1 LPIPS |
NeRF only 0.452 0.805 22.506 +2.26 0.177
LANe (multiple) | 0.323 0.866 26.49 +1.93 0.134
LANe (LF) 0.145 0.875 25.056 +1.69 0.103

Table 3: A comparison of image quality when composing
the LANe-LF model into an unseen environment. Note that
the other models have been trained on this environment.

5. Discussions

The dataset generated by CARLA exhibit spatially vary-
ing lighting effects due to both direct (sun) and indirect
lighting (shadows cast by buildings). We see from Ta-
ble. 1 that our model is able to better capture changes in
object lighting as it moves through the scene. Particularly,
we see that a naive conditional baseline is insufficient as
it correlates scene effects and object effects. Further more,
naive conditioning requires large amount of data to accurate
model the light transport across the scene.

Kundu et al. [15] model each object with a seperate
light MLP. using FedAvg to build in class priors. How-
ever, these model grows linearly in the number of objects
being represented. We employ a variant of CodeNerf [14]
to allow for larger degree of control over the class of objects
without explosion in memory bandwidth.

6. Limitations and Conclusion

Limitation and future work Our framework assumes
observations of the object under varying lighting which lim-
its its applicability to the scenes where an object is seen
under varying lighting conditions. This can be addressed
using shading methods trained on both synthetic and real
data. In addition,our approach does not model object-to-
scene and object-to-object shadows. The shadows in real re-
sults are residuals from background. Addressing this would
involves re-evaluating the lighting on an object once another
is added, and is an exciting problem for future work, poten-
tially using shadow fields for each instance that are depen-
dent on the same lighting representation. Our model, much
like many of the cited works, is sensitive to the pose param-
eters and object masks and pose robustness is outside the
scope of our approach. However, recent works which are
robust to camera pose (such as BARF [17] or SPARF[34])
can potentially be leveraged to address this problem.

Conclusion In this work, we introduce an approach to
leverage spatial lighting-aware NeRFs to build composable
3D scene representations. We separate the scene into ob-
ject and world NeRFs and introduce a multiplicative shad-
ing model to condition the object’s appearance on the scene
lighting. This allows our object models to be composed
into new world models in a lighting-aware manner without
retraining any object parameters.
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LANe - Lighting Aware Neural Fields for Compositional Scene Synthesis - Supplementary

A. Introduction

For demo videos of 3D neural rendering and de-
tails about the ablation studies, please visit our project
website: https://lane-composition.github.
io. We also intend to release code and datasets there.

B. Architecture details

The architectures for our world NeRF, world light field
network, and object NeRFs are standard MLPs, option-
ally conditioned on latent codes to share models across in-
stances, and are described in Sections 3.3, 3.4 and 4.1. Here
we provide more details on our novel LFN-based shader
network presented in Section 3.4.2.

B.1. Unknown scene - LFN based shader field

Lighting-aware composition of neural fields in unknown
scenes uses 3 components:

1. Object model: A lighting-agnostic object (car) model
that was trained on images from different scenes.

2. Light field network for the scene to be composed into.

3. Shader network for the object to the composed.

Neural Light Field N7 p

—

c
Sample secondary A

rays |Shading
Multi- g A
Key headed

attention
block

Per-direction lighting
features 1a

Query

Shading MLP
Attention

/

Base radiance without lighting
information

C

Figure 7: The architecture of the light field (LF) based shad-
ing network for compositing objects into unseen scenarios,
which the models have never been trained with.

These components are illustrated in (Fig. 7). In particu-
lar, the object model

c,0 = Nopj (¢(Xobj): 1) 17

where, ¢ are the positional encoding and 7 is the object code
for the particular instance of the car model. For composing
the objecting into scenes unseen during training, we use the
light field of the new scene:

la = Niight(x,d) (18)

where x € R3 is the 3D location of a point on the object and
d € R? is the direction of secondary ray, both expressed in
world coordinates, and 14 is the incoming 3-channel LDR
radiance at x along d.

To obtain the shading at a surface point p,;; in object co-
ordinate frame, we first compute a local accumulated light-
ing feature using an attention mechanism:

fi = Attention(QW,, KWy, VW,) (19)

where @, K,V are queries, keys and values, and
Wy, Wi, W, are their learnable linear mappings respec-
tively. We use Q = @(pob;), and K =V = ¢(dop;) P la,
where € is the concatenation operator and ¢ is the posi-
tional encoding. The attention mechanism has been lever-
aged to encourage the network to focus on some of all in-
coming light, conditioning on its local coordinates. This
resembles the weighted integral of irradiance based on the
incident angle in the rendering equation. Ideally, we expect
the attention weights to be higher along the direction of the
surface normal at the point. We visualize the attended direc-
tion at each surface point by obtaining the weighted average
secondary direction using the learned attention weights (the
“attended direction”) in Fig. 8. This shows that the attended
direction aligns with the surface normals on the surface of a
single car instance.

