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Abstract

We give an algorithm for Centroid-Linkage Hierarchical Agglomerative Clustering
(HAC), which computes a c-approximate clustering in roughly n1+O(1/c2) time.
We obtain our result by combining a new Centroid-Linkage HAC algorithm with a
novel fully dynamic data structure for nearest neighbor search which works under
adaptive updates.

We also evaluate our algorithm empirically. By leveraging a state-of-the-art
nearest-neighbor search library, we obtain a fast and accurate Centroid-Linkage
HAC algorithm. Compared to an existing state-of-the-art exact baseline, our
implementation maintains the clustering quality while delivering up to a 36×
speedup due to performing fewer distance comparisons.

1 Introduction
Hierarchical Agglomerative Clustering (HAC) is a widely-used clustering method, which is available
in many standard data science libraries such as SciPy [39], scikit-learn [34], fastcluster [29], Julia [20],
R [35], MATLAB [28], Mathematica [25] and many more [31, 32, 36]. HAC takes as input a
collection of n points in Rd. Initially, it puts each point in a separate cluster, and then proceeds in up
to n− 1 steps. In each step, it merges the two “closest” clusters by replacing them with their union.

The formal notion of closeness is given by a linkage function; choosing different linkage functions
gives different variants of HAC. In this paper, we study Centroid-Linkage HAC wherein the distance
between two clusters is simply the distance between their centroids. This method is available in most
of the aforementioned libraries. Other common choices include single-linkage (the distance between
two clusters is the minimum distance between a point in one cluster and a point in the other cluster) or
average-linkage (the distance between two clusters is the average pairwise distance between them).

HAC’s applicability has been hindered by its limited scalability. Specifically, running HAC with
any popular linkage function requires essentially quadratic time under standard complexity-theory
assumptions. This is because (using most linkage functions) the first step of HAC is equivalent to
finding the closest pair among the input points. In high-dimensional Euclidean spaces, this problem
was shown to (conditionally) require Ω(n2−α) time for any constant α > 0 [23]. In contrast, solving
HAC in essentially Θ(n2) time is easy for many popular linkage functions (including centroid, single,
average, complete, Ward), as it suffices to store all-pairs distances between the clusters in a priority
queue and update them after merging each pair of clusters.
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In this paper, we show how to bypass this hardness for Centroid-Linkage HAC by allowing for
approximation. Namely, we give a subquadratic time algorithm which, instead of requiring that the
two closest clusters be merged in each step, allows for any two clusters to be merged if their distance
is within a factor of c ≥ 1 of that of the two closest clusters.

Contribution 1: Meta-Algorithm for Centroid-Linkage. Our first contribution is a simple meta-
algorithm for approximate Centroid-Linkage HAC. The algorithm assumes access to a dynamic
data structure for approximate nearest-neighbor search (ANNS). A dynamic ANNS data structure
maintains a collection of points S ⊂ Rd subject to insertions and deletions and given any query
point u ∈ S returns an approximate nearest neighbor v ∈ S. Formally, for a c-approximate NNS
data structure, v satisfies D(u, v) ≤ c ·minx∈S\{u} D(u, x).1 Here, D(·, ·) denotes the Euclidean
distance. By using different ANNS data structures we can obtain different Centroid-Linkage HAC
algorithms (which is why we call our method a meta-algorithm). We make use of an ANNS data
structure where the set of points S is the centroids of the current HAC clusters. Roughly, our algorithm
runs in time Õ(n) times the time it takes an ANNS data structure to update or query.

While finding distances is the core part of running HAC, we note that access to an ANNS data
structure for the centroids does not immediately solve HAC. Specifically, an ANNS data structure can
efficiently find an (approximate) nearest neighbor of a single point, but running HAC requires us to
find an (approximately) closest pair among all clusters. Furthermore, HAC must use the data structure
in a dynamic setting, and so an update to the set of points S (caused by two clusters merging) may
result in many points changing their nearest neighbors.

Our meta-algorithm requires that the dynamic ANNS data structure works under adaptive updates.2
Namely, it has to be capable of handling updates, which are dependent on the prior answers that it
returned (as opposed to an ANNS data structure which only handles “oblivious” updates).

To illustrate this, consider a randomized ANNS data structure D. Clearly, a query to D often has
multiple correct answers, as D can return any near neighbor within the promised approximation
bound. As a result, an answer to a query issued to D is dependent on the internal randomness of
D. Let us assume that D is used within a centroid-linkage HAC algorithm A and upon some query
returns a result u. Then, algorithmA uses u to decide which two clusters to merge, and the centroid p
of the newly constructed cluster is inserted into D. Since p depends on u, which in turn is a function
of the internal randomness of D, we have that the point that is inserted into D is dependent on the
internal randomness of the data structure. Hence, it is not sufficient for A to return a correct answer
for each fixed query with high probability (meaning at least 1− 1/poly(n)). Instead, A must be able
to handle queries and updates dependent on its internal randomness. We note that a similar issue is
prevalent in many cases when a randomized data structure is used as a building block of an algorithm.
As a result, the subtle notion of adaptive updates is a major area of study [40, 7, 33, 22, 21].

Contribution 2: Dynamic ANNS Robust to Adaptive Updates. Our second contribution is a
dynamic ANNS data structure for high-dimensional Euclidean spaces which, to the best of our
knowledge, is the first one to work under adaptive updates.
To obtain our ANNS data structure, we show a black-box reduction from an arbitrary randomized
dynamic ANNS data structure to one that works against adaptive updates (see Theorem 2). The
reduction increases the query and update times by only a O(log n) factor. We apply this reduction to a
(previously known) dynamic ANNS data structure which is based on locality-sensitive hashing [3, 19]
and requires non-adaptive updates.

By combining our dynamic ANNS data structure for adaptive updates with our meta-algorithm, we
obtain an O(c)-approximate Centroid-Linkage HAC algorithm which runs in time roughly n1+1/c2 .

Furthermore, our data structure for dynamic ANNS will likely have applications beyond our HAC
algorithm. Specifically, ANNS is commonly used as a subroutine to speed up algorithms for geometric
problems. Oftentimes, and similarly to HAC, formal correctness of these algorithms require an ANNS
data structure that works for adaptive updates but prior work often overlooks this issue. Our new data
structure can be used to fix the analysis of such works. For instance, an earlier work on subquadratic
HAC algorithms for average- and Ward-linkage [1] overlooked this issue and our new data structure

1We note that the notion of ANNS that we use is, in fact, slightly more general than this.
2Other papers sometimes refer to this property as working against an adaptive adversary.
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fixes the analysis of this work.3 Similarly, a key bottleneck in the dynamic k-centers algorithm in [5]
was that it had to run nearest neighbor search over the entire dataset (instead of just the k-centers). By
replacing the ANNS data structure used therein with our ANNS algorithm, we believe that that the nϵ

running times from that paper could be improved to kϵ.

Contribution 3: Empirical Evaluation of Centroid-Linkage HAC. Finally, we use our Centroid-
Linkage meta algorithm to obtain an efficient HAC implementation. We use a state-of-the-art static
library for ANNS that we extend to support efficient dynamic updates when merging centroids.

We empirically evaluate our algorithm and find that our approximate algorithm achieves strong
fidelity with respect to the exact centroid algorithm, obtaining ARI and NMI scores that are
within 7% of that of the exact algorithm, while achieving up to 36× speedup over the exact
implementation, even when both implementations are run sequentially. Our implementation can be
found at https://github.com/kishen19/CentroidHAC.

We note that the ANNS we use in the empirical evaluation of our meta-algorithm is different from our
new dynamic ANNS (Contribution 2). This is because modern practical methods for ANNS (e.g.,
based on graph-based indices [38, 18]) have far surpassed the efficiency of data structures for which
rigorous theoretical bounds are known. Closing this gap is a major open problem.

1.1 Related Work
Improving the efficiency of HAC has been an actively researched problem for over 40 years [8, 31,
30, 32]. A major challenge common to multiple linkage functions has been to improve the running
time beyond Θ(n2), which is the time it takes to compute all-pairs distances between the input points.
For the case of low-dimensional Euclidean spaces, a running time of o(n2) is possible for the case
of squared Euclidean distance and Ward linkage, since the ANNS problem becomes much easier
in this case [41]. However, breaking the Θ(n2) barrier is (conditionally) impossible in the case of
high-dimensional Euclidean spaces (without an exponential dependence on the dimension) [23].

To bypass this hardness result, a recent line of work focused on obtaining approximate HAC
algorithms [26]. Most importantly, Abboud, Cohen-Addad and Houdrouge [1] showed an approximate
HAC algorithm which runs in subquadratic time for Ward and average linkage. These algorithms rely
on the fact in the case of these linkage functions the minimum distance between two clusters can
only increase as the algorithm progresses, which is not the case for centroid linkage; e.g. consider
3 equi-distant points as in Figure 1. We also note that, as mentioned earlier, our dynamic ANNS
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Figure 1: 3 points in R2 initially all at distance 1 showing Centroid-Linkage HAC merge distances
can decrease. 1a / 1b and 1c / 1d give the the first and second merges with distances 1 and

√
3/2 < 1

respectively.

data structure fixes a gap in the analysis of both algorithms in the paper. In fact, not only can
the minimum distances shrink when performing Centroid-Linkage HAC, but when doing O(1)-
approximate Centroid-Linkage HAC distances can get arbitrarily small; see Figure 2. This presents an
additional issue for dynamic ANNS data structures which typically assume lower bounds on minimum
distances.

