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ABSTRACT

Randomized Smoothing (RS) is currently a scalable certified defense method pro-
viding robustness certification against adversarial examples. Although significant
progress has been achieved in providing defenses against ℓp adversaries, early
investigations found that RS suffers from the curse of dimensionality, indicat-
ing that the robustness guarantee offered by RS decays significantly with increas-
ing input data dimension. Double Sampling Randomized Smoothing (DSRS) is
the state-of-the-art method that provides a theoretical solution to the curse of di-
mensionality under concentration assumptions on the base classifier. However,
we speculate the solution to the curse of dimensionality can be deepened from
the perspective of the smoothing distribution. In this work, we further address
the curse of dimensionality by theoretically showing that some Exponential Gen-
eral Gaussian (EGG) distributions with the exponent η can provide Ω(

√
d) lower

bounds for the ℓ2 certified radius with tighter constant factors than DSRS. Our
theoretical analysis shows that the lower bound improves with monotonically de-
creasing η ∈ (0, 2). Intriguingly, we observe a contrary phenomenon that EGG
provides greater certified radii at larger η, on real-world tasks. Further investiga-
tions show these discoveries are not contradictory, which are in essence dependent
on whether the assumption in DSRS absolutely holds. Our experiments on real-
world datasets demonstrate that EGG distributions bring significant improvements
for certified accuracy, up to 4%-6% on ImageNet. Furthermore, we also report the
performance of Exponential Standard Gaussian (ESG) distributions on DSRS.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved great success in various applications. However, DNNs
are susceptible to adversarial perturbations in their inputs. To tackle the problem of adversarial
attacks, a series of empirical defenses, such as adversarial training (Goodfellow et al., 2015; Kurakin
et al., 2017; Madry et al., 2018), have been proposed. Nevertheless, this strategy quickly evolved
into an arms race because no matter how robust the DNNs are, well-crafted adversarial examples
are capable of bypassing the defenses (Carlini & Wagner, 2017; Uesato et al., 2018; Athalye et al.,
2018). Recently, researchers proposed and developed certified defenses (Wong & Kolter, 2018;
Wong et al., 2018; Raghunathan et al., 2018), a series of methodologies that assure that adversarial
examples take zero measure within some neighborhood of clean examples. Among certified defense
methods, randomized smoothing (RS) (Lecuyer et al., 2019; Li et al., 2019; Cohen et al., 2019)
gains in popularity since it can provide scalable robustness certifications for black-box functions.
Cohen et al. (2019) first introduced the Neyman-Pearson (NP) lemma into the certification, which
provided tight ℓ2 certified radii for linear classifiers. Later, a series of attempts further extended the
certification process of RS using functional optimization frameworks (Zhang et al., 2020; Dvijotham
et al., 2020).

However, though RS certifies the ℓp radius at a low cost, it suffers from the problem of the curse
of dimensionality (Yang et al., 2020; Blum et al., 2020; Kumar et al., 2020), meaning the maximal
certifiable radius shrinks with the increasing input dimension of the base classifiers when p > 2.
Despite being noticed, only a few works is committed to solving the issue of the curse of dimen-
sionality. Recently, Li et al. (2022) proposed a double-sampling randomized smoothing (DSRS)
framework that for the first time addresses the curse of dimensionality theoretically by introducing
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Figure 1: Numerical simulation results for DSRS certification by EGG. (a). This subfigure shows
ℓ2 certified radius w.r.t. d under a concentration property (i.e., B = 1). There is a clear monotonous
decreasing trend for certified radius w.r.t. η. (b). When B < 1, the ℓ2 certified radius increases
monotonically with η of EGG , under different simulated (A,B) values for ImageNet. Note that an
EGG with η = 2 is the General Gaussian. For definitions of A and B, see Equation 4.

an additional smoothing distribution. Under a concentration assumption that the adversarial exam-
ples take zero measure within a restricted neighborhood around the original input, DSRS certifies ℓ2
radii with an Ω(

√
d) lower bound when taking the General Gaussian distribution as the smoothing

distribution and its truncated counterpart as the additional distribution.

In this work, we further address the problem of the curse of dimensionality by tightening the DSRS
lower bound via better smoothing distributions. Our theoretical analysis shows some EGG distri-
butions provide much tighter theoretical lower bounds than General Gaussian, the distribution used
in the SOTA solution to the curse of dimensionality. Specifically, the smaller the exponent η in
EGG, the better the lower bound. Nevertheless, experiments on real-world tasks give a seemingly
opposite conclusion, that the certified radius provided by EGG is greater at greater η. Our further
study demonstrates that these phenomena are not paradoxical. From the numerical simulation exper-
iments, we find that the soundness of the concentration assumption significantly impacts the certified
radius. In brief, if the assumption strictly holds, then the theoretical conclusion is valid. Otherwise,
the experimental conclusion takes effect (See Figure 1). Moreover, we also investigate the exper-
imental performance of ESG distributions, which perform as great as the Gaussian distribution in
providing certified radii under the single-sampling setting. In summary, injecting EGG into DSRS
provides augmented results than the SOTA method both theoretically and experimentally, though in
slightly different mechanisms. Overall, this work greatly enriches the current solution to the curse
of dimensionality and provides distributions with good properties for training certifiably robust base
classifiers. Our main contributions include:

• Theoretically, EGG distributions with η ∈ (0, 2) can certify ℓ2 radii at Ω(
√
d) lower bounds

with much tighter constant factors than the SOTA method, for base classifiers satisfying
proper concentration assumptions. Our conclusion essentially implies the current solution
to the curse of dimensionality can be systematically enhanced by introducing EGG distri-
butions.

• Experiments on real-world datasets and numerical simulation demonstrate that the certified
radius provided by EGG monotonically increases with η. On ImageNet, the increase of
certified accuracy brought by EGG can reach 6.4% compared to the baseline. Additionally,
we show that the certification provided by ESG keeps almost invariant to η, which ties the
state-of-the-art.

2 RELATED WORK

Randomized smoothing was first proposed as an extension for differential privacy, which provides
a certified robustness bound for classifiers (Lecuyer et al., 2019). Subsequently, a series of im-
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provements were made to obtain tighter ℓ2 norm certificates through the Rényi divergence and the
Neyman-Pearson Lemma (Li et al., 2019; Cohen et al., 2019). Furthermore, there are methods mod-
elling the certification process as functional optimization problems (Zhang et al., 2020; Dvijotham
et al., 2020). A line of work focuses on extending the robustness certification from ℓ2-only to cer-
tifications against adversaries with other ℓp norms. ℓ0 radius certification was made possible by
constructing Neyman-Pearson sets for discrete random variables (Lee et al., 2019; Jia et al., 2020).
Different to ℓ2 certified regions, the ℓ1 certified region is asymmetric in the space, which poses a
new challenge to the certification algorithm. By perturbing input data under other noise distributions,
such as Laplace and uniform distributions, the previous works have obtained ℓ1 certificates (Teng
et al.; Yang et al., 2020; Levine & Feizi, 2021). In addition to the anisotropy, some work discovered
the phenomenon of the curse of dimensionality when trying to certify against ℓp adversaries whose
p > 2 (Yang et al., 2020; Blum et al., 2020; Kumar et al., 2020). To deal with this issue, a recent
work offered an Ω(1) bound w.r.t. the input dimension for ℓ∞ certified radius by introducing an
additional smoothing distribution (Li et al., 2022), which breaks the curse of dimensionality the-
oretically for the first time. Lately, a study found that the computation of certified radius can be
improved by incorporating the geometric information from adjacent decision domains of the same
class (Cullen et al., 2022).

There were also investigations using anisotropic or sample-specific smoothing noise to improve the
certification (Eiras et al., 2022; Sukenik et al., 2022). In addition, a chain of work focused on
improving the performance of base classifiers through adopting better training techniques (Salman
et al., 2019; Zhai et al., 2019; Jeong & Shin, 2020; Jeong et al., 2021), or introducing denoising
modules (Salman et al., 2020; Carlini et al., 2023; Wu et al.). There were also attempts to adapt RS to
broader application scenarios. RS was extended into defenses against adversarial patches (Levine &
Feizi, 2020; Yatsura et al., 2022) and semantic perturbations (Li et al., 2021; Hao et al., 2022; Alfarra
et al., 2022; Pautov et al., 2022). Moreover, RS has been shown to be capable of providing provable
guarantees for tasks such as object detection, semantic segmentation, and watermarking (Chiang
et al., 2020; Fischer et al., 2021; Bansal et al., 2022).

3 PRELIMINARIES

Problem setup. We focus on the typical multi-class classification task in this work. Let xi ∈ Rd

be the i-th d-dimensional data point and yi ∈ Y = {1, 2, · · · , N} be its corresponding ground-truth
label. We assume a dataset J contains data pairs (xi, yi), i ∈ N≤n that are i.i.d drawn from the
sample space Rd × Y . A N -way base classifier (neural networks in this work) f : Rd → Y can
be trained to maximize the empirical classification accuracy 1

|J |
∑

(x,y)∈J 1f(x)=y on dataset J .
Given an arbitrary data point x and its label y, it is known that in practice, most classifiers trained
using standard training techniques are susceptible to adversarial perturbations within a small ϵ-ball.

Randomized smoothing. To mitigate the adversarial perturbations, RS has been employed as a
certified defense method that can supply a robustness guarantee on the correctness of the classifi-
cation results from classifiers. It provides the robustness certification for the base classifier f by
constructing its smoothed counterpart f̄ . Given a base classifier f , an input x0 ∈ Rd and a smooth-
ing distribution D, the smoothed classifier is defined as follows:

f̄D(x0) = argmax
a∈Y

Pz∼D{f(x0 + z) = a}. (1)

With the definition of smoothed classifier, we can evaluate its ℓp certified robustness by ℓp certified
radius defined below.
Definition 1. Given a base classifier f : Rd → Y , its smoothed counterpart f̄D : Rd → Y under a
distribution D and a labeled example (x0, y0) ∈ Rd × Y . Then r is called ℓp certified radius of f̄D
if

∀x, ∥x− x0∥p < r, f̄D(x) = y0. (2)

The state-of-the-art method to compute the certified radius for RS is based on the Neyman-Pearson
Lemma, which simply provides tight certifications for classifiers through sampling results from a
single distribution.

Double sampling randomized smoothing. Essentially, the DSRS framework is based on a gen-
eralization of the Neyman-Pearson Lemma (Chernoff & Scheffe, 1952) that introduces one more
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subjection into the system. In short, DSRS provides a method to construct the most conservative
classifier by the prediction probabilities of the base classifier under two different distributions. In
this work, we abstract the classifier to be optimized into a true binary classifier. Given a base clas-
sifier f : Rd → Y , we call f̃x0

: Rd → {0, 1} a true binary classifier of f if for (x0, y0) ∈ Rd × Y
and random vector z ∈ Rd:

f̃x0(z) = 1f(x0+z)=y0
. (3)

Then the problem of DSRS can be formulated as a functional optimization problem for the true
binary classifier f̃x0 . Given f̃x0 from the function space F = {h(x) | h(x) ∈ [0, 1],∀x ∈ Rd}, the
worst-case expected prediction over randomization is given below:

min
f̃x0

∈F
Ez∼P

(
f̃x0(δ + z)

)
,

s.t. Ez∼P

(
f̃x0(z)

)
= A,

Ez∼Q

(
f̃x0(z)

)
= B.

(4)

In the equations (4), A,B ∈ [0, 1] are probabilities that the base classifier f outputs the right label y0
for example x0 under noise distributions P , Q, respectively. Practically, they are usually estimated
by Monte Carlo sampling. For an example x0 and a given combination ofP ,Q, A and B, we are able
to derive a unique f̃x0 . Finally, by finding the maximum ∥δ∥2 which satisfies Pz∼P{f(x0+δ+z) =
y0} > 0.5, we obtain the certified radius of x0. We leave further preliminaries to Appendix F.

4 EXPONENTIAL GAUSSIAN DISTRIBUTIONS, WHY AND HOW?

The curse of dimensionality is a daunting problem in RS-based robustness certifications. One of
the state-of-the-art theoretical solutions for this problem is to take the General Gaussian distribution
as the smoothing distribution under the DSRS framework given the concentration assumption (Li
et al., 2022). Unlike the Gaussian distribution abstracted from natural laws, General Gaussian does
not contain any physical meaning as a pure mathematical generalization for Gaussian, which may
imply some loss of intrinsic optimality. Intuitively, generalizing the General Gaussian distribution
from an exponential perspective preserves the essential r−2k term, and is thereby likely to give better
lower bounds for the certified radius in DSRS. Our conjecture is confirmed by theoretical analyses.

In this section, we show the definition of EGG distributions and prove that some of them indeed pro-
vide better theoretical lower bounds than that of the General Gaussian distribution. In other words, in
addition to the General Gaussian distribution, several members of EGG distributions show stronger
ability in providing the Ω(

√
d) lower bound for the ℓ2 certified radius under the DSRS framework,

which largely broadens the current solution to the curse of dimensionality in RS. Additionally, we
also investigate ESG distributions under the DSRS framework, which are exponential generaliza-
tions to the Gaussian distribution. Our experimental results show that the robustness offered by ESG
is insensitive to the exponent, which proves the optimality of Gaussian from one perspective.

4.1 FAMILY OF SMOOTHING DISTRIBUTIONS AND NOTATIONS

We start by introducing the EGG distributions and the ESG distributions used throughout the pa-
per. Under the DSRS framework, when using EGG as the smoothing distribution, the Truncated
Exponential General Gaussian (TEGG) distribution is employed as the additional distribution. Sim-
ilarly, Truncated Exponential Standard Gaussian (TESG) serves as the additional distribution when
adopting ESG as the smoothing distribution. We let G(σ, η, k) and S(σ, η) be the probability density
functions (PDFs) of EGG and ESG, respectively. Table 1 shows the definitions and basic properties
of the distributions. More details for the distributions are deferred to Appendix A.

In the table, r, T, σ, η ∈ R+ and d ∈ N+. Γ(·) is the gamma function. Following the convention in
the previous studies (Yang et al., 2020; Li et al., 2022), we set the substitution variance to ensure Er2
is a constant for all distributions. We let σg and σs be the substitution variances of EGG and ESG,
respectively. The CDFs of the beta distribution Beta(α, α) and the gamma distribution Γ(α, 1) are
denoted respectively by Ψα(·) and Λα(·). We write ϕg(r) and ϕs(r) corresponding to the PDFs of
G(σ, η, k) and S(σ, η) respectively.
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Table 1: Properties and definitions of distributions.

Distribution PDF Notation Substitution Variance

Standard Gaussian ∝ exp
(
− r2

2σ2

)
N (σ) σ

Exponential Standard Gaussian ∝ exp
(
− rη

2σ
η
s

)
S(σ, η) σs = 2

− 1
η

√
dΓ( d

η
)

Γ( d+2
η

)
σ

Truncated Exponential Standard Gaussian ∝ exp
(
− rη

2σ
η
s

)
1r≤T St(σ, η, T ) σs = 2

− 1
η

√
dΓ( d

η
)

Γ( d+2
η

)
σ

Exponential General Gaussian ∝ r−2k exp

(
− rη

2σ
η
g

)
G(σ, η, k) σg = 2

− 1
η

√
dΓ( d−2k

η
)

Γ( d−2k+2
η

)
σ

Truncated Exponential General Gaussian ∝ r−2k exp

(
− rη

2σ
η
g

)
1r≤T Gt(σ, η, k, T ) σg = 2

− 1
η

√
dΓ( d−2k

η
)

Γ( d−2k+2
η

)
σ

4.2 THEORETICAL ANALYSIS ON THE LOWER BOUND

It is proved that taking General Gaussian distribution as the smoothing distribution for DSRS pro-
vides an Ω(

√
d) lower bound for the ℓ2 certified radius (Li et al., 2022). This bound can be converted

to an Ω(1) lower bound for the ℓ∞ certified radius, which breaks the curse of dimensionality in the
certification against ℓ∞-adversaries under high-dimensional settings (Kumar et al., 2020). Never-
theless, specialized studies on the curse of dimensionality are in great lack, on which numerous
questions can be raised. For instance, does the present solution end the curse of dimensionality? If
not, how to improve it? Can the theoretical solution be transferred to real scenes? In this work, we
investigate these questions by employing exponential general Gaussian distributions in DSRS, which
not only comprehensively ameliorates the current solution, but also reveals its potential limitations.

We first define a (σ, p, η)-concentration property to start our analysis:
Definition 2. ((σ, p, η)-Concentration) Let f : Rd → Y be an arbitrarily determined base classifier,
(x0, y0) ∈ Rd × Y be a labeled example. We say f satisfies (σ, p, η)-concentration assumption at
(x0, y0) if for p ∈ (0, 1) and T satisfying

Pz∼S(σ,η){∥z∥2 ≤ T} = p, (5)

f satisfies
Pz∼S(σ,η){f(x0 + z) = y0 | ∥z∥2 ≤ T} = 1. (6)

Namely, if f satisfies the (σ, p, η)-concentration assumption for some specific (x0, y0), the random
perturbation z ∼ S(σ, η) that makes f(x0 + z) ̸= y0 within the T -radius ℓ2 sphere takes zero
measure in Rd. Despite the assumption being seemingly harsh, it is satisfied approximately in the
light of observations from Li et al. (2022), where a considerable proportion of points in the dataset
are predicted to be nearly completely correct under noise on well-trained base classifiers.

For simplicity, we first let the base classifier f satisfy (σ, p, 2)-concentration property, the original
assumption used in Li et al. (2022). Here we show a theorem that some EGG distributions with their
corresponding truncated counterparts can certify the ℓ2 radius with Ω(

√
d) lower bounds by DSRS.

In other words, the current solution to the curse of dimensionality provided by General Gaussian
can be significantly augmented, that all EGG with η ∈ (0, 2) have the potential to break the curse,
even with better lower bounds.
Theorem 1 (Lower Bound for the Certified Radius with EGG). Let d ∈ N+ be a sufficiently large
input dimension, (x0, y0) ∈ Rd×Y be a labeled example and f : Rd → Y be a base classifier which
satisfies (σ, p, 2)-concentration property w.r.t. (x0, y0). For the DSRS method, let P = G(σ, η, k) be
the smoothing distribution to give a smoothed classifier f̄P , andQ = Gt(σ, η, k, T ) be the additional
distribution with T = σ

√
2Λ−1

d
2

(p), d − 2k ∈ [1, 30] ∩ N and η ∈ {1, 1
2 ,

1
3 , · · · ,

1
50}. Then for the

smoothed classifier f̄P(x), the certified ℓ2 radius satisfies

rDSRS ≥ 0.02σ
√
d. (7)

We briefly summarize the proof here and leave the details in Appendix C. In essence, Theorem 1 is
generalizing Theorem 2 of Li et al. (2022) to EGG. Practically, it is intractable to derive a solution for
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the certified radius rDSRS . Therefore, the problem is simplified by introducing the concentration
assumption, whereupon we calculate the solution for Problem (4) only considering the truncated
distribution Q. In short, the certification of the radius ρ is dependent on the discriminant

Eu∼Γ( d−2k
η ,1)Ψ d−1

2

(
T 2 − (σg(2u)

1
η − ρ)2

4ρσg(2u)
1
η

)
− 1

2
≥ 0. (8)

With this formulation, whether a radius ρ can be certified can directly be judged since the LHS of
Equation (8) is a function of ρ. We take the proof of Theorem 1 as an example. If we substitute
ρ = 0.02σ

√
d into Equation (8), and the LHS of (8) is positive, then radius ρ is certified. Otherwise,

if the value is negative, ρ is not a certified radius. For the derivation and proof of Problem (8), please
see the proof of Lemma C.4 in the appendix.