We then use a 4-layer MLP to predict a 3-channel shad-
ing coefficient for each point on the object conditioned on
the learned accumulated lighting feature:

Scar = /Vshading (f], b, 77) (20)

where 7) is the latent code for the specific instance. Note that
we only train /\/'shadmg on points on the surface the object
by thresholding points with an occupancy value greater than
0.5, to avoid sampling secondary rays at all points.

C. Dataset details

In this section we describe and provide examples from
the synthetic and real datasets used to train our models.

C.1. Synthetic dataset

Our synthetic dataset comprises 6 different car in-
stances rendered in 10 different lighting conditions using
the CARLA simulator. Each lighting condition can be in
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Figure 8: Direction obtained by the weighted average of all
key attention weights. First row shows rendered RGB im-
age, second row shows the 3D attended direction as RGB
values. The attended directions tend to align with the sur-
face normals.

Figure 9: Examples of images from the synthetic dataset.
It contains 6 cars in 10 different lighting conditions, at 40
different locations in each condition.

one of 5 different scenes. Within each lighting condition,
the car is observed in multiple positions within the scene,
at different orientations. The camera viewpoint does not
change significantly, but we still obtain images of differ-
ent portions of the car as the car still has different poses
with respect to the scene. This resembles the conditions en-

countered in real world self-driving datasets. We also use
3D bounding boxes and instance masks from the simulator.
Examples from our dataset is illustrated in Fig 9.

C.2. Real dataset

Figure 10: Examples of images from the real dataset col-
lected. The dataset contains sequences of 3 cars at 10 dif-
ferent times of day.

Figure 11: Examples of images from the real dataset col-
lected for training the world light field models. We collect
one such sequence per instance per time of day. Training
the light field model requires large portions of the sky to be
observed in these images.

Our real dataset features sequences of images collected
by moving a handheld camera around a parked vehicle. We
collect sequences for the same vehicle at 10 different times
of the day, for 3 different vehicles. Each vehicle is parked in
a slightly different scene. At each time of day, we also col-
lect an additional sequence with the camera zoomed out, so
as to capture sky lighting and train a light field model with
it. We use 100 images from each sequence for training



the object and shader models, and 50 images for training
the world light field models. We register all images for a
particular instance into a common frame of reference us-
ing COLMAP [29]. The local frame for the vehicle is de-
fined by manually annotating a 3D bounding box around
the instance from the sparse COLMAP reconstruction. In-
stance masks are obtained from a pretrained Mask R-CNN
[13] model. Examples from the object model sequences
are shown in Fig 10 and the light-field model sequences are
shown in 11.

D. More qualitative results

More qualitative results are provided for composing
lighting-aware object models into both known and unknown
scenes, for both synthetic (Fig 12, 15) and real datasets (Fig
13). Our approach also allows us to compose multiple ob-
jects into the same scene, as shown in Fig 14.

For the results on real datasets in Fig 13, the object shad-
ows in the composed image are part of the background im-
age, not the object model. Further, as mentioned in 4.6, we
do not use the attention layers for the shaders of the real-
world object models, as these require more training data.
We instead obtain the lighting feature fj in Eq. 19 from a
global latent code used to condition the scene’s light field
network on the particular lighting (f in Eq. 3). The latent-
conditioned light field network is trained on the same train-
ing set as the shader, with a learned latent code per lighting
condition. For unseen lighting conditions, the latent code
is optimized by minimizing the light-field’s reconstruction
loss, and then used as an input for the shader.

E. Ablations

The performance of the shader network depends on
many architectural design choices.

E.1. Number of secondary rays

The LANe architecture that generalizes to unseen scenes
requires sampling secondary rays from points on the car to
query the light field network for the environment.

As indicated in Table. 4, the quality of the lighting-
aware composition depends on the number of secondary
rays sampled. It is natural to expect that the quality im-
proves with an increase in the number of sampled secondary
rays. We find that while this is indeed the case in environ-
ments observed during training, sampling fewer rays im-
proves lighting-aware composition in unseen environments,
as shown in Table 5. Our hypothesis is that the limited
capacity of the attention layers causes them to learn an av-
eraged representation of the light field when the number of
rays increases. This representation is more biased to the
overall lighting of the seen environments and is less sensi-
tive to spatially varying lighting in the unseen environment.