Compared to the algorithm of Abboud, Cohen-Addad and Houdrouge, our centroid-linkage HAC
algorithm introduces two new ideas. First, we show how to handle the case when the minimum

3We contacted the authors of [1] and they confirmed this gap in their analysis.
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Figure 2: 3 points in R2 (two of which are initially at distance 1) showing that O(1)-approximate
Centroid-Linkage HAC can arbitrarily reduce merge distances. 2a / 2b and 2c / 2d give the the first
and second merges with distances 1 and ϵ≪ 1 respectively; centroids are dashed circles.

distance between two clusters decreases as a result of two cluster merging. Second, we introduce an
optimization that allows us not to consider each cluster at each of the (logarithmically many) distance
scales. This optimization improves the running time bound by a logarithmic factor when each merge
“makes stale” a small number of stored pairs and in practice the number of such stale merges occur
only 60% of the time (on average) compared to the number of actual merges performed.

Another line of work considered a different variant of HAC, where the input is a weighted similarity
graph [15–17, 6]. The edge weights specify similarities between input points, and a lack of edge
corresponds to a similarity value of 0. By assuming that the graph is sparse, this representation allows
bypassing the hardness of finding distances, which leads to near-linear-time approximate algorithms
for average-linkage HAC [15], as well as to efficient parallel algorithms [16, 6].

In terms of the theoretical and empirical part of this paper considering different algorithms, such a gap
has also been observed for various other prominent clustering algorithms. For instance, for correlation
clustering, while the best known algorithms are obtained by solving a linear program (see [9]), in
practice a simple local search/Louvain-based algorithm is used (see section 4.1 of [2]). For modularity
clustering, the best known approximation is obtained by solving an SDP [24]. Again, Louvain-based
algorithms are used in practice. In the case of k-means, while the best known approximation is a
constant obtained via the primal-dual method [10], in practice Lloyd’s heuristic paired with k-means++
seeding is used which has a logarithmic approximation guarantee. For balanced graph partitioning,
coarsening combined with a brute-force algorithm is used to obtain the best results in practice. On
the other hand, the algorithms for solving the corresponding theoretical formulations, i.e. balanced
cut and multiway cut, are entirely different.

2 Preliminaries
In this section, we review our conventions and preliminaries. Throughout this paper, we will work in
d-dimensional Euclidean space Rd. We will use D(·, ·) for the Euclidean metric in Rd; that is, for
x, y ∈ Rd, the distance between x and y is D(x, y) :=

√∑
i(x[i]− y[i])2 where x[i] and y[i]are the

ith coordinates of x and y respectively. Likewise, we let D(x, Y ) := miny∈Y D(x, y) for Y ⊆ Rd.

2.1 Formal Description of Centroid-Linkage HAC
While we have described centroid-linkage in a cluster-centric way (see Appendix A for a formal
cluster-centric definition), it will be more useful to use an equivalent centroid-centric definition.

Specifically, we can equivalently define c-approximate Centroid-Linkage HAC as repeatedly “merging
centroids”. Initialize the set of all centroids C = P and a weight wu = 1 for each u ∈ C; these
weights will encode the cluster sizes of each centroid. Then, until |C| = 1 we do the following: let
x̂, ŷ ∈ C be a pair of centroids satisfying

D(x̂, ŷ) ≤ c · min
x,y∈C

D(x, y)

where the min is taken over distinct pairs; merge x̂ and ŷ into their weighted midpoints by removing
them from C, adding z = (wx̂x̂ + wŷ ŷ)/(wx̂ + wŷ) to C and setting wz = wx̂ + wŷ. Also, note
that (exact) Centroid-Linkage HAC is just the above with c = 1.

2.2 Dynamic Nearest-Neighbor Search
We define a dynamic ANNS data structure. Typically, dynamic ANNS requires a lower bound on
distances; we cannot guarantee this for centroid HAC. Thus, we make use of β additive error below.
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Definition 1 (Dynamic Approximate Nearest-Neighbor Search (ANNS)). An (α, β)-approximate
dynamic nearest-neighbor search data structure N maintains a dynamically updated set S ⊆ Rd

(initially S = ∅) and supports the following operations.
1. Insert, N .insert(u). given u ̸∈ S update S ← S ∪ {u}.
2. Delete, N .delete(u): given u ∈ S update S ← S \ {u};
3. Query, N .query(u, ū): given u, ū ∈ Rd return v ∈ S \ {ū} s.t.

D(u, v) ≤ α ·D(u, S \ {ū}) + β.

If N is a dynamic (α, 0)-approximate NNS data structure then we will simply call it α-approximate.
For a set of points S, we will use the notation NonAdaptiveAnn(S) to denote the result of starting
with an empty dynamic ANNS data structure and inserting each point in S (in an arbitrary order).

We say N succeeds for a set of points S ⊆ Rd and a query point u if after starting with an empty set
and any sequence of insertions and deletions of points in S we have that the query N .query(u, ū)
is correct for any ū (i.e., the returned point satisfies the stated condition in 3). If the data structure
is randomized then we say that it succeeds for adaptive updates if with high probability (over the
randomness of the data structure) it succeeds for all possible subsets of points and queries. Queries
have true distances at most ∆ if the (true) distance from S to any query is always at most ∆.

The starting point for our dynamic ANNS data structure is the following data structure requiring
non-adaptive updates which alone does not suffice for centroid HAC as earlier described. See
Appendix B for a proof.
Theorem 1 (Dynamic ANNS for Oblivious Updates, [3, 19]). Suppose we are given γ > 1 and c, β,∆
and n where log(∆/β), γ ≤ poly(n) and a dynamically updated set S with at most n insertions. Then,
if all queries have true distance at most ∆, we can compute a randomized (O(c), β)-approximate
NNS data structure with update, deletion and query times of n1/c2+o(1) · log(∆/β) · d · γ, which for
a fixed set of points and query point succeeds except with probability at most exp(−γ).

3 Dynamic ANNS with Adaptive Updates
The main theorem we show in this section is how to construct a dynamic ANNS data structure that
succeeds for adaptive updates using one which succeeds for oblivious updates.
Theorem 2 (Reduction of Dynamic ANNS from Oblivious to Adaptive). Suppose we are given
c, β, ∆, n, s ∈ Rd and dynamically updated set S ⊂ Rd with at most n insertions, such that all
inserted points and query points lie in Bs(∆). Moreover, assume that we can compute a dynamic
(c, β)-approximate NNS data structure with query, deletion and insertion times TQ, TD and TI which
succeeds for S and a fixed query except with probability at most n−O(d log d log(∆/β)).
Then, we can compute a randomized dynamic (c, cβ)-approximate NNS data structure that succeeds
for adaptive updates with query, deletion and amortized insertion times O(log n) · TQ, O(TD) and
O(log n) · TI .

We note that our result is slightly stronger than the above: the insertions we make into the oblivious
ANNS that we use only occur upon their instantiation, not dynamically.

As a corollary of the above reduction and known constructions for dynamic ANNS that work for
oblivious updates—namely, Theorem 1 with γ = Θ(d log d · log(∆/β) · log n) and using parameter
β′ = β/c where β′ is the additive distortion parameter for Theorem 1—we obtain the following.

Theorem 3 (Dynamic ANNS for Adaptive Updates). Suppose we are given c, β, ∆, n, s ∈ Rd where
log(∆/β), d, c ≤ poly(n) and dynamically updated set S ⊂ Rd with at most n insertions, such that
all inserted and query points lie in Bs(∆).
Then, we can compute a randomized dynamic (O(c), β)-approximate NNS data structure that succeeds
for adaptive updates with query, deletion and amortized insertion time n1/c2+o(1) · log(∆/β) · d2.

A previous work [19] also provided algorithms that work against an “adaptive updates” but only a
set of adaptive updates made against a fixed set of query points. Also, note that if we have a lower
bound of δ on the true distance of any query then lowering c by a constant and setting β = Θ(δ) for a
suitably small hidden constant gives an O(c)-approximate NNS with similar guarantees.
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Figure 3: Our merge-and-reduce strategy when a point (in green) is inserted.

3.1 Algorithm Description
Our algorithm for dynamic ANNS for adaptive updates uses two ingredients. First, we make use of
the following “covering nets” to fix our queries to a small set against which we can union bound.

