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ABSTRACT

The message passing-based graph neural networks (GNNs) have achieved great
success in many real-world applications. However, training GNNs on large-scale
graphs suffers from the well-known neighbor explosion problem, i.e., the expo-
nentially increasing dependencies of nodes with the number of message passing
layers. Subgraph-wise sampling methods—a promising class of mini-batch train-
ing techniques—discard messages outside the mini-batches in backward passes
to avoid the neighbor explosion problem at the expense of gradient estimation
accuracy. This poses significant challenges to their convergence analysis and con-
vergence speeds, which seriously limits their reliable real-world applications. To
address this challenge, we propose a novel subgraph-wise sampling method with a
convergence guarantee, namely Local Message Compensation (LMC). To the best
of our knowledge, LMC is the first subgraph-wise sampling method with provable
convergence. The key idea of LMC is to retrieve the discarded messages in back-
ward passes based on a message passing formulation of backward passes. By effi-
cient and effective compensations for the discarded messages in both forward and
backward passes, LMC computes accurate mini-batch gradients and thus acceler-
ates convergence. We further show that LMC converges to first-order stationary
points of GNNs. Experiments on large-scale benchmark tasks demonstrate that
LMC significantly outperforms state-of-the-art subgraph-wise sampling methods
in terms of efficiency.

1 INTRODUCTION

Graph neural networks (GNNs) are powerful frameworks that generate node embeddings for graphs
via the iterative message passing (MP) scheme (Hamilton, 2020). At each MP layer, GNNs aggre-
gate messages from each node’s neighborhood and then update node embeddings based on aggre-
gation results. Such a scheme has achieved great success in many real-world applications involving
graph-structured data, such as search engines (Brin & Page, 1998), recommendation systems (Fan
et al., 2019), materials engineering (Gostick et al., 2016), molecular property prediction (Moloi &
Ali, 2005; Kearnes et al., 2016), and combinatorial optimization (Wang et al., 2023).

However, the iterative MP scheme poses challenges to training GNNs on large-scale graphs. One
commonly-seen approach to scale deep models to arbitrarily large-scale data with limited GPU
memory is to approximate full-batch gradients by mini-batch gradients. Nevertheless, for the graph-
structured data, the computational costs for computing the loss across a mini-batch of nodes and
the corresponding mini-batch gradients are expensive due to the well-known neighbor explosion
problem. Specifically, the embedding of a node at the k-th MP layer recursively depends on the
embeddings of its neighbors at the (k − 1)-th MP layer. Thus, the complexity grows exponentially
with the number of MP layers.

To deal with the neighbor explosion problem, recent works propose various sampling techniques to
reduce the number of nodes involved in message passing (Ma & Tang, 2021). For example, node-
wise (Hamilton et al., 2017; Chen et al., 2018a) and layer-wise (Chen et al., 2018b; Zou et al., 2019;
Huang et al., 2018) sampling methods recursively sample neighbors over MP layers to estimate node
embeddings and corresponding mini-batch gradients. Unlike the recursive fashion, subgraph-wise
sampling methods (Chiang et al., 2019; Zeng et al., 2020; Fey et al., 2021; Zeng et al., 2021) adopt a
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cheap and simple one-shot sampling fashion, i.e., sampling the same subgraph constructed based on
a mini-batch for different MP layers. By discarding messages outside the mini-batches, subgraph-
wise sampling methods restrict message passing to the mini-batches such that the complexity grows
linearly with the number of MP layers. Moreover, subgraph-wise sampling methods are applicable
to a wide range of GNN architectures by directly running GNNs on the subgraphs constructed by
the sampled mini-batches (Fey et al., 2021). Because of these advantages, subgraph-wise sampling
methods have recently drawn increasing attention.

Despite the empirical success of subgraph-wise sampling methods, discarding messages outside the
mini-batch sacrifices the gradient estimation accuracy, which poses significant challenges to their
convergence behaviors. First, recent works (Chen et al., 2018a; Cong et al., 2020) demonstrate that
the inaccurate mini-batch gradients seriously hurt the convergence speeds of GNNs. Second, in
Section 7.3, we demonstrate that many subgraph-wise sampling methods are difficult to resemble
full-batch performance under small batch sizes, which we usually use to avoid running out of GPU
memory in practice. These issues seriously limit the real-world applications of GNNs.

In this paper, we propose a novel subgraph-wise sampling method with a convergence guarantee,
namely Local Message Compensation (LMC), which uses efficient and effective compensations
to correct the biases of mini-batch gradients and thus accelerates convergence. To the best of our
knowledge, LMC is the first subgraph-wise sampling method with provable convergence. Specif-
ically, we first propose unbiased mini-batch gradients for the one-shot sampling fashion, which
helps decompose the gradient computation errors into two components: the bias from the discarded
messages and the variance of the unbiased mini-batch gradients. Second, based on a message pass-
ing formulation of backward passes, we retrieve the messages discarded by existing subgraph-wise
sampling methods during the approximation to the unbiased mini-batch gradients. Finally, we pro-
pose efficient and effective compensations for the discarded messages with a combination of incom-
plete up-to-date messages and messages generated from historical information in previous iterations,
avoiding the exponentially growing time and memory consumption. An appealing feature of the re-
sulting mechanism is that it can effectively correct the biases of mini-batch gradients, leading to
accurate gradient estimation and the speed-up of convergence. We further show that LMC con-
verges to first-order stationary points of GNNs. Notably, the convergence of LMC is based on the
interactions between mini-batch nodes and their 1-hop neighbors, without the recursive expansion
of neighborhoods to aggregate information far away from the mini-batches. Experiments on large-
scale benchmark tasks demonstrate that LMC significantly outperforms state-of-the-art subgraph-
wise sampling methods in terms of efficiency. Moreover, under small batch sizes, LMC outperforms
the baselines and resembles the prediction performance of full-batch methods.
2 RELATED WORK
In this section, we discuss some works related to our proposed method.

Subgraph-wise Sampling Methods. Subgraph-wise sampling methods sample a mini-batch and
then construct the same subgraph based on it for different MP layers (Ma & Tang, 2021). For
example, Cluster-GCN (Chiang et al., 2019) and GraphSAINT (Zeng et al., 2020) construct the
subgraph induced by a sampled mini-batch. They encourage connections between the sampled
nodes by graph clustering methods (e.g., METIS (Karypis & Kumar, 1998) and Graclus (Dhillon
et al., 2007)), edge, node, or random-walk-based samplers. GNNAutoScale (GAS) (Fey et al.,
2021) and MVS-GNN (Cong et al., 2020) use historical embeddings to generate messages outside a
sampled subgraph, maintaining the expressiveness of the original GNNs.

Recursive Graph Sampling Methods. Both node-wise and layer-wise sampling methods recur-
sively sample neighbors over MP layers and then construct different computation graphs for each
MP layer. Node-wise sampling methods (Hamilton et al., 2017; Chen et al., 2018a) aggregate mes-
sages from a small subset of sampled neighborhoods at each MP layer to decrease the bases in the
exponentially increasing dependencies. To avoid the exponentially growing computation, layer-wise
sampling methods (Chen et al., 2018b; Zou et al., 2019; Huang et al., 2018) independently sample
nodes for each MP layer and then use importance sampling to reduce variance, resulting in a constant
sample size in each MP layer.

Pre-Processing Methods. Another line for scalable graph neural networks is to develop pre-
processing Methods. They aggregate the raw input features and then take the pre-processing features
as input into subsequent models. As the aggregation has no parameters, they can use stochastic
gradient descent to train the subsequent models without the neighbor explosion problem. While
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they are efficient in training and inference, they are not applicable to powerful GNNs with a trainable
aggregation process.

Historical Values as an Affordable Approximation. The historical values are affordable ap-
proximations of the exact values in practice. However, they suffer from frequent data transfers
to/from the GPU and the staleness problem. For example, in node-wise sampling, VR-GCN (Chen
et al., 2018a) uses historical embeddings to reduce the variance from neighbor sampling (Hamilton
et al., 2017). GAS (Fey et al., 2021) proposes a concurrent mini-batch execution to transfer the
active historical embeddings to and from the GPU, leading to comparable runtime with the standard
full-batch approach. GraphFM-IB and GraphFM-OB (Yu et al., 2022) apply a momentum step on
historical embeddings for node-wise and subgraph-wise sampling methods with historical embed-
dings, respectively, to alleviate the staleness problem. Both LMC and GraphFM-OB use the node
embeddings in the mini-batch to alleviate the staleness problem of the node embeddings outside the
mini-batch. We discuss the main differences between LMC and GraphFM-OB in Appendix C.1.

3 PRELIMINARIES

We introduce notations and graph neural networks in Sections 3.1 and 3.2, respectively.

3.1 NOTATIONS

A graph G = (V, E) is defined by a set of nodes V = {v1, v2, . . . , vn} and a set of edges E among
these nodes. The set of nodes consists of labeled nodes VL and unlabeled nodes VU := V \ VL. Let
(vi, vj) ∈ E denote an edge going from node vi ∈ V to node vj ∈ V, N (vi) = {vj ∈ V|(vi, vj) ∈ E}
denote the neighborhood of node vi, and N (vi) denote N (vi)∪{vi}. We assume that G is undirected,
i.e., vj ∈ N (vi) ⇔ vi ∈ N (vj). Let N (S) = {v ∈ V|(vi, vj) ∈ E , vi ∈ S} denote the neighborhoods
of a set of nodes S and N (S) denote N (S) ∪ S. For a positive integer L, [L] denotes {1, . . . , L}.
Let the boldface character xi ∈ Rdx denote the feature of node vi with dimension dx. Let hi ∈ Rd

be the d-dimensional embedding of the node vi. Let X = (x1,x2, . . . ,xn) ∈ Rdx×n and H =

(h1,h2, . . . ,hn) ∈ Rd×n. We also denote the embeddings of a set of nodes S = {vik}
|S|
k=1 by HS =

(hik )
|S|
k=1 ∈ Rd×|S|. For a p × q matrix A ∈ Rp×q, A⃗ ∈ Rpq denotes the vectorization of A, i.e.,

Aij = A⃗i+(j−1)p. We denote the j-th columns of A by Aj .

3.2 GRAPH NEURAL NETWORKS

For the semi-supervised node-level prediction, Graph Neural Networks (GNNs) aim to learn node
embeddings H with parameters Θ by minimizing the objective function L = 1

|VL|
∑

i∈VL
ℓw(hi, yi)

such that H = GNN (X, E ; Θ), where ℓw is the composition of an output layer with parameters w
and a loss function.

GNNs follow the message passing framework in which vector messages are exchanged between
nodes and updated using neural networks. An L-layer GNN performs L message passing iterations
with different parameters Θ = (θl)Ll=1 to generate the final node embeddings H = HL as

Hl = fθl(Hl−1;X), l ∈ [L], (1)

where H0 = X and fθl is the message passing function of the l-th layer with parameters θl.

The message passing function fθl follows an aggregation and update scheme, i.e.,

hl
i = uθl

(
hl−1
i ,ml−1

N (vi)
,xi

)
; ml−1

N (vi)
= ⊕θl

({
gθl(hl−1

j ) | vj ∈ N (vi)
})

, l ∈ [L], (2)

where gθl is the function generating individual messages for each neighbor of vi in the l-th mes-
sage passing iteration, ⊕θl is the aggregation function mapping a set of messages to the final mes-
sage ml−1

N (vi)
, and uθl is the update function that combines previous node embedding hl−1

i , message
ml−1

N (vi)
, and features xi to update node embeddings.

4 MESSAGE PASSING IN BACKWARD PASSES

In Section 4.1, we introduce the gradients of GNNs and formulate the backward passes as message
passing. Then we propose backward SGD, which is an SGD variant, in Section 4.2.

4.1 BACKWARD PASSES AND MESSAGE PASSING FORMULATION

The gradient ∇wL is easy to compute and we hence introduce the chain rule to compute ∇ΘL in this
section, where Θ = (θl)Ll=1. Let Vl ≜ ∇HlL for l ∈ [L] be auxiliary variables. It is easy to compute
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V⃗L = ∇H⃗LL = ∇H⃗L. By the chain rule, we iteratively compute Vl based on Vl+1 as

V⃗l = ϕ⃗θl+1(Vl+1) ≜ (∇H⃗l f⃗θl+1)V⃗l+1 (3)

and

Vl = ϕθl+1 ◦ · · · ◦ ϕθL(VL). (4)

Then, we compute the gradient ∇θlL = (∇θl f⃗θl)V⃗
l, l ∈ [L] by using autograd packages for vector-

Jacobian product.