Figure 12: Examples of LANe shaded (right) and unshaded
(left) object models composed onto different scenes. Note
that the shader modulates the cars appearance differently to
account for sun directions, shadows from adjacent buildings
etc.
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Figure 13: Examples of unshaded (left) and LANe shaded
(right) object models composed onto the original positions
of the car. The shader accounts for global changes in the
scene lighting, darkening the cars in cloudy scenes and
brightening them (with some specularities) in sunny scenes.
In scenes where the shading changes are subtle, regions on
the car with most change have been highlighted.

E.2. Number of training environments and gener-
alization

We seek to answer the question - how does increasing
the number of training environments affect the performance
of the LFN-based shader field on seen and unseen environ-
ments? To this end, we train the shader fields on a vary-
ing number of environments - 3, 5, 7 - and evaluate them
both on an environment used in all the training sets, and
a completely unseen environment. We find that increasing
the number of environments leads to a slight drop in perfor-
mance on the training environment (Table 6), but a great
increase in performance on the test environment (Table 7).

Num. rays PSNR1 SSIM1T FIDJ] LPIPS|
144 234441 0.8495 0.1742 0.1027
72 23.0857 0.8467 0.1771 0.1018
54 229917 0.8441 0.1837 0.1038
36 22.8978 0.8448 0.2081  0.1006
24 22.7281 0.8437 0.2335  0.1005
18 22.6449  0.8430 0.2069  0.1004

Table 4: Quality as a function of secondary rays for seen en-
vironments. The number of rays used for LANe has small
impact on pixel-based image quality metrics (PSNR, SSIM)
and learned perceptual similarity metric (LPIPS), but af-
fects the FID score more (measuring difference between
the ground truth and generated image distributions), shown
more score variance with the decrease of number of ray
used. The best trained model for seen environment has been
obtained with the maximum of 144 rays setting

Num. rays PSNRt SSIM1T FIDJ] LPIPS|
144 23.5663 0.8301 0.1321  0.1096
72 23.9249 0.8340 0.1327 0.1103
54 23.3989 0.8225 0.1362 0.1154
36 24.8212 0.8434 0.1136  0.1080
24 251234 0.8439 0.1072  0.1089
18 24.6220 0.8435 0.1391  0.1017

Table 5: Quality as a function of secondary rays for unseen
environments. LANe model trained with fewer number of
rays obtained better image composition quality. Overall, the
model training setting of 24 rays achieved the best results
for unseen environments.

Num. trainenvs PSNR{1 SSIM1 FID| LPIPS|
3 22.2764 0.8706 0.2574  0.0975
5 22.2113  0.8654 0.2274  0.0990
7 21.3136  0.8593 0.3635  0.0966

Table 6: Lighting aware reconstruction quality on a training
scene when trained with an increasing number of environ-
ments. This shows that training in fewer environments can
improve LFN-based shader’s performance in those environ-
ments.

Num. trainenvs PSNR{ SSIM{1 FID| LPIPS |
3 224900 0.8392 0.1551 0.1219
5 22.8970 0.8514 0.1496 0.1085
7 24.0604 0.8681 0.1856  0.0968

Table 7: Lighting aware reconstruction quality on an unseen
environment when trained with an increasing number of en-
vironments. This shows that training on more environments
can improve LFN-based shader’s generalizability. Note that
the metrics on these unseen environments are comparable to
those reported on a training scene.



Figure 14: Composing multiple objects into seen and unseen lighting conditions using the attention based shader.

E.3. Number of instances

The shared LANe object model uses a latent embedding
to represent multiple car instances. We find that increasing
the number of instances only slightly reduces the overall
quality of its rendered images for the known-scene object
model, keeping model capacity constant. The quality met-
rics as a function of the number of instances are shown in
Table 8.

E.4. Resolution of light field network

The light field network has been trained to accommo-
date various lighting requirements using images of the
scene at different positions and orientations (Fig 11 for real
datasets). The input to this network is a normalized po-
sition and ray direction, expressed in Plucker coordinates.
The resolution of the light field network depends on the di-
mensionality of the cosine positional encoding used at the

Num. instances PSNR{ SSIM+ FID| LPIPS|
1 26.6484 0.9501 0.1229  0.0553
2 24.6540 0.8813 0.3993  0.1085
3 24.0274 0.8586 0.4580  0.1223
4 23.8273 0.8474 0.5053 0.1386
5 23.0509 0.8314 0.7595 0.1630
6 22,7355 0.8232 0.6089 0.1708

Table 8: Lighting aware reconstruction quality with increas-
ing number of instances, for a known-scene model. This
does not change the number of training parameters in the
model.

input to the network, higher frequency encodings provide
more accurate light fields. When a positional encoding is
not used, the light field is very smooth and blurry, and re-
sembles a lighting map of the scene, as shown in Fig 19.



Figure 15: The LFN-based shader network can generalize to unseen environments and unseen lighting conditions in trained
environments. This figure shows composing a car into some unseen environments.
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Figure 16: Peak signal-to-noise ratio (PSNR) between train-
ing and validation scenes using different number of sec-
ondary rays.