Lemma 1. Given s ∈ Rd and β,∆ > 0, there exists a covering net Q ⊆ Rd such that

1. Small Size: |Q| ≤ (∆/β)O(d log d)

2. Queries: given u ∈ Bs(∆), one can compute u′ ∈ Q in time O(d) such that D(u, u′) ≤ β.

Second, we make use of a “merge-and-reduce” approach. A similar approach was taken by [12] for
exact k-nearest-neighbor queries in the plane. Namely, for each i ∈ [O(log n)] we maintain a set Si

of size at most 2i (where all Si partition all inserted points) and a dynamic ANNS data structure Ni

for Si which only works for oblivious updates. Other than the size constraint, the partition is arbitrary.
Informally, we perform deletions, insertions and queries as follows.

Deletion: To delete a point we simply delete it from its corresponding Ni.

Insertion: To insert a point, we insert it into S0 and for each i we move all points from Si to Si+1 if
Si contains more than 2i points; we update Ni accordingly each time we move points; namely, we
recompute Ni and Ni+1 from scratch on Si and Si+1 respectively. See Figure 3.

Query: Lastly, to query a point u we first map this point to a point in our covering net u′ (as specified
by Lemma 1), query u′ in each of our Ni and then return the best output (i.e., the point output by an
Ni that is closest to u′).

Our algorithm is more formally described in pseudo-code in Algorithm 1.

Algorithm 1 Dynamic ANNS for Adaptive Updates

Input: β, ∆, n, s ∈ Rd, Q← CoveringNet(s,∆, β) (computed using Lemma 1)
Maintains: S0, S1, . . . – partition of the inserted points, s.t. |Si| ≤ 2i

Maintains: N0,N1, . . . – a non-adaptive ANNS for each Si

function insert(u)
S0 ← S0 ∪ {u}
while ∃i such that |Si| > 2i do

Si+1 ← Si+1 ∪ Si and Si ← ∅
Ni+1 ← NonAdaptiveAnn(Si+1) and Ni ← NonAdaptiveAnn(∅)

function delete(u)
Let i be such that u ∈ Si

Ni.delete(u) and remove u from Si

function query(u, ū)
Let u′ ∈ Q be such that D(u, u′) = O(β) ▷ computed using Lemma 1
Let vi = Ni.query(u′, ū)
return v = argminvi D(u′, vi)
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4 Centroid-Linkage HAC Algorithm
In this section, we give our algorithm for Centroid-Linkage HAC. Specifically, we show how to (with
Algorithm 3) reduce approximate Centroid-Linkage HAC to roughly linearly-many dynamic ANNS
function calls, provided the ANNS works for adaptive updates.

Theorem 4 (Reduction of Centroid HAC to Dynamic ANN for Adaptive Updates). Suppose we are
given a set of n points P ⊂ Rd, c > 1, ϵ > 0, and lower and upper bounds on the minimum and
maximum pairwise distance in P of δ and ∆ respectively. Suppose we are also given a data structure
that is a dynamic c-approximate NNS data structure for all queries in Algorithm 3 that works for
adaptive updates with insertion, deletion and query times of TI , TD, and TQ.
Then there exists an algorithm for c(1 + ϵ)-approximate Centroid-Linkage HAC on n points that runs
in time Õ(n · (TI + TD + TQ)) assuming ∆

δ ≤ poly(n) and 1
ϵ ≤ polylog(n).

Our final algorithm for centroid HAC is not quite immediate from the above reduction and our dynamic
ANNS algorithm for adaptive updates. Specifically, the above reduction requires a c-approximate
NNS data structure but in the preceding section we have only provided a (c, β)-approximate NNS
data structure for β > 0. However, by leveraging the structure of centroid HAC—in particular, the
fact that there is only ever at most one “very close” pair—we are able to show that this suffices. In
particular, for a given c, there exists a c0 and β0 such that a (c0, β0)-approximate NNS data structure
functions as a c-approximate NNS data structure for all queries in Algorithm 3. This is formalized by
Lemma 6. Combining Lemma 6, Theorem 4 and Theorem 3, we get the following.

Theorem 5 (Centroid HAC Algorithm). For n points in Rd, there exists a randomized algorithm that
given any c > 1.01 and lower and upper bounds on the minimum and maximum pairwise distance in
P of δ and ∆ respectively, computes a c-approximate Centroid-Linkage HAC with high probability.
It has runtime O(n1+O(1/c2)d2) assuming c, d, ∆

δ ≤ poly(n).

4.1 Algorithm Description
In what remains of this section, we describe the algorithm for Theorem 4. Consider a set of points
P ∈ Rd. Suppose we have a dynamic c-approximate NNS data structure N that works with adaptive
updates with query time TQ, insertion time TI , and deletion time TD. Let Q be a priority queue
storing elements of the form (l, x, y) where x and y are “nearby” centroids and l = D(x, y). The
priority queue supports queuing elements and dequeueing the element with shortest distance, l. At
any given time while running the algorithm, say a centroid x is queued if there is an element of the
form (l, x, y) in Q. We will maintain a set, C, of active centroids allowing us to check if a centroid is
active in constant time. For each active centroid, C will also store the weight of the centroid so we
can preform merges and an identifier to distinguish between distinct clusters with the same centroid.
Note that any time we store a centroid, including in Q, we will implicitly store this identifier.

First, we describe how the algorithm handles merges. To merge two active centroids, x and y,
we remove them from C and delete them in N . Let z = wxx + wyy be the centroid formed by
merging x and y. We use N to find an approximate nearest neighbor, y∗, of z and add to Q the
tuple (D(z, y∗), z, y∗). Lastly, we add z to N and C. Pseudo-code for this algorithm is given by
Algorithm 2. Crucially, we do not try to update any nearest neighbors of any other centroid at this
stage. We will do this work later and only if necessary. Since we are using an approximate NNS, it is
possible that the centroid z will be the same point in Rd as the centroid of another cluster. We can
detect this in constant time using C and we will immediately merge the identical centroids.

We now describe the full algorithm using the above merge algorithm; we also give pseudo-code in
Algorithm 3. Let ϵ > 0 be a parameter that tells the algorithm how aggressively to merge centroids.
To begin, we constructN by inserting all points of P in any order. Then for each p ∈ P , we useN to
find an approximate nearest neighbor y ∈ P \ {p} and queue (D(p, y), p, y) to Q. We also initialize
C = {p : p ∈ P}. The rest of the algorithm is a while loop that runs until Q is empty. Each iteration
of the while loop begins by dequeuing from Q the tuple (l, x, y) with minimum l.

(1) If x and y are both active centroids then we merge them.
(2) Else if x is not active then we do nothing and move on to the next iteration of the while loop.
(3) Else if x is active but y is not, we use N to compute a new approximate nearest neighbor, y∗ of x.

Let l∗ = D(x, y∗). If l∗ ≤ (1 + ϵ)l, then we merge x and y∗. Otherwise we add (l∗, x, y∗) to Q.
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Algorithm 2 Handle-Merge
1: Input: set of active centroids C, ANNS data structure N , priority queue Q, centroids x and y
2: z ← wxx+ wyy ▷ Merge x and y
3: Remove x and y from C and N
4: if there is a centroid z∗ that is the same as z is in C then
5: z ← wzz + wz∗z∗ ▷ Merge z and z∗

6: Remove z∗ from C and add z
7: else
8: Add z to N and C
9: y∗ ← An approximate nearest neighbor of z returned by N .query(z, z)

10: Queue (D(z, y∗), z, y∗) to Q

Algorithm 3 Approximate-HAC
1: Input: set of points P , metric D, fully dynamic ANNS N data structure, ϵ > 0
2: Output: (1 + ϵ)c-approximate centroid HAC
3: Initialize Q and C = {{p} : p ∈ P} and insert all points of P into N
4: for p ∈ P do
5: y ← An approximate nearest neighbor of p returned by N .query(p, p)
6: Queue (D(p, y), p, y) to Q

7: while Q is not empty do
8: (l, x, y)← dequeue shortest distance from Q
9: if x, y ∈ C then

10: Handle-Merge(C, N , Q, x, y)
11: else if x ∈ C then
12: y∗ ← An approximate nearest neighbor of x returned by N .query(x, x)
13: l∗ ← D(x, y∗)
14: if l∗ ≤ (1 + ϵ)l then
15: Handle-Merge(C, N , Q, x, y∗)
16: else
17: Queue (l∗, x, y∗) to Q

5 Empirical Evaluation
We empirically evaluate the performance and effectiveness of our approximate Centroid HAC
algorithm through a comprehensive set of experiments. Our analysis on various publicly-available
benchmark clustering datasets demonstrates that our approximate Centroid HAC algorithm:

(1) Consistently produces clusters with quality comparable to that of exact Centroid HAC,
(2) Achieves an average speed-up of 22× with a max speed-up of 175× compared to exact Centroid

HAC when using 96 cores in our scaling study. On a single core, it achieves an average speed-up
of 5× with a max speed-up of 36×.

Dynamic ANNS Implementation using DiskANN As demonstrated in previous works, although
LSH-based algorithms have strong theoretical guarantees, they tend to perform poorly in practice
when compared to graph-based ANNS data structures [18]. For instance, in ParlayANN [18], the
authors find that the recall achievable by LSH-based methods on a standard ANNS benchmark dataset
are strictly dominated by state-of-the-art graph-based ANNS data structures.