Plus, we explore the effects of EGG under (σ, p, η)-concentration assumption, where we can con-
struct Ω(d1/η) lower bounds for the certified radius. However, though it is formally tighter than
Ω(
√
d), we find these two lower bounds are fundamentally equivalent. See Theorem 4 in Appendix

C.3.
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Figure 2: Tight factor µ grows as η shrinks,
for most d− 2k ∈ [1, 30] ∩ N.

Study on the constant factor. Besides certifying
the lower bound radius 0.02σ

√
d, the proof of The-

orem 1 naturally contains an approach to determine
tight constant factors for each EGG distribution. In
fact, the value of the LHS of Equation (8) monoton-
ically decreases with ρ, meaning that performing a
simple binary search on ρ can provide the accurate
certified radius. Therefore, we consider parameteriz-
ing the radius ρ into µσ

√
d, thus binary searching on

the constant factor will derive the tight constant fac-
tor µ for the Ω(

√
d) lower bound (Algorithm 1). We

report computational results for µ in Figure 2, where
for values of d−2k except 1, the tight constant factor
µ increases monotonically as the η decreases. Essen-
tially, these results demonstrate that the solution to the curse of dimensionality provided by Li et al.
(2022) (with General Gaussian, η = 2 in EGG) can be improved by choosing smaller η ∈ (0, 2), for
most d− 2k ∈ [1, 30] ∩ N.

Overall, theoretical analysis above shows taking EGG as the smoothing distribution in DSRS, we
are likely to obtain much tighter lower bounds for the certified radius on base classifiers, which
substantially improved the current solution to the curse of dimensionality from Li et al. (2022). Fol-
lowing the analysis, will the EGG distribution behave as excellent as theoretical cases in certifying
real-world tasks?

4.3 COMPUTATIONS FOR EXPONENTIAL GAUSSIAN DISTRIBUTIONS ON DSRS

To evaluate the performance of EGG/ESG on real-world datasets, we consider solving Problem (9),
the strong dual problem of Problem (4):

max
ν1,ν2∈R

Pz∼P+δ{p(z − δ) + ν1p(z) + ν2q(z) < 0},

s.t. Pz∼P{p(z − δ) + ν1p(z) + ν2q(z) < 0} = A,

Pz∼Q{p(z − δ) + ν1p(z) + ν2q(z) < 0} = B.

(9)

We do not elaborate on the solution process since previous works (Yang et al., 2020; Li et al., 2022)
have done well. Herein, we directly give solutions to Problem (9) for EGG and ESG. Overall, the
case of EGG is relatively a straightforward generalization of General Gaussian, while the derivation
for ESG includes nontrivial branches. See details in Appendix B. In the next section, we show
experiments that verifying the computations for EGG and ESG.
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5 EXPERIMENTS

Figure 3: Illustration for experiments.

In this section, we report the effects of EGG and ESG distributions on certified radius under the
DSRS framework. Figure 3 illustrates the pipeline of our experiments, which includes evaluations
on real-world datasets and numerical simulations. Here we are mainly focused on real-world datasets
and leave details for numerical simulation experiments, which comprehensively display the prop-
erties of distribution families we use, to Appendix H. For the case of real-world datasets, A and
B in Problem (9) are initially from Monte Carlo sampling results on a given base classifier, then
reduced to respective Clopper-Pearson confidence interval (Clopper & Pearson, 1934), and finally
determined by a conservative algorithm (Li et al., 2022). The procedure for real-world datasets can
also be seen in Algorithm 2 in Appendix G.

Experimental setups. All base classifiers used in this work are trained by CIFAR-10 (Krizhevsky
et al., 2009) or ImageNet (Russakovsky et al., 2015), taking EGG with η = 2 as the noise distri-
bution. The settings of hyperparameters for EGG and ESG are slightly different. For EGG exper-
iments, we take P = G(σ, η, k) and Q = Gt(σ, η, k, T ). To display the increasing trends more
clearly, we choose η ∈ {0.25, 0.5, 1.0, 2.0, 4.0, 8.0} for them. For ESG, each DSRS certification is
computed by taking P = S(σ, η) as the smoothing distribution and Q = St(σ, η, T ) as the addi-
tional distribution. We choose η ∈ {1.0, 2.0, 4.0, 8.0} as the exponent of the ESG distributions. We
leave the details of setting other parameters to Appendix G.2.

Evaluation metrics. We consider the ℓ2 certified radius in all experiments. To evaluate the certified
robustness of smoothed classifiers, we take certified accuracy ≜ CA(r,J ) at radius r on test dataset
J as the basic metric (Cohen et al., 2019; Zhang et al., 2020; Li et al., 2022). For (xi, yi) in J ,
if the certified radius computed by a certification method (e.g. NP, DSRS) is ri, and the output
for xi through the smoothed classifier is yi, we say (xi, yi) is certified accurate at radius ri for the
smoothed classifier. On this basis, CA(r,J ) is the ratio of examples in J whose certified radius
ri ≥ r. Defined on the certified accuracy, Average Certified Radius (ACR) (Zhai et al., 2019; Jeong
& Shin, 2020) is the main metric that we use to show results of different distributions for real-world
datasets. Formally, we have ACR ≜

∫
r≥0

CA(r,J ) · dr. All our DSRS certification results are
compared with the baselines from the Neyman-Pearson method, see a brief introduction in Appendix
F.1.

Soundness for numerical integration. Considering the extensive use of numerical integration in
this work, we comprehensively test the precision of our integral results. For EGG distributions, we
inherit the method from Yang et al. (2020) and Li et al. (2022), where we compute the integrals on
the interval (0,+∞) by scipy package. As for ESG distributions, we implement an integration
algorithm for ESG separately since scipy is not applicable to the gamma distributions with large
parameters. We notice the following lemma:

Lemma 5.1. (Bilateral Concentration of the Gamma Distribution) Let X ∼ Γ( dη , 1) be a random
variable, where η ∈ R+, d ∈ N+. Let ι = η

ϵ2d , then for any ι ∈ (0, 1), the following inequality
holds:

P{(1− ϵ)
d

η
< X < (1 + ϵ)

d

η
} ≥ 1− ι. (10)

The proof is quite succinct, see Appendix G.5. Lemma 5.1 indicates that the integral interval
(0,+∞) can be substituted by (max{0, (1− ϵ) dη}, (1 + ϵ) dη ) under tolerable and controllable error.
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Table 2: Certified radius at r for standardly augmented models, certified by EGG under DSRS

Dataset Method Certified accuracy at r
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

CIFAR10

EGG, η = 0.25 54.2% 37.6% 23.5% 16.5% 9.4% 4.5% 0.5% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
EGG, η = 0.5 55.5% 40.4% 25.2% 19.1% 13.4% 8.5% 5.5% 2.0% 0.4% 0.1% 0.0% 0.0% 0.0% 0.0%
EGG, η = 1.0 56.3% 41.7% 28.2% 20.0% 15.1% 10.5% 7.1% 4.2% 1.9% 0.9% 0.1% 0.0% 0.0% 0.0%
EGG, η = 2.0 56.7% 42.4% 29.3% 20.2% 15.7% 11.5% 8.0% 5.5% 2.6% 1.5% 0.6% 0.1% 0.0% 0.0%
EGG, η = 4.0 57.5% 42.5% 30.0% 20.2% 15.9% 12.2% 8.5% 6.5% 3.4% 1.8% 0.9% 0.4% 0.0% 0.0%

DSRS (Li et al., 2022) 57.4% 42.7% 30.6% 20.6% 16.1% 12.5% 8.4% 6.4% 3.5% 1.8% 0.7% 0.1% / /
Ours (EGG, η = 8.0) 57.6% 42.5% 30.9% 20.6% 15.8% 12.3% 8.6% 6.6% 3.7% 2.1% 1.1% 0.5% 0.2% 0.0%

ImageNet

EGG, η = 0.25 53.8% 41.4% 28.4% 20.1% 7.1% 0.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
EGG, η = 0.5 54.9% 46.3% 36.4% 26.3% 22.1% 15.2% 8.7% 3.1% 0.8% 0.0% 0.0% 0.0% 0.0% 0.0%
EGG, η = 1.0 57.0% 47.8% 39.9% 32.8% 24.9% 22.0% 18.5% 13.1% 9.2% 5.0% 2.1% 0.5% 0.0% 0.0%

DSRS (Li et al., 2022) (EGG, η = 2.0) 58.4% 48.5% 41.5% 35.2% 28.9% 23.3% 21.3% 18.8% 14.1% 11.1% 8.9% 6.1% 2.2% 1.4%
EGG, η = 4.0 58.7% 49.9% 42.6% 36.4% 31.0% 23.9% 22.3% 20.2% 17.3% 13.2% 10.7% 9.2% 6.8% 4.0%

Ours (EGG, η = 8.0) 59.1% 50.8% 42.9% 36.8% 31.8% 24.6% 22.6% 20.7% 18.9% 14.5% 11.7% 10.1% 8.6% 5.2%

Table 3: Certified radius at r for standardly augmented models, certified by ESG under DSRS

Dataset Method Certified accuracy at r
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

CIFAR10

ESG, η = 1.0 57.6% 42.6% 31.3% 21.5% 15.8% 12.8% 8.6% 6.8% 4.3% 2.3% 1.3% 0.8% 0.3% 0.1%
ESG, η = 2.0 (Gaussian) 57.6% 42.6% 31.6% 21.5% 15.8% 12.7% 8.8% 6.8% 4.5% 2.4% 1.3% 0.7% 0.2% 0.2%

ESG, η = 4.0 57.6% 42.6% 31.3% 21.5% 15.9% 12.9% 8.6% 6.9% 4.3% 2.4% 1.3% 0.8% 0.2% 0.1%
ESG, η = 8.0 57.8% 42.6% 31.6% 21.6% 15.9% 12.9% 8.9% 6.7% 4.2% 2.4% 1.3% 0.9% 0.2% 0.1%

ImageNet

ESG, η = 1.0 59.6% 51.5% 43.2% 37.9% 33.0% 26.8% 23.1% 21.5% 19.9% 17.4% 13.8% 11.5% 10.3% 7.7%
ESG, η = 2.0, (Gaussian) 59.6% 51.6% 43.1% 38.0% 32.9% 26.9% 23.1% 21.5% 19.7% 17.4% 13.6% 11.4% 10.1% 8.3%

ESG, η = 4.0 59.6% 51.5% 43.2% 38.0% 32.9% 27.2% 23.1% 21.6% 19.9% 17.2% 13.6% 11.4% 10.2% 8.0%
ESG, η = 8.0 59.6% 51.5% 43.2% 38.0% 33.0% 26.8% 23.1% 21.6% 19.7% 17.3% 13.6% 11.5% 10.1% 8.4%

Practically, we use simple linear segmented integration to compute the certified radius for ESG dis-
tributions, and ϵ is set to 10−4. The results indicate that though we have abandoned some tiny mass
of the distribution, our integral method for ESG is pretty accurate.

Additionally, to show the level of accuracy of the integral methods in this work, we borrow the
approach from Yang et al. (2020), to compare the results of numerical integration and Monte Carlo
simulation for the certified radius list obtained by its corresponding probability list. Overall, the
orders of magnitude of error between numerical integration and 100000 Monte Carlo sampling are
10−3 for EGG and 10−5 for ESG. See details in Appendix G.6.

Experimental results. Table 2 and Table 3 report the maximum certified accuracy among base
classifiers with σ ∈ {0.25, 0.50, 1.00}, which is widely adopted by previous work to show experi-
mental results of certified robustness. Table 2 reveals the phenomenon that certified accuracy at r
increases monotonically with the η of EGG. On both CIFAR10 and ImageNet, our strategy to use
EGG with larger η (8.0 in the tables) performs obviously better than General Gaussian (EGG with
η = 2.0) used in DSRS (Li et al., 2022), which provides the state-of-the-art on ImageNet under the
DSRS framework. See full experimental data of EGG on standardly augmented models in Table 11
and Table 12.

Unlike EGG, as shown in Table 3, the certification provided by ESG distributions is highly insen-
sitive to the alternation of η. Additionally, we find this insusceptibility to η also applies to NP
certification, meaning numbers of ESG distributions are likely to give the best ℓ2 certified results for
a given classifier, in addition to the current mainstream view that Gaussian provides the best (Yang
et al., 2020). See details on the NP certification in Appendix F.1, and full experimental data of ESG
in Table 13 and Table 14.

The details for ACR brought by Figure 4 further uncover the properties of our distributions in the
DSRS certification. For EGG, beyond the monotonically increasing property with η, Figure 4b
reveals the growth brought by DSRS relative to NP shrinks with η, despite the results of DSRS keep
increasing. Furthermore, though the DSRS certifications offered by EGG exhibit incrementality with
η, there is likely to be an upper bound for the certification provided by Gaussian distribution (in this
work, η = 2 for ESG), which is currently recognized as the best distribution for single-distribution
randomized smoothing. This is clear when we observe Figure 4a and 4c together. Besides, the DSRS
certification does not work well for ESG because of the negative growth relative to NP certification.
The explanation for this could be that truncated Gaussian distribution impaired the optimality of
Gaussian distribution under the randomized smoothing framework.

Analyses. The reason for different sensitivity to η for EGG and ESG may lie in their shape in
the high-dimensional space. Zhang et al. (2020) pointed out that the Laplace distribution and the
Standard Gaussian distribution (corresponds to η = 1, η = 2 in ESG, respectively) are concentrated
on a thin sphere in the space. The EGG distributions overcome thin-shell property by introducing
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(d)
Figure 4: ACR results on real-world datasets. (a). ACR monotonically increases with η in EGG.
(b). The ACR growth gain by DSRS relative to NP shrinks with η in EGG. (c). ACR keeps almost
constant in ESG. (d). The ACR growth gain by DSRS remains almost constant in ESG. For (a) and
(c), solid lines represent results from DSRS, and dotted lines represent results from NP.

the r−2k term, which ensures EGG provides significantly broader and more uniform coverage in the
truncated critical space. In contrast, the performance of ESG presents inertia towards the change of
η. We assert that the thin-shell phenomenon is common for the ESG distributions, which may make
them extremely insensitive to truncating due to almost the identical local property in the thin shell.

Let us go back to the question we raised earlier: does EGG perform great in real tasks as well?
Though our experiments clearly give an answer yes, reasons for the improvement have subtle dif-
ferences from the theory, since we finally find EGG performs great with small η in theory, while
with large η in practice. To understand this, we employ numerical simulations to study the effect
of concentration assumption. From Figure 10, whether the concentration assumption strictly holds
plays a significant role. Briefly, the hold probability for the assumption has a gap between 0.99 and
1. The theoretical bound is invalid even when the assumption holds at 0.99, meaning the current
solution to the curse of dimensionality can be susceptible to relaxations on the assumption.

6 CONCLUSION AND DISCUSSION

We find in this paper that EGG distributions provide significant amelioration on the current solution
to the curse of dimensionality on randomized smoothing. Beyond the theoretical progress, we also
discover that EGG can improve the ℓ2 certified radii of smoothed classifiers on real datasets. Though
the phenomena for the theoretical and experimental results are seemingly opposite, we conclude they
are not contradictory because the concentration assumption influences the certified radii heavily.
Besides, our experiments present that not only the Gaussian distribution but also ESG distributions
can give the best ℓ2 certified radius in the NP certification.

Limitations. We remark that the current solution to the curse of dimensionality is still not perfect,
since the concentration assumption is essentially strong for real-world settings. In practice, limited
by current methods of training base classifiers, the certification provided by DSRS can not defeat
the NP method in most cases. Accordingly, it would be intriguing to develop training techniques
specifically for EGG distributions and/or the DSRS framework. We hope this work could enlighten
the community on better addressing the curse of dimensionality in RS and building stronger certified
defenses towards adversarial examples.
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A SUPPLEMENTARY FOR DEFINITIONS OF DISTRIBUTIONS

A.1 DERIVATION FOR PDFS
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In the equations above, W (·) is the principal branch of the Lambert W function. Let ϕg(r, T ) be
PDF of Gt(σ, η, k, T ), then
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where γ(·) is the lower incomplete gamma function. We see
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Let ϕs(r), ϕs(r, T ) be PDFs of S(σ, η) and St(σ, η, T ) respectively. Given S(σ, η) ∝ exp
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A.2 VISUALIZATION FOR DISTRIBUTIONS

We show the distributions for r in the space by setting
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r−2k exp(−1

2
(
r

σg
)η) · dπ

d
2

Γ(d2 + 1)
rd−1 (16)

for EGG, and

y = ϕs(r) · Vd(r) =
η

2

1

(2ση
s )

d
η π

d
2

Γ(d2 )

Γ( dη )
exp(−1

2
(
r

σs
)η) · dπ

d
2

Γ(d2 + 1)
rd−1 (17)

for ESG. See the definition of Vd(r) in Lemma C.1. From Figure 5, we learn that the EGG distri-
butions are relatively evenly distributed in the space compared to ESG, while the phenomenon that
most mass of the distribution concentrates to a thin shell is general for ESG.
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Figure 5: Illustration for distributions defined in Table 1. For each distribution above, we set σ = 1.
σg , σs are computed respectively according to Table 1, thus we can ensure Er2 is a constant for all
the distributions.

B COMPUTATIONAL METHODS FOR EGG AND ESG

We have the solution to Problem (9) for EGG as follows:

Theorem 2 (Integral form of Problem (9) with EGG). Let P = G(σ, η, k) with PDF p(·), Q =

Gt(σ, η, k, T ) with PDF q(·) and Cg =
Γ(

(d−2k)
η )

γ( d−2k
η , Tη

2σ
η
g
)
, where γ(·, ·) is the lower incomplete gamma

function. Let V ≜ {z | p(z − δ) + ν1p(z) + ν2q(z) < 0}. We write t for σg(2u)
1
η . Then

Pz∼P{z ∈ V} = E
u∼Γ( d−2k

η
,1)


ω1(u, ν1), u ≥

Tη

2ση
g

,

ω1(u, ν1 + Cgν2), u <
Tη

2ση
g

,

Pz∼Q{z ∈ V} = CgE
u∼Γ( d−2k

η
,1)

ω1(u, ν1 + Cgν2) · 1u≤ Tη

2σ
η
g

,

Pz∼P+δ{z ∈ V} =


E
u∼Γ( d−2k

η
,1)

ω2(u), ν1 ≥ 0,

E
u∼Γ( d−2k

η
,1)

{ω2(u) + ω3(u)}, ν1 < 0,

(18)

where

ω1(u, ν) = Ψ d−1
2

(
(ρ + t)2 −

(
p−1(−νp(t))

)2
4ρt

)
,

ω2(u) = Ψ d−1
2

min{T 2,
(
p−1(− 1

ν1+Cgν2
p(t))

)2
} − (t − ρ)2

4ρt

 ,

ω3(u) = max

Ψ d−1
2


(
p−1(− 1

ν1
p(t))

)2
− (t − ρ)2

4ρt

− Ψ d−1
2

(
T 2 − (t − ρ)2

4ρt

)
, 0

 .