We formulate backward passes, i.e., the processes of iterating Equation (3), as message passing. To
see this, we need to notice that Equation (3) is equivalent to

Vl
i =

∑
vj∈N (vi)

(
∇hl

i
uθl+1(hl

j ,m
l
N (vj)

,xj)
)
Vl+1

j , i ∈ [n], (5)

where Vl
k is the k-th column of Vl and ml

N (vj)
is a function of hl

i defined in Equation (2). Equa-

tion (5) uses
(
∇hl

i
uθl+1(hl

j ,m
l
N (vj)

,xj)
)
Vl+1

j , sum aggregation, and the identity mapping as the
generation function, the aggregation function, and the update function, respectively.

4.2 BACKWARD SGD
In this section, we develop an SGD variant—backward SGD, which provides unbiased gradient
estimations based on the message passing formulation of backward passes. Backward SGD is the
basis of our proposed subgraph-wise sampling method, i.e., LMC, in Section 5.

Given a sampled mini-batch VB, suppose that we have computed exact node embeddings (Hl
VB )

L
l=1

and auxiliary variables (Vl
VB )

L
l=1 of nodes in VB. To simplify the analysis, we assume that VB is

uniformly sampled from V and the corresponding set of labeled nodes VLB := VB ∩ VL is uniformly
sampled from VL. When the sampling is not uniform, we use the normalization technique (Zeng
et al., 2020) to enforce the assumption (please see Appendix A.3.1).

First, backward SGD computes the mini-batch gradient gw(VB) for parameters w by the derivative
of mini-batch loss LVB = 1

|VLB |
∑

vj∈VLB
ℓw(hj , yj) as

gw(VB) =
1

|VLB |
∑

vj∈VLB

∇wℓw(hj , yj). (6)

Then, backward SGD computes the mini-batch gradient gθl(VB) for parameters θl as

gθl(VB) =
|V|
|VB|

∑
vj∈VB

(
∇θluθl(hl−1

j ,ml−1
N (vj)

,xj)
)
Vl

j , l ∈ [L]. (7)

Note that the mini-batch gradients gθl(VB) for different l ∈ [L] are based on the same mini-batch
VB, which facilitates designing subgraph-wise sampling methods based on backward SGD. Another
appealing feature of backward SGD is that the mini-batch gradients gw(VB) and gθl(VB), l ∈ [L] are
unbiased, as shown in the following theorem. Please see Appendix D.1 for the detailed proof.
Theorem 1. Suppose that a mini-batch VB is uniformly sampled from V and the corresponding
labeled nodes VLB = VB ∩ VL is uniformly sampled from VL. Then the mini-batch gradients gw(VB)
and gθl(VB), l ∈ [L] in Equations (6) and (7) are unbiased.

5 LOCAL MESSAGE COMPENSATION

The exact mini-batch gradients gw(VB) and gθl(VB), l ∈ [L] computed by backward SGD depend
on exact embeddings and auxiliary variables of nodes in the mini-batch VB rather than the whole
graph. However, backward SGD is not scalable, as the exact (Hl

VB )
L
l=1 and (Vl

VB )
L
l=1 are expensive

to compute due to the neighbor explosion problem.

In this section, to deal with the neighbor explosion problem, we develop a novel and scalable
subgraph-wise sampling method for GNNs, namely Local Message Compensation (LMC). LMC
first efficiently estimates (Hl

VB )
L
l=1 and (Vl

VB )
L
l=1 by convex combinations of the incomplete up-

to-date values and the historical values, and then computes the mini-batch gradients as shown in
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Figure 1: Comparison of LMC with GNNAutoScale (GAS) (Fey et al., 2021). (a) shows the orig-
inal graph with in-batch nodes, 1-hop out-of-batch nodes, and other out-of-batch nodes in orange,
blue, and grey, respectively. (b) and (d) show the computation graphs of forward passes and back-
ward passes of GAS, respectively. (c) and (e) show the computation graphs of forward passes and
backward passes of LMC, respectively.

Equations (6) and (7). We show that LMC converges to first-order stationary points of GNNs in
Section 6. In Algorithm 1 and Section 6, we denote a value in the l-th layer at the k-th iteration by
(·)l,k, but elsewhere we omit the superscript k and denote it by (·)l.

In each training iteration, we sample a mini-batch of nodes VB and propose to approximate values,
i.e., node embeddings and auxiliary variables, outside VB by convex combinations of historical
values, denoted H

l
V\VB and V

l
V\VB , and incomplete up-to-date values, denoted H̃l

V\VB
and Ṽl

V\VB
.

In forward passes, we initialize the temporary embeddings for l = 0 as Ĥ0 = X and update historical
embeddings of nodes in VB, i.e., Hl

VB , in the order of l = 1, 2, . . . , L. Specifically, in the l-th layer,
we first update the historical embedding of each node vi ∈ VB as

h
l

i = uθl(h
l−1

i ,ml−1
N (vi)

,xi);

ml−1
N (vi)

= ⊕θl

({
gθl(h

l−1

j ) | vj ∈ N (vi) ∩ VB

}
∪
{
gθl(ĥl−1

j ) | vj ∈ N (vi) \ VB

})
. (8)

Then, we compute the temporary embedding of each neighbor vi ∈ N (VB) \ VB as

ĥl
i = (1− βi)h

l

i + βih̃
l
i, (9)

where βi ∈ [0, 1] is the convex combination coefficient for node vi, and

h̃l
i = uθl(ĥl−1

i ,ml−1
N (vi)

,xi);

ml−1
N (vi)

= ⊕θl

({
gθl(h

l−1

j ) | vj ∈ N (vi) ∩ VB

}
∪
{
gθl(ĥl−1

j ) | vj ∈ N (VB) ∩N (vi) \ VB

})
.

(10)

We call Cl
f ≜ ⊕θl

({
gθl(ĥ

l−1
j ) | vj ∈ N (vi) \ VB

})
the local message compensation in the l-th layer

in forward passes. For l ∈ [L], hl
i is an approximation to hl

i computed by Equation (2). Notice that
the total size of Equations (8)–(10) is linear with |N (VB)| rather than the size of the whole graph.
Suppose that the maximum neighborhood size is nmax and the number of layers is L, then the time
complexity in forward passes is O(L(nmax|VB|d+ |VB|d2)).

In backward passes, we initialize the temporary auxiliary variables for l = L as V̂L = ∇HL and
update historical auxiliary variables of nodes in VB, i.e., V

l
VB , in the order of l = L − 1, . . . , 1.
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Specifically, in the l-th layer, we first update the historical auxiliary variable of each vi ∈ VB as

V
l

i =
∑

vj∈N (vi)∩VB

(
∇hl

i
uθl+1(h

l

j ,m
l
N (vj)

,xj)
)
V

l+1

j

+
∑

vj∈N (vi)\VB

(
∇hl

i
uθl+1(ĥl

j ,m
l
N (vj)

,xj)
)
V̂l+1

j , (11)

where h
l
j , ml

N (vj)
, and ĥl

j are computed as shown in Equations (8)–(10). Then, we compute the
temporary auxiliary variable of each neighbor vi ∈ N (VB) \ VB as

V̂l
i = (1− βi)V

l

i + βiṼ
l
i, (12)

where βi is the convex combination coefficient used in Equation (9), and

Ṽl
i =

∑
vj∈N (vi)∩VB

(
∇hl

i
uθl+1(h

l

j ,m
l
N (vj)

,xj)
)
V

l+1

j

+
∑

vj∈N (VB)∩N (vi)\VB

(
∇hl

i
uθl+1(ĥl

j ,m
l
N (vj)

,xj)
)
V̂l+1

j . (13)

We call Cl
b ≜

∑
vj∈N (vi)\VB

(
∇hl

i
uθl+1(ĥl

j ,m
l
N (vj)

,xj)
)
V̂l+1

j the local message compensation in

the l-th layer in backward passes. For l ∈ [L], Vl
i is an approximation to Vl

i computed by Equation
(3). Similar to forward passes, the time complexity in backward passes is O(L(nmax|VB|d+ |VB|d2)),
where nmax is the maximum neighborhood size and L is the number of layers.

Algorithm 1 Local Message Compensation

1: Input: The learning rate η and the convex combi-
nation coefficients (βi)

n
i=1.

2: Partition V into B parts (Vb)
B
b=1

3: for k = 1, . . . , N do
4: Randomly sample Vbk from (Vb)

B
b=1

5: Initialize H
0,k

= Ĥ0,k = X
6: for l = 1, . . . , L do
7: Update H

l,k
Vbk

▷ (8)
8: Compute Ĥl,k

N (Vbk
)\Vbk

▷ (9) and (10)
9: end for

10: Initialize V
L,k

= V̂L,k = ∇HLL
11: for l = L− 1, . . . , 1 do
12: Update V

l,k
Vbk

▷ (11)
13: Compute V̂l,k

N (Vbk
)\Vbk

▷ (12) and (13)
14: end for
15: Compute g̃k

w and g̃k
θl , l ∈ [L] ▷ (6) and (7)

16: Update parameters by
17: wk = wk−1 − ηg̃k

w

18: θl,k = θl,k−1 − ηg̃k
θl , l ∈ [L]

19: end for

LMC additionally stores the historical
node embeddings H

l and auxiliary vari-
ables Vl for l ∈ [L]. As pointed out in (Fey
et al., 2021), we can store the majority
of historical values in RAM or hard drive
storage rather than GPU memory. Thus,
the active historical values in forward and
backward passes employ O(nmaxL|VB|d)
and O(nmaxL|VB|d) GPU memory, respec-
tively (see Appendix B). As the time and
memory complexity are independent of
the size of the whole graph, i.e., |V|, LMC
is scalable. We summarize the computa-
tional complexity in Appendix B.

Figure 1 shows the message passing mech-
anisms of GAS (Fey et al., 2021) and
LMC. Compared with GAS, LMC pro-
poses compensation messages between in-
batch nodes and their 1-hop neighbors si-
multaneously in forward and backward
passes. This corrects the biases of mini-
batch gradients and thus accelerates con-
vergence.

Algorithm 1 summarizes LMC. Unlike above, we add a superscript k for each value to indicate that it
is the value at the k-th iteration. At preprocessing step, we partition V into B parts (Vb)

B
b=1. At the k-

th training step, LMC first randomly samples a subgraph constructed by Vbk . Notice that we sample
more subgraphs to build a large graph in experiments whose convergence analysis is consistent with
that of sampling a single subgraph. Then, LMC updates the stored historical node embeddings Hl,k

Vbk

in the order of l = 1, . . . , L by Equations (8)–(10), and the stored historical auxiliary variables V
l,k
Vbk

in the order of l = L − 1, . . . , 1 by Equations (11)–(13). By the randomly updating, the historical
values get close to the exact up-to-date values. Finally, for l ∈ [L] and vj ∈ Vbk , by replacing hl,k

j ,
ml,k

N (vj)
and Vl,k

j in Equations (6) and (7) with h
l,k
j , ml,k

N (vj)
, and V

l,k
j , respectively, LMC computes

mini-batch gradients g̃w, g̃θ1 , . . . , g̃θL to update parameters w, θ1, . . . , θL.
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6 THEORETICAL ANALYSIS

In this section, we provide the theoretical analysis of LMC. Theorem 2 shows that the biases of
mini-batch gradients computed by LMC can tend to an arbitrarily small value by setting a proper
learning rate and convex combination coefficients. Then, Theorem 3 shows that LMC converges to
first-order stationary points of GNNs. We provide detailed proofs of the theorems in Appendix D.
In the theoretical analysis, we suppose that the following assumptions hold in this paper.