Therefore, for our experiments, we use DiskANN, a widely-used state-of-the-art graph-based ANNS
data structure [38]. In particular, we consider the in-memory version of this algorithm from
ParlayANN, called Vamana. In a nutshell, the algorithm builds a bounded degree routing graph that
can be searched using beam search. Note that this graph is not the k-NN graph of the pointset. The
graph is constructed using an incremental construction that adds bidirectional edges between a newly
inserted point, and points traversed during a beam search for this point; if a point’s degree exceeds the
degree bound, the point is pruned to ensure a diverse set of neighbors. See [38] for details.

For Centroid HAC, we require the ANNS implementation to support dynamic updates. The
implementation provided by ParlayANN currently only supports fast static index building and queries.
Recently, FreshDiskANN [37] described a way to handle insertions and deletions via a lazy update
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Table 1: The ARI and NMI scores of our approximate Centroid HAC implementations for ϵ = 0.1, 0.2, 0.4,
and 0.8, versus Exact Centroid HAC. The best quality score for each dataset is in bold and underlined.

Dataset Centroid0.1 Centroid0.2 Centroid0.4 Centroid0.8 Exact Centroid

A
R

I

iris 0.759 0.746 0.638 0.594 0.759
wine 0.352 0.352 0.402 0.366 0.352
cancer 0.509 0.526 0.490 0.641 0.509
digits 0.589 0.571 0.576 0.627 0.559
faces 0.370 0.388 0.395 0.392 0.359
mnist 0.270 0.222 0.218 0.191 0.192
birds 0.449 0.449 0.442 0.456 0.441
Avg 0.471 0.465 0.452 0.467 0.453

N
M

I
iris 0.803 0.795 0.732 0.732 0.803
wine 0.424 0.424 0.413 0.389 0.424
cancer 0.425 0.471 0.459 0.528 0.425
digits 0.718 0.726 0.707 0.754 0.727
faces 0.539 0.534 0.549 0.549 0.556
mnist 0.291 0.282 0.306 0.307 0.250
birds 0.748 0.747 0.756 0.764 0.743
Avg 0.564 0.569 0.560 0.575 0.561

approach. However, their approach requires a periodic consolidation step that scans through the graph
and deletes inactive nodes and rebuilds the neighborhood of affected nodes, which is expensive.

Instead, in our implementation of Centroid HAC, we adopt the following new approach that is
simple and practical, and adheres to the updates required by our theoretical algorithm: when clusters
u and v merge, choose one of them to represent the centroid, and update its neighborhood N(u)
(without loss of generality) to the set obtained by pruning the set N(u) ∪N(v). The intuition here is
that N(u) ∪N(v) is a good representative for the neighborhood of the centroid of u and v in the
routing graph. Further, during search, points will redirect to their current representative centroid
(via union-find [14]), thus allowing us to avoid updating the in-neighbors of a point in the index.
We believe application-driven update algorithms, such as the one described here, can help speed-up
algorithms that uses dynamic ANNS as a subroutine.

5.1 Quality Evaluation
We evaluate the clustering quality of our approximate centroid HAC algorithm against ground truth
clusterings using standard metrics such as the Adjusted Rand Index (ARI), Normalized Mutual
Information (NMI), Dendrogram Purity, and the unsupervised Dasgupta cost [11]. Our primary
objective is to assess the performance of our algorithm across various values of ϵ on a diverse set of
benchmarks. We primarily compare our results with those obtained using exact Centroid HAC.

For these experiments, we consider the standard benchmark clustering datasets iris, digits, cancer,
wine, and faces from the UCI repository (obtained from the sklearn.datasets package). We
also consider the MNIST dataset which contains images of grayscale digits between 0 and 9, and
birds, a dataset containing images of 525 species of birds; see Appendix E for more details.

Results. The experimental results are presented in Table 1, with a more detailed quality evaluation in
Appendix E.1. We summarize our results here.

We observe that the quality of the clustering produced by approximate Centroid HAC is generally
comparable to that of the exact Centroid HAC algorithm. On average, the quality is slightly better in
some cases, but we attribute this to noise. In particular, we observe that for the value of ϵ = 0.1, we
consistently get comparable quality to that of exact centroid: the ARI and NMI scores are on average
within a factor of 7% and 2% to that of exact Centroid HAC, respectively. We also obtained good
dendrogram purity score and Dasgupta cost as well, with values within 0.3% and 0.03%, respectively.

5.2 Running Time Evaluation
Next, we evaluate the scalability of approximate Centroid HAC against exact Centroid HAC on
large real-world pointsets. We consider the optimized exact Centroid HAC implementation from the
fastcluster package [29]. We also implement an efficient version of exact Centroid HAC based on
our framework (i.e. setting ϵ = 0 and using exact NNS queries) which has the benefit of using only
linear space and supports parallelism in NNS queries. We also implement a bucket-based version of
approximate Centroid HAC as a baseline, based on the approach of [1] along with an observation to
handle the non-monotonicity of Centroid HAC; details in Appendix E.
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Figure 4: Running times of fastcluster’s centroid HAC, our implementation of exact centroid HAC, and the
heap-based and bucket-based approximate centroid HAC with ϵ = 0.1. In Figure 4a, our approximate and exact
implementations are run on 1 core, whereas in Figure 4b they have access to 192 cores. Figure 4c compares the
running times of heap and bucket based algorithms as a function of ϵ.

Results. We now summarize the results of our scalability study; see Appendix E.2 for a more details
and plots. Figures 4a and 4b shows the running times on varying slices of the SIFT-1M dataset
using one thread and 192 parallel threads, respectively. For the approximate methods, we considered
ϵ = 0.1. Figure 4c further compares the heap and bucket based approaches as a function of ϵ.

We observe that the bucket based approach is very slow for small values of ϵ due to many redundant
nearest-neighbor computations. Yet, at ϵ = 0.1, both algorithms, with 192 threads, obtain speed-ups
of up to 175× with an average speed-up of 22× compared to the exact counterparts. However,
on a single thread, the bucket based approach fails to scale, while the heap based approach still
achieves significant speed-ups of upto 36× with an average speed-up of 5×. Overall, our heap-based
approximate Centroid HAC implementation with ϵ = 0.1 demonstrates good quality and scalability,
making it a good choice in practice.

6 Conclusion
In this work we gave an approximate algorithm for Centroid-Linkage HAC which runs in subquadratic
time. Our algorithm is obtained by way of a new ANNS data structure which works correctly under
adaptive updates which may be of independent interest. On the empirical side we have demonstrated
up to 36× speedup compared to the existing baselines. An interesting open question is whether
approximate Centroid-Linkage HAC admits a theoretically and practically efficient parallel algorithm.
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A Cluster-Centric Definition of Centroid-Linkage HAC
We formally define Centroid-Linkage HAC in a cluster-centric way. For a set of points X ⊂ Rd, we
define cent(X) to be the centroid of X as below.
Definition 2 (Centroid). Given a set of points X ⊂ Rd, the centroid of X is the point x ∈ Rd whose
ith coordinate is

x[i] =
∑
y∈X

y[i]

|X|
.

Centroid HAC uses distance between centroids as a linkage function. That is, for clusters X and Y ,

L(X,Y ) = D(cent(X), cent(Y )).

c-approximate Centroid-Linkage HAC is defined as follows. We are given input points P ⊂ Rd.
First, initialize a set of active clusters C = {{p}}p∈P . Then, until |C| = 1 we do the following: let
X̂, Ŷ ∈ C be a pair of active clusters satisfying

L(X̂, Ŷ ) ≤ c · min
X,Y ∈C

L(X,Y )

where the min is taken over distinct pairs; merge X̂ and Ŷ by removing them from C and adding
X̂ ∪ Ŷ to C. (Non-approximate) Centroid-Linkage HAC is just the above with c = 1.

B Proof of Theorem 1
In the interest of completion, we give a proof of Theorem 1 (dynamic ANNS for oblivious updates).

B.1 Locality Sensitive Hashing
We will make use of the well-known algorithmic primitive of locality sensitive hashing.
Definition 3 (Locality Sensitive Hashing). A family of hash functions H is called (r, cr, p1, p2)-
sensitive if for any p, q ∈ Rd we have

1. Close Points Probably Collide: If D(u, v) ≤ r then Prh∼H(h(u) = h(v)) ≥ p1.
2. Far Points Probably Don’t Collide: If D(u, v) ≥ cr then Prh∼H(h(u) = h(v)) ≤ p2.

We will make use of known locality sensitive hashing schemes for Euclidean distance in Rd. For this
result, see also [4].
Theorem 6 (Lemma 3.2.3 of [3]). Given r and c, there is a (r, cr, p1, p2)-sensitive LSH family with

log(1/p1)

log(1/p2)
= 1/c2 + o(1) and log(1/p2) ≤ o(log n).