(19)

The proof of Theorem 2 is deferred to Appendix D. When taking ESG as the smoothing distribution
and TESG as the additional distribution, we solve Problem (9) by the following theorem, which is
slightly more complicated than that of EGG:

Theorem 3 (Integral form of Problem (9) with ESG). Let P = S(σ, η) with PDF p(·), Q =

St(σ, η, T ) with PDF q(·) and Cs =
Γ( d

η )

γ( d
η , Tη

2σ
η
s
)
, where γ(·, ·) is the lower incomplete gamma func-

15
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tion. Let V ≜ {z | p(z − δ) + ν1p(z) + ν2q(z) < 0}. We write t for σs(2u)
1
η . Then

Pz∼P{z ∈ V} = Eu∼Γ( d
η
,1)


ω1(u, ν1), u ≥ T η

2ση
s
,

ω1(u, ν1 + Csν2), u <
T η

2ση
s
,

Pz∼Q{z ∈ V} = CsEu∼Γ( d
η
,1) ω1(u, ν1 + Csν2) · 1u≤ Tη

2σ
η
s

,

Pz∼P+δ{z ∈ V} =

Eu∼Γ( d
η
,1) ω2(u), ν1 ≥ 0,

Eu∼Γ( d
η
,1){ω2(u) + ω3(u)}, ν1 < 0,

(20)

where

ω1(u, ν) =


Ψ d−1

2

 (ρ + t)2 −
(
p−1(−νp(t))

)2
4ρt

 , u − ln(−ν) ≥ 0,

1 , u − ln(−ν) < 0,

ω2(u) =


Ψ d−1

2

min{T2,
(
p−1(− 1

ν1+Csν2
p(t))

)2
} − (t − ρ)2

4ρt

 , u + ln(−(ν1 + Csν2)) ≥ 0,

0 , u + ln(−(ν1 + Csν2)) < 0,

ω3(u) =


max

Ψ d−1
2


(
p−1(− 1

ν1
p(t))

)2
− (t − ρ)2

4ρt

− Ψ d−1
2

(
T2 − (t − ρ)2

4ρt

)
, 0

 , u + ln(−ν1) ≥ 0,

0 , u + ln(−ν1) < 0.

(21)

See proof in Appendix E. Compared to Theorem 2, we emphasize the following differences: (1)
p(·) represents different PDFs in the two theorems; (2) there are more branches for ω functions in
Theorem 3, which originates from different properties of the logarithmic function and the Lambert
W function.

C PROOF OF THEOREM 1 AND THEOREM 4

We put proofs of Theorem 1 and Theorem 4 together since they share common thinking. Overall,
this section includes 3 parts. We first introduce lemmas mainly on concentration properties of beta
and gamma distributions, then we derive the solution for a lower bound of Problem (4). Finally, we
prove Theorem 1 and Theorem 4 respectively on the basis of those introduced lemmas. Both proofs
are essentially generalizations for appendix F.3 in Li et al. (2022).

Here we briefly sketch the proofs of Theorem 1 and Theorem 4. The core thinking for the proofs
is to calculate probability under a given perturbation δ (which appears as a function of d in both
the theorems, e.g., ∥δ∥2 = σ

√
d). First of all, suppose that the base classifier satisfies a certain

concentration property (Definition 2). Since the solution of the lower bound of Problem (4) is
known (by one of the lemmas), we further find the lower bound of the solution by other lemmas
just proved until it can be computed easily. At last, if the solution computed is greater than 0.5, δ is
successfully certified.

C.1 PRELIMINARIES

We show lemmas for proofs in this section. In a nutshell, Lemma C.1 gives the volume of hyper-
sphere in the Rd space for later integrals; Lemma C.2 offers the probability that the mass of ESG is
within T ; Lemma C.4 gives a solution for a lower bound of Problem (4); Lemma C.5 and Lemma
C.6 reveal concentration properties of beta and gamma distributions, by which we obtain lower
bounds of Problem (4); Lemma C.7 proves monotonicity of a function that appears in the proof of
Theorem 4.
Lemma C.1. (Equation (16) in Li et al. (2022) ,Volume of Hypersphere, restated) Let r ∈ R+, d ∈
N+. The volume Vd(r) of d− 1 dimensional hypersphere with radius r is

Vd(r) =
dπ

d
2

Γ(d2 + 1)
rd−1. (22)
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For all integrals in this paper, WLOG we let d be an even number.
Lemma C.2. For random variable z ∼ S(σ, η) and determined threshold T ∈ R+,

P{∥z∥2 ≤ T} = Λ d
η
(
T η

2ση
s
). (23)

Proof. We have ϕs, the PDF of z from Equation (14a) and Vd(r) from Lemma C.1, then

P{∥z∥2 ≤ T} =
∫ T

0

ϕs(r) exp(−
rη

2ση
s
)

dπ
d
2

Γ(d2 + 1)
rd−1dr

=

∫ T

0

η

2

1

(2ση
s )

d
η π

d
2

Γ(d2 )

Γ( dη )
rd−1 exp(− rη

2ση
s
)

dπ
d
2

Γ(d2 + 1)
dr

=
1

Γ( dη )

∫ Tη

2σ
η
s

0

t
d
η−1 exp(−r)dt

= Λ d
η
(
T η

2ση
s
).

(24)

Lemma C.3. Given a base classifier f : Rd → Y satisfies (σ, p, η)-concentration property at input
(x0, y0) ∈ Rd. For the additional distribution Q = Gt(σ, η, k, T ), where T = σs(2Λ

−1
d
η

(p))
1
η , η ∈

R+ and 2d− k ∈ [1, 30] ∩ N, we have

Pz∼Q{f(x0 + z) = y0} = 1. (25)

Proof. If f satisfies (σ, p, η)-concentration property, when p is fixed, we have

Pz∼S(σs,η){f(x0 + z) = y0 | ∥z∥2 ≤ T} = 1 (26)

for T = σs(2Λ
−1
d
η

(p))
1
η from Definition 2 and Lemma C.2. Notice though Equation (26) is defined

by S(σs, η), f(x0 + z) = y0 holds for all ∥z∥2 ≤ T since distribution S has positive density
everywhere. Consider the case z ∼ Gt(σ, η, k, T ), we thereby have

Pz∼Gt(σ,η,k,T ){f(x0 + z) ̸= y0 | 0 < ∥z∥2 ≤ T} = 0. (27)

Notice z ̸= 0 since there is a z−2k term in EGG’s PDF. By Equation (11a), we have

Pz∼Gt(σ,η,k,T ){z = 0}
Pz∼G(σ,η,k){z = 0 | ∥z∥2 ≤ T}
≤ lim

t→0
Pz∼G(σ,η,k){∥z∥2 ≤ t}

= lim
t→0

∫ t

0

η

2

1

(2ση
g )

d−2k
η π

d
2

Γ(d2 )

Γ(d−2k
η )

r−2k exp(−1

2
(
r

σg
)η)

dπ
d
2

Γ(d2 + 1)
rd−1dr

=
η

2

1

(2ση
g )

d−2k
η π

d
2

Γ(d2 )

Γ(d−2k
η )

dπ
d
2

Γ(d2 + 1)
lim
t→0

∫ t

0

exp(−1

2
(
r

σg
)η)rd−2k−1dr

= 0.

(28)

Therefore, we see

Pz∼Gt(σ,η,k,T ){f(x0 + z) = y0} = Pz∼G(σ,η,k){f(x0 + z) = y0 | 0 ≤ ∥z∥2 ≤ T} = 1, (29)

which concludes the proof.

Here we give a solution for a lower bound of Problem (4). The lower bound found with the help
of Lemma C.3 can be solved by the level set method (Yang et al., 2020), sharing the same core
technique with proofs of Theorem 2 and 3. We refer the readers to Appendix D and previous pa-
pers (Yang et al., 2020; Li et al., 2022) for more details.
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Lemma C.4. Under the setting of Lemma C.3, we let
R = max ρ,

s.t. Eu∼Γ( d−2k
η ,1)Ψ d−1

2

(
T 2 − (σg(2u)

1
η − ρ)2

4ρσg(2u)
1
η

)
≥ 1

2
.

(30)

If RD is the tightest ℓ2 certified radius when P = G(σ, η, k) is the smoothing distribution by DSRS,
then RD ≥ R.

Proof. According to Lemma C.3, we define Q = Gt(σ, η, k, T ) as the additional distribution for P .
Then the Problem (4) can be simplified as

min
f̃x0

∈F
Ez∼P

(
f̃x0

(δ + z)
)
,

s.t. Ez∼P

(
f̃x0(z)

)
= A, Ez∼Q

(
f̃x0(z)

)
= B

(a)
= min

f̃x0
∈F

Ez∼P

(
f̃x0(δ + z)

)
,

s.t. Ez∼P

(
f̃x0

(z)
)
= A, Ez∼Q

(
f̃x0

(z)
)
= 1

(b)

≥ min
f̃x0∈F

Ez∼P

(
f̃x0

(δ + z)
)
,

s.t. Ez∼Q

(
f̃x0(z)

)
= 1,

(31)

where (a) is by Lemma C.3, and (b) is because subjection Eϵ∼P [f(ϵ)] = PA offers extra information
outside {x | ∥x− x0∥2 ≤ T} in Rn, where p(x) ≥ 0. It is obvious that the equality holds if A = 0.
In other words, under the special case where B = 1, the simplified problem offers a lower bound
for the primal problem. For the simplified problem, we have the worst function f̃∗

x0
(t):

f̃∗
x0
(t) =

{
1, ∥t∥2 ≤ T,

0, ∥t∥2 > T.
(32)

Under the worst classifier, the lower bound problem for Problem (4) can be finally written as

Ez∼P

(
f̃∗
x0
(δ + z)

)
(33)

for a fixed δ. Similar to Theorem 2 and Theorem 3, the final simplified problem is solved by the
level set method (Yang et al., 2020). We have

Ez∼P

(
f̃∗
x0
(δ + z)

)
=Eϵ∼P{∥δ + x∥2 ≤ T}

=

∫
Rd

p(x) · 1∥x+δ∥2≤T dx

=

∫ ∞

0

ϕg(r)
dπ

d
2

Γ(d2 + 1)
rd−1drP{∥x+ δ∥2 ≤ T | ∥x∥2 = r}

=

∫ ∞

0

η

2

1

(2ση
g )

d−2k
η π

d
2

Γ(d2 )

Γ(d−2k
η )

rd−2k−1 exp[−1

2
(
r

σg
)η]

dπ
d
2

Γ(d2 + 1)
drP{∥x+ δ∥2 ≤ T |∥x∥2 = r}

=
1

Γ(d−2k
η )

∫ ∞

0

u
d−2k

η −1 exp(−u)duP{∥x+ δ∥2 ≤ T | ∥x∥2 = σg(2u)
1
η }.

(34)

As ∥x+ δ∥2 ≤ T ⇐⇒ x1 ≤
T 2−ρ2−σ2

g(2u)
2
η

2ρ , we have

1 + x1

σg(2u)
1
η

2
∼ Beta(

d− 1

2
,
d− 1

2
) (35)
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by Lemma D.1. Thus, we get

P{∥x+ δ∥2 ≤ T | ∥x∥2 = σg(2u)
1
η } = Ψ d−1

2

(
T 2 − (σg(2u)

1
η − ρ)2

4ρσg(2u)
1
η

)
. (36)

Combining Equation (34) and Equation (36), we finally get

Ez∼P

(
f̃∗
x0
(δ + z)

)
= Eu∼Γ( d−2k

η ,1)Ψ d−1
2

(
T 2 − (σg(2u)

1
η − ρ)2

4ρσg(2u)
1
η

)
. (37)

If we can ensure that Ez∼P

(
f̃∗
x0
(δ + z)

)
≥ 0.5 for δ = (ρ, 0, 0, · · · , 0)T , ∥δ∥2 will be qualified as

a ℓ2 certified radius due to ℓ2-symmetry in the Rn space (Zhang et al., 2020). As R is the solution
to the lower-bound problem of Problem (4), we have RD ≥ R, which concludes the proof.

The next two lemmas describe the concentration of the gamma distribution and the beta distribution,
both are required for the lower estimation of Problem (4).
Lemma C.5. (Concentration of the Beta Distribution) Let τ ∈ ( 12 , 1), θ ∈ (0, 1), there exist d0 ∈
N+, for any d ≥ d0,

Ψ d−1
2
(τ) ≥ θ. (38)

Proof. Let X ∼ Beta(d−1
2 , d−1

2 ). By property of the beta distribution, we have EX = 1
2 , DX =

1
4d , and

P{X > τ} = P{X − 1

2
> τ − 1

2
}

≤ P{|X − 1

2
| ≥ τ − 1

2
}

≤ 1

4d(τ − 1
2 )

2
.

(39)

We then have
Ψ d−1

2
(τ) = 1− P{X ≥ τ} ≥ 1− 1

4d(τ − 1
2 )

2
. (40)

Let 1 − 1
4d(τ− 1

2 )
2 ≥ θ, then d ≥ 1

4(1−θ)(τ− 1
2 )

2 . Picking d0 = ⌈ 1
4(1−θ)(τ− 1

2 )
2 ⌉ concludes the

proof.

Lemma C.6. (Concentration of the Gamma Distribution) Let p ∈ (0, 1), d ∈ N+, η ∈ R+ and
β ∈ (0, 1), there exist d0 ∈ N+, for any d ≥ d0,

Λ d
η

(
βd

η

)
≤ p. (41)

Proof. Let X ∼ Γ( dη , 1), then EX = d
η , DX = d

η ,

Λ d
η

(
βd

η

)
=P
{
X ≤ βd

η

}
=P
{
X − d

η
≤ − (1− β)d

η

}
(42)

≤P
{
|X − d

η
| ≥ (1− β)d

η

}
≤ η

(1− β)2d
.

If η
(1−β)2d ≤ p, then d ≥ η

(1−β)2p . Let d0 = ⌈ η
(1−β)2p⌉, for any d ≥ d0, we have η

(1−β)2d ≤
η

(1−β)2d0
≤ p, which concludes the proof.
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Remark. Both Lemma C.5 and Lemma C.6 illustrate that random variables following beta and
gamma distributions are highly concentrated towards their respective expectations under the high-
dimensional setting.

The next lemma is required in the proof of Theorem 4.
Lemma C.7. Let x ∈ N+, η = 1

n , n ∈ N+, g(x) = x(∏ 2
η
i=1(

x+2
η −i)

) η
2

, then g(x) is a non-

decreasing function with respect to x.

Proof. Obviously g(x) > 0. Let h(x) = ln g(x), then

dh(x)

dx
≥ 0⇐⇒ 1

g(x)

dg(x)

dx
≥ 0⇐⇒ dg(x)

dx
≥ 0, (43)

dh(x)

dx
=

d

dx

lnx− η

2

2
η∑

i=1

ln(
x+ 2

η
− i)


=

1

x
− η

2

2
η∑

i=1

1

x+ 2− iη
(44)

≥ 1

x
− η

2

2
η∑

i=1

1

x

= 0.

Therefore, for all x ∈ N+, we have dg(x)
dx ≥ 0, which concludes the proof.

C.2 PROOF OF THEOREM 1

Proof. Theorem 1 is for Case I in section 4.2, where we derive the lower bound of the ℓ2 certified ra-
dius for the smoothing distributionP = G(σ, η, k) and the additional distributionQ = Gt(σ, η, k, T )
by fixing the ideal base classifier. We suppose the base classifier satisfies (σ, p, 2)-concentration
property, which implies the base classifier is an ideal classifier for restricted Gaussian noise. For the
convenience of future discussions, we parameterize 0.02 as µ. In this subsection, the worst classifier
f̃∗
x0

is defined the same as that in Lemma C.3.

We see the condition η = 2 simplifies some lemmas above. Let η = 2 in Lemma C.2, we get
Pz∼S(σ,2){∥z∥2 ≤ T} = Λ d

2
( T 2

2σ2
s
), which means

T = σ
√

2Λ−1
d
2

(p). (45)

By definition of (σ, p, 2)-concentration and Lemma C.3, we have Pz∼Gt(σ,η,k,T ){f(x0+z) = y0} =
1, thus we can find a lower bound to estimate Problem (4) by Lemma C.4. Let η = 2 in Lemma C.5,
we get

Λ d
2
(
βd

2
) ≤ p. (46)

We have thereby
T ≥ σ

√
βd (47)

by combining Equation (45) and Equation (46). Equation (47) will be used for finding the lower
bound of Problem (33). We then consider the solution of the lower-bound Problem (33) in Lemma
C.4. We have

T 2 − (σg(2u)
1
η − ρ)2

4ρσg(2u)
1
η

≥ τ ⇐⇒ σg(2u)
2
η − (2− 4τ)ρσg(2u)

1
η + ρ2 − T 2 ≤ 0. (48)
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Notice Equation (48) is a one-variable quadratic inequality with respect to σg(2u)
1
η . Let ρ = µσ

√
d

where the constant µ ∈ R+. When the discriminant ∆ for Equation (48) is positive, the solution for
it is

σg(2u)
1
η ∈

[
0, (1− 2τ)ρ+

√
T 2 + (4τ2 − 4τ)ρ2

)
⇐⇒0 ≤ u <

1

2

(
(1− 2τ)ρ+

√
T 2 + (4τ2 − 4τ)ρ2

σg

)η

.
(49)

Now we are ready to show the minimization for Ez∼P

(
f̃∗
x0
(δ + z)

)
for base classifier satisfies

(σ, p, 2)-concentration property. We have

Ez∼P

(
f̃∗
x0
(δ + z)

)
=Eu∼Γ( d−2k

η ,1)Ψ d−1
2

(
T 2 − (σg(2u)

1
η − ρ)2

4ρσg(2u)
1
η

)

≥θEu∼Γ( d−2k
η ,1)I

(
T 2 − (σg(2u)

1
η − ρ)2

4ρσg(2u)
1
η

≥ τ

)

≥θEu∼Γ( d−2k
η ,1)I

(
u <

1

2

(
(1− 2τ)ρ+

√
T 2 + (4τ2 − 4τ)ρ2

σg

)η)
(a)

≥θEu∼Γ( d−2k
η ,1)I

(
u <

1

2

(
(1− 2τ)µσ

√
d+

√
σ2βd+ (4τ2 − 4τ)µ2σ2d

σg

)η)

(b)
=θEu∼Γ( d−2k

η ,1)I

u <


√√√√Γ(d−2k+2

η )

Γ(d−2k
η )

(
(1− 2τ)µ+

√
β + (4τ2 − 4τ)µ2

)η ,

(50)

where I(·) is the indicator function, (a) is by ρ = µσ
√
d and Equation (47), and (b) is because

σg = 2−
1
η

√√√√ dΓ(d−2k
η )

Γ(d−2k+2
η )

σ (51)

by definition. We write

m =


√√√√Γ(d−2k+2

η )

Γ(d−2k
η )

(
(1− 2τ)µ+

√
β + (4τ2 − 4τ)µ2

)η

, (52)

to get
Ez∼P

(
f̃∗
x0
(δ + z)

)
≥θEu∼Γ( d−2k

η ,1)1u<m

=θPu∼Γ( d−2k
η ,1){u < m}

=θΛ d−2k
η

(m).

(53)

Let θ = 0.999, β = 0.99, τ = 0.6, µ = 0.02 (Li et al., 2022). We show the value of Λ d−2k
η

(m)

when d − 2k ∈ [1, 30] ∩ Z and η = 1
n , n ∈ [1, 50] ∩ Z in Table 4. Observing that there’s no value

greater than 1
2θ , we have Ez∼P

(
f̃∗
x0
(δ + z)

)
≥ 1

2 , which concludes the proof.