Assumption 1. Assume that (1) at the k-th iteration, a batch of nodes Vk
B is uniformly sampled from

V and the corresponding labeled node set Vk
LB = Vk

B∩VL is uniformly sampled from VL, (2) functions
fθl , ϕθl , ∇wL, ∇θlL, ∇wℓw, and ∇θluθl are γ-Lipschitz with γ > 1, ∀ l ∈ [L], (3) norms ∥Hl,k∥F ,
∥Hl,k∥F , ∥Ĥl,k∥F , ∥H̃l,k∥F , ∥Vl,k∥F , ∥Vl,k∥F , ∥V̂l,k∥F , ∥Ṽl,k∥F , ∥∇wL∥2, ∥∇θlL∥2, ∥g̃θl∥2, and
∥g̃w∥2 are bounded by G > 1, ∀ l ∈ [L], k ∈ N∗.

Theorem 2. Suppose that Assumption 1 holds, then with η = O(ε2) and βi = O(ε2), i ∈ [n], there
exists C > 0 and ρ ∈ (0, 1) such that

E[∥g̃w(w
k)−∇wL(wk)∥2] ≤ Cε+ Cρ

k−1
2 +Var(gw(w

k))
1
2 , ∀ k ∈ N∗,

E[∥g̃θl(θl,k)−∇θlL(θl,k)∥2] ≤ Cε+ Cρ
k−1
2 +Var(gθl(θl,k))

1
2 , ∀ l ∈ [L], k ∈ N∗.

Theorem 3. Suppose that Assumption 1 holds. Besides, assume that the optimal value L∗ =
infw,Θ L(w,Θ) is bounded by G. Then, with η = O(ε4), βi = O(ε4), i ∈ [n], and N = O(ε−6),
LMC ensures to find an ε-stationary solution such that E[∥∇w,ΘL(wR,ΘR)∥2] ≤ ε after running
for N iterations, where R is uniformly selected from [N ] and ΘR = (θl,R)Ll=1.

7 EXPERIMENTS

We introduce experimental settings in Section 7.1. We then evaluate the convergence and efficiency
of LMC in Sections 7.2 and 7.3. Finally, we conduct ablation studies about the proposed compen-
sations in Section 7.4. We run all experiments on a single GeForce RTX 2080 Ti (11 GB).

7.1 EXPERIMENTAL SETTINGS

Datasets. Some recent works (Hu et al., 2020) have indicated that many frequently-used graph
datasets are too small compared with graphs in real-world applications. Therefore, we evaluate LMC
on four large datasets, PPI, REDDIT , FLICKR(Hamilton et al., 2017), and Ogbn-arxiv (Hu et al.,
2020). These datasets contain thousands or millions of nodes/edges and have been widely used in
previous works (Fey et al., 2021; Zeng et al., 2020; Hamilton et al., 2017; Chiang et al., 2019; Chen
et al., 2018a;b). For more details, please refer to Appendix A.1.

Baselines and Implementation Details. In terms of prediction performance, our baselines in-
clude node-wise sampling methods (GraphSAGE (Hamilton et al., 2017) and VR-GCN (Chen et al.,
2018a)), layer-wise sampling method (FASTGCN (Chen et al., 2018b) and LADIES (Zou et al.,
2019)), subgraph-wise sampling methods (CLUSTER-GCN (Chiang et al., 2019), GRAPHSAINT
(Zeng et al., 2020), FM (Yu et al., 2022), and GAS (Fey et al., 2021)), and a precomputing method
(SIGN (Rossi et al., 2020)). By noticing that GAS and FM achieve the state-of-the-art prediction
performance (Table 1) among the baselines, we further compare the efficiency of LMC with GAS,
FM, and CLUSTER-GCN, another subgraph-wise sampling method using METIS partition. We im-
plement LMC, FM, and CLUSTER-GCN based on the codes and toolkits of GAS (Fey et al., 2021)
to ensure a fair comparison. For other implementation details, please refer to Appendix A.3.

Hyperparameters. To ensure a fair comparison, we follow the data splits, training pipeline, and
most hyperparameters in (Fey et al., 2021) except for the additional hyperparameters in LMC such
as βi. We use the grid search to find the best βi (see Appendix A.4 for more details).

7.2 LMC IS FAST WITHOUT SACRIFICING ACCURACY

Table 1 reports the prediction performance of LMC and the baselines. We report the mean and the
standard deviation by running each experiment five times for GAS, FM, and LMC. LMC, FM, and
GAS all resemble full-batch performance on all datasets while other baselines may fail, especially
on the FLICKR dataset. Moreover, LMC, FM, and GAS with deep GNNs, i.e., GCNII (Chen et al.,
2020) outperform other baselines on all datasets.
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Table 1: Prediction performance on large graph
datasets. OOM denotes the out-of-memory issue.
Bold font indicates the best result and underline
indicates the second best result.

# nodes 230K 57K 89K 169K
# edges 11.6M 794K 450K 1.2M

Method REDDIT PPI FLICKR ogbn-
arxiv

GRAPHSAGE 95.40 61.20 50.10 71.49
VR-GCN 94.50 85.60 — —
FASTGCN 93.70 — 50.40 —
LADIES 92.80 — — —
CLUSTER-GCN 96.60 99.36 48.10 —
GRAPHSAINT 97.00 99.50 51.10 —
SIGN 96.80 97.00 51.40 —

G
D GCN 95.43 97.58 53.73 71.64

GCNII OOM OOM 55.28 72.83

G
A

S GCN 95.35±0.01 98.91±0.03 53.44±0.11 71.54±0.19

GCNII 96.73±0.04 99.36±0.02 55.42±0.27 72.50±0.28

FM

GCN 95.27±0.03 98.91±0.01 53.48±0.17 71.49±0.33

GCNII 96.52±0.06 99.34±0.03 54.68±0.27 72.54±0.27

L
M

C GCN 95.44±0.02 98.87±0.04 53.80±0.14 71.44±0.23

GCNII 96.88±0.03 99.32±0.01 55.36±0.49 72.76±0.22

As LMC, FM, and GAS share the similar pre-
diction performance, we additionally compare
the convergence speed of LMC, FM, GAS, and
CLUSTER-GCN, another subgraph-wise sam-
pling method using METIS partition, in Figure
2 and Table 2. We use a sliding window to
smooth the convergence curve in Figure 2 as
the accuracy on test data is unstable. The solid
curves correspond to the mean, and the shaded
regions correspond to values within plus or mi-
nus one standard deviation of the mean. Table
2 reports the number of epochs, the runtime to
reach the full-batch accuracy in Table 1, and the
GPU memory. As shown in Table 2 and Figure
2a, LMC is significantly faster than GAS, espe-
cially with a speed-up of 2x on REDDIT. No-
tably, the test accuracy of LMC is more stable
than GAS, and thus the smooth test accuracy of
LMC outperforms GAS in Figure 2b. Although
GAS finally resembles full-batch performance
in Table 1 by selecting the best performance on the valid data, it may fail to resemble under small
batch sizes due to its unstable process (see Section 7.3). Another appealing feature of LMC is that
LMC shares comparable GPU memory costs with GAS, and thus LMC avoids the neighbor explo-
sion problem. FM is slower than other methods, as they additionally update historical embeddings
in the storage for the nodes outside the mini-batches. Please see Appendix E.2 for the comparison
in terms of training time per epoch.

Table 2: Efficiency of CLUSTER-GCN, GAS, FM, and LMC.

Dataset & GNN Epochs Runtime (s) Memory (MB)
CLUSTER GAS FM LMC CLUSTER GAS FM LMC CLUSTER GAS FM LMC

Ogbn-arxiv & GCN 211.0 176.0 152.4 124.4 108 79 115 55 424 452 460 557
FLICKR & GCN 379.2 389.4 400.0 334.2 127 117 181 85 310 375 380 376
REDDIT & GCN 239.0 372.4 400.0 166.8 516 790 2269 381 1193 1508 1644 1829
PPI & GCN 428.0 293.6 286.4 290.2 359 179 224 179 212 214 218 267

Ogbn-arxiv & GCNII — 234.8 373.6 197.4 — 218 381 178 — 453 454 568
FLICKR & GCNII — 352 400.0 356 — 465 576 475 — 396 402 468

To further illustrate the convergence of LMC, we compare the errors of mini-batch gradients
computed by CLUSTER, GAS, and LMC. At epoch training step, we record the relative errors
∥g̃θl −∇θlL∥2 / ∥∇θlL∥2, where ∇θlL is the full-batch gradient for the parameters θl at the l-th MP
layer and the g̃θl is a mini-batch gradient. To avoid the randomness of the full-batch gradient ∇θlL,
we set the dropout rate as zero. We report average relative errors during training in Figure 3. LMC
enjoys the smallest estimated errors in the experiments.
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Figure 2: Testing accuracy and training loss w.r.t. runtimes (s).
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Figure 3: The average relative estimated errors of mini-batch gradients computed by CLUSTER,
GAS, and LMC for GCN models.

7.3 LMC IS ROBUST IN TERMS OF BATCH SIZES
Table 3: Performance under different batch
sizes on the Ogbn-arxiv dataset.

Batch size GCN GCNII
GAS LMC GAS LMC

1 70.56 71.65 71.34 72.11
2 71.11 71.89 72.25 72.55
5 71.99 71.84 72.23 72.87

10 71.60 72.14 72.82 72.80

An appealing feature of mini-batch training methods
is that they can avoid the out-of-memory issue by de-
creasing the batch size. Thus, we evaluate the pre-
diction performance of LMC on Ogbn-arxiv datasets
with different batch sizes (numbers of clusters). We
conduct experiments under different sizes of sampled
clusters per mini-batch. We run each experiment with
the same epoch and search learning rates in the same
set. We report the best prediction accuracy in Table 3. LMC outperforms GAS under small batch
sizes (batch size = 1 or 2) and achieve comparable performance with GAS (batch size = 5 or 10).

7.4 ABLATION

The improvement of LMC is due to two parts: the compensation in forward passes Cl
f and the

compensation in back passes Cl
b. Compared with GAS, the compensation in forward passes Cl

f

additionally combines the incomplete up-to-date messages. Figure 4 shows the convergence curves
of LMC using both Cl

f and Cl
b (denoted by Cf&Cb), LMC using only Cl

f (denoted by Cf ), and
GAS on the Ogbn-arxiv dataset. Under small batch sizes, the improvement mainly is due to Cl

b and
the incomplete up-to-date messages in forward passes may hurt the performance. This is because
the mini-batch and the union of their neighbors are hard to contain most neighbors of out-of-batch
nodes when the batch size is small. Thus, the compensation in back passes Cl

b is the most im-
portant component by correcting the bias of the mini-batch gradients. Under large batch sizes, the
improvement is due to Cl

f , as the large batch sizes decrease the discarded messages and improve the
accuracy of the mini-batch gradients (see Table 7 in Appendix). Notably, Cl

b still slightly improves
the performance. We provide more ablation studies about βi in Appendix E.4.
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Figure 4: The improvement of the compensations on the Ogbn-arxiv dataset.

8 CONCLUSION

In this paper, we propose a novel subgraph-wise sampling method with a convergence guarantee,
namely Local Message Compensation (LMC). LMC uses efficient and effective compensations to
correct the biases of mini-batch gradients and thus accelerates convergence. We show that LMC
converges to first-order stationary points of GNNs. To the best of our knowledge, LMC is the first
subgraph-wise sampling method for GNNs with provable convergence. Experiments on large-scale
benchmark tasks demonstrate that LMC significantly outperforms state-of-the-art subgraph-wise
sampling methods in terms of efficiency.
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convolutional networks. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th In-
ternational Conference on Machine Learning, volume 119 of Proceedings of Machine Learn-
ing Research, pp. 1725–1735. PMLR, 13–18 Jul 2020. URL http://proceedings.mlr.
press/v119/chen20v.html.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
257–266, 2019.

Weilin Cong, Rana Forsati, Mahmut Kandemir, and Mehrdad Mahdavi. Minimal variance sam-
pling with provable guarantees for fast training of graph neural networks. In Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD
’20, pp. 1393–1403, New York, NY, USA, 2020. Association for Computing Machinery. ISBN
9781450379984. doi: 10.1145/3394486.3403192. URL https://doi.org/10.1145/
3394486.3403192.

Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. Weighted graph cuts without eigenvectors
a multilevel approach. IEEE Trans. Pattern Anal. Mach. Intell., 29(11):1944–1957, nov 2007.
ISSN 0162-8828. doi: 10.1109/TPAMI.2007.1115. URL https://doi.org/10.1109/
TPAMI.2007.1115.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural net-
works for social recommendation. In The World Wide Web Conference, WWW ’19, pp. 417–426,
2019.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Matthias Fey, Jan E. Lenssen, Frank Weichert, and Jure Leskovec. Gnnautoscale: Scalable and
expressive graph neural networks via historical embeddings. In Marina Meila and Tong Zhang
(eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pp. 3294–3304. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/fey21a.html.