Furthermore, one can sample h ∼ H and given u ∈ Rd compute h(u) in time dno(1).
Theorem 1 (Dynamic ANNS for Oblivious Updates, [3, 19]). Suppose we are given γ > 1 and c, β,∆
and n where log(∆/β), γ ≤ poly(n) and a dynamically updated set S with at most n insertions. Then,
if all queries have true distance at most ∆, we can compute a randomized (O(c), β)-approximate
NNS data structure with update, deletion and query times of n1/c2+o(1) · log(∆/β) · d · γ, which for
a fixed set of points and query point succeeds except with probability at most exp(−γ).

Proof. We first construct a data structure which succeeds with constant probability for a given query.
To do so we begin by turning our LSH hashes from Theorem 6 into a hash function which is an “L
ors of K ands”. In particular, we let

L := n1/c2+o(1) ·Θ(log n).

and let

K :=
1

log(1/p2)
· (Θ(log n) + logL+ log log(∆/β)) .
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Notice that by Theorem 6 we have that log(1/p2) ≤ o(log n) and by assumption we have
log(∆/β), γ ≤ poly(n) and so we have

K · L ≤ n1/c2+o(1) (1)

For each i such that β ≤ 2i ≤ ∆, we define L-many new hash functions, each of which consists of
K-many h from Theorem 6. In particular, for i ∈ [log(∆/β)], l ∈ [L] and k ∈ [K], we let hikl be a
uniformly random h sampled according to Theorem 6 using radius r = 2i and our input c. Likewise,
we let gil : Rd → Rk be a new hash function defined on u ∈ Rd as

gil(u) = (hil1(u), hil2(u), . . . , hilk(u)).

We let Gi := {gil : l ≤ L} be all such hash functions for i and let G =
⋃

i Gi be all such hash
functions across scales.

By Theorem 6, sampling each constituent hash functions for each g ∈ G can be done in time dno(1)

and so by this and Equation (1) initializing all hash functions in G takes time

dno(1) · L ·K · log(∆/β) = n1/c2+o(1) · log(∆/β) · d (2)

This initialization time will be dominated by the time it takes to insert a single point. For each such
hash function we will maintain a collection of buckets which partitions points in S.

To insert a point into S, we simply compute its hash for each g ∈ G and store this hash in each
corresponding bucket. To delete a point from S we simply delete it from all buckets to which it
hashes. Lastly, to answer a query on (u, ū), we hash u according to each g ∈ G and then return the
v ∈ S \ ū such that for minimum i we have a g ∈ Gi such that g(u) = g(v). Since by Theorem 6
evaluating each hash function takes time dno(1), we get that all of these operations also take time at
most that given by Equation (2).

Lastly, we argue the (constant probability) correctness of a query for a fixed set of points. Fix query
points (u, ū) and a set of points S. Let w ∈ S \ {u} be a fixed point of S \ {u} where we let iw be
such that 2iw ≤ D(u,w) ≤ 2iw+1. Say that w succeeds if

1. One Correct Collision: there is a g ∈ Giw such that g(w) = g(u) and

2. No Incorrect Collisions: for all i < iw and g ∈ Gi we have that g(u) ̸= g(w).

Observe that if both of the cases happen for every w ∈ S \ {u} then we have that our query is correct.
The only non-trivial part of this observation is the fact that if u is within distance β of S \ {ū} then
iw = 1 and the returned point is within an additive β of u so long as one correct collision holds.

Continuing, we next lower bound the probability of one correct collision. For a fixed giwl ∈ Giw ,
we have that g(w) = g(u) iff hiwlk(w) = hiwlk(u) for all k ≤ K. The probability of this for one
k ≤ K is, by definition, p1. By Theorem 6 we know that log(1/p1)

log(1/p2)
= 1/c2 + o(1) and so for a fixed l,

we have that this occurs with probability at least

pK1 = exp(−K · log(1/p1))

= exp

(
− log(1/p1)

log(1/p2)
· (O(log n) + logL+ log log(∆/β))

)
= exp(−(1/c2 + o(1)) · (O(log n) + logL+ log log(∆/β)))

≥ exp
(
−(1/c2 + o(1)) ·O(log n)

)
It follows that the probability that this does not hold for some l is at most(
1− pK1

)L ≤ exp(−L · pK1 )

≤ exp
(
−L · exp

[
−(1/c2 + o(1)) ·O(log n)

])
= exp

(
−Ω(log n)− exp[((1/c2) + o(1)) · Ω(log n)] · exp

[
−(1/c2 + o(1)) ·O(log n)

])
= n−Ω(1).
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Next, we lower bound the probability of no incorrect collisions. Fix an i < iw. Observe that for a
given hilk we have, by definition, that hilk(u) = hilk(w) with probability at most p2. Thus, we have
gil(u) = gil(w) with probability at most

pK2 = exp(− log(1/p2)K) = exp(−Ω(log n)− logL− log log(∆/β)).

Union bounding over our at most log(∆/β)-many such i and L-many such l, we get that that we have
no incorrect collisions except with probability at most

pK2 · log(∆/β) · L = exp(−Ω(log n)) = n−Ω(1).

Finally, union bounding over our n-many possible points in S and using the fact that γ ≥ 1 we have
that we succeed except with probability at least a fixed constant bounded away from 0 for S and this
query. Furthermore, by taking γ-many independent repetitions of this data structure and taking the
returned point closest to our query, we increase our runtime by a multiplicative γ and reduce our
failure probability to exp(−γ).

C Proofs from Section 3
Lemma 1. Given s ∈ Rd and β,∆ > 0, there exists a covering net Q ⊆ Rd such that

1. Small Size: |Q| ≤ (∆/β)O(d log d)

2. Queries: given u ∈ Bs(∆), one can compute u′ ∈ Q in time O(d) such that D(u, u′) ≤ β.

Proof. The basic idea is simply to take an evenly spaced hypergrid centered at s of radius ∆. More
formally, we let

Q :=

s+
β√
d
· y : y ∈ Zd ∩

([
−∆
√
d

β
,∆

√
d

β

])d


where above
([
−∆

√
d
ϵ ,∆

√
d

β

])d
is the d-way Cartesian product. That is, y is a d-dimensional vector

whose coordinates are integers between −∆
√
d

β and ∆
√
d

β . Thus, Q consists of all points which offset
each coordinate of s by a multiple of β√

d
up to total offset distance ∆ in each coordinate.

The number of points in Q is trivially the number of offsets y which is, in turn,(
2
∆ ·
√
d

β

)d

=

(
∆

β

)O(d log d)

as desired.

Next we analyze how to query. Given a point u, we let

u′
i := si +

β√
d
·

⌊√
d

β
(ui − si)

⌋
be ui rounded down to the nearest multiple of β√

d
after offsetting by si. Observe that u′ =

(u′
1, u

′
2, . . . u

′
d) ∈ Q by our assumption that u ∈ Bs(∆) and that, furthermore, u′ can be computed

from u in time O(d). Lastly, observe that

|ui − u′
i| ≤

β√
d

and so we have that the distance between u and u′ is

D(u, u′) =

√∑
i

(ui − u′
i)

2 ≤

√√√√∑
i

(
β√
d

)2

= β.
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Lemma 2. Algorithm 1 is a (c, cβ)-approximate nearest-neighbor search data structure with high
probability for adaptive updates.

Proof. Consider a query on (u, ū) with corresponding u′ ∈ Q in our covering net (i.e., the u′ returned
by Lemma 1 when input u). We refer to the state of our data structure at the beginning of its for loop
(i.e., upon receiving a new update or query) as at the beginning of an iteration.

First, observe that a simple argument by induction on our insertions and deletions shows that the
point set for whichNi is a data structure at the beginning of an iteration is Si and that, furthermore, if
S is the set of points which have been inserted but not deleted at a given point in time then {Si}i
partitions S. Thus, we have

min
i

D(u′, Si \ ū) = D(u′, S \ ū).

Furthermore, by the guarantees of Lemma 1 and the fact that all points of S and all query points are
always contained in Bs(∆), we know that

D(u, u′) ≤ O(β). (3)

It follows that

D(u′, S \ ū) ≤ D(u, S \ ū) +O(β)

and so

min
i

D(u′, Si \ ū) ≤ D(u, S \ ū) +O(β). (4)

Furthermore, notice that since the randomness ofNi is chosen after we fix Si, we have by assumption
that for a fixed u′ ∈ Q that Ni succeeds for a query on (u′, ū) with points Si except with probability
at most

n−Ω(d log d·log(∆/β)).

On the other hand, by Lemma 1 we know that |Q| ≤
(

∆
β

)O(d log d)

so taking a union bound over
all points in Q we have that with high probability Ni succeeds for Si and every query point in Q
except with probability at most 1/poly(n). Union bounding over our O(n)-many Ni that we ever
instantiate, we get that every Ni succeeds for its corresponding Si and every query point of Q except
with probability at most 1/poly(n). In other words, with high probability we always have

D(u′, vi) ≤ c ·D(u′, Si \ ū) +O(β). (5)

Thus, combining the triangle inequality, Equations 3, 4 and 5, we have that with high probability
whenever we query point u, the returned point v satisfies

D(u, v) = min
i

D(u, vi)

≤ D(u, u′) + min
i

D(u′, vi)

≤ O(β) + min
i

D(u′, vi)

≤ O(β) + c ·min
i
·D(u′, Si \ ū)

≤ c ·D(u, S \ ū) +O(c · β)
Choosing our hidden constant appropriately, we get that with high probability our data structure is
indeed (c, cβ)-approximate.