Computational method for the tight factor µ. Table 4 reports the computed probability when
µ = 0.02. Considering µ is a constant factor for certified radius, there exists the monotonicity that
the larger the µ, the smaller the probability in the table. For this, we offer Algorithm 1 to find
the tight µ for EGG distributions. Given the existence of intractable gamma distribution, we only
consider the discrete cases. Limited by length, we do not exhaust all d−2k ∈ [1, 30]∩N. As shown
in Table,
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Algorithm 1: Algorithm for finding tight µ for the Ω(
√
d) lower bound

Input: input dimension d, hyperparameters k, β, τ, θ, exponent η, error limitation e
1 µl ← 0, µr ← 1
2 while µr − µl > e do
3 µm ← (µr + µl)/2

4 mm ← θΛ d−2k
η

((√
Γ( d−2k+2

η )

Γ( d−2k
η )

(
(1− 2τ)µm +

√
β + (4τ2 − 4τ)µ2

m

))η
)

5 ▷ Compute mm by Equations (52) and (53)
6 if mm > 1/2θ then
7 µr ← µm

8 else
9 µl ← µm

10 end if
11 end while

Output: tight constant µl for specified EGG

Remark. Table 4 actually demonstrates EGG with discrete η ∈ (0, 2) offers a better lower bound in
the sense of constant factor than General Gaussian (η = 2 in EGG), because for every single d− 2k
(except 1), Λ d−2k

η
(m) of smaller η are always greater than that of the larger. This indicates when we

set larger µ (corresponds to larger certified radius), Λ d−2k
η

(m) of smaller η approaches 1
2θ slower.

i.e., smaller η tolerates larger µ, which is exactly the coefficient of
√
d.

We exhaust the cases since the analytic solution to Problem (33) includes intractable gamma function
terms. The proof above can easily be generalized to other η ∈ R+. e.g., we have tried the sequence
of η ∈ [0.02, 1] increasing by 0.001, no value greater than 1

2θ is observed, meaning these ηs are all
qualified to provide Ω(

√
d) lower bounds for the ℓ2 certified radius under the setting of Theorem 1.

We have also show results for η ∈ [2, 10]∩N in Table 4, where the boundary value for 1
2θ is marked

red. It is remarkable that Λ d−2k
η

(m) decreases significantly when η > 2, which is in line with Figure
1a though here we are only considering the lower bound for the certified radius.

One reason for the decreasing effect w.r.t. η is that the (σ, p, 2)-concentration assumption is to some
degree more strict for smaller η than for larger ones. More specifically, when η gets closer to 0, the
major mass of EGG gets closer to 0 as well (Figure 5), even if we have set Er2 to a constant for
EGG distributions. As the (σ, p, 2)-concentration assumption essentially keeps T a constant, more
mass is contained by T for smaller η. In other words, p = 0.5 is just for Gaussian distribution, the
proportion of the mass of EGG contained within T can be quite large when T is fixed and η is small.

C.3 PROOF OF THEOREM 4

The following theorem introduces d1/η into the lower bound using (σ, p, η)-concentration assump-
tion, which can be proved almost equivalent to Theorem 1.
Theorem 4. Let d ∈ N+ be a sufficiently large input dimension, (x0, y0) ∈ Rd × Y be a labeled
example and f : Rd → Y be a base classifier which satisfies (σ, p, η)-concentration property w.r.t.
(x0, y0). For the DSRS method, let P = G(σ, η, k) be the smoothing distribution to give a smoothed
classifier f̄P , and Q = Gt(σ, η, k, T ) be the additional distribution with T = σs

√
2Λ−1

d
η

(p), d −

2k ∈ [1, 30] ∩ N and η ∈ {1, 1
2 ,

1
3 , · · · ,

1
50}. Then for smoothed classifier f̄D(x) the certified ℓ2

radius
rη ≥ 0.02σsd

1
η , (54)

where σs is the substitution variance of S(σ, η). When σs is converted to σ keeping Er2 a constant,
we still have

rDSRS = Ω(
√
d). (55)

The proof shares the same core technique with that of Theorem 1. Since there is formally an Ω(d
1
η )

bound in the result, we further analyze it under a common setting in the community, that converting
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σs to σ under a constant Er2. By definition, we still get an Ω(
√
d) lower bound for rDSRS . Notice

the technique we use to prove Theorem 1 and Theorem 4 can be extended to the smaller η (say, 1
51 ).

Proof. In this section, we first prove that a base classifier satisfies a certain concentration property
can certify Θ(d

1
η ) ℓ2 radii given the smoothing distribution P = G(σ, η, k) and the additional

distribution Q = Gt(σ, η, k, T ). Then by converting σs to σ, we derive a Θ(
√
d) lower bound for

the certified radius. Like Appendix C.2, we find the lower bound for Problem (4) by Lemma C.4.
Notice though the solution for the lower bound of Problem (4) looks the same for both the proofs,
the base classifiers satisfy different concentration properties, which makes different T and different
additional distribution Q in each case.

In Lemma C.2, when η is an arbitrarily determined real number, we have

p = Λ d
η

(
T η

2ση
s

)
⇐⇒ T = σs(2Λ

−1
d
η

(p))
1
η . (56)

We thereby obtain

T ≥ (
2β

η
)

1
η σsd

1
η (57)

by Lemma C.6. Then we have Equation (48) and Equation (49) the same as in Appendix C.2. Let
ρ = ζσsd

1
η where ζ ∈ R+. Now we have finished the preparation for the lower estimation of

Problem (33). Let η = 1
n , n ∈ N+,∀d ≥ d̃, where d̃ is a sufficiently large real integer which

satisfies Lemma C.5 and Lemma C.6. We then have the estimation
Ez∼P

(
f̃
∗
x0

(δ + z)
)

=E
u∼Γ( d−2k

η
,1)

Ψ d−1
2

T 2 − (σg(2u)
1
η − ρ)2

4ρσg(2u)
1
η


(a)

≥ θE
u∼Γ( d−2k

η
,1)

I

T 2 − (σg(2u)
1
η − ρ)2

4ρσg(2u)
1
η

≥ τ


(b)

≥ θE
u∼Γ( d−2k

η
,1)

I
(
u <

1

2

(
(1 − 2τ)ρ +

√
T 2 + (4τ2 − 4τ)ρ2

σg

)η)

(c)
= θE

u∼Γ( d−2k
η

,1)
I

u <
1

2


√√√√Γ( d

η )Γ( d−2k+2
η )

Γ( d+2
η )Γ( d−2k

η )

(1 − 2τ)ρ +
√

T 2 + (4τ2 − 4τ)ρ2

σs

η
(d)

≥ θE
u∼Γ( d−2k

η
,1)

I

u <
1

2


√√√√Γ( d

η )Γ( d−2k+2
η )

Γ( d+2
η )Γ( d−2k

η )

(1 − 2τ)ζσsd
1
η +

√
( 2β

η )
2
η σ2

sd
2
η + (4τ2 − 4τ)(ζσsd

1
η )2

σs


η

=θE
u∼Γ( d−2k

η
,1)

I

u <
d

2


√√√√Γ( d

η )Γ( d−2k+2
η )

Γ( d+2
η )Γ( d−2k

η )

(
(1 − 2τ)ζ +

√
(
2β

η
)
2
η + (4τ2 − 4τ)ζ2

)η

=θE
u∼Γ( d−2k

η
,1)

I

u <
d

2

(∏ 2
η
i=1(

d+2
η − i)

) η
2


√√√√Γ( d−2k+2

η )

Γ( d−2k
η )

(
(1 − 2τ)ζ +

√
(
2β

η
)
2
η + (4τ2 − 4τ)ζ2

)η



(e)

≥ θE
u∼Γ( d−2k

η
,1)

I

u <
d̃

2

(∏ 2
η
i=1(

d̃+2
η − i)

) η
2


√√√√Γ( d−2k+2

η )

Γ( d−2k
η )

(
(1 − 2τ)ζ +

√
(
2β

η
)
2
η + (4τ2 − 4τ)ζ2

)η

 .

(58)

In the equations above: (a) by Lemma C.5; (b) solve the inequality with respect to u in the indicator
function, whose solution is shown in Equation (49); (c) for a constant Er2, we have

σg =

√√√√Γ(d−2k
η )Γ(d+2

η )

Γ( dη )Γ(
d−2k+2

η )
σs; (59)

(d) by Lemma C.6 and ρ = ζσsd
1
η ; (e) by Lemma C.7.
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We write

m =
d̃

2

(∏ 2
η

i=1(
d̃+2
η − i)

) η
2


√√√√Γ(d−2k+2

η )

Γ(d−2k
η )

(
(1− 2τ)ζ +

√
(
2β

η
)

2
η + (4τ2 − 4τ)ζ2

)η

,

(60)
and then we have

Ez∼P

(
f̃∗
x0
(δ + z)

)
≥ Λ d−2k

η
(m) (61)

by Equation (58). Notice the lower estimation is slightly different to Appendix C.2 since there is a
d̃ in the expression. Pick p = 0.5, d̃ = 25000, θ = 0.999, β = 0.99, τ = 0.6, ζ = 0.02 (Li et al.,
2022). We show the value of Λ d−2k

η
(m) when d − 2k ∈ [1, 30] ∩ Z and η = 1

n , n ∈ [1, 50] ∩ Z in

Table 5. As a result, all values in Table 5 are greater than 1
2θ ≈ 0.5005, which means

Ez∼P

(
f̃∗
x0
(δ + z)

)
≥ θ · 1

2θ
=

1

2
. (62)

Recalling that our goal here is to check whether Ez∼P

(
f̃∗
x0
(δ + z)

)
≥ 1

2 holds for some determined
ρ, we have finished the proof that for base classifiers satisfy (σ, p, η)-concentration property with
the smoothing distribution P = G(σ, η, k) and the additional distribution Q = Gt(σ, η, k, T ) ,
RD ≥ ρ = ζσsd

1
η . Superficially, we get an Ω(d

1
η ) bound for the ℓ2 certified radius. Considering

the convention that Er2 keeps a constant, we have

σs = 2−
1
η

√√√√ dΓ( dη )

Γ(d+2
η )

σ, (63)

then

ρ = ζσ2−
1
η

√√√√ dΓ( dη )

Γ(d+2
η )

d
1
η = ζσ2−

1
η

√√√√ d∏ 2
η

i=1(
d+2
η − i)

d
1
η . (64)

We notice

lim
d→+∞

ρ√
d
= lim

d→+∞
ζσ2−

1
η

√√√√ d
2
η∏ 2

η

i=1(
d+2
η − i)

= ζσ
(η
2

) 1
η

, (65)

which by definition means ρ = Θ(
√
d). Since RD ≥ ρ, we have RD = Ω(

√
d) at the scale of σ,

which concludes the proof of Theorem 4.

Remark. Different with Theorem 1, this proof can not be generalized to η > 2 due to the property
of factorial. In essence, (σ, p, η)-concentration assumption is slightly less strict for base classifiers
than (σ, p, 2)-concentration assumption, and Theorem 1 and Theorem 4 can be considered as two
different expressions of the same fact.

D PROOF OF THEOREM 2

Our proof is based on the level set method and the DSRS computational method from Yang et al.
(2020) and Li (Li et al., 2022). We don’t show mechanisms that have been clarified by them.

Theoretically, for every radius ρ ∈ R+, we have to exhaust all δ ∈ Rn that satisfy ∥δ∥2 = ρ to
confirm whether the value ρ can be certified. However, as a result of the ℓ2-symmetry, when can
just consider δ = (ρ, 0, 0, · · · , 0)T when computing, as a sufficient condition for all ∥δ∥2 = ρ. See
detailed proof for this in Zhang et al. (2020). By doing this, the certification for δ can be reduced to
a one-dimensional binary search on ρ, which largely simplified the problem.
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The following part is the computational method for Problem (9). For P = G(σ, η, k) and Q =
Gt(σ, η, k, T ) with PDFs p(·) and q(·) respectively, we have
Pz∼P{z ∈ V}

=Pz∼P{p(z − δ) + ν1p(z) + ν2q(z) < 0}

=

∫ ∞

T

ϕg(r)
2π

d
2

Γ(d2 )
rd−1dr · P{p(x− δ) + ν1p(x) < 0| ∥x∥2 = r}

+

∫ T

0

ϕg(r)
2π

d
2

Γ(d2 )
rd−1dr · P{p(x− δ) + (ν1 + Cgν2)p(x) < 0| ∥x∥2 = r}

=
1

Γ(d−2k
η )

∫ ∞

Tη

2σ
η
g

u
d−2k

η −1 exp(−u)du · P{p(x− δ) + ν1p(x) < 0}| ∥x∥2 = σg(2u)
1
η }

+
1

Γ(d−2k
η )

∫ Tη

2σ
η
g

0

u
d−2k

η −1 exp(−u)du · P{p(x− δ) + (ν1 + Cgν2)p(x) < 0| ∥x∥2 = σg(2u)
1
η }

= Eu∼Γ( d−2k
η ,1)


ω1(u, ν1), u ≥ T η

2ση
g
,

ω1(u, ν1 + Cgν2), u <
T η

2ση
g
,

(66)
where ω1(u, ν) = P{p(x− δ) + νp(x) < 0| ∥x∥2 = σg(2u)

1
η }. Here we notice

p(x−δ) < −νp(x)⇐⇒ ϕg(∥x−δ∥2) < −νϕg(∥x∥2)⇐⇒ ∥x−δ∥2 > ϕ−1
g (−νϕg(∥x∥2)), (67)

Since x = (x1, x2, · · · , xd)
T , δ = (ρ, 0, 0, · · · , 0)T , we let ∥x∥2 = σg(2u)

1
η to get

x2
1 +

d∑
i=2

x2
i = (2ση

gu)
2
η ,

(x1 − ρ)2 +

d∑
i=2

x2
i ≥ ϕ−1

g (−νϕg(∥x∥2))2.

(68)

In solving this inequality system, we have

x1 ≤
ρ2 + σg(2u)

2
η − ϕ−1

g (−νϕg(σg(2u)
1
η )2

2ρ
. (69)

We write ξ for ϕ−1
g (−νϕg(σg(2u)

1
η ), then

ϕg(ξ) = −νϕg(σg(2u)
1
η ). (70)

Combining Equation (69) and Equation (11b), we obtain

η

2

1

(2ση
g )

d−2k
η π

d
2

Γ(d2 )

Γ(d−2k
η )

ξ−2k exp(− ξη

2ση
g
) = −νη

2

1

(2ση
g )

d−2k
η π

d
2

Γ(d2 )

Γ(d−2k
η )

σ−2k
g (2u)

−2k
η exp(−u)

⇐⇒ 1

(2ση
g )

−2k
η

ξ−2k exp(−1

2
(
ξ

σg
)η) = −νu

−2k
η exp(−u).

(71)
Solving Equation (71) to get

ξ =

(
4kW (ηu2k (−ν)

− η
2k exp(ηu2k ))σ

η
g

η

) 1
η

, (72)

where W (·) is the principal branch of the Lambert W function. Injecting ξ2 into Equation (69), we
have

x1 ≤
ρ2 + σ2

g(2u)
2
η −

(
4kW ( ηu

2k (−ν)−
η
2k exp( ηu

2k ))ση
g

η

) 2
η

2ρ
. (73)

To compute Equation (73), we have the following lemma:
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Lemma D.1. (Lemma I.23 in Yang et al. (2020)) If (x1, · · · , xd) is sampled uniformly from the unit
hypersphere Sd−1 ⊆ Rd, then 1+x1

2 is distributed as Beta
(
d−1
2 , d−1

2

)
.

Obviously,

1 + x1

σg(2u)
1
η

2
≤

(ρ+ σg(2u)
1
η )2 −

(
4kW ( ηu

2k (−ν)−
η
2k exp( ηu

2k ))ση
g

η

) 2
η

4ρσg(2u)
1
η

. (74)

Combining Equation (74) and Lemma D.1, we get

ω1(u, ν) = Ψ d−1
2


(ρ+ σg(2u)

1
η )2 −

(
4kW ( ηu

2k (−ν)−
η
2k exp( ηu

2k ))ση
g

η

) 2
η

4ρσg(2u)
1
η

 . (75)

Now with the expression of ω1(u, ν), Pz∼P{z ∈ V} is calculable by numerical integration.

The computation of Pz∼Q{z ∈ V} is a simplified version of Pz∼P{z ∈ V} with differences lying
in the PDF and the integral interval.

Pz∼Q{z ∈ V}
=Pz∼Q{p(z − δ) + ν1p(z) + ν2q(z) < 0}

=

∫ T

0

ϕg(r, T )
2π

d
2

Γ(d2 )
rd−1dr · P{p(x− δ) + (ν1 + Cgν2)p(x) < 0| ∥x∥2 = r}

=
1

γ(d−2k
η , Tη

2ση
g
)

∫ Tη

2σ
η
g

0

u
d−2k

η −1e−u · P{p(x− δ) < −(ν1 + Cgν2)p(x)| ∥x∥2 = σg(2u)
1
η }du

=CgEu∼Γ( d−2k
η ,1) ω1(u, ν1 + Cgν2) · 1u≤ Tη

2σ
η
g

.

(76)

For Pz∼P+δ{z ∈ V}, there are significant differences in the computation as we are now considering
the shifted distribution z ∼ P + δ. Noticing
Pz∼P+δ{p(z−δ)+ν1p(z)+ν2q(z) < 0} ⇐⇒ Pz∼P{p(z)+ν1p(z+δ)+ν2q(z+δ) < 0}, (77)

we have
Pz∼P+δ{z ∈ V}

=Pz∼P+δ{p(z − δ) + ν1p(z) + ν2q(z) < 0}
=Pz∼P{p(z) + ν1p(z + δ) + ν2q(z + δ) < 0}

=

∫ ∞

0

ϕg(r)
2π

d
2

Γ(d2 )
rd−1dr · P{p(x) + ν1p(x+ δ) + ν2q(x+ δ) < 0| ∥x∥2 = r}

=
1

Γ(d−2k
η )

∫ ∞

0

u
d−2k

η −1e−udu · P{p(x) + ν1p(x+ δ) + ν2q(x+ δ) < 0| ∥x∥2 = σg(2u)
1
η }.

(78)

Here we have to analyze bound cases because there is a term ν2q(x+δ), where q(·) is not continuous
in the Rd space, and x + δ can not be handled well by piecewise integration like Pz∼P{z ∈ V}.
Thus, we consider the value of q(x+ δ) instead.

Branch (1): q(x+ δ) > 0.

This branch is equivalent to ∥x+ δ∥2 ≤ T . For ∥x∥2 = σg(2u)
1
η , we have

x2
1 +

d∑
i=2

x2
i = (2ση

gu)
2
η ,

(x1 + ρ)2 +

d∑
i=2

x2
i ≤ T 2.