We find that the PSNR of the LANe model obtained using
light fields with and without position encodings are similar,
but using position encodings can sometimes result in peri-
odic shading artifacts. We choose the low-frequency light
fields without position encodings for our best-performing
model, especially since the light field is queried only in
sparse directions and we do not need the precise structure
of the world in the lighting information.

E.S. Regressing a multiplicative shading factor vs
directly regressing RGB values

The LANe model predicts a shading factor to condition
appearance on lighting. An alternative is to directly predict
an RGB value from the shader. We find that this performs
equally well for single-instance LANe models (Table 9),
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Figure 17: We show quality vs capacity tradeoff for out ob-
ject model. The size of the points indicate the number of
instances that can be represented by the model. We see that
if we learn a seperate network for each object, the capacity
quickly grows. However, for the same number of parame-
ters our model can render a larger number of object instance
for a slight drop in performance.

Architecture PSNRT SSIM1 FIDJ] LPIPS|
Shading factor ~ 23.4441 0.8495 0.1742  0.1027
Color regression  23.4813  0.8561 0.2998  0.0957

Table 9: Reconstruction quality comparison between using
a shading factor and directly regressing the color values.

and is therefore a viable alternative.



Figure 18: Top Row: Sample scene data consumed by
LANe. Bottom Row: Background scene environment learnt
and car object removed before new objects insertion, but
hard cast shadow from the car objects remained

=
.
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Figure 19: The resolution of light field and quality of LANe
depends on the frequency of the input position embedding.
We find that lower resolutions are more robust.

Model PSNRT SSIMT LPIPS |
View-dep. LANe (LF) 27.7169 0.9408  0.0582
LANE (LF) 26.6371 09374  0.0568

Table 10: Comparison of rendering quality for a view-
dependent LANe (LF) shader to that of a viewing direction
independent shader.

E.6. View-dependent shader

Our shader MLP makes a Lambertian assumption and
does not model view-dependent radiance. We evaluate
whether including the viewing direction as another input
to the shader improves shaded image quality for the real
dataset. A comparison of view-dependent shading to view-
independent shading is shown in Table 10. We find that the
shader is able to model view-dependent effects, and that the
rendered image quality is slightly better than the one that
does not use view-dependence.

F. Relightable NeRF baselines

Several recent works [3, 33, 44, 4, 12] have addressed the
problem of training relightable NeRF models by decompos-
ing an object’s radiance into its density, material (BRDF),
albedo, lighting and visibility mask simultaneously. Such a
decomposition is under-constrained and requires additional
priors and regularizers. They also make assumptions on
light-sources being at infinity, and do not model spatial
variance within a scene. They have also not been demon-
strated with noisy camera poses or on objects with transpar-
ent/translucent objects (such as window shields). Neverthe-
less, we attempted to compare against one lighting-aware
baseline (NeRD [3]). We found that this approach produces
very blurry results (Fig 20) on our datasets where the object
is not fixed relative to the environment.

Figure 20: Our attempt to reproduce a relightable NeRF
baseline (NeRD [3]) produced blurry results (result on right,
ground truth on left).

G. Limitations

1. Shadow modelling: The LANe model only modulates
the appearance of the object with depending on the
scene, and does not change the appearance of the scene
or other objects after an object has been composed.
This implies that effects on the scene (such as the com-
posed object’s shadow) is not modelled.

2. Shadow residuals: As shown in Fig. 18, it is chal-
lenging for LANe to cleanly remove existing hard cast
shadow of the cars in the foreground, leaving some
shadow residuals in the learned world model.

3. The lighting distribution between seen and unseen
scenes have to be similar for composition into scenes
that the object shader was not trained on.

4. Data requirements: We assume that the same instance
was visible in different lighting conditions to train
the shader model. This is not true in data collected
from real world driving scenarios, where each instance
is only captured under lighting changes within the
same scene. Training the multi-instance shader model
jointly on synthetic instances rendered is several light-
ing conditions along with real instances observed in
different positions in the same scene, could enable it to



generalize to unseen real scenes. This is an interesting
direction for future work.

H. Societal Impact

With the application of lighting-aware compositional
scene synthesis using NeRF, LANe has great potential to
be used for data augmentation to train various downstream
autonomous driving vision tasks. Specially, the learnt world
model and object model could compromise an individual’s
privacy and safety, if it has been trained on images contain-
ing sensitive information. This is not a concern for the sim-
ulated data from CARLA used in our experiments. When
releasing our real-world datasets or models trained on it,
we intend to mitigate the privacy concern by not including
any sensitive information, and blurring information such as
people and license plates in our images.