Lemma 3. Algorithm 1 has amortized insertion time O(log n) · TI where TI is the insertion time of
the input oblivious dynamic ANNS data structure.

Proof. Let ninsert ≤ n be the total number of insertions up to some point in time. Each time we
instantiate anNi+1 on an Si+1, it consists of at most 2i+2-many points and so by assumption takes us
time

TI · 2(i+2)
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time to instantiate. On the other hand, the total number of times we can instantiate Ni+1 is at most
ninsert/2

i (since each time we instantiate it we add a new set of at least 2i points to Si+1 and points
only move from Sjs to Sj+1s). It follows that the total time to instantiate Ni+1 is at most

TI · 2(i+2) · ninsert

2i
= O(TI · ninsert).

Applying, the fact that i ≤ log n, we get that the total time for all insertions is

O(log n) · TI · ninsert.

Dividing by our ninsert-many insertions, we get an amortized insertion time of O(log n) · TI , as
desired.

Theorem 2 (Reduction of Dynamic ANNS from Oblivious to Adaptive). Suppose we are given
c, β, ∆, n, s ∈ Rd and dynamically updated set S ⊂ Rd with at most n insertions, such that all
inserted points and query points lie in Bs(∆). Moreover, assume that we can compute a dynamic
(c, β)-approximate NNS data structure with query, deletion and insertion times TQ, TD and TI which
succeeds for S and a fixed query except with probability at most n−O(d log d log(∆/β)).
Then, we can compute a randomized dynamic (c, cβ)-approximate NNS data structure that succeeds
for adaptive updates with query, deletion and amortized insertion times O(log n) · TQ, O(TD) and
O(log n) · TI .

Proof. We use Algorithm 1. Correctness follows from Lemma 2 and the amortized insertion time
follows from Lemma 3. The deletion time is immediate from the fact that we can compute the i
such that u ∈ Si in constant time. Lastly, we analyze our query time. By Lemma 1, computing
each u′ takes time O(d) ≤ TQ (since reading the query takes time Ω(d)). Likewise, by assumption,
computing N query

i (u′, ū) takes time TQ for each i, giving our desired bounds.

D Proofs from Section 4
We now prove that Algorithm 3 gives a (c(1 + ϵ))-approximate HAC where c is the approximation
value inherited from the approximate nearest neighbor data structure. Note that a smaller ϵ will give a
more accurate HAC but will increase the runtime of the algorithm.
Lemma 4. Algorithm 3 gives a c(1 + ϵ)-approximate Centroid-Linkage HAC.

Proof. The idea of the proof is to observe that one of the two endpoints of the closest pair will always
store an approximate of the minimum distance in Q. In that spirit, suppose that right before a centroid
is dequeued, the shortest distance between active centroids is lOPT. Then there must exist active
centroids x1 and x2 such that D(x1, x2) = lOPT. Assume without loss of generality that x1 was
queued before x2 and x2 was queued with distance l2. Then, when x2 was queued, x1 was active so
l2 ≤ c · lOPT.

Thus, when a centroid, x, is dequeued, its distance lx obeys the inequality

lx ≤ l2 ≤ c · lOPT.

Then, if x is merged during the while loop, it is merged with a centroid of distance at most

(1 + ϵ)lx ≤ c(1 + ϵ)lOPT

as desired. If a centriod gets merged without being dequeued, that means it merged with another
identical centroid which is consistent with 1-approximate HAC.

We now prove the runtime of the algorithm. Say that the maximum pairwise distance between points
in P is ∆ and the minimum is δ. We make the following observations about the geometry of the
centriods throughout the runtime of Algorithm 3.
Observation 1. Consider any point p ∈ P . Throughout the runtime of Algorithm 3, the distance
from any centroid to p is at most ∆.

Proof. Consider a cluster Q ⊆ P . Since for each q ∈ Q we have D(p, q) ≤ ∆, it follows that
D(p, cent(Q)) ≤ ∆.
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Observation 2. When running Algorithm 3, at any point in time there can only ever be a single
centroid queued with distance less than δ.

Proof. Initially, every centroid is queued with distance at least δ. Thus, if a centroid is ever queued
with a smaller distance it will immediately be dequeued and merged.

Lemma 5. Algorithm 3 runs in time O(n ·TI +n ·TD+n ·TQ · log1+ϵ(
2∆
δ )+n log(n) log1+ϵ(

2∆
δ )).

Proof. The idea of the proof is that each time we dequeue a centroid we either merge it or we increase
the distance associated with it by a multiplicative factor of 1+ ϵ which can only happen log1+ϵ(2∆/δ)
times for each of our O(n)-many centroids.

Each centroid is inserted into N at most once, either during the initial construction or in Algorithm 2,
and deleted at most once. Since there are 2n − 1 centroids throughout the runtime, the total time
spent on updates to N is O(n · TI + n · TD).

At any given point during the algorithm, a centroid can be in Q at most once. Since only 2n − 1
centroids are ever created, there are at most 2n− 1 elements in Q at any time. Thus, a single queue
or dequeue operation takes O(log(n)) time. In the initial for loop we queue n elements to Q and
make n queries to N taking time O(n log(n) + n · TQ). Each time algorithm 2 gets called it queues
one element to Q and makes up to 4 updates to C. Since Algorithm 2 is called at most n− 1 times,
the total time spent on merges, not including updates to N , is O(n · TQ + n log(n)).

Lastly, we consider how many times a centroid x can be dequeued on Line 8. Suppose x is queued
with distance li the ith time it is queued. If l1 < δ then by Observation 2, x will be immediately
dequeued and merged so x is only queued once. Thus, we assume l1 ≥ δ. If x is dequeued with
distance li then either x is merged and will not be queued again or it is queued again with distance

li+1 > (1 + ϵ)li > (1 + ϵ)il1.

Since l1 ≥ δ by assumption and li ≤ 2∆ for all i ≥ 1 by Observation 1, it follows that x can only be
queued, and therefore dequeued, log1+ϵ(

2∆
δ ) times. Each time, not including merges, there can be

one dequeue from Q, one queue to Q, and one query to N . Since there are 2n− 1 centroids created
by the algorithm, the while loop (not including merges) runs in time O(n log(n) log1+ϵ(

2∆
δ ) + n ·

TQ · log1+ϵ(
2∆
δ )).

Combining the previous two lemmas together we get the following.
Theorem 4 (Reduction of Centroid HAC to Dynamic ANN for Adaptive Updates). Suppose we are
given a set of n points P ⊂ Rd, c > 1, ϵ > 0, and lower and upper bounds on the minimum and
maximum pairwise distance in P of δ and ∆ respectively. Suppose we are also given a data structure
that is a dynamic c-approximate NNS data structure for all queries in Algorithm 3 that works for
adaptive updates with insertion, deletion and query times of TI , TD, and TQ.
Then there exists an algorithm for c(1 + ϵ)-approximate Centroid-Linkage HAC on n points that runs
in time Õ(n · (TI + TD + TQ)) assuming ∆

δ ≤ poly(n) and 1
ϵ ≤ polylog(n).

Proof. By Lemma 4 and Lemma 5 we get that Algorithm 3 gives c(1 + ϵ)-approximate HAC in
time O(n · TI + n · TD + n · TQ · log1+ϵ(

2∆
δ ) + n log(n) log1+ϵ(

2∆
δ )). It is only left to show that

log1+ϵ(
2∆
δ ) ≤ polylog(n). Changing the base of the logarithm we get

log1+ϵ

(2∆
δ

)
=

log( 2∆δ )

log(1 + ϵ)
.

We have that log( 2∆δ ) ≤ polylog(n) by the assumption that ∆
δ ≤ poly(n). By the inequality

log(1 + x) ≥ x
1+x for all x > −1 we get that if ϵ ≤ 1

1

log(1 + ϵ)
≤ 1 + ϵ

ϵ
≤ 2

ϵ
= O

(1
ϵ

)
≤ polylog(n)
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where the final inequality comes from the assumption that 1
ϵ ≤ polylog(n). If ϵ > 1 then

1

log(1 + ϵ)
≤ 1

log(2)
≤ polylog(n).

Combining the above inequalities and the above-stated runtime gives our final runtime.

We use Theorem 4 with our results from Section 3 to get our main result. First we prove the following
lemma which says that our ANNS that includes an additive term functions as a purely multiplicative
ANNS for our algorithm.

Lemma 6. For any λ ∈ (1, c), ifN is a
(

c
λ ,

δ(λ−1)
(1+c)λ

)
-approximate NNS data structure that works for

adaptive updates then N is a c-approximate NNS data structure for all queries in Algorithm 3.