(79)
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Solving the inequality system, we get

x1 ≤
T 2 − ρ2 − (2ση

gu)
2
η

2ρ
. (80)

We also see that
p(x) + ν1p(x+ δ) + ν2q(x+ δ) < 0

⇐⇒p(x) ≤ −(ν1p(x+ δ) + ν2q(x+ δ))

⇐⇒p(x) ≤ −(ν1 + Cgν2)p(x+ δ)

⇐⇒ϕg(∥x∥2) ≤ −(ν1 + Cgν2)ϕg(∥x+ δ∥2)
(a)⇐⇒ϕg(∥x+ δ∥2) ≥ −

1

(ν1 + Cgν2)
ϕg(∥x∥2)

⇐⇒∥x+ δ∥2 ≤ ϕ−1
g

(
− 1

(ν1 + Cgν2)
ϕg(∥x∥2)

)
,

(81)

where (a) is because ν1 + Cgν2 is handled as a whole, only the case under ν1 + Cgν2 < 0 is
considered in binary search algorithms. See details in Appendix E.1 from Li et al. (2022). Now we
combine Equation (81) and Equation (11b) to obtain

x1 ≤
σ2
g(

4kW ( ηu
2k (−ν1−Cgν2)

η
2k exp( ηu

2k ))

η )
2
η − σ2

g(2u)
2
η − ρ2

2ρ
. (82)

Utilizing the property of the beta distribution (Lemma D.1) again and taking the intersection of two
restrictions, we get

P{p(x) + ν1p(x+ δ) + ν2q(x+ δ) < 0 ∧ q(x+ δ) > 0| ∥x∥2 = σg(2u)
1
η }

=Ψ d−1
2

min{T 2, σ2
g(

4kW ( ηu
2k (−ν1−Cgν2)

η
2k exp( ηu

2k ))

η )
2
η } − (σg(2u)

1
η − ρ)2

4ρσg(2u)
1
η

 .
(83)

Branch (2): q(x+ δ) = 0.

Noticing that when q(x+ δ) = 0,

p(x) + ν1p(x+ δ) + ν2q(x+ δ) < 0⇐⇒ p(x) + ν1p(x+ δ) < 0. (84)

Like Equation (81), we only consider ν1 < 0 since if ν1 ≥ 0, the inequality above can never holds.
We have 

x2
1 +

d∑
i=2

x2
i = (2ση

gu)
2
η ,

(x1 + ρ)2 +

d∑
i=2

x2
i > T 2.

(85)

Thus,

x1 >
T 2 − ρ2 − σ2

g(2u)
2
η

2ρ
. (86)

Since
p(x) + ν1p(x+ δ) < 0

⇐⇒p(x) ≤ −ν1p(x+ δ)

⇐⇒ϕg(∥x∥2) ≤ −ν1ϕg(∥x+ δ∥2)

⇐⇒ϕg(∥x+ δ∥2) ≥ −
1

ν1
ϕg(∥x∥2)

⇐⇒∥x+ δ∥2 ≤ ϕ−1
g

(
− 1

ν1
ϕg(∥x∥2)

)
,

(87)
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we also have

x1 ≤
σ2
g(

4kW ( ηu
2k (−ν1)

η
2k exp( ηu

2k ))

η )
2
η − σ2

g(2u)
2
η − ρ2

2ρ
, (88)

by combining Equation (87) and Equation (11b). Thus we get

T 2 − ρ2 − σg(2u)
2
η

2ρ
< x1 ≤

σ2
g(

4kW ( ηu
2k (−ν1)

η
2k exp( ηu

2k ))

η )
2
η − σ2

g(2u)
2
η − ρ2

2ρ
. (89)

By Lemma D.1, we obtain

P{p(x) + ν1p(x+ δ) + ν2q(x+ δ) < 0 ∧ q(x+ δ) = 0| ∥x∥2 = σg(2u)
1
η }

=Ψ d−1
2

σ2
g(

4kW ( ηu
2k (−ν1)

η
2k exp( ηu

2k ))

η )
2
η − (σg(2u)

1
η − ρ)2

4ρσg(2u)
1
η

−Ψ d−1
2

(
T 2 − (σg(2u)

1
η − ρ)2

4ρσg(2u)
1
η

)
.

(90)
For brevity, we write

ω2(u) = Ψ d−1
2

min{T 2, σ2
g(

4kW (
ηu
2k

(−ν1−Cgν2)
η
2k exp(

ηu
2k

))

η )
2
η } − (σg(2u)

1
η − ρ)2

4ρσg(2u)
1
η

 ,

ω3(u) = Ψ d−1
2

σ2
g(

4kW (
ηu
2k

(−ν1)
η
2k exp(

ηu
2k

))

η )
2
η − (σg(2u)

1
η − ρ)2

4ρσg(2u)
1
η

− Ψ d−1
2

T 2 − (σg(2u)
1
η − ρ)2

4ρσg(2u)
1
η

 .

(91)

Finally, combining the two cases gives

P{p(x) + ν1p(x+ δ) + ν2q(x+ δ) < 0| ∥x∥2 = σg(2u)
1
η }

=P{p(x) + ν1p(x+ δ) + ν2q(x+ δ) < 0 ∧ q(x+ δ) > 0| ∥x∥2 = σg(2u)
1
η }

+ P{p(x) + ν1p(x+ δ) + ν2q(x+ δ) < 0 ∧ q(x+ δ) = 0| ∥x∥2 = σg(2u)
1
η }

=

{
ω2(u), ν1 ≥ 0,

ω2(u) + ω3(u), ν1 < 0.

(92)

Therefore,

Pz∼P+δ{z ∈ V}

=
1

Γ(d−2k
η )

∫ ∞

0

u
d−2k

η −1e−udu · P{p(x) + ν1p(x+ δ) + ν2q(x+ δ) < 0| ∥x∥2 = σg(2u)
1
η }

=

{Eu∼Γ( d−2k
η ,1) ω2(u), ν1 ≥ 0,

Eu∼Γ( d−2k
η ,1){ω2(u) + ω3(u)}, ν1 < 0.

(93)
Now, we have already completed the proof of Theorem 2.

E PROOF OF THEOREM 3

The proof of Theorem 3 is similar to that of Theorem 2, thereby we only show the parts with
significant differences in this section.

Probability density functions. The first difference lies in PDFs of EGG and ESG, see Appendix A.

ω Functions. There are essential differences between the computations of EGG and ESG lying in
the ω functions. In form, these three ω functions are designed totally symmetric for EGG and ESG.
We learn that for EGG, searching ν1 +Cgν2 and ν1 in (−∞, 0) is enough for obtaining the value of
ω functions. Nevertheless, we will see for different ω functions, there are subtle differences in the
computations for EGG and ESG.
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(1) Function ω1.

Consider ω1(u, ν) = P{p(x− δ)+ νp(x) < 0| ∥x∥2 = σs(2u)
1
η }. Obviously, ϕs(r) is a monotoni-

cally decreasing function with respect to r. Since all PDFs of S(σ, η) are bounded functions, we set
the upper bound to be U for convenience. Let r = 0, we have

U =
η

2

1

(2ση
s )

d
η π

d
2

Γ(d2 )

Γ( dη )
(94)

for ϕs(r). Namely, ∀x ∈ [0,∞), p(x) ∈ (0, U ], where U < +∞ is a constant for any determined
distribution. As a result, if for a specific x, we have −νp(x) > U , the probability P{p(x − δ) +

νp(x) < 0| ∥x∥2 = σs(2u)
1
η } will always be 1. Next, we suppose −νp(x) ∈ (0, U ], otherwise

−νp(x) is outside the domain of ϕ−1
s (x). When ∥x∥2 = σs(2u)

1
η , we have

p(x− δ) + νp(x) < 0

⇐⇒p(x− δ) ≤ −νp(x)
⇐⇒ϕs(∥x− δ∥2) ≤ −νϕs(∥x∥2)
⇐⇒∥x− δ∥2 ≥ ϕ−1

s (−νϕs(∥x∥2))
⇐⇒∥x− δ∥2 ≥ ϕ−1

s (−νU exp(−u)).

(95)

Then we are ready to solve
0 < −νU exp(−u) ≤ U, (96)

where u ≥ 0. For ω1, ν is always negative by our binary search setting, so the left side 0 <
−νU exp(−u) always holds. For the right side, we notice

−νU exp(−u) ≤ U ⇐⇒ exp(−u) ≤ −1

ν
⇐⇒ u− ln(−ν) ≥ 0. (97)

Now we know for ν < 0,

u− ln(−ν) ≥ 0⇐⇒ −νp(x) ∈ (0, U ], (98)

and
u− ln(−ν) < 0⇐⇒ −νp(x) ∈ (U,∞], (99)

which means P{p(x− δ) + νp(x) < 0| ∥x∥2 = σs(2u)
1
η } = 1 when u− ln(−ν) < 0. Therefore,

ω1(u, ν) =


Ψ d−1

2

 (ρ+ σs(2u)
1
η )2 −

(
ϕ−1
s (−νϕs(σs(2u)

1
η ))
)2

4ρσs(2u)
1
η

 , u− ln(−ν) ≥ 0,

1 , u− ln(−ν) < 0.
(100)

(2) Function ω2.

The ω2 function is for calculating P{p(x) + ν1p(x+ δ) + ν2q(x+ δ) < 0 ∧ q(x+ δ) > 0| ∥x∥2 =

σg(2u)
1
η }. When − 1

ν1+Csν2
p(x) ∈ (0, U ], we have

p(x) + ν1p(x+ δ) + ν2q(x+ δ) < 0

⇐⇒p(x) ≤ −(ν1 + Csν2)p(x+ δ)

⇐⇒p(x+ δ) ≥ − 1

ν1 + Csν2
p(x)

⇐⇒ϕs(∥x+ δ∥2) ≥ −
1

ν1 + Csν2
ϕs(∥x∥2)

⇐⇒∥x+ δ∥2 ≤ ϕ−1
s (− 1

ν1 + Csν2
ϕs(∥x∥2)).

(101)

Injecting ∥x∥2 = σs(2u)
1
η into inequalities above, we get

− 1

ν1 + Csν2
p(x) ∈ (0, U ]⇐⇒ u+ ln(−(ν1 + Csν2)) ≥ 0, (102)
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which is the boundary condition for ω2. Though looks similar, it differs significantly from ω1. Let
− 1

ν1+Csν2
ϕs(∥x∥2) ∈ (U,+∞], then

p(x) + ν1p(x+ δ) + ν2q(x+ δ) < 0⇐⇒ ϕs(∥x+ δ∥2) ≥ U, (103)

which means P{p(x)+ ν1p(x+ δ)+ ν2q(x+ δ) < 0∧ q(x+ δ) > 0| ∥x∥2 = σg(2u)
1
η } = 0 under

u+ ln(−(ν1 + Csν2)) < 0. Finally, we have

ω2(u) =


Ψ d−1

2


min{T 2,

(
ϕ−1
s (− 1

ν1+Csν2
ϕs(σs(2u)

1
η ))

)2

} − (σs(2u)
1
η − ρ)2

4ρσs(2u)
1
η

 , u + ln(−ν1 − Csν2) ≥ 0,

0 , u + ln(−ν1 − Csν2) < 0.
(104)

(3) Function ω3.

The computational logic of ω3 is similar to that of ω2. For P{p(x) + ν1p(x + δ) + ν2q(x + δ) <

0 ∧ q(x+ δ) = 0| ∥x∥2 = σg(2u)
1
η }. When − 1

ν1
p(x) ∈ (0, U ], we have

p(x) + ν1p(x+ δ) + ν2q(x+ δ) < 0

⇐⇒p(x) ≤ −ν1p(x+ δ)

⇐⇒p(x+ δ) ≥ − 1

ν1
p(x)

⇐⇒ϕs(∥x+ δ∥2) ≥ −
1

ν1
ϕs(∥x∥2)

⇐⇒∥x+ δ∥2 ≤ ϕ−1
s (− 1

ν1
ϕs(∥x∥2)).

(105)

When ∥x∥2 = σs(2u)
1
η , we obtain

− 1

ν1
ϕs(∥x∥2) ∈ (0, U ]⇐⇒ u+ ln(−ν1) ≥ 0. (106)

Thus we have the expression

ω3(u) =



max

Ψ d−1
2


(
ϕ−1
s (− 1

ν1
ϕs(σs(2u)

1
η ))

)2

− (σs(2u)
1
η − ρ)2

4ρσs(2u)
1
η

− Ψ d−1
2

T2 − (σs(2u)
1
η − ρ)2

4ρσs(2u)
1
η

 , 0

 ,

u + ln(−ν1) ≥ 0,

0, u + ln(−ν1) < 0.
(107)

Calculation of ϕ−1
s (r). Appearing in all ω functions in Theorem 3, ϕ−1

s (r) is an indispensable
value in the system. We let ξ be ϕ−1

s (−νϕs(σs(2u)
1
η ) when −νϕs(σs(2u)

1
η ∈ (0, U ], then

ϕs(ξ) = −νϕs(σs(2u)
1
η ). (108)

We thus have

η

2

1

(2ση
s )

d
η π

d
2

Γ(d2 )

Γ( dη )
exp(− ξη

2ση
s
) = −νη

2

1

(2ση
s )

d
η π

d
2

Γ(d2 )

Γ( dη )
exp(−u)

⇐⇒ exp(−1

2
(
ξ

σs
)η) = −ν exp(−u).

(109)

Obviously ξ ≥ 0, then exp(− 1
2 (

ξ
σs
)η) ∈ (0, 1]. When Equation (109) has a solution, we need

0 < −ν exp(−u) ≤ 1. (110)

Therefore, we get the boundary condition

ν < 0, u ≥ ln(−ν). (111)

Under Equation (111), Equation (109) can be solved:

ξ = 2
1
η σs(u− ln(−ν))

1
η . (112)
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We thus have:

ω1(u, ν) =


Ψ d−1

2

 (ρ + σs(2u)
1
η )2 − 2

2
η σ2

s(u − ln(−ν))
2
η

4ρσs(2u)
1
η

 , u − ln(−ν) ≥ 0,

1 , u − ln(−ν) < 0,

ω2(u) =


Ψ d−1

2

min{T2, 2
2
η σ2

s(u + ln(−ν1 − Csν2))
2
η } − (σs(2u)

1
η − ρ)2

4ρσs(2u)
1
η

 , u + ln(−ν1 − Csν2) ≥ 0,

0 , u + ln(−ν1 − Csν2) < 0,

ω3(u) =


max

Ψ d−1
2

 2
2
η σ2

s(u + ln(−ν1))
2
η − (σs(2u)

1
η − ρ)2

4ρσs(2u)
1
η

− Ψ d−1
2

T2 − (σs(2u)
1
η − ρ)2

4ρσs(2u)
1
η

 , 0

 ,

u + ln(−ν1) ≥ 0,

0, u + ln(−ν1) < 0.
(113)

By plugging ω functions into expressions of expectations in Theorem 3, we obtain the solution
to Problem (9) for ESG, which completes the illustration on differences between Theorem 2 and
Theorem 3.

Besides solving the dual problem for EGG and ESG, the analysis of boundary conditions is needed
frequently in the conservative algorithm (Figure 3). Even though subtle differences may exist in
different settings, the core technique is almost the same as the derivation above.

F SUPPLEMENTARY PRELIMINARIES

We offer further preliminaries in this section to introduce the backgrounds of the Neyman-Pearson
certification and the DSRS certification.

F.1 NEYMAN-PEARSON CERTIFICATION

The primitive DSRS framework takes Neyman-Pearson certification as the baseline. We follow
this setting in this work and introduce it here. With the same notations of Problem (9), the primal
problem of NP certification can be formulated as:

min
f̃x0

∈F
Ez∼P

(
f̃x0(δ + z)

)
,

s.t. Ez∼P

(
f̃x0

(z)
)
= A.

(114)

Same as DSRS, instead of solving Equation (114), we solve its strong dual problem, which can be
easily solved by level set method and numerical integration:

max
ν∈R

Pz∼P+δ{p(z − δ) + νp(z) < 0},

s.t. Pz∼P{p(z − δ) + νp(z) < 0} = A.
(115)

In practice, we compute DSRS-certified radius by sequential searching taking NP-certified radius
as the starting point every time. To show the growth of certified robustness by using additional
distribution in the DSRS method relative to the NP method, we define increment (Growth):

INC ≜
ACRDS −ACRNP

ACRNP
× 100%, (116)

where ACRDS and ACRNP are the ACR for the base classifier certified by DSRS and NP, re-
spectively. We show abundant results on NP certification in Appendix J. On real-world datasets, our
observations on DSRS that certified robustness keeps almost invariant w.r.t. η for ESG and mono-
tonically increases w.r.t. η for EGG also hold for the NP certification. From these results, we predict
that for the NP certification, most ESG distributions have the potential to give the best results for ℓ2
certified radius.

F.2 SOLVING PROBLEM (4) AND PROBLEM (9)

To better clarify the mechanisms behind the optimizaiton problems in this paper, here we provide a
concise introduction to them. One essential contribution of the randomized smoothing framework
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(Cohen et al., 2019) was that it discovered an extremely simple connection f(ρ) between certified
radius ρ and accuracy A of the smoothed classifier. Taking Gaussian distribution as the noise, they
derived

Φ(
ρ

σ
) = A, (117)

by Neyman-Pearson lemma, where σ is the variance of Gaussian and Φ(·) is the CDF of Gaussian.
However, the simple mapping between r and A does not universally present in other distributions.
Taking EGG as the example, we have

ρ = max r, (118a)

s.t. E
u∼Γ( d−2k

η
,1)

Ψ d−1
2

σ2
g(

4kW ( ηu
2k

χ
η
2k exp( ηu

2k
))

η
)

2
η − (σg(2u)

1
η − r)2

4rσg(2u)
1
η

 >
1

2
, (118b)

E
u∼Γ( d−2k

η
,1)

Ψ d−1
2


(r + σg(2u)

1
η )2 −

(
4kW ( ηu

2k
(−χ)

− η
2k exp( ηu

2k
))ση

g

η

) 2
η

4rσg(2u)
1
η

 = A. (118c)

Same as the setting in Cohen et al. (2019), A is known. To solve the problem, we firstly perform a
binary search on χ, then substitute χ into Equation (118b), and perform another binary search on r.
Finally, the maximum r satisfying the subections is the certified radius we need. Through solving
Equation (118), we learn that for some distributions, it is available to calculate the certified radius ρ
only depending on A, but the process can be much more complicated than that of Gaussian.

The DSRS framework shares the identical thinking of Equation (118), where the only difference is
that DSRS introduces another subjection. To solve the DSRS problem, we only need to perform
another binary search to obtain both ν1 and ν2. In other words, DSRS has two intermediate vari-
ables like χ, which can be solved by performing two binary searches. Finally, since DSRS has a
counterpart of Equation (118b), by substituting both the intermediate variables into the counterpart
equation, and performing a binary search on r can finally get the certified radius of DSRS. Given its
complexity, we refer the reader to Appendix E and Appendix G of (Li et al., 2022) for further details
on solving the DSRS problem.

G SUPPLEMENTARY FOR EXPERIMENTAL METHODS

G.1 BASE CLASSIFIERS

To see the effects of η clearly, we take pre-trained models in our real-world datasets experiments.
Concretely, we use Gaussian-augmented models from Cohen et al. (2019) and General-Gaussian-
augmented models from Li et al. (2022), including Consistency and SmoothMix models. For the
convenience of comparison, we fix the base classifier for each group of experiments, and all the sam-
pling distributions keep Er2 the same with the base classifier following the setting of the previous
work (Yang et al., 2020; Li et al., 2022).

G.2 CERTIFICATION DETAILS

Hyperparameter settings. In double-sampling process, the numbers of sampling N1, N2 are
50000, and significance levels α1, α2 are 0.0005 for Monte Carlo sampling, equal for P and Q.
For CIFAR-10 and ImageNet, we set k = 1530 and k = 75260, respectively, in consistent with
base classifiers. The threshold parameter for Q is determined by a heuristic algorithm from Li et al.
(2022). Specifically, we set

TS = σs(2Λ
−1
d
η

(κ))
1
η = σ

√√√√ dΓ( dη )

Γ(d+2
η )

(Λ−1
d
η

(κ))
1
η ,

TG = σg(2Λ
−1
d−2k

η

(κ))
1
η = σ

√√√√ dΓ(d−2k
η )

Γ(d−2k+2
η )

(Λ−1
d−2k

η

(κ))
1
η ,

(119)
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where κ is determined by the heuristic algorithm (Li et al., 2022), a simple function of Monte Carlo
sampling probability from P .

