
CODEXGRAPH: Bridging Large Language Models and Code Repositories
via Code Graph Databases

Anonymous ACL submission

Abstract

Large Language Models (LLMs) excel in001
stand-alone code tasks like HumanEval and002
MBPP, but struggle with handling entire code003
repositories. This challenge has prompted004
research on enhancing LLM-codebase inter-005
action at a repository scale. Current solu-006
tions rely on similarity-based retrieval or man-007
ual tools and APIs, each with notable draw-008
backs. Similarity-based retrieval often has low009
recall in complex tasks, while manual tools010
and APIs are typically task-specific and re-011
quire expert knowledge, reducing their gener-012
alizability across diverse code tasks and real-013
world applications. To mitigate these limi-014
tations, we introduce CODEXGRAPH, a sys-015
tem that integrates LLM agents with graph016
database interfaces extracted from code repos-017
itories. By leveraging the structural prop-018
erties of graph databases and the flexibil-019
ity of the graph query language, CODEX-020
GRAPH enables the LLM agent to construct021
and execute queries, allowing for precise, code022
structure-aware context retrieval and code nav-023
igation. We assess CODEXGRAPH using024
three benchmarks: CrossCodeEval, SWE-025
bench, and EvoCodeBench. Additionally,026
we develop five real-world coding applica-027
tions. With a unified graph database schema,028
CODEXGRAPH demonstrates competitive per-029
formance and potential in both academic and030
real-world environments, showcasing its ver-031
satility and efficacy in software engineering.032
Our code and demo will be released soon.033

1 Introduction034

Large Language Models (LLMs) excel in code tasks,035
impacting automated software engineering (Chen036
et al., 2021; Gauthier, 2024; Yang et al., 2024b; Open-037
Devin Team, 2024). Repository-level tasks (Zhang038
et al., 2023; Jimenez et al., 2023; Ding et al., 2024)039
mimic software engineers’ work with large codebases040
(Kovrigin et al., 2024). These tasks require models to041
handle intricate dependencies and comprehend project042
structure (Jiang et al., 2024; Sun et al., 2024).043

Current LLMs struggle with long-context inputs,044
limiting their effectiveness with large codebases045

(Jimenez et al., 2023) and lengthy sequences reason- 046
ing (Liu et al., 2024a). Researchers have proposed 047
methods to enhance LLMs by retrieving task-relevant 048
code snippets and structures, improving performance 049
in complex software development (Deng et al., 2024; 050
Arora et al., 2024; Ma et al., 2024). However, these 051
approaches mainly rely on either similarity-based 052
retrieval (Jimenez et al., 2023; Cheng et al., 2024; 053
Liu et al., 2024b) or manual tools and APIs (Zhang 054
et al., 2024b; Örwall, 2024). Similarity-based re- 055
trieval methods, common in Retrieval-Augmented 056
Generation (RAG) systems (Lewis et al., 2020), often 057
struggle with complex reasoning for query formulation 058
(Jimenez et al., 2023) and handling intricate code 059
structures (Phan et al., 2024), leading to low recall 060
rates. Meanwhile, existing tool/API-based interfaces 061
that connect codebases and LLMs are typically 062
task-specific and require extensive expert knowledge 063
(Örwall, 2024; Chen et al., 2024). Furthermore, our 064
experimental results in Section 5 indicate that the two 065
selected methods lack flexibility and generalizability 066
for diverse repository-level code tasks. 067

Recent studies have demonstrated the effectiveness 068
of graph structures in code repositories (Phan et al., 069
2024; Cheng et al., 2024). Meanwhile, inspired by 070
recent advances in graph-based RAG (Edge et al., 071
2024; Liu et al., 2024b; He et al., 2024) and the ap- 072
plication of executable code (such as SQL, Cypher, 073
and Python) to consolidate LLM agent actions (Wang 074
et al., 2024; Li et al., 2024c; Xue et al., 2023), we 075
present CODEXGRAPH, as shown in Figure 1 (a). 076
CODEXGRAPH alleviates the limitations of existing 077
approaches by bridging code repositories with LLMs 078
through graph databases. CODEXGRAPH utilizes static 079
analysis to extract code graphs from repositories using 080
a task-agnostic schema that defines the nodes and edges 081
within the code graphs. In these graphs, nodes repre- 082
sent source code symbols such as MODULE, CLASS, 083
and FUNCTION, and each node is enriched with rele- 084
vant meta-information. The edges between nodes rep- 085
resent the relationships among these symbols, such 086
as CONTAINS, INHERITS, and USES (see Figure 2 087
for an illustrative example). By leveraging the struc- 088
tural properties of graph databases, CODEXGRAPH 089
enhances the LLM agent’s comprehension of code 090
structures. CODEXGRAPH leverages repository code 091
information and graph structures for global analysis 092
and multi-hop reasoning, enhancing code task perfor- 093