Proof. Let C be the set of active centroids at the time any given query takes place. We will say a point
x is close to the set C if D(x,C) < δ

c . We show that if x is not close to C, then N query(x, x) = y
will give us the multiplicative result we desire:

D(x, y) ≤ c

λ
D(x,C) +

δ(λ− 1)

(1 + c)λ

≤ c

λ
D(x,C) +

δ

c
(λ− 1)

≤ c

λ
D(x,C) +D(x,C)(λ− 1)

<
c

λ
D(x,C) +D(x,C)

c(λ− 1)

λ

≤ c ·D(x,C)
( 1
λ
+

λ− 1

λ

)
≤ c ·D(x,C). (6)

We now prove the lemma by induction. The base case is the set of neighbors calculated for the initial
set of points P . Each p ∈ P is not close to C \ p so by Eq. (6),

D(p,N query(p, p)) < c ·D(p, C \ p)

as desired. Now for the induction step, consider some query for a centroid x that has just been
dequeued. For x, y ∈ C, say y is a c-approximate nearest neighbor of x if D(x, y) ≤ c ·D(x,C \ x).
Assume by induction that all queries up to this point have returned c-approximate nearest neighbors.
We know by Observation 2 and the inductive hypothesis that either no points are close to C or x is
the lone point that is close to C. In the former case, N returns a c-approximate nearest neighbor by
Eq. (6). Now consider the latter case. Let y be a centroid such that D(x, y) > c ·D(x,C \ x). We
will show that N query(x, x) ̸= y.

Define L = D(x, y) +D(x,C \ x). By the triangle inequality and because x is the only point that is
close to C, we have L ≥ δ

c . Define py = D(x, y)/L and pS = D(x,C \ x)/L to be the percentage
of the distance L from D(x, y) and D(x,C \ x) respectively. It is enough for us to show that

c

λ
(pS · L) +

δ(λ− 1)

(1 + c)λ
< py · L

for all L ≥ δ
c . Since this equation is linear in L, if it is true for any such L then it is true for L = δ

c .
Since py > c · pS , we have pS < 1

1+c and py > c
1+c . Plugging in L = δ

c we get
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c

λ

(
pS · L

)
+

δ(λ− 1)

(1 + c)λ
<

c

λ

( 1

1 + c
· δ
c

)
+

δ(λ− 1)

(1 + c)λ

=
δ + δ(λ− 1)

(1 + c)λ

=
δ

(1 + c)

< py ·
δ

c
= py · L

as desired.

Theorem 5 (Centroid HAC Algorithm). For n points in Rd, there exists a randomized algorithm that
given any c > 1.01 and lower and upper bounds on the minimum and maximum pairwise distance in
P of δ and ∆ respectively, computes a c-approximate Centroid-Linkage HAC with high probability.
It has runtime O(n1+O(1/c2)d2) assuming c, d, ∆

δ ≤ poly(n).

Proof. Let ϵ = 0.001 and define ĉ = c
1+ϵ > 1.005. For any λ ∈ (1, ĉ), Theorem 3 says we can

construct a
(

ĉ
λ ,

δ(λ−1)
(1+ĉ)λ

)
-approximate nearest neighbor data structure, N , with query, deletion, and

amortized insertion time nO(λ2/ĉ2) log
(

∆(1+ĉ)λ
δ(λ−1)

)
d2. Note that we moved the big O in Theorem 3

from the approximation guarantee to the runtime by scaling by some constant. By Lemma 6,
N is a ĉ-approximate ANNS data structure for all queries in Algorithm 3. By Theorem 4 and
our definition of ĉ, we get c-approximate centroid HAC by running Algorithm 3 with N . The
runtime is Õ(n1+O(λ2/ĉ2) log

(
∆(1+ĉ)λ
δ(λ−1)

)
d2). Letting λ = 1.005 and by the assumptions that

∆
δ , c ≤ poly(n), all log terms are dominated by the big O in the exponent and we get the runtime
O(n1+O(1/ĉ2)d2) = O(n1+O(1/c2)d2).

In Algorithm 3, in the worst case we may have to queue a centroid log1+ϵ(
2∆
δ ) times. However, in

practice a centroid may only be queued a small number of times. Say a tuple (l, x, y) in our priority
queue becomes stale if the centroid y is merged. Let Γ be the average number of tuples in our priority
queue that become stale with each merge. Our experiments summarized in Table 4 suggest that Γ is a
small constant in practice with Γ < 1 for all experiments. The following lemma shows that in this
case we lose the log1+ϵ(

2∆
δ ) in the runtime.

Lemma 7. If the average number of queued element made stale for each merge in Algorithm 3 is Γ,
then Algorithm 3 runs in time O(n · TI + n · TD + n · TQ · Γ + n log(n) · Γ).

Proof. There are a total of n− 1 merges during the runtime of Algorithm 3 so the total number of
tuples that are made stale is (n− 1)Γ. There are an additional n− 1 tuples that get merged. Thus, the
total number of tuples that get dequeued throughout the runtime of the algorithm is O(Γ). The rest of
the proof is the same as that of Lemma 5 except we pay the cost of de-queuing on Line 8 O(n · Γ)
times instead of n · log1+ϵ(

2∆
δ ).

E Empirical Evaluation
Experimental Setup: We run our experiments on a 96-core Dell PowerEdge R940 (with two-way
hyperthreading) machine with 4×2.4GHz Intel 24-core 8160 Xeon processors (with 33MB L3 cache)
and 1.5TB of main memory. Our programs are implemented in C++ and compiled with the g++
compiler (version 11.4) with -O3 flag.
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Dataset n d # Clusters

iris 150 4 3
wine 178 13 3
cancer 569 30 2
digits 1797 64 10
faces 400 4096 40
mnist 70000 784 10
birds 84635 1024 525
covertype 581012 54 7
sift-1M 1000000 128 -

Table 2: Datasets

Datasets The details of the various datasets used in our experiments are stated in Table 2. mnist[13]
is a standard machine learning dataset that consists of 28× 28 dimensional grayscale images of digits
between 0 and 9. Here, each digit corresponds to a cluster. The birds dataset contains 224× 224× 3
dimensional images of 525 species of birds. As done in previous works [42], we pass each image
through ConvNet [27] to obtain an embedding. The ground truth clusters correspond to each of the
525 species of birds. The licenses of these datasets are as follows: iris (CC BY 4.0), wine (CC
BY 4.0), cancer (CC BY 4.0), digits (CC BY 4.0), faces (CC BY 4.0), Covertype (CC BY 4.0),
mnist (CC BY-SA 3.0 DEED), birds (CC0: Public Domain), and sift-1M (CC0: Public Domain).

Algorithms Implemented We implement the approximate Centroid HAC algorithm described in
Algorithm 3, using the dynamic ANNS implementation based on DiskANN [38, 18]. We denote this
algorithm as (1 + ϵ)-Centroid HAC or Centroidϵ. We emphasize that although we refer to this as
(1 + ϵ)-Centroid HAC, it is not necessarily a true (1 + ϵ)-approximate algorithm since we are using a
heuristic ANNS data structure with no theoretical guarantees on the approximation factor. The use
of (1 + ϵ) here captures only the loss from merging a “near-optimal” pair of clusters, as detailed in
Algorithm 3.

As our main baseline, we consider the optimized implementation of exact Centroid HAC from the
fastcluster4 package. This implementation requires quadratic space since it maintains the distance
matrix, and is a completely sequential algorithm. We also implement an efficient version of exact
Centroid HAC based on our framework (i.e. setting ϵ = 0 and using exact NNS queries) which has
the benefit of using only linear space and supports parallelism in NNS queries.

We also implement a bucket-based version of approximate Centroid HAC as a baseline, based on the
approach of [1]. The algorithm of [1] runs in rounds processing pairs of clusters whose distance is
within the threshold defined by that round; the threshold value scales by a constant factor, resulting in
logarithmic (in aspect ratio) number of rounds. In each round, they consider a pair of clusters that are
within the threshold distance away, and merge them. For the linkage criteria considered in [1], the
distances between two clusters can only go up as a result of two clusters merging. However, this is not
true for Centroid HAC, as discussed in Section 1.

Here, we observe that when two clusters merge in a round, the only distances affected are distances of
other clusters to the new merged cluster. Thus, we can repeatedly check if the nearest neighbor of this
cluster is still within the threshold and merge with it in that case. Thus, in a nutshell, the algorithm
filters clusters whose nearest neighbors are within the current threshold in each round and merges
clusters by the approach mentioned above. This algorithm requires many redundant NNS queries, as
we will see during the experimental evaluation.

E.1 Quality Evaluation
The output of a hierarchical clustering algorithm is typically a tree of clusters, called a dendrogram,
that summarizes all the merges performed by the algorithm. The leaves correspond to the points in
the dataset, and each internal node represents the cluster formed by taking all the leaves in its subtree.
There is a cost associated to each internal node denoting the cost incurred when merging two clusters
to form the cluster associated to that node. Given a threshold value, a clustering is obtained by cutting
the dendrogram at certain internal nodes whose associated cost is greater than the threshold.

4https://pypi.org/project/fastcluster/
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Table 3: The ARI, NMI, Dendrogram Purity and Dasgupta Cost of our approximate Centroid HAC implementa-
tions for ϵ = 0.1, 0.2, 0.4, and 0.8, versus Exact Centroid HAC. The best quality score for each dataset is in bold
and underlined.