We choose NP certification as the baseline since it is the state-of-the-art method for single distri-
bution certification. The sampling distribution for the NP method is P = S(σ, η) for the ESG
distribution, and P = G(σ, η, k) for the EGG distribution. For fairness, the sampling number N
is set to 100000, with the significance level α = 0.001 for Monte Carlo sampling. The setting for
exponents η in the NP method is the same as DSRS. We notice when k = 0, EGG distributions
become their corresponding ESG distributions. The ESG distribution degenerates to the Standard
Gaussian distribution when η = 2. We do not combine the cases for EGG and ESG since k appears
as the denominator in some equations.

We name the base classifiers by {training method}-{distribution}-{substitution variance} in experi-
mental results for ACR. For example, model StdAug-GGS-1.00 denotes the base classifier is trained
using Standard General Gaussian augmentation with σ = 1.00. In all the experiments, we set
training method ∈ {StdAug (i.e., standard augmentation), Consistency, SmoothMix}, distribution ∈
{GS (i.e., Gaussian), GGS (i.e., General Gaussian)} and σ ∈ {0.25, 0.50, 1.00}. See details of the
pre-trained models in Appendix G.1.

Overall, we provide Algorithm 2 as follows, where the error bound for certified radius e is set
1 × 10−6. We refer to readers to Algortihm 1, Algorithm 3 in Li et al. (2022) for the conservative
algorithm C and DualBinarySearch algorithm D. for Our code for experiments is modified from Li
et al. (2022).

Algorithm 2: Standard algorithm for Double Sampling Randomized Smoothing by Exponential
General Gaussian (EGG) distributions on real-world datasets
Input: base classifier f , substitution variance σ, exponent η, hyperparameter k, significance

level α, error bound for certified radius e, heuristic algorithm H , conservative algorithm
C, DualBinarySearch algorithm D (Algorithms H,C,D from Li et al. (2022)).

1 Initialize the noise distribution as EGG: P = G(σ, η, k)
2 A1← SampleUnderNoise (f,P, α)
3 ▷ A1 is the Clopper-Pearson lower bound for the sampling result (Clopper & Pearson, 1934;

Cohen et al., 2019)
4 T ← H(A1) ▷ Threshhold T is the hyperparameter for truncated distribution Q
5 Initialize the supplementary distribution as TEGG: Q = Gt(σ, η, k, T )
6 B1← SampleUnderNoise (f,Q, α)
7 A,B ← C(A1, B1) ▷ A,B for Problem (9) is determined by a conservative algorithm
8 rl ← 0, rr ← I ▷ Initialization for the binary search on r, where I is a big number
9 while rr − rl > e do

10 rm ← (rr + rl)/2
11 pm ← D(A,B) ▷ Problem (9) can be solved by D by given A,B
12 if pm > 1/2 then
13 rl ← rm
14 else
15 rr ← rm
16 end if
17 end while

Output: certified radius rl

G.3 COMPUTATIONAL OVERHEAD

All of our experiments on real-world datasets are composed of sampling and certification which
are finished with 4 NVIDIA 3080 GPUs and CPUs. The most computationally intensive procedure
is sampling. For σ = 0.50 base classifiers, it takes about 5s, 200s to sample 50000 times under
noise distributions on CIFAR10, ImageNet with one GPU. Given that we uniformly pick 1000 data
points from each dataset, one sampling procedure takes around 1 hour, 1 day for 50000 noises on
CIFAR10, ImageNet respectively with one GPU. Naturally, the sampling time almost doubles for
100000 noises.
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The computation for certification only relies on CPUs. Running time for certification is basically
constant for different datasets, including NP certification and DSRS certification. Usually, it takes
1-2 days to complete. The overall computational time for standard DSRS certification is strictly
larger than the pure NP certification, with respect to a specific number of samples. For instance,
if we compute a certificate for 100000 noises, we need one NP certification under the pure NP
certification, while we need one NP certification for 50000 noises and one DSRS certification for
the remaining 50000 noises under the DSRS certification. Generally, the computational time for
standard DSRS certification is one to two times that of pure NP certification.

G.4 TRANSFERABILITY OF THE INCREMENTAL EFFECT

We show results for real-world datasets on different base classifiers in this section. In Table 6, we
observe η = 8.0 shows better performance than General Gaussian (η=2.0) overall. This alludes
to some defects in the current training method for General Gaussian because intuitively the model
trained by General Gaussian should have provided the best certified results among all η, but we find
the incremental effect with η still exists in General-Gaussian-augmented models.

Table 6: The incremental effect with η on different base classifiers.

Dataset Model η
Certified Accuracy at r

ACR0.15 0.30 0.45 0.60 0.75 0.90 1.05 1.20 1.35 1.50

CIFAR-10

StdAug-GS-0.50 2.0((Li et al., 2022), the SOTA) 56.9% 48.0% 40.9% 33.5% 26.4% 19.5% 13.8% 10.6% 7.4% 3.3% 0.437
8.0 58.1% 50.8% 42.8% 35.9% 30.6% 23.2% 18.1% 13.7% 10.1% 7.3% 0.489

StdAug-GGS-0.50 2.0((Li et al., 2022), the SOTA) 58.3% 51.7% 44.5% 38.1% 29.3% 22.7% 17.7% 13.1% 8.3% 3.8% 0.480
8.0 58.2% 52.1% 44.4% 38.8% 30.9% 24.1% 19.1% 14.4% 10.8% 6.8% 0.502

Consistency-GGS-0.50 2.0((Li et al., 2022), the SOTA) 52.0% 48.8% 44.7% 42.1% 38.5% 36.0% 32.9% 28.6% 24.0% 19.6% 0.618
8.0 51.7% 48.6% 44.7% 42.2% 38.8% 36.1% 34.1% 29.9% 26.8% 22.3% 0.650

SmoothMix-GGS-0.50 2.0((Li et al., 2022), the SOTA) 55.8% 52.3% 49.1% 45.3% 41.7% 37.7% 34.6% 30.0% 26.3% 21.2% 0.662
8.0 55.5% 52.1% 49.1% 45.6% 42.0% 38.2% 35.2% 31.7% 27.8% 24.3% 0.695

ImageNet StdAug-GGS-0.50 2.0((Li et al., 2022), the SOTA) 56.7% 52.8% 49.4% 45.7% 41.5% 38.1% 34.0% 30.6% 25.4% 19.4% 0.654
8.0 56.7% 52.9% 49.8% 46.3% 42.9% 39.3% 35.8% 32.7% 29.1% 24.6% 0.703

G.5 INTEGRATION METHOD FOR ESG DISTRIBUTIONS

The scipy package loses precision when calculating integrals for the Γ(α, 1) distribution with
large parameters (say, α > 500 ) on infinite intervals. To solve this problem, we propose a Linear
Numerical Integration (LNI) method to compute the expectations fast and accurately. LNI is based
on Lemma 5.1, here we provide the proof for it:

Lemma 5.1 demonstrates the mass of the gamma distribution highly concentrates to its expectation
for large d and small η. With this great property, let ι be a small positive number, we can compute
the integral for the gamma distribution by considering 1 − ι total mass. We find the most primitive
method that uniformly segments the integration interval provides good precision for certifications
on CIFAR-10 and ImageNet. In our experiments for ESG, we set the number of segments to 256,
and ι = 10−4. We illustrate the effect of the segment number on CIFAR-10 and ImageNet in Figure
6.

G.6 ERROR ESTIMATION FOR NUMERICAL INTEGRATION

To evaluate the accuracy of numerical simulation for our work, we follow the method from Yang
et al. (2020), which calculates relative errors for the certified radius obtained by numerical integra-
tion (NI) and Monte Carlo (MC) simulation respectively. In our experiments, we sample 100000
times for Monte Carlo simulations. For each combination of σ and dataset, we test 1000 probability
lower bounds pl that are uniformly sampled from the interval (0.5, 1). See details in Table 7 and
Figure 7-8. Overall, the results for numerical integration of ESG have lower error levels than that of
EGG.

H SUPPLEMENTARY FOR NUMERICAL SIMULATION

We also conduct a numerical simulation to explore the effects of EGG distributions on currently
unattainable A,B pairs from Problem (9). We only show simulative experiments for the EGG
distribution since we observe great monotonicity for certified robustness (and/or certified radius)
w.r.t. η from EGG, which does not occur in ESG. We consider two cases: B = 1 and B < 1 for B
in Problem (9). See details in Appendix H.
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Figure 6: Results for the ℓ2 certified radius under different numbers of segments setting of LNI, ι
is set to 10−4. Left: on StdAug-GGS-0.50 (CIFAR-10). The curves of StdAug method and segs =
128, 256 are overlapped, showing segs ≥ 128 is enough for CIFAR-10. Right: on StdAug-GGS-
0.50 (ImageNet). The curves of Cohen’s method and segs = 256 are almost overlapped. Since the
error here is tolerable for both CIFAR-10 and ImageNet, we pick 256 as the number of segments in
all the ESG experiments.
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Figure 7: Comparisons of numerical integration and Monte Carlo simulation for ESG distributions.

Results and analyses. (1) B = 1. This is actually an ideal case since it is impossible to train such
a base classifier. Here we still present the results, as it demonstrates the theoretical performance
of EGG distributions. From Figure 1a, we observe there is a monotonically decreasing tendency in
the certified radius w.r.t. η, which seems contradictory to the results on real-world datasets. This
is partly because the concentration assumption (i.e., B = 1) is more friendly to the smaller η. In
fact, the major mass of the EGG distribution with smaller η gathers near 0. This makes smaller
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Figure 8: Comparisons of numerical integration and Monte Carlo simulation for EGG distributions.

Table 7: Maximum point-to-point error w.r.t. η for numerical integration.

dataset σ
η (ESG) η (EGG)

1.0 2.0 4.0 8.0 0.25 0.5 1.0 2.0 4.0 8.0

CIFAR10
0.25 3.4e-5 2.5e-5 5.6e-5 1.0e-4 1.7e-3 1.6e-3 1.0e-3 5.2e-4 4.7e-4 3.7e-4
0.5 5.0e-6 5.0e-6 9.3e-6 1.1e-5 1.9e-3 1.0e-3 9.6e-4 9.1e-4 1.0e-3 6.7e-4
1.0 8.9e-5 7.0e-5 1.2e-4 1.9e-4 2.5e-3 2.2e-3 2.2e-3 1.3e-3 1.0e-3 1.1e-3

ImageNet
0.25 1.2e-5 7.9e-6 1.5e-5 2.2e-5 2.5e-3 3.0e-3 2.6e-3 1.6e-3 1.3e-3 7.8e-4
0.5 1.5e-4 1.3e-4 1.9e-4 3.4e-4 4.6e-3 7.4e-3 2.9e-3 3.4e-3 1.8e-3 1.8e-3
1.0 2.4e-5 1.5e-5 3.1e-5 4.8e-5 6.5e-3 5.1e-3 3.2e-3 2.5e-3 2.1e-3 2.0e-3

η more sensitive to relaxation of concentration assumption (see Figure 10), which leads to worse
performance on real-world datasets compared to larger η. (2) B < 1. Shown in Table 8, the
monotonically increasing tendency w.r.t. η continues to exist, manifesting the essential superiority
of large η EGG distribution in the DSRS framework. We also notice that the increase is not endless,
since η = 64.0 shows a marginal increment to that of η = 32.0 (see also Figure 1b). Though hard to
prove, this may imply some convergence due to the extremely slow growth. We do not show results
for larger η due to floating-point limitations and low necessity based on our observation. For all the
distributions used for numerical simulation, we set σ = 1.0 and k = d

2 − 5 for fair comparison.

H.1 B = 1 SETTINGS

We need to modify Theorem 2 slightly to get certified results. We see
B = 1⇐⇒ CgEu∼Γ( d−2k

η ,1) ω1(u, ν1 + Cgν2) · 1u≤ Tη

2σ
η
g

= 1

⇐⇒ ν1 + Cgν2 → −∞,
(120)

which makes

ω2(u) = Ψ d−1
2

(
T 2 − (t− ρ)2

4ρt

)
. (121)

Injecting ω2(u) into Theorem 2, we can compute the certified radius as general cases. In B = 1

experiments, T is set to
√
2Λ d

2
(0.5) due to the assumption of (1, 0.5, 2)-concentration property.
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Table 8: Numerical simulation for EGG distributions (metric: certified radius).

η
A 0.6 0.7 0.8

B 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 0.7 0.8 0.9
0.5 0.188 0.194 0.216 0.273 0.408 0.391 0.407 0.471 0.678 0.632 0.675
1.0 0.218 0.225 0.251 0.320 0.471 0.451 0.470 0.546 0.778 0.726 0.776
2.0 0.234 0.242 0.271 0.346 0.506 0.485 0.505 0.589 0.836 0.779 0.833
4.0 0.243 0.251 0.281 0.360 0.525 0.502 0.524 0.611 0.867 0.807 0.863
8.0 0.247 0.255 0.286 0.367 0.534 0.511 0.533 0.622 0.882 0.821 0.878

16.0 0.249 0.257 0.288 0.370 0.538 0.515 0.537 0.627 0.889 0.827 0.885
32.0 0.250 0.258 0.289 0.371 0.540 0.517 0.539 0.629 0.893 0.830 0.887
64.0 0.250 0.258 0.290 0.371 0.541 0.518 0.539 0.629 0.894 0.831 0.888

Increase (64.0 to 2.0) 6.8% 6.6% 7.0% 7.2% 6.9% 6.8% 6.7% 6.8% 6.9% 6.7% 6.6%

H.2 B < 1 SETTINGS

. Theorem 2 can be directly used in computing the certified radius for this case. The values set for
A and B are not completely random as there is an inherent constraint (Li et al., 2022):


B

Cg
≤ A ≤ 1− 1−B

Cg
,

0 ≤ B ≤ 1.

(122)

This constraint should also be considered when setting A in case B = 1. For each EGG distribution,
we set Cg = 2, meaning T = σg(2Λ

−1
d−2k

η

(0.5))
1
η for Figure 1b and Table 8.

H.3 NUMERICAL SIMULATION RESULTS FOR OTHER DATASETS

The results in Table 8 almost do not change on large d. That is, our results that certified radius
increases monotonically with η is general for common datasets like CIFAR-10 and ImageNet. See
Figure 9.
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Figure 9: Certified radius vs. d, A = 0.8, B = 0.7.

H.4 DIFFERENT SENSITIVITY TO RELAXATION FOR η

We observe contrary monotonicity for certified radius w.r.t. η under B = 1 and B < 1. A direct
reason is small η in EGG is more susceptible to relaxation of B = 1, see the following figure.
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Figure 10: Certified radius with η = 1 vs. η = 2 under relaxed concentration assumption.

We set T =
√
2Λ d

2
(0.5) for B < 1 curves in this figure for fair comparison with B = 1 ones. Figure

10 demonstrates that the smaller η perform better when B = 1, while perform worse when B < 1
than the larger η. This indicates that the smaller η suffer more from the relaxation of concentration
assumption than the larger η.

I COMPARISON TO OTHER WORK

Li et al. (2022). Li et al. (2022)’s work is one of the cornerstones of this work. To the best of our
knowledge, we are the first to generalize the DSRS framework systematically. Our theorems show in
the DSRS framework, Exponential General Gaussian (EGG) distribution with exponent η ∈ (0, 2)
can provide tighter lower bounds than Li et al. ’s results under concentration assumptions, and our
experiments illustrates that EGG with exponent η > 2 provides better certification results than the
General Gaussian distribution (η=2 in EGG) under practical settings (i.e., without concentration
assumptions). Our proof for EGG removes some details from Li et al. (2022) ’s, and adds other
details such as the derivation for PDFs and for the Lambert W function. We also provide proof for
ESG, which further uses the DSRS framework and contains nontrivial branches.

Others. For NP certification, though many attempts in the community have researched the inter-
relationship between the smoothing distribution and certified radius, nobody has shown results as
we do. Yang et al. (2020) trained models for each smoothing distribution, while we fixed the base
classifier for the convenience of comparison. They also did not fully consider the distributions we
use. Kumar et al. (2020) showed similar results to us for ESG in their Figure 5, but they only showed
sampling results due to the lack of computing method, and they also trained base models for each
distribution like Yang et al. (2020). Zhang et al. (2020) showed results for η = 2 EGG distribution
under a fixed-model setting, but they didn’t consider η ̸= 2 cases.

J SUPPLEMENTARY FOR EXPERIMENTAL RESULTS

J.1 CERTIFIED RADIUS AT r FOR CONSISTENCY (JEONG & SHIN, 2020) AND
SMOOTHMIX (JEONG ET AL., 2021) MODELS, MAXIMUM RESULTS

Table 9 and Table 10 shows the experimental results for certified accuracy at radius r. Each data is
the maximum one among base classifiers with σ ∈ {0.25, 0.50, 1.00}. All the base classifiers in
both the tables are trained under EGG distribution with η = 2 (the General Gaussian distribution
used in DSRS (Li et al., 2022)), by Consistency (Jeong & Shin, 2020) and SmoothMix (Jeong
et al., 2021) respectively. From the tables, we can see the rule observed on classifiers augmented
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Table 9: Maximum certified accuracy w.r.t. σ, Consistency models

Dataset Method Certified accuracy at r
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

CIFAR10

EGG, η = 1.0 62.1% 50.7% 38.2% 33.1% 24.2% 19.2% 16.7% 14.3% 11.3% 9.2% 6.6% 4.1% 1.4% 0.0%
EGG, η = 2.0 62.5% 52.0% 38.5% 34.4% 27.4% 20.6% 17.0% 14.7% 12.7% 10.5% 8.5% 6.3% 3.9% 2.5%
EGG, η = 4.0 62.5% 52.2% 39.1% 35.4% 28.3% 21.1% 17.5% 15.3% 13.0% 10.9% 9.2% 7.0% 5.2% 3.1%
EGG, η = 8.0 62.5% 52.6% 40.4% 35.3% 28.6% 22.3% 17.6% 15.5% 13.2% 11.3% 9.6% 7.8% 5.8% 3.9%

CIFAR10

ESG, η = 1.0 62.6% 52.9% 41.6% 35.5% 29.3% 23.7% 17.7% 15.8% 13.7% 11.8% 10.0% 8.8% 6.8% 4.6%
ESG, η = 2.0 62.7% 53.0% 41.4% 35.5% 29.4% 24.0% 17.7% 16.0% 13.8% 11.9% 10.1% 8.7% 6.7% 4.4%
ESG, η = 4.0 62.7% 52.9% 41.6% 35.5% 29.5% 23.8% 17.8% 15.7% 13.9% 11.9% 10.2% 8.8% 6.7% 4.8%
ESG, η = 8.0 62.7% 52.9% 41.7% 35.5% 29.1% 23.8% 17.6% 15.8% 13.6% 11.8% 10.1% 8.3% 6.7% 4.8%

Table 10: Maximum certified accuracy w.r.t. σ, SmoothMix models

Dataset Method Certified accuracy at r
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

CIFAR10

EGG, η = 1.0 63.7% 53.8% 40.9% 34.3% 26.6% 21.1% 17.0% 14.2% 10.5% 7.7% 4.0% 1.5% 0.1% 0.0%
EGG, η = 2.0 64.5% 55.0% 41.7% 35.6% 28.9% 21.3% 18.0% 15.2% 12.3% 9.7% 6.4% 3.7% 1.4% 0.4%
EGG, η = 4.0 64.4% 55.5% 43.0% 35.9% 29.5% 23.4% 18.3% 15.8% 12.8% 10.2% 7.7% 4.6% 2.1% 0.9%
EGG, η = 8.0 64.7% 55.7% 43.9% 36.2% 30.1% 24.3% 18.6% 15.8% 13.2% 10.6% 8.0% 5.4% 2.7% 1.3%

CIFAR10

ESG, η = 1.0 64.6% 56.5% 46.5% 36.6% 31.3% 25.6% 19.1% 16.2% 13.4% 11.4% 8.9% 6.3% 4.0% 1.8%
ESG, η = 2.0 64.7% 56.3% 45.8% 36.6% 31.2% 25.6% 18.9% 16.3% 13.4% 11.6% 8.8% 6.2% 4.0% 1.7%
ESG, η = 4.0 64.6% 56.3% 46.0% 36.5% 31.0% 25.6% 19.0% 16.2% 13.6% 11.5% 9.2% 6.0% 3.9% 1.8%
ESG, η = 8.0 64.6% 56.1% 46.5% 36.4% 31.1% 25.5% 18.9% 16.3% 13.5% 11.3% 9.0% 6.2% 4.1% 1.6%
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(d)
Figure 11: ACR results on Consistency and SmoothMix models. (a). ACR monotonically increases
with η in EGG. (b). The ACR growth gain by DSRS relative to NP shrinks with η in EGG. (c).
ACR keeps almost constant in ESG. (d). The ACR growth gain by DSRS remains almost constant
in ESG. For (a) and (c), solid lines represent results from DSRS, and dotted lines represent results
from NP.

standardly continues to exist, that certified accuracy increases monotonically with the η of EGG,
and keeps almost constant with the η of ESG. We also show results for ACR in Table 11.