J. Gostick, M. Aghighi, J. Hinebaugh, T. Tranter, M. A. Hoeh, H. Day, B. Spellacy, M. H. Sharqawy,
A. Bazylak, A. Burns, W. Lehnert, and A. Putz. Openpnm: A pore network modeling package.
Computing in Science & Engineering, 18(04):60–74, jul 2016. ISSN 1558-366X. doi: 10.1109/
MCSE.2016.49.

10

https://openreview.net/forum?id=rytstxWAW
http://proceedings.mlr.press/v119/chen20v.html
http://proceedings.mlr.press/v119/chen20v.html
https://doi.org/10.1145/3394486.3403192
https://doi.org/10.1145/3394486.3403192
https://doi.org/10.1109/TPAMI.2007.1115
https://doi.org/10.1109/TPAMI.2007.1115
https://proceedings.mlr.press/v139/fey21a.html


Published as a conference paper at ICLR 2023

Fangda Gu, Heng Chang, Wenwu Zhu, Somayeh Sojoudi, and Laurent El Ghaoui. Implicit graph
neural networks. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.),
Advances in Neural Information Processing Systems, volume 33, pp. 11984–11995. Curran As-
sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
8b5c8441a8ff8e151b191c53c1842a38-Paper.pdf.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems, pp. 1025–1035, 2017.

William L. Hamilton. Graph representation learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning, 14(3):1–159, 2020.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In Ad-
vances in Neural Information Processing Systems, pp. 22118–22133, 2020.

Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards fast graph
representation learning. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Cur-
ran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/
file/01eee509ee2f68dc6014898c309e86bf-Paper.pdf.

George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irreg-
ular graphs. SIAM Journal on scientific Computing, 20(1):359–392, 1998.

Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, and Patrick Riley. Molecular graph
convolutions: Moving beyond fingerprints. Journal of Computer-Aided Molecular Design, 30, 08
2016.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In ICLR (Poster). OpenReview.net, 2017.

Yao Ma and Jiliang Tang. Deep Learning on Graphs. Cambridge University Press, 2021.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Advances in Neural Information
Processing Systems 26, 2013.

N. P. Moloi and M. M. Ali. An iterative global optimization algorithm for potential energy mini-
mization. Comput. Optim. Appl., 30(2):119–132, 2005.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems 32, pp. 8024–8035, 2019.

Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 1532–1543, Doha, Qatar, October 2014. Association for Computational
Linguistics. doi: 10.3115/v1/D14-1162. URL https://aclanthology.org/D14-1162.

Emanuele Rossi, Fabrizio Frasca, Ben Chamberlain, Davide Eynard, Michael M. Bronstein, and
Federico Monti. Sign: Scalable inception graph neural networks. CoRR, abs/2004.11198, 2020.
URL https://arxiv.org/abs/2004.11198.

Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and Anshul Kanakia.
Microsoft academic graph: When experts are not enough. Quantitative Science Studies, 1(1):396–
413, 2020.

Zhihai Wang, Xijun Li, Jie Wang, Yufei Kuang, Mingxuan Yuan, Jia Zeng, Yongdong Zhang, and
Feng Wu. Learning cut selection for mixed-integer linear programming via hierarchical sequence
model, 2023. URL https://arxiv.org/abs/2302.00244.

11

https://proceedings.neurips.cc/paper/2020/file/8b5c8441a8ff8e151b191c53c1842a38-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/8b5c8441a8ff8e151b191c53c1842a38-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/01eee509ee2f68dc6014898c309e86bf-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/01eee509ee2f68dc6014898c309e86bf-Paper.pdf
https://aclanthology.org/D14-1162
https://arxiv.org/abs/2004.11198
https://arxiv.org/abs/2302.00244


Published as a conference paper at ICLR 2023

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of
The 33rd International Conference on Machine Learning, volume 48 of Proceedings of Machine
Learning Research, pp. 40–48, New York, New York, USA, 20–22 Jun 2016. PMLR. URL
https://proceedings.mlr.press/v48/yanga16.html.

Haiyang Yu, Limei Wang, Bokun Wang, Meng Liu, Tianbao Yang, and Shuiwang Ji. GraphFM:
Improving large-scale GNN training via feature momentum. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th
International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pp. 25684–25701. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.
press/v162/yu22g.html.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=BJe8pkHFwS.

Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal Kan-
nan, Viktor Prasanna, Long Jin, and Ren Chen. Decoupling the depth and scope of graph neural
networks. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in
Neural Information Processing Systems, 2021. URL https://openreview.net/forum?
id=_IY3_4psXuf.

Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Layer-
dependent importance sampling for training deep and large graph convolutional networks.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
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A MORE DETAILS ABOUT EXPERIMENTS

In this section, we introduce more details about our experiments, including datasets, training and
evaluation protocols, and implementations.

A.1 DATASETS

We evaluate LMC on four large datasets, PPI, REDDIT, FLICKR (Hamilton et al., 2017), and Ogbn-
arxiv (Hu et al., 2020). All of the datasets do not contain personally identifiable information or
offensive content. Table 4 shows the summary statistics of the datasets. Details about the datasets
are as follows.

• PPI contains 24 protein-protein interaction graphs. Each graph corresponds to a human tis-
sue. Each node indicates a protein with positional gene sets, motif gene sets and immuno-
logical signatures as node features. Edges represent interactions between proteins. The task
is to classify protein functions.

• REDDIT is a post-to-post graph constructed from REDDIT. Each node indicates a post and
each edge between posts indicates that the same user comments on both. The task is to
classify REDDIT posts into different communities based on (1) the GloVe CommonCrawl
word vectors (Pennington et al., 2014) of the post titles and comments, (2) the post’s scores,
and (3) the number of comments made on the posts.

• Ogbn-arxiv is a directed citation network between all Computer Science (CS) arXiv papers
indexed by MAG (Wang et al., 2020). Each node is an arXiv paper and each directed edge
indicates that one paper cites another one. The task is to classify unlabeled arXiv papers
into different primary categories based on labeled papers and node features, which are com-
puted by averaging word2vec (Mikolov et al., 2013) embeddings of words in papers’ title and
abstract.

• FLICKR categorizes types of images based on their descriptions and properties (Fey et al.,
2021; Zeng et al., 2020).

Table 4: Statistics of the datasets used in our experiments.

Dataset #Graphs #Classes Total #Nodes Total #Edges

PPI 24 121 56,944 793,632
REDDIT 1 41 232,965 11,606,919

Ogbn-arxiv 1 40 169,343 1,157,799
FLICKR 1 7 89,250 449,878

A.2 TRAINING AND EVALUATION PROTOCOLS

We run all the experiments on a single GeForce RTX 2080 Ti (11 GB). All the models are im-
plemented in Pytorch (Paszke et al., 2019) and PyTorch Geometric (Fey & Lenssen, 2019) based
on the official implementation of (Fey et al., 2021)1. The code of LMC is available on GitHub at
https://github.com/MIRALab-USTC/GNN-LMC.

Data Splitting. We use the data splitting strategies following previous works (Fey et al., 2021; Gu
et al., 2020).

A.3 IMPLEMENTATION DETAILS

A.3.1 NORMALIZATION TECHNIQUE

In Section 4.2 in the main text, we assume that the subgraph VB is uniformly sampled from V and
the corresponding set of labeled nodes VLB = VB ∩ VL is uniformly sampled from VL. To enforce

1https://github.com/rusty1s/pyg_autoscale. The owner does not mention the license.
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the assumption, we use the normalization technique to reweight Equations (6) and (7) in the main
text.

Suppose we partition the whole graph V into b parts {VBi}bi=1 and then uniformly sample c clus-
ters without replacement to construct subgraph VB. By the normalization technique, Equation (6)
becomes

gw(VB) =
b|VLB |
c|VL|

1

|VLB |
∑

vj∈VLB

∇wℓw(hj , yj), (14)

where b|VLB |
c|VL| is the corresponding weight. Similarly, Equation (7) becomes

gθ(VB) =
b|VB|
c|V|

|V|
|VB|

∑
vj∈VB

∇θu(hj ,mN (vj),xj)Vj , (15)

where b|VB|
c|V| is the corresponding weight.

A.3.2 INCORPORATING BATCH NORMALIZATION

We uniformly sample a mini-batch of nodes VB and generate the induced subgraph of N (VB). If we
directly feed the H

(l)
N (VB) to a batch normalization layer, the learned mean and standard deviation

of the batch normalization layer may be biased. Thus, LMC first feeds the embeddings of the mini-
batch H

(l)
VB

to a batch normalization layer and then feeds the embeddings outside the mini-batch

H
(l)
N (VB)\VB

to another batch normalization layer.

A.4 SELECTION OF βi

We select βi = score(i)α for each node vi, where α ∈ [0, 1] is a hyperparameter and score
is a function to measure the quality of the incomplete up-to-date messages. We search score in
a {f(x) = x2, f(x) = 2x − x2, f(x) = x, f(x) = 1;x = deglocal(i)/degglobal(i)}, where
degglobal(i) is the degree of node i in the whole graph and deglocal(i) is the degree of node i in the
subgraph induced by N (VB).

B COMPUTATIONAL COMPLEXITY

We summarize the computational complexity in Table 5, where nmax is the maximum of neighbor-
hoods, L is the number of message passing layers, VB is a set of nodes in a sampled mini-batch,
d is the embedding dimension, V is the set of nodes in the whole graph, and E is the set of edges
in the whole graph. As GD, backward SGD, CLUSTER, GAS, and LMC share the same memory
complexity of parameters θ(l), we omit it in Table 5.

Table 5: Time and memory complexity per gradient update of message passing based GNNs (e.g.
GCN (Kipf & Welling, 2017) and GCNII (Chen et al., 2020)).

Method Time Memory

GD and backward SGD O(L(|E|d+ |V|d2)) O(L|V|d)
CLUSTER (Chiang et al., 2019) O(L(nmax|VB|d+ |VB|d2)) O(L|VB|d)

GAS (Fey et al., 2021) O(L(nmax|VB|d+ |VB|d2)) O(nmaxL|VB|d)
LMC O(L(nmax|VB|d+ |VB|d2)) O(nmaxL|VB|d)

C ADDITIONAL RELATED WORK

C.1 MAIN DIFFERENCES BETWEEN LMC AND GRAPHFM

• First, LMC focuses on the convergence of subgraph-wise sampling methods, which is orthog-
onal to the idea of GraphFM-OB to alleviate the staleness problem of historical values. The

14
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advanced approach to alleviating the staleness problem of historical values can further improve
the performance of LMC and it is easy to establish provable convergence by the extension of
LMC.

• Second, LMC uses nodes in both mini-batches and their 1-hop neighbors to compute incomplete
up-to-date messages. In contrast, GraphFM-OB only uses nodes in the mini-batches. For the
nodes whose neighbors are contained in the union of the nodes in mini-batches and their 1-hop
neighbors, the aggregation results of LMC are exact, while those of GraphFM-OB are not.

• Third, by noticing that aggregation results are biased and the I/O bottleneck for the history ac-
cess, LMC does not update the historical values in the storage for nodes outside the mini-batches.
However, GraphFM-OB updates them based on the aggregation results.

D DETAILED PROOFS

Notations. Unless otherwise specified, C and C ′ with any superscript or subscript denotes constants.
We denote the learning rate by η.

In this section, we suppose that Assumption 1 holds.

D.1 PROOF OF THEOREM 1: UNBIASED MINI-BATCH GRADIENTS OF BACKWARD SGD

In this subsection, we give the proof of Theorem 1, which shows that the mini-batch gradients
computed by backward SGD are unbiased.

Proof. As VLB = VB ∩ VL is uniformly sampled from VL, the expectation of gw(VB) is

E[gw(VB)] = E[
1

|VLB |
∑

vj∈VLB

∇wℓw(hj , yj)]

= ∇wE[ℓw(hj , yj)]

= ∇wL.