Dataset Centroid0.1 Centroid0.2 Centroid0.4 Centroid0.8 Exact Centroid

A
R

I
iris 0.759 0.746 0.638 0.594 0.759
wine 0.352 0.352 0.402 0.366 0.352
cancer 0.509 0.526 0.490 0.641 0.509
digits 0.589 0.571 0.576 0.627 0.559
faces 0.370 0.388 0.395 0.392 0.359
mnist 0.270 0.222 0.218 0.191 0.192
birds 0.449 0.449 0.442 0.456 0.441

Avg 0.471 0.465 0.452 0.467 0.453

N
M

I

iris 0.803 0.795 0.732 0.732 0.803
wine 0.424 0.424 0.413 0.389 0.424
cancer 0.425 0.471 0.459 0.528 0.425
digits 0.718 0.726 0.707 0.754 0.727
faces 0.539 0.534 0.549 0.549 0.556
mnist 0.291 0.282 0.306 0.307 0.250
birds 0.748 0.747 0.756 0.764 0.743

Avg 0.564 0.569 0.560 0.575 0.561

Pu
rit

y

iris 0.869 0.862 0.808 0.809 0.871
wine 0.616 0.616 0.640 0.601 0.616
cancer 0.816 0.818 0.805 0.836 0.816
digits 0.677 0.667 0.654 0.715 0.679
faces 0.460 0.477 0.478 0.488 0.467
mnist 0.310 0.286 0.283 0.278 0.308
birds 0.555 0.550 0.543 0.516 0.559
Avg 0.615 0.611 0.602 0.606 0.616

D
as

gu
pt

a iris 506011.1 506101.2 510680.6 507149.4 505809.8
wine 7655.9 7655.9 7545.7 7564.2 7655.9
cancer 153644.7 153519.2 156220.4 156893.8 153843.2
digits 39292919.2 39315744.3 39299184.6 39215081.5 39289534.3
faces 1703728.2 1703696.7 1706886.4 1703361.3 1704833.1
mnist 11193×109 11195×109 11194×109 11185×109 11195×109

birds 5198×109 5199×109 5196×109 5183×109 5201×109

Avg 2341×109 2342×109 2341×109 2338×109 2342×109

In our experiments, the ARI and NMI scores are calculated by taking the best score obtained over the
clusterings formed by considering all possible thresholded-cuts to the output dendrogram. For larger
datasets, we consider cuts only at threshold values scaled at a constant factor (i.e. logarithmic-many
cuts).

Table 3 contains the results obtained for our quality evaluations. We also plot the scores obtained
by approximate Centroid HAC as a function of ϵ; see Figure 6, Figure 7, Figure 8, Figure 9, and
Figure 10.

We observe that the quality of the clustering produced by approximate Centroid HAC is generally
comparable to that of the exact Centroid HAC algorithm. On average, the quality is slightly better in
some cases, but we attribute this to noise. In particular, we observe that for the value of ϵ = 0.1, we
consistently get comparable quality to that of exact centroid: the ARI and NMI scores are on average
within a factor of 7% and 2% to that of exact Centroid HAC, respectively. We also obtained good
dendrogram purity score and Dasgupta cost as well, with values within 0.3% and 0.03%, respectively.

Non-Monotonicity of CentroidHAC Unlike other HAC algorithms, the costs of merging clusters for
centroid HAC is not monotone (i.e., non-decreasing). The monotonicity property of HAC algorithms
is useful when producing the clusterings for applications from the output dendrgoram: typically
the dendrogram is cut at certain thresholds, and the disconnected subtrees obtained are flattened to
compute the clusters. Here, cutting the dendrogram for a given threshold returns a well-defined and

23



unique clustering. However, this is not the case with Centroid HAC. Indeed, for a given threshold
value, we can obtain different clusterings depending on how we define to cut the dendrogram. For
e.g., if two nodes U and V exists in the output dendrogram with associated merge costs (i.e., cost
incurred at the time of merging the two clusters to form that node) of U being greater than V , and
V is an ancestor of U (which is a possibility for Centroid HAC). Then, given a threshold value
cost(V ) < τ < cost(V ), we could either cut at V (or above), or stop somewhere below U .

We would like to characterize and study this non-monotonicity of Centroid HAC in real-world datasets.
For this, we define the following notion: for nodes U, V in the output dendrogram, the pair (U, V ) is
called a δ-inversion if V is an ancestor of U and cost(U) ≥ (1 + δ)cost(V ), where cost(U) is the
merge cost associated to node U .

We calculate the number of such inversions incurred by exact Centroid HAC, and compare with
the inversions incurred by our approximate algorithm. Figure 5 shows the number of δ-inversions
incurred on the benchmark datasets. We observe that for small values of ϵ, approximate Centroid
HAC has similar number of δ inversions as that of exact Centroid HAC.

E.2 Running Time Evaluation
Figures 4a and 4b shows the running times on varying slices of the SIFT-1M dataset using one
thread and 192 parallel threads, respectively. For the approximate methods, we considered ϵ = 0.1.
Figure 4c further compares the heap and bucket based approaches as a function of ϵ.

We observe that the bucket based approach is very slow for small values of ϵ due to many redundant
nearest-neighbor computations. Yet, at ϵ = 0.1, both algorithms, with 192 threads, obtain speed-ups
of up to 175× with an average speed-up of 22× compared to the exact counterparts. However,
on a single thread, the bucket based approach fails to scale, while the heap based approach still
achieves significant speed-ups of upto 36× with an average speed-up of 5×. Overall, our heap-based
approximate Centroid HAC implementation with ϵ = 0.1 demonstrates good quality and scalability,
making it a good choice in practice.

Stale Merges and Number of Queries We compute the number of stale merges (see Section 1)
incurred by our algorithm on various benchmark datasets. See Table 4. We observe that, on average,
the number of such stale queries are incurred about 60% of the time compared to the number of actual
merges (i.e. number of points).

Table 4: Number of Stale Merges
Dataset n Centroid0.1

iris 150 123
wine 178 161

cancer 569 497
digits 1797 875
faces 400 90
mnist 70000 33039
birds 84635 29371

covtype 581012 512198

Table 5: Number of ANNS Queries
Dataset Centroid0.1(Heap) Centroid0.1(Bucket)

iris 561 4112
wine 686 7011

cancer 2167 24852
digits 5583 48523
faces 1000 9862
mnist 221086 2481831
birds 236415 4581108

covtype 2292518 34770413

We also compare the number of nearest-neighbor queries made by the heap and bucket based
algorithms. As expected, the number of NNS queries made by the bucket-based algorithms is an order
of magnitude higher than that of the heap based approach. This is due to many redundant queries
performed at each round by the bucket-based algorithm. However, these queries can be performed in
parallel, thus resulting in good speed-ups for this algorithm when run on many cores.
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Figure 5: Non-Monotonicity of Centroid HAC: No. of δ-inversions vs δ
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Figure 6: Quality Evaluations of the iris dataset
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Figure 7: Quality Evaluations of the wine dataset
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Figure 8: Quality Evaluations of the cancer dataset
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Figure 9: Quality Evaluations of the digits dataset
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Figure 10: Quality Evaluations of the faces dataset
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We claim fast approximate centroid HAC in both theory and practice. Our
theoretical claims are proven in Section 3 and Section 4 and our practical claims are justified
by the experiments in Section 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: As acknowledged in the introduction, we use one ANNS data structure to
obtain our theoretical bounds and a different one to obtain good empirical running times.
This assumption is inherited from the current state of the art in the ANNS area, where
the fastest known methods (including the one that we evaluate) do not come with strong
theoretical guarantees.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will
be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The main formal claims—the formal guarantees for the algorithms for dynamic
ANN for adaptive updates and our centroid HAC algorithms—are presented in Section 3
and Section 4 respectively. These sections also include formal descriptions of the algorithms
used, including pseudo-code. Proofs of the guarantees of these algorithms are provided
in the appendix, though proofs are informally discussed in the introduction and respective
sections. The paper also provides citations for formal guarantees on which it builds and
where necessary (e.g. Theorem 1) reproves results from previous work so as to state these
previous results in a way amendable to how they are used in this work.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The code is submitted as part of the supplementary material. Further,
Appendix E discusses the implementation details of our algorithms.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: The code is submitted as part of the supplementary materials with instructions
on how to reproduce the experiments. The datasets used in this paper are open-source and
have been cited appropriately (see Section 5 and Appendix E).
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental results are summarized in Section 5, and described in more
detail in Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The algorithms in this paper are deterministic, and hence the quality evaluations
are the same across all runs. For the scalability study, we only report the mean running times
since the variance in running times is low.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: The compute resources used are described in Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have read the NeurIPS Code of Ethics and confirmed that this
research is consistent with it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper deals with speeding up a common and generic clustering technique.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Datasets are specified and the licenses are stated in Section 5 and the datasets
section of Appendix E.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: the work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: the work did not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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