J.2 FULL EXPERIMENTAL RESULTS FOR CERTIFICATIONS

We show full experimental results in this section, where the maximum results for certified accuracy
in Table 2, Table 3, Table 9 and Table 10 are originated from. All the base classifiers in this section
are trained under EGG distribution with η = 2 (the General Gaussian distribution used in DSRS (Li
et al., 2022)). Our base classifiers are only affected by the dataset and the substitution variance. For
example, in Table 11, all data under σ = 0.25 use the same base classifier, no matter what η is. In
addition, for σ = 0.25, the base classifiers for EGG and ESG are the same, which guarantees fair
comparisons between distinctive distributions for certification.
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Table 11: Full experimental results for certified accuracy, standard augmentation, EGG, CIFAR10

σ η
Certification Certified accuracy at r

method 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

0.25

0.25
NP 41.4% 0.5%

DSRS 52.6% 7.9%
(Growth) 11.2% 7.4%

0.5
NP 51.6% 14.5% 0.1%

DSRS 55.5% 29.5%
(Growth) 3.9% 15.0%

1.0
NP 55.6% 29.1% 5.5%

DSRS 56.3% 36.5% 9.3%
(Growth) 0.7% 7.4% 3.8%

2.0
NP 56.2% 35.7% 13.4%

DSRS 56.7% 38.4% 16.9%
(Growth) 0.5% 2.7% 3.5%

4.0
NP 57.3% 38.5% 18.5%

DSRS 57.5% 39.3% 20.0%
(Growth) 0.2% 0.8% 1.5%

8.0
NP 57.5% 39.2% 21.2%

DSRS 57.6% 40.1% 22.0%
(Growth) 0.1% 0.9% 0.8%

0.50

0.25
NP 50.9% 23.7% 3.9% 0.1%

DSRS 54.2% 37.6% 16.4% 2.0%
(Growth) 3.3% 13.9% 12.5% 1.9%

0.5
NP 53.0% 34.6% 16.6% 4.5% 0.3%

DSRS 53.6% 40.4% 25.2% 12.9% 2.5%
(Growth) 0.6% 5.8% 8.6% 8.4% 2.2%

1.0
NP 53.7% 39.8% 23.1% 12.4% 3.6% 0.7%

DSRS 54.1% 41.7% 28.2% 17.3% 9.2% 1.8%
(Growth) 0.4% 1.9% 5.1% 4.9% 5.6% 1.1%

2.0
NP 53.8% 41.2% 27.9% 17.0% 8.9% 2.9% 0.1%

DSRS 54.0% 42.4% 29.3% 19.4% 11.6% 3.8% 0.6%
(Growth) 0.2% 1.2% 1.4% 2.4% 2.7% 0.9% 0.5%

4.0
NP 53.9% 42.2% 29.7% 19.0% 11.3% 4.7% 1.5%

DSRS 54.0% 42.5% 30.0% 20.2% 12.8% 5.8% 1.5%
(Growth) 0.1% 0.3% 0.3% 1.2% 1.5% 1.1% 0.0%

8.0
NP 54.0% 42.6% 30.0% 20.0% 12.7% 6.8% 2.3%

DSRS 54.2% 42.5% 30.9% 20.6% 13.4% 6.8% 1.8%
(Growth) 0.2% -0.1% 0.9% 0.6% 0.7% 0.0% -0.5%

1.00

0.25
NP 40.6% 28.7% 18.0% 9.0% 3.1% 0.4%

DSRS 41.8% 32.6% 23.5% 16.5% 9.4% 4.5% 0.5% 0.1%
(Growth) 1.2% 3.9% 5.5% 7.5% 6.3% 4.1%

0.5
NP 40.9% 31.8% 21.8% 15.7% 9.1% 4.9% 1.6% 0.2% 0.1%

DSRS 41.1% 33.6% 24.7% 19.1% 13.4% 8.5% 5.5% 2.0% 0.4% 0.1%
(Growth) 0.2% 1.8% 2.9% 3.4% 4.3% 3.6% 3.9% 1.8% 0.3%

1.0
NP 40.4% 32.4% 24.0% 17.7% 12.6% 8.5% 5.0% 2.2% 0.5% 0.1% 0.1%

DSRS 40.2% 33.2% 25.5% 20.0% 15.1% 10.5% 7.1% 4.2% 1.9% 0.9% 0.1%
(Growth) -0.2% 0.8% 1.5% 2.3% 2.5% 2.0% 2.1% 2.0% 1.4% 0.8% 0.0%

2.0
NP 40.2% 32.6% 24.6% 18.9% 15.0% 10.1% 7.4% 4.0% 2.0% 0.7% 0.1% 0.1%

DSRS 40.2% 32.8% 25.5% 20.2% 15.7% 11.5% 8.0% 5.5% 2.6% 1.5% 0.6% 0.1%
(Growth) 0.0% 0.2% 0.9% 1.3% 0.7% 1.4% 0.6% 1.5% 0.6% 0.8% 0.5% 0.0%

4.0
NP 40.0% 32.7% 25.2% 19.7% 15.5% 11.4% 8.2% 5.3% 3.0% 1.5% 0.6% 0.1% 0.1%

DSRS 39.6% 32.7% 25.7% 20.2% 15.9% 12.2% 8.5% 6.5% 3.4% 1.8% 0.9% 0.4%
(Growth) -0.4% 0.0% 0.5% 0.5% 0.4% 0.8% 0.3% 1.2% 0.4% 0.3% 0.3% 0.3%

8.0
NP 39.7% 32.5% 25.5% 20.2% 15.7% 12.1% 8.5% 6.3% 3.4% 2.0% 0.9% 0.5% 0.2%

DSRS 39.5% 32.6% 25.5% 20.2% 15.8% 12.3% 8.6% 6.6% 3.7% 2.1% 1.1% 0.5% 0.2%
(Growth) -0.2% 0.1% 0.0% 0.0% 0.1% 0.2% 0.1% 0.3% 0.3% 0.1% 0.2% 0.0% 0.0%
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Table 12: Full experimental results for certified accuracy, standard augmentation, EGG, ImageNet

σ η
Certification Certified accuracy at r

method 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

0.25

0.25
NP 9.9%

DSRS 45.8%
(Growth) 35.9%

0.5
NP 44.6% 0.6%

DSRS 54.9% 9.7%
(Growth) 10.3% 9.1%

1.0
NP 54.0% 21.1% 0.6%

DSRS 57.0% 39.3% 1.4%
(Growth) 3.0% 18.2% 0.8%

2.0
NP 57.1% 41.7% 17.6%

DSRS 58.4% 47.9% 24.1%
(Growth) 1.3% 6.2% 6.5%

4.0
NP 58.4% 48.0% 33.6%

DSRS 58.7% 49.9% 36.2%
(Growth) 0.3% 1.9% 2.6%

8.0
NP 58.7% 50.0% 37.8%

DSRS 59.1% 50.8% 38.7%
(Growth) 0.4% 0.8% 0.9%

0.50

0.25
NP 49.7% 26.7% 0.1%

DSRS 53.8% 41.4% 14.8%
(Growth) 4.1% 14.7% 14.7%

0.5
NP 52.1% 40.6% 26.4% 8.3% 0.1%

DSRS 54.4% 46.3% 36.4% 22.5% 2.9%
(Growth) 2.3% 5.7% 10.0% 14.2% 2.8%

1.0
NP 52.8% 44.8% 35.7% 26.2% 16.1% 6.3%

DSRS 54.2% 47.8% 39.9% 32.8% 22.9% 8.9%
(Growth) 1.4% 3.0% 4.2% 6.6% 6.8% 2.6%

2.0
NP 53.4% 47.0% 39.4% 33.3% 24.5% 17.4% 8.4%

DSRS 53.8% 48.5% 41.5% 35.2% 28.9% 19.4% 11.3%
(Growth) 0.4% 1.5% 2.1% 1.9% 4.4% 2.0% 2.9%

4.0
NP 53.3% 47.7% 41.3% 35.2% 29.3% 21.3% 14.0%

DSRS 53.6% 48.6% 42.6% 36.4% 31.0% 22.8% 14.4%
(Growth) 0.3% 0.9% 1.3% 1.2% 1.7% 1.5% 0.4%

8.0
NP 53.3% 48.3% 42.2% 36.5% 31.1% 24.0% 16.9%

DSRS 53.6% 48.8% 42.9% 36.8% 31.8% 24.6% 16.5%
(Growth) 0.3% 0.5% 0.7% 0.3% 0.7% 0.6% -0.4%

1.00

0.25
NP 38.8% 29.8% 15.7% 3.3%

DSRS 41.0% 35.3% 28.4% 20.1% 7.1% 0.8%
(Growth) 2.2% 5.5% 12.7% 16.8%

0.5
NP 40.3% 34.1% 26.4% 19.0% 10.7% 4.1% 1.4% 0.1%

DSRS 40.9% 37.0% 31.6% 26.3% 22.1% 15.2% 8.7% 3.1% 0.8%
(Growth) 0.6% 2.9% 5.2% 7.3% 11.4% 11.1% 7.3% 3.0%

1.0
NP 41.7% 36.4% 30.7% 25.5% 20.9% 15.3% 10.5% 6.3% 3.3% 1.7% 0.7% 0.2%

DSRS 42.0% 37.9% 33.4% 29.3% 24.9% 22.0% 18.5% 13.1% 9.2% 5.0% 2.1% 0.5%
(Growth) 0.3% 1.5% 2.7% 3.8% 4.0% 6.7% 8.0% 6.8% 5.9% 3.3% 1.4% 0.3%

2.0
NP 42.5% 37.2% 32.8% 29.2% 24.7% 21.4% 17.4% 13.8% 10.1% 7.8% 5.5% 3.3% 2.2% 1.1%

DSRS 42.9% 38.2% 34.3% 30.2% 26.8% 23.3% 21.3% 18.8% 14.1% 11.1% 8.9% 6.1% 2.2% 1.4%
(Growth) 0.4% 1.0% 1.5% 1.0% 2.1% 1.9% 3.9% 5.0% 4.0% 3.3% 3.4% 2.8% 0.0% 0.3%

4.0
NP 42.2% 38.0% 33.8% 30.8% 26.1% 23.3% 21.1% 18.2% 13.9% 11.2% 9.3% 8.1% 6.0% 4.2%

DSRS 42.5% 38.5% 34.6% 31.3% 27.5% 23.9% 22.3% 20.2% 17.3% 13.2% 10.7% 9.2% 6.8% 4.0%
(Growth) 0.3% 0.5% 0.8% 0.5% 1.4% 0.6% 1.2% 2.0% 3.4% 2.0% 1.4% 1.1% 0.8% -0.2%

8.0
NP 42.4% 38.1% 34.5% 31.1% 26.9% 24.0% 22.2% 19.9% 16.8% 12.8% 11.0% 9.5% 8.0% 6.1%

DSRS 42.4% 38.4% 35.0% 31.4% 28.0% 24.4% 22.6% 20.7% 18.9% 14.5% 11.7% 10.1% 8.6% 5.2%
(Growth) 0.0% 0.3% 0.5% 0.3% 1.1% 0.4% 0.4% 0.8% 2.1% 1.7% 0.7% 0.6% 0.6% -0.9%
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Table 13: Full experimental results for certified accuracy, standard augmentation, ESG, CIFAR10

σ η
Certification Certified accuracy at r

method 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

0.25

1.0
NP 57.8% 40.7% 25.6%

DSRS 57.6% 40.7% 25.1%
(Growth) -0.2% 0.0% -0.5%

2.0
NP 57.8% 40.8% 25.7%

DSRS 57.6% 40.6% 25.1%
(Growth) -0.2% -0.2% -0.6%

4.0
NP 57.9% 40.9% 26.0%

DSRS 57.6% 40.6% 25.0%
(Growth) -0.3% -0.3% -1.0%

8.0
NP 57.9% 40.8% 25.6%

DSRS 57.8% 40.6% 24.9%
(Growth) -0.1% -0.2% -0.7%

0.50

1.0
NP 54.3% 42.7% 31.7% 21.8% 14.0% 8.7% 3.5%

DSRS 54.2% 42.6% 31.3% 21.5% 14.1% 8.3% 2.7%
(Growth) -0.1% -0.1% -0.4% -0.3% 0.1% -0.4% -0.8%

2.0
NP 54.3% 42.6% 31.6% 21.7% 14.0% 8.5% 3.6%

DSRS 54.3% 42.6% 31.6% 21.5% 13.9% 8.7% 2.8%
(Growth) 0.0% 0.0% 0.0% -0.2% -0.1% 0.2% -0.8%

4.0
NP 54.3% 42.7% 31.5% 21.6% 14.3% 8.6% 3.6%

DSRS 54.3% 42.6% 31.3% 21.5% 13.9% 8.2% 3.0%
(Growth) 0.0% -0.1% -0.2% -0.1% -0.4% -0.4% -0.6%

8.0
NP 54.3% 42.6% 31.7% 21.7% 14.1% 8.7% 3.5%

DSRS 54.4% 42.6% 31.6% 21.6% 14.0% 8.1% 2.4%
(Growth) 0.1% 0.0% -0.1% -0.1% -0.1% -0.6% -1.1%

1.00

1.0
NP 39.6% 32.6% 26.0% 20.5% 15.9% 13.0% 9.2% 7.0% 4.5% 2.5% 1.5% 0.9% 0.5% 0.2%

DSRS 39.6% 32.5% 25.7% 20.4% 15.8% 12.8% 8.6% 6.8% 4.3% 2.3% 1.3% 0.8% 0.3% 0.1%
(Growth) 0.0% -0.1% -0.3% -0.1% -0.1% -0.2% -0.6% -0.2% -0.2% -0.2% -0.2% -0.1% -0.2% -0.1%

2.0
NP 39.6% 32.6% 25.9% 20.4% 15.9% 13.0% 9.2% 7.0% 4.6% 2.5% 1.3% 0.8% 0.3% 0.2%

DSRS 39.5% 32.6% 25.8% 20.4% 15.8% 12.7% 8.8% 6.8% 4.5% 2.4% 1.3% 0.7% 0.2% 0.2%
(Growth) -0.1% 0.0% -0.1% 0.0% -0.1% -0.3% -0.4% -0.2% -0.1% -0.1% 0.0% -0.1% -0.1% 0.0%

4.0
NP 39.7% 32.6% 25.9% 20.4% 15.9% 12.9% 9.0% 7.0% 4.6% 2.5% 1.5% 0.8% 0.3% 0.2%

DSRS 39.5% 32.6% 25.8% 20.3% 15.9% 12.9% 8.6% 6.9% 4.3% 2.4% 1.3% 0.8% 0.2% 0.1%
(Growth) -0.2% 0.0% -0.1% -0.1% 0.0% 0.0% -0.4% -0.1% -0.3% -0.1% -0.2% 0.0% -0.1% -0.1%

8.0
NP 39.6% 32.6% 25.8% 20.3% 15.9% 12.9% 9.2% 7.0% 4.5% 2.5% 1.3% 0.8% 0.3% 0.2%

DSRS 39.7% 32.4% 25.8% 20.4% 15.9% 12.9% 8.9% 6.7% 4.2% 2.4% 1.3% 0.9% 0.2% 0.1%
(Growth) 0.1% -0.2% 0.0% 0.1% 0.0% 0.0% -0.3% -0.3% -0.3% -0.1% 0.0% 0.1% -0.1% -0.1%

Table 14: Full experimental results for certified accuracy, standard augmentation, ESG, ImageNet

σ η
Certification Certified accuracy at r

method 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

0.25

1.0
NP 59.6% 51.6% 42.2%

DSRS 59.6% 51.5% 41.6%
(Growth) 0.0% -0.1% -0.6%

2.0
NP 59.6% 51.7% 41.9%

DSRS 59.6% 51.6% 41.8%
(Growth) 0.0% -0.1% -0.1%

4.0
NP 59.6% 51.7% 42.0%

DSRS 59.6% 51.5% 41.9%
(Growth) 0.0% -0.2% -0.1%

8.0
NP 59.6% 51.6% 42.2%

DSRS 59.6% 51.5% 41.5%
(Growth) 0.0% -0.1% -0.7%

0.50

1.0
NP 53.6% 49.3% 43.2% 38.2% 33.0% 27.2% 21.0%

DSRS 53.6% 49.1% 43.2% 37.9% 33.0% 26.8% 19.1%
(Growth) 0.0% -0.2% 0.0% -0.3% 0.0% -0.4% -1.9%

2.0
NP 53.7% 49.2% 43.2% 38.1% 33.1% 27.3% 20.7%

DSRS 53.6% 49.2% 43.1% 38.0% 32.9% 26.9% 19.2%
(Growth) -0.1% 0.0% -0.1% -0.1% -0.2% -0.4% -1.5%

4.0
NP 53.6% 49.2% 43.2% 38.1% 33.0% 27.5% 20.8%

DSRS 53.6% 49.2% 43.2% 38.0% 32.9% 27.2% 19.4%
(Growth) 0.0% 0.0% 0.0% -0.1% -0.1% -0.3% -1.4%

8.0
NP 53.7% 49.2% 43.2% 38.1% 33.1% 27.4% 21.0%

DSRS 53.6% 49.1% 43.2% 38.0% 33.0% 26.8% 19.4%
(Growth) -0.1% -0.1% 0.0% -0.1% -0.1% -0.6% -1.6%