1



CrossCodeEval

SWE-Bench

Code Chat

EvoCodeBench CodexGraph

real-world applications academic benchmarks

LM Agent Code Repository

Schema

(a) Illustration of CodexGraph

(b) CodexGraph vs. Repository-Level Code Tasks and Applications

Schema

Code Graph Database

Code Debugger

Code Commenter

Code Genrator

Code Unit Tester

Figure 1: (a) Using a unified schema, CODEXGRAPH employs code graph databases as interfaces that allow LLM agents
to interact seamlessly with code repositories. (b) CODEXGRAPH supports the management of a wide range of tasks, from
academic-level code benchmarks to real-world software engineering applications.

mance. When users provide code-related inputs, the094
LLM agent analyzes the required information from the095
code graphs, constructs flexible queries using graph096
query language, and locates relevant nodes or edges.097
This enables precise and efficient retrieval, allowing for098
effective scaling to larger repository tasks.099

To evaluate the effectiveness of the CODEXGRAPH,100
we assess its performance across three challenging101
and representative repository-level benchmarks: Cross-102
CodeEval (Ding et al., 2024), SWE-bench (Yang et al.,103
2024b) and EvoCodeBench (Li et al., 2024b). Our104
experimental results demonstrate that, by leveraging105
a unified graph database schema (Section 3.1) and a106
simple workflow design (Section 3.2), the CODEX-107
GRAPH achieves competitive performance across all108
academic benchmarks, especially when equipped with109
more advanced LLMs. Furthermore, as illustrated in110
Figure 1 (b), to address real-world software develop-111
ment needs, we extend CODEXGRAPH to the feature-112
rich ModelScope-Agent (Li et al., 2023) framework.113
Section 6 highlights five real-world application sce-114
narios, including code debugging and writing code115
comments, showcasing the versatility and efficacy of116
CODEXGRAPH in practical software engineering tasks.117

Our contributions are from three perspectives:118

• Pioneering code retrieval system: We introduce119
CODEXGRAPH, integrating code repositories with120
LLMs via graph databases for enhanced code navi-121
gation and understanding.122

• Benchmark performance: We demonstrate123
CODEXGRAPH’s competitive performance on three124
challenging and representative repository-level125
code benchmarks.126

• Practical applications: We showcase CODEX-127
GRAPH’s versatility in five real-world software en-128
gineering scenarios, proving its value beyond aca-129
demic settings.130

2 Related Work 131

2.1 Repository-Level Code Tasks 132

Repository-level code tasks have garnered significant 133
attention due to their alignment with real-world 134
production environments (Bairi et al., 2023; Luo 135
et al., 2024; Cognition Labs, 2024; Kovrigin et al., 136
2024). Unlike traditional standalone code-related 137
tasks such as HumanEval (Chen et al., 2021) and 138
MBPP (Austin et al., 2021), which often fail to capture 139
the complexities of real-world software engineering, 140
repository-level tasks necessitate models to understand 141
cross-file code structures and perform intricate reason- 142
ing (Liu et al., 2024b; Ma et al., 2024; Sun et al., 2024). 143
These sophisticated tasks can be broadly classified into 144
two lines of work based on their inputs and outputs. 145
The first line of work involves natural language to 146
code repository tasks, exemplified by benchmarks like 147
DevBench (Li et al., 2024a) and SketchEval (Zan et al., 148
2024), where models generate an entire code repository 149
from scratch based on a natural language description 150
of input requirements. State-of-the-art solutions in 151
this area often employ multi-agent frameworks such as 152
ChatDev (Qian et al., 2023) and MetaGPT (Hong et al., 153
2023) to handle the complex process of generating a 154
complete codebase. The second line of work, which 155
our research focuses on, includes tasks that integrate 156
both a natural language description and a reference 157
code repository, requiring models to perform tasks 158
like repository-level code completion (Zhang et al., 159
2023; Shrivastava et al., 2023; Liu et al., 2023; Ding 160
et al., 2024; Su et al., 2024), automatic GitHub issue 161
resolution (Jimenez et al., 2023), and repository-level 162
code generation (Li et al., 2024b). To assess the 163
versatility and effectiveness of our proposed system 164
CODEXGRAPH, we evaluate it on three diverse and 165
representative benchmarks including CrossCodeEval 166
(Ding et al., 2024) for code completion, SWE-bench 167
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(Jimenez et al., 2023) for Github issue resolution, and168
EvoCodeBench (Li et al., 2024b) for code generation.169