As the subgraph VB is uniformly sampled from V , the expectation of gθl(VB) is

E[gθl(VB)] = E[
|V|
|VB|

∑
vj∈VB

(
∇θluθl(hl−1

j ,ml−1
N (vj)

,xj)
)
Vl

j ]

= |V|E[∇θluθl(hl−1
j ,ml−1

N (vj)
,xj)V

l
j ]

= |V| 1

|V|
∑
vj∈V

∇θluθl(hl−1
j ,ml−1

N (vj)
,xj)V

l
j

=
∑
vj∈V

∇θluθl(hl−1
j ,ml−1

N (vj)
,xj)V

l
j

= ∇θlL, ∀ l ∈ [L].

D.2 DIFFERENCES BETWEEN EXACT VALUES AT ADJACENT ITERATIONS

We first show that the differences between the exact values of the same layer in two adjacent itera-
tions can be bounded by setting a proper learning rate.

Lemma 1. Suppose that Assumption 1 holds. Given an L-layer GNN, for any ε > 0, by letting

η ≤ ε

(2γ)LG
< ε,

we have

∥Hl,k+1 −Hl,k∥F < ε, ∀ l ∈ [L], k ∈ N∗.

15
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Proof. Since η ≤ ε
(2γ)LG

< ε
γ(2γ)L−1G

, we have

∥H1,k+1 −H1,k∥F = ∥fθ1,k+1(X)− fθ1,k(X)∥F
≤ γ∥θ1,k+1 − θ1,k∥
≤ γ∥g̃θ1∥η

<
γGε

γ(2γ)L−1G

=
ε

(2γ)L−1
.

Then, because η ≤ ε
(2γ)LG

< ε
(2γ)L−1G

, we have

∥H2,k+1 −H2,k∥F = ∥fθ2,k+1(H1,k+1)− fθ2,k(H1,k)∥F
≤ ∥fθ2,k+1(H1,k+1)− fθ2,k(H1,k+1)∥F + ∥fθ2,k(H1,k+1)− fθ2,k(H1,k)∥F
≤ γ∥θ2,k+1 − θ2,k∥+ γ∥H1,k+1 −H1,k∥F
≤ γGη +

ε

2(2γ)L−2

<
ε

2(2γ)L−2
+

ε

2(2γ)L−2

=
ε

(2γ)L−2
.

And so on, we have

∥Hl,k+1 −Hl,k∥F <
ε

(2γ)L−l
, ∀ l ∈ [L], k ∈ N∗.

Since (2γ)L−l > 1, we have

∥Hl,k+1 −Hl,k∥F < ε, ∀ l ∈ [L], k ∈ N∗.

Lemma 2. Suppose that Assumption 1 holds. Given an L-layer GNN, for any ε > 0, by letting

η ≤ ε

(2γ)L−1G
< ε,

we have

∥Vl,k+1 −Vl,k∥F < ε, ∀ l ∈ [L], k ∈ N∗.

Proof. Since η ≤ ε
(2γ)L−1G

< ε
γ(2γ)L−2G

, we have

∥VL−1,k+1 −VL−1,k∥F = ∥ϕθL,k+1(∇HL)− ϕθL,k(∇HL)∥F
≤ γ∥θL,k+1 − θL,k∥
≤ γ∥g̃θL∥η

<
γGε

γ(2γ)L−2G

=
ε

(2γ)L−2
.

16
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Then, because η ≤ ε
(2γ)L−1G

< ε
(2γ)L−2G

, we have

∥VL−2,k+1 −VL−2,k∥F
= ∥ϕθL−1,k+1(VL−1,k+1)− ϕθL−1,k(VL−1,k)∥F
≤ ∥ϕθL−1,k+1(VL−1,k+1)− ϕθL−1,k(VL−1,k+1)∥F

+ ∥ϕθL−1,k(VL−1,k+1)− ϕθL−1,k(VL−1,k)∥F
≤ γ∥θL−1,k+1 − θL−1,k∥+ γ∥VL−1,k+1 −VL−1,k∥F
≤ γGη +

ε

2(2γ)L−3

<
ε

2(2γ)L−3
+

ε

2(2γ)L−3

=
ε

(2γ)L−3
.

And so on, we have

∥Vl,k+1 −Vl,k∥F <
ε

(2γ)l−1
, ∀ l ∈ [L], k ∈ N∗.

Since (2γ)l−1 > 1, we have

∥Vl,k+1 −Vl,k∥F < ε, ∀ l ∈ [L], k ∈ N∗.

D.3 HISTORICAL VALUES AND TEMPORARY VALUES

Suppose that we uniformly sample a mini-batch Vk
B ⊂ V at the k-th iteration and |Vk

B| = S. For
the simplicity of notations, we denote the temporary node embeddings and auxiliary variables in the
l-th layer by Ĥl,k and V̂l,k, respectively, where

Ĥl,k
i =

{
ĥl,k
i , vi ∈ N (Vk

B) \ Vk
B,

h
l,k

i , otherwise,

and

V̂l,k
i =

{
v̂l,k
i , vi ∈ N (Vk

B) \ Vk
B,

vl,k
i , otherwise.

We abbreviate the process that LMC updates the node embeddings and auxiliary variables of Vk
B in

the l-th layer at the k-th iteration as

H
l,k

Vk
B
= [fθl,k(Ĥl−1,k)]Vk

B
,

V
l,k

Vk
B
= [ϕθl+1,k(Ĥl+1,k)]Vk

B
.

For each vi ∈ Vk
B, the update process of vi in the l-th layer at the k-th iteration can be expressed by

h
l,k

i = fθl,k,i(Ĥ
l−1,k),

V
l,k

i = ϕθl+1,k,i(V̂
l+1,k),

where fθl,k,i and ϕθl+1,k,i are the components for node vi of fθl,k and ϕθl+1,k , respectively.

D.3.1 CONVEX COMBINATION COEFFICIENTS

We first focus on convex combination coefficients βi, i ∈ [n]. For the simplicity of analysis, we
assume βi = β for i ∈ [i]. The analysis of the case where (βi)

n
i=1 are different from each other is

the same.
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Lemma 3. Suppose that Assumption 1 holds. For any ε > 0, by letting

β ≤ ε

2G
, ∀ l ∈ [L], i ∈ [n],

we have

∥Ĥl,k −Hl,k∥F ≤ ∥Hl,k −Hl,k∥F + ε, ∀ l ∈ [L], k ∈ N∗.

Proof. Since Ĥl,k = (1− β)H
l,k

+ βH̃l,k, we have

∥Ĥl,k −Hl,k∥F = ∥(1− β)H
l,k

+ βH̃l,k − (1− β)Hl,k + βHl,k∥F
≤ (1− β)∥Hl,k −Hl,k∥F + β∥H̃l,k −Hl,k∥F
≤ ∥Hl,k −Hl,k∥F + 2βG.

Hence letting β ≤ ε
2G leads to

∥Ĥl,k −Hl,k∥F ≤ ∥Hl,k −Hl,k∥F + ε.

Lemma 4. Suppose that Assumption 1 holds. For any ε > 0, by letting

β ≤ ε

2G
, ∀ l ∈ [L], i ∈ [n],

we have

∥V̂l,k −Vl,k∥F ≤ ∥Vl,k −Vl,k∥F + ε.

Proof. Since Ĥl,k = (1− β)H
l,k

+ βH̃l,k, we have

∥Ĥl,k −Hl,k∥ = ∥(1− β)H
l,k

+ βH̃l,k − (1− β)Hl,k + βHl,k∥F
≤ (1− β)∥Hl,k −Hl,k∥F + β∥H̃l,k −Hl,k∥F
≤ ∥Hl,k −Hl,k∥F + 2βG.

Hence letting β ≤ ε
2G leads to

∥Ĥl,k −Hl,k∥F ≤ ∥Hl,k −Hl,k∥F + ε.

D.3.2 APPROXIMATION ERRORS OF HISTORICAL VALUES

Next, we focus on the approximation errors of historical node embeddings and auxiliary variables

dl,kh :=
(
E[∥Hl,k −Hl,k∥2F ]

) 1
2

, l ∈ [L],

dl,kv :=
(
E[∥Vl,k −Vl,k∥2F ]

) 1
2

, l ∈ [L− 1].

Lemma 5. For an L-layer GNN, suppose that Assumption 1 holds. Besides, we suppose that

1. (dl,1h )2 is bounded by G > 1, ∀ l ∈ [L],

2. there exists N ∈ N∗ such that

∥Ĥl,k −Hl,k∥F ≤ ∥Hl,k −Hl,k∥F +
1

N
2
3

, ∀ l ∈ [L], k ∈ N∗,

∥Hl,k −Hl,k−1∥F ≤ 1

N
2
3

, ∀ k ∈ N∗,
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then there exist constants C ′
∗,1, C ′

∗,2, and C ′
∗,3 that do not depend on k, l,N , and η, such that

(dl,k+1
h )2 ≤ C ′

∗,1η + C ′
∗,2ρ

k +
C ′

∗,3

N
2
3

, ∀ l ∈ [L], k ∈ N∗,

where ρ = n−S
n < 1, n = |V|, and S is number of sampled nodes at each iteration.

Proof. We have

(dl+1,k+1
h )2

= E[∥Hl+1,k+1 −Hl+1,k+1∥2F ]

= E[
n∑

i=1

∥hl+1,k+1

i − hl+1,k+1
i ∥2F ]

= E[
∑

vi∈Vk
B

∥fθl+1,k+1,i(Ĥ
l,k+1)− fθl+1,k+1,i(H

l,k+1)∥2F

+
∑

vi ̸∈Vk
B

∥hl+1,k

i − fθl+1,k+1,i(H
l,k+1)∥2F ]

= E[
S

n

n∑
i=1

∥fθl+1,k+1,i(Ĥ
l,k+1)− fθl+1,k+1,i(H

l,k+1)∥2F

+
n− S

n

n∑
i=1

∥hl+1,k

i − fθl+1,k+1,i(H
l,k+1)∥2F ]

≤ S

n

n∑
i=1

E[∥fθl+1,k+1,i(Ĥ
l,k+1)− fθl+1,k+1,i(H

l,k+1)∥2F ]

+
n− S

n

n∑
i=1

E[∥hl+1,k

i − fθl+1,k+1,i(H
l,k+1)∥2F ].

About the first term, for l ≥ 1, we have

E[∥fθl+1,k+1,i(Ĥ
l,k+1)− fθl+1,k+1,i(H

l,k+1)∥2F ]

≤ γ2E[∥Ĥl,k+1 −Hl,k+1∥2F ]

≤ γ2E[(∥Hl,k+1 −Hl,k+1∥F +
1

N
2
3

)2]

≤ 2γ2E[∥Hl,k+1 −Hl,k+1∥2F ] +
2γ2

N
4
3

= 2γ2(dl,k+1
h )2 +

2γ2

N
4
3

.

For l = 0, we have

E[∥fθl+1,k+1,i(Ĥ
l,k+1)− fθl+1,k+1,i(H

l,k+1)∥2F ]

= E[∥fθ1,k+1,i(Ĥ
0,k+1)− fθ1,k+1,i(H

0,k+1)∥2F ]
= E[∥fθ1,k+1,i(X)− fθ1,k+1,i(X)∥2F ]
= 0.
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About the second term, for l ≥ 1, we have

E[∥hl+1,k

i − fθl+1,k+1,i(H
l,k+1)∥2F ]

≤ E[∥hl+1,k

i − hl+1,k
i + hl+1,k

i − fθl+1,k+1,i(H
l,k+1)∥2F ]

≤ E[∥hl+1,k

i − hl+1,k
i ∥2F ] + E[∥hl+1,k

i − fθl+1,k+1,i(H
l,k+1)∥2F ]

+ 2E[⟨hl+1,k

i − hl+1,k
i ,hl+1,k

i − fθl+1,k+1,i(H
l,k+1)⟩]

≤ E[∥hl+1,k

i − hl+1,k
i ∥2F ]

+ E[∥hl+1,k
i − fθl+1,k+1,i(H

l,k) + fθl+1,k+1,i(H
l,k)− fθl+1,k+1,i(H

l,k+1)∥2F ]

+ 24E[⟨hl+1,k

i − hl+1,k
i ,hl+1,k

i − fθl+1,k+1,i(H
l,k+1)⟩]

≤ E[∥hl+1,k

i − hl+1,k
i ∥2F ]

+ 2E[∥hl+1,k
i − fθl+1,k+1,i(H

l,k)∥2F ] + 2E[∥fθl+1,k+1,i(H
l,k)− fθl+1,k+1,i(H

l,k+1)∥2F ]
+ 4GE[∥hl+1,k

i − fθl+1,k+1,i(H
l,k+1)∥F ]

≤ E[∥hl+1,k

i − hl+1,k
i ∥2F ]

+ 2γ2E[∥θl+1,k − θl+1,k+1∥2] + 2γ2E[∥Hl,k −Hl,k+1∥2F ]
+ 4GγE[∥θl+1,k − θl+1,k+1∥+ ∥Hl,k −Hl,k+1∥F ]

≤ E[∥hl+1,k

i − hl+1,k
i ∥2F ] + 2γ2G2η2 + 4G2γη +

2γ2

N
4
3

+
4Gγ

N
2
3

≤ E[∥hl+1,k

i − hl+1,k
i ∥2F ] + 2G2γ(γ + 2)η +

2γ(γ + 2G)

N
2
3

.