1.00

1.0
NP 42.7% 39.1% 35.4% 32.0% 29.5% 25.3% 23.1% 21.6% 20.0% 17.6% 13.9% 11.7% 10.5% 9.1%

DSRS 42.6% 38.8% 35.3% 31.9% 28.9% 25.3% 23.1% 21.5% 19.9% 17.4% 13.8% 11.5% 10.3% 7.7%
(Growth) -0.1% -0.3% -0.1% -0.1% -0.6% 0.0% 0.0% -0.1% -0.1% -0.2% -0.1% -0.2% -0.2% -1.4%

2.0
NP 42.6% 39.1% 35.3% 32.1% 29.2% 25.3% 23.2% 21.6% 20.0% 17.6% 14.1% 11.7% 10.5% 9.1%

DSRS 42.5% 39.0% 35.2% 31.7% 29.0% 25.2% 23.1% 21.5% 19.7% 17.4% 13.6% 11.4% 10.1% 8.3%
(Growth) -0.1% -0.1% -0.1% -0.4% -0.2% -0.1% -0.1% -0.1% -0.3% -0.2% -0.5% -0.3% -0.4% -0.8%

4.0
NP 42.6% 39.1% 35.4% 32.0% 29.1% 25.3% 23.1% 21.6% 19.9% 17.9% 14.5% 11.7% 10.5% 9.1%

DSRS 42.5% 38.8% 35.2% 31.9% 29.3% 25.3% 23.1% 21.6% 19.9% 17.2% 13.6% 11.4% 10.2% 8.0%
(Growth) -0.1% -0.3% -0.2% -0.1% 0.2% 0.0% 0.0% 0.0% 0.0% -0.7% -0.9% -0.3% -0.3% -1.1%

8.0
NP 42.7% 39.0% 35.3% 31.9% 29.4% 25.3% 23.1% 21.7% 20.0% 17.5% 13.9% 11.5% 10.4% 9.3%

DSRS 42.5% 38.8% 35.3% 32.0% 29.0% 25.2% 23.1% 21.6% 19.7% 17.3% 13.6% 11.5% 10.1% 8.4%
(Growth) -0.2% -0.2% 0.0% 0.1% -0.4% -0.1% 0.0% -0.1% -0.3% -0.2% -0.3% 0.0% -0.3% -0.9%
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Table 15: Full experimental results for certified accuracy, Consistency, EGG, CIFAR10

σ η
Certification Certified accuracy at r

method 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

0.25

1.0
NP 61.4% 47.0% 25.2%

DSRS 62.1% 50.7% 30.1%
(Growth) 0.7% 3.7% 4.9%

2.0
NP 61.8% 50.7% 35.1%

DSRS 62.5% 52.0% 37.2%
(Growth) 0.7% 1.3% 2.1%

4.0
NP 62.3% 51.7% 38.2%

DSRS 62.5% 52.2% 39.1%
(Growth) 0.2% 0.5% 0.9%

8.0
NP 62.5% 52.2% 40.2%

DSRS 62.5% 52.6% 40.4%
(Growth) 0.0% 0.4% 0.2%

0.50

1.0
NP 49.2% 43.1% 36.3% 28.7% 19.6% 11.6%

DSRS 49.5% 43.7% 38.2% 33.1% 24.2% 15.4%
(Growth) 0.3% 0.6% 1.9% 4.4% 4.6% 3.8%

2.0
NP 49.3% 43.8% 37.8% 32.3% 23.5% 18.0% 9.6%

DSRS 49.4% 44.1% 38.5% 34.4% 27.4% 19.6% 11.5%
(Growth) 0.1% 0.3% 0.7% 2.1% 3.9% 1.6% 1.9%

4.0
NP 49.3% 44.0% 38.3% 34.1% 27.4% 20.4% 14.6%

DSRS 49.3% 44.0% 38.7% 35.4% 28.3% 21.1% 14.1%
(Growth) 0.0% 0.0% 0.4% 1.3% 0.9% 0.7% -0.5%

8.0
NP 49.3% 44.1% 38.7% 35.0% 28.4% 21.9% 15.8%

DSRS 49.3% 44.1% 38.8% 35.3% 28.6% 22.3% 15.2%
(Growth) 0.0% 0.0% 0.1% 0.3% 0.2% 0.4% -0.6%

1.00

1.0
NP 37.2% 32.5% 29.4% 25.2% 21.8% 17.6% 14.4% 11.7% 8.8% 6.3% 4.5% 2.6% 1.8%

DSRS 37.4% 33.0% 29.5% 26.2% 22.8% 19.2% 16.7% 14.3% 11.3% 9.2% 6.6% 4.1% 1.4%
(Growth) 0.2% 0.5% 0.1% 1.0% 1.0% 1.6% 2.3% 2.6% 2.5% 2.9% 2.1% 1.5% -0.4%

2.0
NP 37.2% 32.6% 29.7% 25.9% 22.4% 19.0% 16.3% 13.9% 11.3% 8.9% 7.2% 5.1% 3.5% 2.2%

DSRS 37.1% 32.3% 29.8% 26.5% 23.0% 20.6% 17.0% 14.7% 12.7% 10.5% 8.5% 6.3% 3.9% 2.5%
(Growth) -0.1% -0.3% 0.1% 0.6% 0.6% 1.6% 0.7% 0.8% 1.4% 1.6% 1.3% 1.2% 0.4% 0.3%

4.0
NP 37.1% 32.5% 29.8% 26.2% 22.7% 20.3% 16.9% 14.9% 12.4% 10.6% 8.7% 6.7% 5.1% 3.2%

DSRS 37.0% 32.4% 29.8% 26.7% 23.1% 20.9% 17.5% 15.3% 13.0% 10.9% 9.2% 7.0% 5.2% 3.1%
(Growth) -0.1% -0.1% 0.0% 0.5% 0.4% 0.6% 0.6% 0.4% 0.6% 0.3% 0.5% 0.3% 0.1% -0.1%

8.0
NP 37.1% 32.5% 29.9% 26.4% 23.0% 20.7% 17.2% 15.2% 13.2% 10.9% 9.6% 7.5% 5.9% 4.2%

DSRS 36.7% 32.5% 29.8% 26.6% 23.2% 20.9% 17.6% 15.5% 13.2% 11.3% 9.6% 7.8% 5.8% 3.9%
(Growth) -0.4% 0.0% -0.1% 0.2% 0.2% 0.2% 0.4% 0.3% 0.0% 0.4% 0.0% 0.3% -0.1% -0.3%

Table 16: Full experimental results for certified accuracy, Consistency, ESG, CIFAR10

σ η
Certification Certified accuracy at r

method 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

0.25

1.0
NP 62.7% 52.9% 41.8%

DSRS 62.6% 52.9% 41.6%
(Growth) -0.1% 0.0% -0.2%

2.0
NP 62.7% 53.0% 42.1%

DSRS 62.7% 53.0% 41.4%
(Growth) 0.0% 0.0% -0.7%

4.0
NP 62.7% 53.0% 42.0%

DSRS 62.7% 52.9% 41.6%
(Growth) 0.0% -0.1% -0.4%

8.0
NP 62.7% 53.0% 42.0%

DSRS 62.7% 52.9% 41.7%
(Growth) 0.0% -0.1% -0.3%

0.50

1.0
NP 49.3% 44.1% 39.2% 35.5% 29.7% 24.3% 18.7%

DSRS 49.3% 44.1% 38.9% 35.5% 29.3% 23.7% 16.9%
(Growth) 0.0% 0.0% -0.3% 0.0% -0.4% -0.6% -1.8%

2.0
NP 49.3% 44.1% 39.2% 35.5% 29.7% 24.1% 18.7%

DSRS 49.3% 44.1% 38.9% 35.5% 29.4% 24.0% 17.1%
(Growth) 0.0% 0.0% -0.3% 0.0% -0.3% -0.1% -1.6%

4.0
NP 49.3% 44.1% 39.1% 35.5% 29.9% 24.1% 18.6%

DSRS 49.3% 44.0% 39.0% 35.5% 29.5% 23.8% 17.6%
(Growth) 0.0% -0.1% -0.1% 0.0% -0.4% -0.3% -1.0%

8.0
NP 49.3% 44.1% 39.3% 35.5% 29.6% 24.2% 19.0%

DSRS 49.3% 44.1% 38.9% 35.5% 29.1% 23.8% 17.3%
(Growth) 0.0% 0.0% -0.4% 0.0% -0.5% -0.4% -1.7%

1.00

1.0
NP 36.7% 32.6% 30.0% 26.9% 23.4% 21.0% 18.0% 16.0% 14.0% 12.2% 10.4% 8.8% 7.0% 5.4%

DSRS 36.5% 32.3% 29.8% 27.0% 23.2% 20.9% 17.7% 15.8% 13.7% 11.8% 10.0% 8.8% 6.8% 4.6%
(Growth) -0.2% -0.3% -0.2% 0.1% -0.2% -0.1% -0.3% -0.2% -0.3% -0.4% -0.4% 0.0% -0.2% -0.8%

2.0
NP 36.8% 32.5% 29.9% 27.1% 23.3% 21.0% 18.1% 16.0% 14.0% 12.2% 10.3% 8.8% 7.1% 5.5%

DSRS 36.6% 32.3% 29.9% 26.8% 23.3% 21.0% 17.7% 16.0% 13.8% 11.9% 10.1% 8.7% 6.7% 4.4%
(Growth) -0.2% -0.2% 0.0% -0.3% 0.0% 0.0% -0.4% 0.0% -0.2% -0.3% -0.2% -0.1% -0.4% -1.1%

4.0
NP 36.6% 32.5% 29.9% 27.0% 23.2% 21.0% 18.0% 16.1% 14.0% 12.2% 10.3% 9.0% 7.2% 5.3%

DSRS 36.6% 32.3% 29.8% 26.9% 23.3% 20.9% 17.8% 15.7% 13.9% 11.9% 10.2% 8.8% 6.7% 4.8%
(Growth) 0.0% -0.2% -0.1% -0.1% 0.1% -0.1% -0.2% -0.4% -0.1% -0.3% -0.1% -0.2% -0.5% -0.5%

8.0
NP 36.7% 32.6% 29.8% 27.0% 23.3% 21.0% 17.9% 16.1% 13.8% 12.2% 10.3% 9.0% 7.1% 5.1%

DSRS 36.6% 32.1% 29.8% 26.9% 23.2% 20.9% 17.6% 15.8% 13.6% 11.8% 10.1% 8.3% 6.7% 4.8%
(Growth) -0.1% -0.5% 0.0% -0.1% -0.1% -0.1% -0.3% -0.3% -0.2% -0.4% -0.2% -0.7% -0.4% -0.3%
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Table 17: Full experimental results for certified accuracy, SmoothMix, EGG, CIFAR10

σ η
Certification Certified accuracy at r

method 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

0.25

1.0
NP 63.3% 49.8% 27.4%

DSRS 63.7% 53.8% 32.4%
(Growth) 0.4% 4.0% 5.0%

2.0
NP 63.8% 53.3% 38.1%

DSRS 64.5% 55.0% 40.8%
(Growth) 0.7% 1.7% 2.7%

4.0
NP 64.2% 55.1% 42.0%

DSRS 64.4% 55.5% 43.0%
(Growth) 0.2% 0.4% 1.0%

8.0
NP 64.6% 55.5% 43.7%

DSRS 64.7% 55.7% 43.9%
(Growth) 0.1% 0.2% 0.2%

0.50

1.0
NP 53.0% 46.7% 38.8% 30.1% 22.2% 12.7%

DSRS 53.3% 47.7% 40.9% 34.3% 26.6% 16.5%
(Growth) 0.3% 1.0% 2.1% 4.2% 4.4% 3.8%

2.0
NP 53.2% 47.5% 40.3% 34.0% 26.6% 19.4% 9.6%

DSRS 53.3% 48.1% 41.7% 35.6% 28.9% 21.2% 11.4%
(Growth) 0.1% 0.6% 1.4% 1.6% 2.3% 1.8% 1.8%

4.0
NP 53.3% 48.0% 41.3% 35.1% 29.0% 22.6% 15.5%

DSRS 53.3% 48.1% 41.9% 35.9% 29.5% 23.4% 14.3%
(Growth) 0.0% 0.1% 0.6% 0.8% 0.5% 0.8% -1.2%

8.0
NP 53.3% 48.2% 41.6% 35.8% 29.5% 23.9% 17.5%

DSRS 53.3% 48.3% 42.0% 36.2% 30.1% 24.3% 15.6%
(Growth) 0.0% 0.1% 0.4% 0.4% 0.6% 0.4% -1.9%

1.00

1.0
NP 43.3% 39.3% 33.2% 27.9% 22.7% 18.2% 15.1% 10.9% 7.4% 3.5% 1.6% 0.8% 0.1%

DSRS 43.5% 39.6% 34.5% 29.1% 24.8% 21.1% 17.0% 14.2% 10.5% 7.7% 4.0% 1.5% 0.1%
(Growth) 0.2% 0.3% 1.3% 1.2% 2.1% 2.9% 1.9% 3.3% 3.1% 4.2% 2.4% 0.7% 0.0%

2.0
NP 43.2% 39.4% 33.9% 29.2% 24.1% 20.5% 16.8% 14.1% 10.4% 7.9% 4.8% 2.0% 1.3% 0.3%

DSRS 43.1% 39.6% 34.3% 29.3% 24.8% 21.3% 18.0% 15.2% 12.3% 9.7% 6.4% 3.7% 1.4% 0.4%
(Growth) -0.1% 0.2% 0.4% 0.1% 0.7% 0.8% 1.2% 1.1% 1.9% 1.8% 1.6% 1.7% 0.1% 0.1%

4.0
NP 43.1% 39.5% 34.3% 29.6% 24.5% 21.3% 17.7% 15.0% 12.2% 9.6% 6.7% 4.0% 2.1% 1.3%

DSRS 42.8% 39.6% 34.4% 29.4% 25.2% 21.8% 18.3% 15.8% 12.8% 10.2% 7.7% 4.6% 2.1% 0.9%
(Growth) -0.3% 0.1% 0.1% -0.2% 0.7% 0.5% 0.6% 0.8% 0.6% 0.6% 1.0% 0.6% 0.0% -0.4%

8.0
NP 43.1% 39.5% 34.1% 29.8% 24.9% 21.7% 18.4% 15.6% 12.9% 10.1% 8.0% 5.6% 3.2% 1.6%

DSRS 42.9% 39.5% 34.3% 29.8% 25.2% 21.9% 18.6% 15.8% 13.2% 10.6% 8.0% 5.4% 2.7% 1.3%
(Growth) -0.2% 0.0% 0.2% 0.0% 0.3% 0.2% 0.2% 0.2% 0.3% 0.5% 0.0% -0.2% -0.5% -0.3%

Table 18: Full experimental results for certified accuracy, SmoothMix, ESG, CIFAR10

σ η
Certification Certified accuracy at r

method 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

0.25

1.0
NP 64.8% 56.5% 46.7%

DSRS 64.6% 56.5% 46.5%
(Growth) -0.2% 0.0% -0.2%

2.0
NP 64.8% 56.5% 46.7%

DSRS 64.7% 56.3% 45.8%
(Growth) -0.1% -0.2% -0.9%

4.0
NP 64.8% 56.4% 46.8%

DSRS 64.6% 56.3% 46.0%
(Growth) -0.2% -0.1% -0.8%

8.0
NP 64.8% 56.5% 46.9%

DSRS 64.6% 56.1% 46.5%
(Growth) -0.2% -0.4% -0.4%

0.50

1.0
NP 53.3% 48.3% 42.1% 36.7% 31.6% 26.2% 20.1%

DSRS 53.3% 48.3% 42.0% 36.6% 31.3% 25.6% 18.1%
(Growth) 0.0% 0.0% -0.1% -0.1% -0.3% -0.6% -2.0%

2.0
NP 53.2% 48.3% 42.2% 36.7% 31.7% 26.0% 20.4%

DSRS 53.3% 48.3% 42.0% 36.6% 31.2% 25.6% 17.6%
(Growth) 0.1% 0.0% -0.2% -0.1% -0.5% -0.4% -2.8%

4.0
NP 53.3% 48.3% 42.1% 36.6% 31.6% 26.1% 20.3%

DSRS 53.1% 48.3% 42.0% 36.5% 31.0% 25.6% 18.3%
(Growth) -0.2% 0.0% -0.1% -0.1% -0.6% -0.5% -2.0%

8.0
NP 53.3% 48.3% 42.0% 36.5% 31.6% 26.3% 20.2%

DSRS 53.3% 48.3% 42.0% 36.4% 31.1% 25.5% 18.5%
(Growth) 0.0% 0.0% 0.0% -0.1% -0.5% -0.8% -1.7%

1.00

1.0
NP 43.1% 39.6% 34.4% 30.2% 25.4% 22.2% 19.0% 16.3% 13.7% 11.6% 9.1% 6.7% 4.9% 2.3%

DSRS 42.8% 39.5% 34.4% 29.9% 25.3% 22.0% 19.1% 16.2% 13.4% 11.4% 8.9% 6.3% 4.0% 1.8%
(Growth) -0.3% -0.1% 0.0% -0.3% -0.1% -0.2% 0.1% -0.1% -0.3% -0.2% -0.2% -0.4% -0.9% -0.5%

2.0
NP 43.0% 39.7% 34.4% 30.0% 25.5% 22.5% 19.0% 16.2% 13.6% 11.5% 9.3% 6.5% 4.6% 2.1%

DSRS 42.9% 39.4% 34.3% 29.8% 25.3% 22.1% 18.9% 16.3% 13.4% 11.6% 8.8% 6.2% 4.0% 1.7%
(Growth) -0.1% -0.3% -0.1% -0.2% -0.2% -0.4% -0.1% 0.1% -0.2% 0.1% -0.5% -0.3% -0.6% -0.4%

4.0
NP 43.0% 39.7% 34.6% 30.1% 25.5% 22.4% 19.0% 16.3% 13.7% 11.6% 9.4% 6.6% 4.8% 2.4%

DSRS 42.9% 39.5% 34.3% 29.8% 25.4% 22.1% 19.0% 16.2% 13.6% 11.5% 9.2% 6.0% 3.9% 1.8%
(Growth) -0.1% -0.2% -0.3% -0.3% -0.1% -0.3% 0.0% -0.1% -0.1% -0.1% -0.2% -0.6% -0.9% -0.6%

8.0
NP 43.0% 39.7% 34.3% 30.0% 25.5% 22.3% 19.1% 16.2% 13.5% 11.5% 9.2% 6.5% 4.7% 2.5%

DSRS 42.7% 39.4% 34.3% 29.8% 25.3% 22.3% 18.9% 16.3% 13.5% 11.3% 9.0% 6.2% 4.1% 1.6%
(Growth) -0.3% -0.3% 0.0% -0.2% -0.2% 0.0% -0.2% 0.1% 0.0% -0.2% -0.2% -0.3% -0.6% -0.9%
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J.3 SUPPLEMENTAL FIGURES FOR STDAUG-GGS MODELS
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Figure 12: Certified accuracy of ℓ2 for standardly augmented models, on CIFAR-10 by General
Gaussian, k = 1530.
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Figure 13: Certified accuracy of ℓ2 for standardly augmented models, on ImageNet by General
Gaussian, k = 75260.
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J.4 SUPPLEMENTAL FIGURES FOR CONSISTENCY-GGS AND SMOOTHMIX-GGS MODELS
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Figure 14: Certified accuracy of ℓ2 for Consistency models, augmented on CIFAR-10 by General
Gaussian, k = 1530.
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Figure 15: Certified accuracy of ℓ2 for SmoothMix models, augmented on CIFAR-10 by General
Gaussian, k = 1530.
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