For l = 0, we have

E[∥hl+1,k

i − fθl+1,k+1,i(H
l,k+1)∥2F ]

≤ E[∥hl+1,k

i − hl+1,k
i + hl+1,k

i − fθl+1,k+1,i(H
l,k+1)∥2F ]

≤ E[∥hl+1,k

i − hl+1,k
i ∥2F ] + E[∥hl+1,k

i − fθl+1,k+1,i(H
l,k+1)∥2F ]

+ 2E[⟨hl+1,k

i − hl+1,k
i ,hl+1,k

i − fθl+1,k+1,i(H
l,k+1)⟩]

≤ E[∥hl+1,k

i − hl+1,k
i ∥2F ]

+ E[∥hl+1,k
i − fθl+1,k+1,i(H

l,k) + fθl+1,k+1,i(H
l,k)− fθl+1,k+1,i(H

l,k+1)∥2F ]

+ 2E[⟨hl+1,k

i − hl+1,k
i ,hl+1,k

i − fθl+1,k+1,i(H
l,k+1)⟩]

≤ E[∥hl+1,k

i − hl+1,k
i ∥2F ]

+ 2E[∥hl+1,k
i − fθl+1,k+1,i(H

l,k)∥2F ] + 2E[∥fθl+1,k+1,i(H
l,k)− fθl+1,k+1,i(H

l,k+1)∥2F ]
+ 4GE[∥hl+1,k

i − fθl+1,k+1,i(H
l,k+1)∥F ]

≤ E[∥hl+1,k

i − hl+1,k
i ∥2F ] + 2γ2E[∥θl+1,k − θl+1,k+1∥2] + 4GγE[∥θl+1,k − θl+1,k+1∥]

≤ E[∥hl+1,k

i − hl+1,k
i ∥2F ] + 2γ2G2η2 + 4G2γη,

≤ E[∥hl+1,k

i − hl+1,k
i ∥2F ] + 2G2γ(γ + 2)η + 4G2γη.

Hence we have

(dl+1,k+1
h )2 ≤ (n− S)

n
(dl+1,k

h )2 + 2(n− S)γ(γ + 2)G2η

+

{
0, l = 0,

2γ2S(dl,k+1
h )2 + 4nγ(γ+G)

N
2
3

, l ≥ 1.
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Let ρ = n−S
n < 1. For l = 0, we have

(d1,k+1
h )2 − 2(n− S)γ(γ + 2)G2η

1− ρ
≤ ρ((d1,kh )2 − 2(n− S)γ(γ + 2)G2η

1− ρ
)

≤ ρ2((d1,k−1
h )2 − 2(n− S)γ(γ + 2)G2η

1− ρ
)

≤ · · ·

≤ ρk((d1,1h )2 − 2(n− S)γ(γ + 2)G2η

1− ρ
)

≤ ρkG,

which leads to

(d1,k+1
h )2 ≤ 2(n− S)γ(γ + 2)G2

1− ρ
η + ρkG = C ′

1,1η + ρkG.

Then, for l = 1 we have

(d2,k+1
h )2 ≤ ρ(d2,kh )2 + C2,1η + C2,2ρ

k +
C2,3

N
2
3

,

where C2,1, C2,2, and C2,3 are all constants. Hence we have

(d2,k+1
h )2 −

C2,1η + C2,2ρ
k +

C2,3

N
2
3

1− ρ
≤ ρ((d2,kh )2 −

C2,1η + C2,2ρ
k +

C2,3

N
2
3

1− ρ
)

≤ · · ·

≤ ρk((d2,1h )2 −
C2,1η + C2,2ρ

k +
C2,3

N
2
3

1− ρ
)

≤ ρkG,

which leads to

(d2,k+1
h )2 ≤ C ′

2,1η + C ′
2,2ρ

k +
C ′

2,3

N
2
3

.

And so on, there exist constants C ′
∗,1, C ′

∗,2, and C ′
∗,3 that are independent with η, k, l, N such that

(dl,k+1
h )2 ≤ C ′

∗,1η + C ′
∗,2ρ

k +
C ′

∗,3

N
2
3

, ∀ l ∈ [L], k ∈ N∗.

Lemma 6. For an L-layer GNN, suppose that Assumption 1 holds. Besides, we suppose that

1. (dl,1h )2 is bounded by G > 1, ∀ l ∈ [L],

2. there exists N ∈ N∗ such that

∥V̂l,k −Vl,k∥F ≤ ∥Vl,k −Vl,k∥F +
1

N
2
3

, ∀ l ∈ [L], k ∈ N∗,

∥Vl,k −Vl,k−1∥F ≤ 1

N
2
3

, ∀ k ∈ N∗,

then there exist constants C ′
∗,1, C ′

∗,2, and C ′
∗,3 that are independent with k, l, ε∗, and η, such that

(dl,k+1
v )2 ≤ C ′

∗,1η + C ′
∗,2ρ

k +
C ′

∗,3

N
2
3

, ∀ l ∈ [L], k ∈ N∗,

where ρ = n−S
n < 1, n = |V|, and S is number of sampled nodes at each iteration.

Proof. Similar to the proof of Lemma 5.
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D.4 PROOF OF THEOREM 2: APPROXIMATION ERRORS OF MINI-BATCH GRADIENTS

In this subsection, we focus on the mini-batch gradients computed by LMC, i.e.,

g̃w(w
k;Vk

B) =
1

|Vk
L|

∑
vj∈Vk

L

∇wℓwk(h
k

j , yj)

and

g̃θl(θl,k;Vk
B) =

|V|
|Vk

B|
∑

vj∈Vk
B

(
∇θluθl,k(h

l−1,k

j ,ml−1,k
N (vj)

,xj)
)
V

l,k

j , l ∈ [L],

where Vk
B is the sampled mini-batch and Vk

LB
is the corresponding labeled node set at the k-th

iteration. We denote the mini-batch gradients computed by backward SGD by

gw(w
k;Vk

B) =
1

|Vk
L|

∑
vj∈Vk

L

∇wℓwk(hk
j , yj)

and

gθl(θl,k;Vk
B) =

|V|
|Vk

B|
∑

vj∈Vk
B

(
∇θluθl,k(hl−1,k

j ,ml−1,k
N (vj)

,xj)
)
Vl,k

j , l ∈ [L].

Below, we omit the sampled subgraph Vk
B and simply write the mini-batch gradients as g̃w(w

k),
g̃θl(θl,k), gw(w

k), and gθl(θl,k). The approximation errors of gradients are denoted by

∆k
w ≜ g̃w(w

k)−∇wL(wk)

and

∆k
θl ≜ g̃θl(θl,k)−∇θlL(θl,k).

We restate Theorem 2 as follows.
Theorem 4. For any k ∈ N∗ and l ∈ [L], the expectations of ∥∆k

w∥22 ≜ ∥g̃w(w
k) − ∇wL(wk)∥22

and ∥∆k
θl∥22 ≜ ∥g̃θl(θl,k)−∇θlL(θl,k)∥22 have the bias-variance decomposition

E[∥∆k
w∥22] = (Bias(g̃w(w

k)))2 +Var(gw(w
k)),

E[∥∆k
θl∥22] = (Bias(g̃θl(θl,k)))2 +Var(gθl(θl,k)),

where

Bias(g̃w(w
k)) =

(
E[∥g̃w(w

k)− gw(w
k)∥22]

) 1
2 ,

Var(gw(w
k)) = E[∥gw(w

k)−∇wL(wk)∥22],

Bias(g̃θl(θl,k)) =
(
E[∥g̃θl(θl,k)− gθlL(θl,k)∥22]

) 1
2 ,

Var(gθl(θl,k)) = E[∥gθl(θl,k)−∇θlL(θl,k)∥22].
Suppose that Assumption 1 holds, then with η = O(ε2) and βi = O(ε2), i ∈ [n], there exist C > 0
and ρ ∈ (0, 1) such that for any k ∈ N∗ and l ∈ [L], the bias terms can be bounded as

Bias(g̃w(w
k)) ≤ Cε+ Cρ

k−1
2 ,

Bias(g̃θl(θl,k)) ≤ Cε+ Cρ
k−1
2 .

Hence we have

E[∥∆k
w∥2] ≤ Cε+ Cρ

k−1
2 +Var(gw(w

k))
1
2 ,

E[∥∆k
θl∥2] ≤ Cε+ Cρ

k−1
2 +Var(gθl(θl,k))

1
2 .

Lemma 7. Suppose that Assumption 1 holds. For any k ∈ N∗, the difference between g̃w(w
k) and

gw(w
k) can be bounded as

∥g̃w(w
k)− gw(w

k)∥2 ≤ γ∥HL,k −HL,k∥F .
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Proof. We have

∥g̃w(w
k)− gw(w

k)∥2 =
1

|Vk
L|
∥

∑
vj∈Vk

L

∇wℓwk(h
L,k

j , yj)−∇wℓwk(hL,k
j , yj)∥2

≤ 1

|Vk
L|

∑
vj∈Vk

L

∥∇wℓwk(h
L,k

j , yj)−∇wℓwk(hL,k
j , yj)∥2

≤ γ

|Vk
L|

∑
vj∈Vk

L

∥hL,k

j − hL,k
j ∥2

≤ γ

|Vk
L|

∑
vj∈Vk

L

∥HL,k −HL,k∥F

=
γ

|Vk
L|

· |Vk
L| · ∥H

L,k −HL,k∥F

= γ∥HL,k −HL,k∥F

Lemma 8. Suppose that Assumption 1 holds. For any k ∈ N∗ and l ∈ [L], the difference between
g̃θl(θl,k) and gθl(θl,k) can be bounded as

∥g̃θl(θl,k)− gθl(θl,k)∥2 ≤ |V|G∥Vl,k −Vl,k∥F + |V|Gγ∥Hl,k −Hl,k∥F .

Proof. As ∥Aa−Bb∥2 ≤ ∥A∥F ∥a−b∥2+∥A−B∥F ∥b∥2, we can bound ∥g̃θl(θl,k)−gθl(θl,k)∥2
by

∥g̃θl(θl,k)− gθl(θl,k)∥2

≤ |V|
|Vk

B|
∑

vi∈Vk
B

∥
(
∇θluθl,k(h

l−1,k

j ,ml−1,k
N (vj)

,xj)
)
V

l,k

j −
(
∇θluθl,k(hl−1,k

j ,ml−1,k
N (vj)

,xj)
)
Vl,k

j ∥2

≤ |V| max
vi∈Vk

B

∥
(
∇θluθl,k(h

l−1,k

j ,ml−1,k
N (vj)

,xj)
)
V

l,k

j −
(
∇θluθl,k(hl−1,k

j ,ml−1,k
N (vj)

,xj)
)
Vl,k

j ∥2

≤ |V| max
vi∈Vk

B

{∥∇θluθl,k(h
l−1,k

j ,ml−1,k
N (vj)

,xj)∥F ∥V
l,k

j −Vl,k
j ∥2

+ ∥∇θluθl,k(h
l−1,k

j ,ml−1,k
N (vj)

,xj)−∇θluθl,k(hl−1,k
j ,ml−1,k

N (vj)
,xj)∥F ∥Vl,k

j ∥2}

≤ |V|G∥Vl,k −Vl,k∥F + |V|Gγ∥Hl,k −Hl,k∥F .

Lemma 9. For an L-layer ConvGNN, suppose that Assumption 1 holds. For any N ∈ N∗, by letting

η ≤ 1

(2γ)LG

1

N
2
3

= O(
1

N
2
3

)

and

βi ≤
1

2G

1

N
2
3

= O(
1

N
2
3

), i ∈ [n],

there exists G2,∗ > 0 and ρ ∈ (0, 1) such that for any k ∈ N∗ we have

E[∥∆k
w∥22] = (Bias(g̃w(w

k)))2 +Var(gw(w
k)),

E[∥∆k
θl∥22] = (Bias(g̃θl(θl,k)))2 +Var(gθl(θl,k)),

where
Var(gw(w

k)) = E[∥gw(w
k)−∇wL(wk)∥22],

Bias(g̃w(w
k)) =

(
E[∥g̃w(w

k)− gw(w
k)∥22]

) 1
2 ,

Var(gθl(θl,k)) = E[∥gθl(θl,k)−∇θlL(θl,k)∥22],

Bias(g̃θl(θl,k)) =
(
E[∥g̃θl(θl,k)− gθlL(θl,k)∥22]

) 1
2
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and

Bias(g̃w(w
k)) ≤ G2,∗(η

1
2 + ρ

k−1
2 +

1

N
1
3

),

Bias(g̃θl(θl,k)) ≤ G2,∗(η
1
2 + ρ

k−1
2 +

1

N
1
3

).

Proof. By Lemmas 1 and 2 we know that

∥Hl,k+1 −Hl,k∥F <
1

N
2
3

, ∀ l ∈ [L], k ∈ N∗,

∥Vl,k+1 −Vl,k∥F <
1

N
2
3

, ∀ l ∈ [L], k ∈ N∗.

By Lemmas 3 and 4 we know that for any k ∈ N∗ and l ∈ [L] we have

∥Ĥl,k −Hl,k∥F ≤ ∥Hl,k −Hl,k∥F +
1

N
2
3

and

∥V̂l,k −Vl,k∥F ≤ ∥Vl,k −Vl,k∥F +
1

N
2
3

.

Thus, by Lemmas 5 and 6 we know that there exist C ′
∗,1, C ′

∗,2, and C ′
∗,3 that do not depend on

k, l, η,N such that for ∀ l ∈ [L] and k ∈ N∗ hold

dl,kh ≤

√
C ′

∗,1η + C ′
∗,2ρ

k−1 +
C ′

∗,3

N
2
3

≤
√
C ′

∗,1η
1
2 +

√
C ′

∗,2ρ
k−1
2 +

√
C ′

∗,3
1

N
1
3

and

dl,kv ≤

√
C ′

∗,1η + C ′
∗,2ρ

k−1 +
C ′

∗,3

N
2
3

≤
√
C ′

∗,1η
1
2 +

√
C ′

∗,2ρ
k−1
2 +

√
C ′

∗,3
1

N
1
3

.

We can decompose ∥∆k
w∥22 as

∥∆k
w∥22

= ∥g̃w(w
k)−∇wL(wk)∥22

= ∥g̃w(w
k)− gw(w

k) + gw(w
k)−∇wL(wk)∥22

= ∥g̃w(w
k)− gw(w

k)∥22 + ∥gw(w
k)−∇wL(wk)∥22

+ 2⟨∥g̃w(w
k)− gw(w

k),gw(w
k)−∇wL(wk)⟩.

We take expectation of both sides of the above expression, leading to

E[∥∆k
w∥22] = (Bias(g̃w(w

k)))2 +Var(gw(w
k)), (16)

where

Bias(g̃w(w
k)) =

(
E[∥g̃w(w

k)− gw(w
k)∥22]

) 1
2 ,

Var(gw(w
k)) = E[∥gw(w

k)−∇wL(wk)∥22]

as

E[⟨g̃w(w
k)− gw(w

k),gw(w
k)−∇wL(wk)⟩] = 0.
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By Lemma 7, we can bound the bias term as

Bias(g̃w(w
k)) =

(
E[∥g̃w(w

k)− gw(w
k)∥22]

) 1
2

≤
(
γ2E[∥HL,k −HL,k∥2F ]

) 1
2

= γ · dL,k
h

≤ γ(
√

C ′
∗,1η

1
2 +

√
C ′

∗,2ρ
k−1
2 +

√
C ′

∗,3
1

N
1
3

)

≤ G2,1(η
1
2 + ρ

k−1
2 +

1

N
1
3

), (17)

where G2,1 = γmax{
√

C ′
∗,1,

√
C ′

∗,2,
√

C ′
∗,3}.

Similar to Eq. equation 16, we can decompose E[∥∆k
θl∥22] as

E[∥∆k
θl∥22] = (Bias(g̃θl(θl,k)))2 +Var(gθl(θl,k)),

where

Bias(g̃θl(θl,k)) =
(
E[∥g̃θl(θl,k)− gθl(θl,k)∥22]

) 1
2 ,

Var(gθl(θl,k)) = E[∥gθl(θl,k)−∇θl(θl,k))∥22].

By Lemma 8, we can bound the bias term as

Bias(g̃θl(θl,k)) =
(
E[∥g̃θl(θl,k)− gθl(θl,k)∥22]

) 1
2

≤ (2|V|2G2E[∥Vl,k −Vl,k∥2F ]

+ 2|V|2G2γ2E[∥Hl,k −Hl,k∥2F ])
1
2

≤
√
2|V|Gdl,kv +

√
2|V|Gγdl,kh

≤ G2,2(η
1
2 + ρ

k−1
2 +

1

N
1
3

), (18)

where G2,2 =
√
2|V|G(1 + γ)max{

√
C ′

∗,1,
√
C ′

∗,2,
√

C ′
∗,3}.

Let G2,∗ = max{G2,1, G2,2}, then we have

Bias(g̃w(w
k)) ≤ G2,∗(η

1
2 + ρ

k−1
2 +

1

N
1
3

),

Bias(g̃θl(θl,k)) ≤ G2,∗(η
1
2 + ρ

k−1
2 +

1

N
1
3

).

By letting ε = 1

N
1
3

and C = 2G2,∗, we have

Bias(g̃w(w
k)) ≤ Cε+ Cρ

k−1
2 ,

Bias(g̃θl(θl,k)) ≤ Cε+ Cρ
k−1
2 ,

which leads to

E[∥∆k
w∥2] ≤

(
E[∥∆k

w∥22]
) 1

2

≤
(
(Bias(g̃w(w

k)))2 +Var(gw(w
k))

) 1
2

≤ Bias(g̃w(w
k)) + Var(gw(w

k))
1
2

≤ Cε+ Cρ
k−1
2 +Var(gw(w

k))
1
2
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and

E[∥∆k
θl∥2] ≤

(
E[∥∆k

θl∥22]
) 1

2

≤
(
(Bias(g̃θl(θl,k)))2 +Var(gθl(θl,k))

) 1
2

≤ Bias(g̃θl(θl,k)) + Var(gθl(θl,k))
1
2

≤ Cε+ Cρ
k−1
2 +Var(gθl(θl,k))

1
2 .

Theorem 2 and Theorem 4 follow immediately.

D.5 PROOF OF THEOREM 3: CONVERGENCE GUARANTEES

In this subsection, we give the convergence guarantees of LMC. We first give sufficient conditions
for convergence.
Lemma 10. Suppose that function f : Rn → R is continuously differentiable. Consider an opti-
mization algorithm with any bounded initialization x1 and an update rule in the form of

xk+1 = xk − ηd(xk),

where η > 0 is the learning rate and d(xk) is the estimated gradient that can be seen as a stochastic
vector depending on xk. Let the estimation error of the gradient be ∆k = d(xk)−∇f(xk). Suppose
that

1. the optimal value f∗ = infx f(x) is bounded;

2. the gradient of f is γ-Lipschitz, i.e.,

∥∇f(y)−∇f(x)∥2 ≤ γ∥y − x∥2, ∀x,y ∈ Rn;

3. there exists G0 > 0 that does not depend on η such that

E[∥∆k∥22] ≤ G0, ∀ k ∈ N∗;

4. there exists N ∈ N∗ and ρ ∈ (0, 1) that do not depend on η such that

|E[⟨∇f(xk),∆k⟩]| ≤ G0(η
1
2 + ρ

k−1
2 +

1

N
1
3

), ∀ k ∈ N∗,

where G0 is the same constant as that in Condition 3,

then by letting η = min{ 1
γ ,

1

N
2
3
}, we have

E[∥∇f(xR)∥22] ≤
2(f(x1)− f∗ +G0)

N
1
3

+
γG0

N
2
3

+
G0

N(1−√
ρ)

= O(
1

N
1
3

),

where R is chosen uniformly from [N ].

Proof. As the gradient of f is γ-Lipschitz, we have

f(y) = f(x) +

∫ y

x

∇f(z) dz

= f(x) +

∫ 1

0

⟨∇f(x+ t(y − x)),y − x⟩dt

= f(x) + ⟨∇f(x),y − x⟩+
∫ 1

0

⟨∇f(x+ t(y − x))−∇f(x),y − x⟩dt

≤ f(x) + ⟨∇f(x),y − x⟩+
∫ 1

0

∥∇f(x+ t(y − x))−∇f(x)∥2∥y − x∥2 dt

≤ f(x) + ⟨∇f(x),y − x⟩+
∫ 1

0

γt∥y − x∥22 dt

≤ f(x) + ⟨∇f(x),y − x⟩+ γ

2
∥y − x∥22,
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Then, we have

f(xk+1)

≤ f(xk) + ⟨∇f(xk),xk+1 − xk⟩+ γ

2
∥xk+1 − xk∥22

= f(xk)− η⟨∇f(xk),d(xk)⟩+ η2γ

2
∥d(xk)∥22

= f(xk)− η⟨∇f(xk),∆k⟩ − η∥∇f(xk)∥22 +
η2γ

2
(∥∆k∥22 + ∥∇f(xk)∥22 + 2⟨∆k,∇f(xk)⟩)

= f(xk)− η(1− ηγ)⟨∇f(xk),∆k⟩ − η(1− ηγ

2
)∥∇f(xk)∥22 +

η2γ

2
∥∆k∥22.

By taking expectation of both sides, we have

E[f(xk+1)]

≤ E[f(xk)]− η(1− ηγ)E[⟨∇f(xk),∆k⟩]− η(1− ηγ

2
)E[∥∇f(xk)∥22] +

η2γ

2
E[∥∆k∥22].

By summing up the above inequalities for k ∈ [N ] and dividing both sides by Nη(1− ηγ
2 ), we have∑N

k=1 E[∥∇f(xk)∥22]
N

≤ f(x1)− E[f(xN )]

Nη(1− ηγ
2 )

+
ηγ

2− ηγ

∑N
k=1 E[∥∆k∥22]

N
− (1− ηγ)

(1− ηγ
2 )

∑N
k=1 E[⟨∇f(xk),∆k⟩]

N

≤ f(x1)− f∗

Nη(1− ηγ
2 )

+
ηγ

2− ηγ

∑N
k=1 E[∥∆k∥22]

N
+

∑N
k=1 |E[⟨∇f(xk),∆k⟩]|

N
,

where the second inequality comes from ηγ > 0 and f(xk) ≥ f∗. According to the above condi-
tions, we have∑N

k=1 E[∥∇f(xk)∥22]
N

≤ f(x1)− f∗

Nη(1− ηγ
2 )

+
ηγ

2− ηγ
G0 +G0

N∑
k=1

η
1
2 + ρ

k−1
2

N
+

G0

N
1
3

≤ f(x1)− f∗

Nη(1− ηγ
2 )

+
ηγ

2− ηγ
G0 + η

1
2G0 +

G0

N

∞∑
k=1

ρ
k−1
2 +

G0

N
1
3

=
f(x1)− f∗

Nη(1− ηγ
2 )

+
ηγ

2− ηγ
G0 + η

1
2G0 +

G0

N(1−√
ρ)

+
G0

N
1
3

.

Notice that

E[∥∇f(xR)∥22] = ER[E∥[∇f(xR)∥22 | R]] =

∑N
k=1 E[∥∇f(xk)∥22]

N
,

where R is uniformly chosen from [N ], hence we have

E[∥∇f(xR)∥22] ≤
f(x1)− f∗

Nη(1− ηγ
2 )

+
ηγ

2− ηγ
G0 + η

1
2G0 +

G0

N(1−√
ρ)

+
G0

N
1
3

.

By letting η = min{ 1
γ ,

1

N
2
3
}, we have

E[∥∇f(xR)∥22] ≤
2(f(x1)− f∗)

N
1
3

+
γG0

N
2
3

+
G0

N
1
3

+
G0

N(1−√
ρ)

+
G0

N
1
3

≤ 2(f(x1)− f∗ +G0)

N
1
3

+
γG0

N
2
3

+
G0

N(1−√
ρ)

= O(
1

N
1
3

).

27



Published as a conference paper at ICLR 2023

Given an L-layer GNN, forllowing (Chen et al., 2018a), we directly assume that:

1. the optimal value

L∗ = inf
w,θ1,...,θL

L

is bounded by G > 1;
2. the gradients of L with respect to parameters w and θl, i.e.,

∇wL, ∇θlL

are γ-Lipschitz for ∀l ∈ [L].

To show the convergence of LMC by Lemma 10, it suffices to show that

3. there exists G1 > 0 that does not depend on η such that

E[∥∆k
w∥22] ≤ G1, ∀ k ∈ N∗,

E[∥∆k
θl∥22] ≤ G1, ∀ l ∈ [L], k ∈ N∗;

4. for any N ∈ N∗, there exist G2 > 0 and ρ ∈ (0, 1) such that

|E[⟨∇wL,∆k
w⟩]| ≤ G2(η

1
2 + ρ

k−1
2 +

1

N
1
3

), ∀ k ∈ N∗,

|E[⟨∇θlL,∆k
θl⟩]| ≤ G2(η

1
2 + ρ

k−1
2 +

1

N
1
3

), ∀ l ∈ [L], k ∈ N∗

by letting

η ≤ 1

(2γ)LG

1

N
2
3

= O(
1

N
2
3

)

and

βi ≤
1

2G

1

N
2
3

= O(
1

N
2
3

), i ∈ [n].

Lemma 11. Suppose that Assumption 1 holds, then

E[∥∆k
w∥22] ≤ G1 ≜ 4G2, ∀ k ∈ N∗,

E[∥∆k
θl∥22] ≤ G1 ≜ 4G2, ∀ l ∈ [L], k ∈ N∗.

Proof. We have

E[∥∆k
w∥22] = E[∥g̃w(w

k)−∇wL(wk)∥22]
≤ 2(E[∥g̃w(w

k)∥22] + E[∥∇wL(wk)∥22])
≤ 4G2

and

E[∥∆k
θl∥22] = E[∥g̃θl(θl,k)−∇θlL(θl,k)∥22]

≤ 2(E[∥g̃θl(θl,k)∥22] + E[∥∇θlL(θl,k)∥22])
≤ 4G2.

Lemma 12. Suppose that Assumption 1 holds. For any N ∈ N∗, there exist G2 > 0 and ρ ∈ (0, 1)
such that

|E[⟨∇wL,∆k
w⟩]| ≤ G2(η

1
2 + ρ

k−1
2 +

1

N
1
3

), ∀ k ∈ N∗,

|E[⟨∇θlL,∆k
θl⟩]| ≤ G2(η

1
2 + ρ

k−1
2 +

1

N
1
3

), ∀ l ∈ [L], k ∈ N∗
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by letting

η ≤ 1

(2γ)LG

1

N
2
3

= O(
1

N
2
3

)

and

βi ≤
1

2G

1

N
2
3

= O(
1

N
2
3

), i ∈ [n].

Proof. By Eqs. (17) and (18) we know that there exists G2,∗ such that for any k ∈ N∗ we have

E[∥g̃w(w
k)− gw(w

k)∥2] ≤
(
E[∥g̃w(w

k)− gw(w
k)∥22]

) 1
2

≤ G2,∗(η
1
2 + ρ

k−1
2 +

1

N
1
3

)

and

E[∥g̃θl(θl,k)− gθl(θl,k)∥2] ≤
(
E[∥g̃θl(θl,k)− gθl(θl,k)∥22]

) 1
2

≤ G2,∗(η
1
2 + ρ

k−1
2 +

1

N
1
3

),

where ρ = n−S
n < 1 is a constant. Hence

|E[⟨∇wL,∆k
w⟩]| = |E[⟨∇wL, g̃w(w

k)−∇wL(wk)⟩]|
= |E[⟨∇wL, g̃w(w

k)− gw(w
k)⟩]|

≤ E[∥∇wL∥2∥g̃w(w
k)− gw(w

k)∥2]
≤ GE[∥g̃w(w

k)− gw(w
k)∥2],

≤ G2(η
1
2 + ρ

k−1
2 +

1

N
1
3

)

and

|E[⟨∇θlL,∆k
θl⟩]| = |E[⟨∇θlL, g̃θl(θl,k)−∇θlL(θl,k)⟩]|

= |E[⟨∇θlL, g̃θl(θl,k)− gθl(θl,k)⟩]|
≤ E[∥∇θlL∥2∥g̃θl(θl,k)− gθl(θl,k)∥2]
≤ GE[∥g̃θl(θl,k)− gθl(θl,k)∥2]

≤ G2(η
1
2 + ρ

k−1
2 +

1

N
1
3

),

where G2 = GG2,∗.

According to Lemmas 11 and 12, the conditions in Lemma 10 hold. By letting

ε =

(
2(f(x1)− f∗ +G0)

N
1
3

+
γG0

N
2
3

+
G0

N(1−√
ρ)

) 1
2

= O(
1

N
1
6

),

Theorem 3 follows immediately.

E MORE EXPERIMENTS

E.1 PERFORMANCE ON SMALL DATASETS

Figure 5 reports the convergence curves GD, GAS, and LMC for GCN on three small datasets, i.e.,
Cora, Citeseer, and PubMed from Planetoid (Yang et al., 2016). LMC is faster than GAS, especially
on the CiteSeer and PubMed datasets. Notably, the key bottleneck on the small datasets is graph
sampling rather than forward and backward passes. Thus, GD is faster than GAS and LMC, as it
avoids graph sampling by directly using the whole graph.
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Figure 5: Testing accuracy w.r.t. runtimes (s).

E.2 COMPARISON IN TERMS OF TRAINING TIME PER EPOCH

We evaluate the training time per epoch of CLUSTER, GAS, FM, and LMC in Table 6. Compared
with GAS, LMC additionally accesses historical auxiliary variables. Inspired by GAS (Fey et al.,
2021), we use the concurrent mini-batch execution to asynchronously access historical auxiliary
variables. Moreover, from the convergence analysis of LMC, we can sample clusters to construct
fixed subgraphs at preprocessing step (Line 2 in Algorithm 1) rather than sample clusters to construct
various subgraphs at each training step2. This further avoids sampling costs. Finally, the training
time per epoch of LMC is comparable with GAS. CLUSTER is slower than GAS and LMC, as it
prunes edges in forward passes, introducing additional normalization operation for the adjacency
matrix of the sampled subgraph by [AVB ]i,j/

√
degVB(i)degVB(j), where degVB(i) is the degree in

the sampled subgraph rather than the whole graph. The normalized adjacency matrix is difficult to
store and reuse, as the sampled subgraph may be different. FM is slower than other methods, as they
additionally update historical embeddings in the storage for the nodes outside the mini-batches.

Table 6: Training time (s) per epoch of CLUSTER, GAS, FM, and LMC.

Dataset & GNN CLUSTER GAS FM LMC

Ogbn-arxiv & GCN 0.51 0.46 0.75 0.45
FLICKR & GCN 0.33 0.29 0.45 0.26
REDDIT & GCN 2.16 2.11 5.67 2.28
PPI & GCN 0.84 0.61 0.78 0.62

Ogbn-arxiv & GCNII — 0.92 1.02 0.91
FLICKR & GCNII — 1.32 1.44 1.33
REDDIT & GCNII — 4.47 7.89 4.71
PPI & GCNII — 4.61 5.38 4.77

2CLUSTER-GCN proposes to sample clusters to construct various subgraphs at each training step and LMC
follows it. If a subgraph-wise sampling method prunes an edge at the current step, the GNN may observe the
pruned edge at the next step by resampling subgraphs. This avoids GNN overfitting the graph which drops
some important edges as shown in Section 3.2 in (Chiang et al., 2019) (we also observe that GAS achieves the
accuracy of 71.5% and 71.1% under stochastic subgraph partition and fixed subgraph partition respectively on
the Ogbn-arxiv dataset).
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E.3 COMPARISON IN TERMS OF MEMORY UNDER DIFFERENT BATCH SIZES

In Table 7, we report the GPU memory consumption, and the proportion of reserved messages∑b
k=1 ∥Ã

alg
Vbk

∥0/∥Ã∥0 in forward and backward passes for GCN, where Ã is the adjacency matrix of

full-batch GCN, Ãalg
Vbk

is the adjacency matrix used in a subgraph-wise method alg (e.g., CLUSTER,
GAS, and LMC), and ∥ · ∥0 denotes the ℓ0-norm. As shown in Table 7, LMC makes full use of all
sampled nodes in both forward and backward passes, which is the same as full-batch GD. Default
indicates the default batch size used in the codes and toolkits of GAS (Fey et al., 2021).

Table 7: GPU memory consumption (MB) and the proportion of reserved messages (%) in forward
and backward passes of GD, CLUSTER, GAS, and LMC for training GCN. Default indicates the
default batch size used in the codes and toolkits of GAS (Fey et al., 2021).

Batch size Methods Ogbn-arxiv FLICKR REDDIT PPI

Full-batch GD 681/100%/100% 411/100%/100% 2067/100%/100% 605/100%/100%

1
CLUSTER 177/ 67%/ 67% 138/ 57%/ 57% 428/ 35%/ 35% 189/ 90%/ 90%

GAS 178/100%/ 67% 168/100%/ 57% 482/100%/ 35% 190/100%/ 90%
LMC 207/100%/100% 177/100%/100% 610/100%/100% 197/100%/100%

Default
CLUSTER 424/ 83%/ 83% 310/ 77%/ 77% 1193/ 65%/ 65% 212/ 91%/ 91%

GAS 452/100%/ 83% 375/100%/ 77% 1508/100%/ 65% 214/100%/ 91%
LMC 557/100%/100% 376/100%/100% 1829/100%/100% 267/100%/100%

E.4 ABLATION ABOUT βi

As shown in Section A.4, βi = score(i)α in LMC. We report the prediction performance under
α ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} and score ∈ {f(x) = x2, f(x) = 2x − x2, f(x) = x, f(x) =
1;x = deglocal(i)/degglobal(i)} in Tables 8 and 9 respectively. When exploring the effect of a
specific hyper-parameter, we fix the other hyper-parameters as their best values. Notably, α = 0
implies that LMC directly uses the historical values as affordable without alleviating their staleness,
which is the same as that in GAS. Under large batch sizes, LMC achieves the best performance with
large βi = 1, as large batch sizes improve the quality of the incomplete up-to-date messages. Under
small batch sizes, LMC achieves the best performance with small βi = 0.4score2x−x2(i), as small
learning rates alleviate the staleness of the historical values.

Table 8: Prediction performance under different α on the Ogbn-arxiv dataset.

Batch Sizes learning rates α
0.0 0.2 0.4 0.6 0.8 1.0

1 1e-4 71.34 71.39 71.65 71.31 70.86 70.57
40 1e-2 69.85 69.12 69.89 69.61 69.82 71.44

Table 9: Prediction performance under different score on the Ogbn-arxiv dataset.

Batch Sizes learning rates score
f(x) = 2x− x2 f(x) = 1 f(x) = x2 f(x) = x f(x) = sin(x)

1 1e-4 71.35 70.84 71.32 71.30 71.13
40 1e-2 67.59 71.44 69.91 70.03 70.32

F POTENTIAL SOCIETAL IMPACTS

In this paper, we propose a novel and efficient subgraph-wise sampling method for the training
of GNNs, i.e., LMC. This work is promising in many practical and important scenarios such as
search engine, recommendation systems, biological networks, and molecular property prediction.
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Nonetheless, this work may have some potential risks. For example, using this work in search
engine and recommendation systems to over-mine the behavior of users may cause undesirable
privacy disclosure.
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