2.2 Retrieval-Augmented Code Generation170

Retrieval-Augmented Generation (RAG) systems pri-171
marily aim to retrieve relevant content from external172
knowledge bases to address a given question, thereby173
maintaining context efficiency while reducing halluci-174
nations in private domains (Lewis et al., 2020; Shus-175
ter et al., 2021). For repository-level code tasks,176
which involve retrieving and manipulating code from177
repositories with complex dependencies, RAG sys-178
tems—referred to here as Retrieval-Augmented Code179
Generation (RACG) (Jiang et al., 2024)—are utilized180
to fetch the necessary code snippets or code structures181
from the specialized knowledge base of code reposi-182
tories. Current RACG methodologies can be divided183
into three main paradigms: the first paradigm involves184
similarity-based retrieval, which encompasses term-185
based sparse retrievers (Robertson and Zaragoza, 2009;186
Jimenez et al., 2023) and embedding-based dense re-187
trievers (Guo et al., 2022; Zhang et al., 2023), with ad-188
vanced approaches integrating structured information189
into the retrieval process (Phan et al., 2024; Cheng190
et al., 2024; Liu et al., 2024b). The second paradigm191
consists of manually designed code-specific tools or192
APIs that rely on expert knowledge to create inter-193
faces for LLMs to interact with code repositories for194
specific tasks (Zhang et al., 2024b; Deshpande et al.,195
2024; Arora et al., 2024). The third paradigm combines196
both similarity-based retrieval and code-specific tools197
or APIs (Örwall, 2024), leveraging the reasoning capa-198
bilities of LLMs to enhance context retrieval from code199
repositories. Apart from the three paradigms, Agent-200
less (Xia et al., 2024) preprocesses the code reposi-201
tory’s structure and file skeleton, allowing the LLMs202
to interact with the source code. Our proposed frame-203
work, CODEXGRAPH, aligns most closely with the204
second paradigm but distinguishes itself by discarding205
the need for expert knowledge and task-specific de-206
signs. By using code graph databases as flexible and207
universal interfaces, which also structurally store infor-208
mation to facilitate the code structure understanding of209
LLMs, CODEXGRAPH can navigate the code reposito-210
ries and manage multiple repository-level code tasks,211
providing a versatile and powerful solution for RACG.212

3 CODEXGRAPH: Enable LLMs to213

Navigate the Code Repository214

CODEXGRAPH is a system that bridges code repos-215
itories and large language models (LLMs) through216
code graph database interfaces. It indexes input code217
repositories using static analysis, storing code symbols218
and relationships as nodes and edges in a graph219
database according to a predefined schema. When220
presented with a coding question, CODEXGRAPH221
leverages the LLM agent to generate graph queries,222
which are executed to retrieve relevant code fragments223

or code structures from the database. The detailed 224
processes of constructing the code graph database and 225
the LLM agent’s interactions with it are explained in 226
sections 3.1 and 3.2, respectively. 227

3.1 Build Graph Databases from Code 228
Repositories 229

Schema. We abstract code repositories into code 230
graphs where nodes represent symbols in the source 231
code, and edges represent relationships between 232
these symbols. The schema defines the types of 233
nodes and edges, directly determining how code 234
graphs are stored in the graph database. Different 235
programming languages typically require different 236
schemas based on their characteristics. In our project, 237
we focus on Python and have empirically designed 238
a schema tailored to its features, with node types 239
including MODULE, CLASS, METHOD, FUNCTION, 240
FIELD, and GLOBAL VARIABLE, and edge types 241
including CONTAINS, INHERITS, HAS METHOD, 242
HAS FIELD, and USES. 243

Each node type has corresponding attributes to rep- 244
resent its meta-information. For instance, METHOD 245
nodes have attributes such as name, file path, 246
class, code, and signature. For storage effi- 247
ciency, nodes with a code attribute do not store the 248
code snippet directly in the graph database but rather 249
an index pointing to the corresponding code fragment. 250
Figure 2 illustrates a sample code graph derived from 251
our schema, and Appendix A.1 shows the details of the 252
schema. 253

Phase 1: Shallow indexing. The code graph 254
database construction process consists of two phases, 255
beginning with the input of the code repository and 256
schema. The first phase employs a shallow indexing 257
method, inspired by Sourcetrail’s static analysis pro- 258
cess 1, to perform a single-pass scan of the entire repos- 259
itory. During this scan, symbols and relationships are 260
extracted from each Python file, processed only once, 261
and stored as nodes and edges in the graph database. 262
Concurrently, meta-information for these elements is 263
recorded. This approach ensures speed and efficiency, 264
capturing all nodes and their meta-information in one 265
pass. However, the shallow indexing phase has lim- 266
itations due to its single-pass nature. Some important 267
edges, particularly certain INHERITS and CONTAINS 268
relationships, may be overlooked as they might require 269
context from multiple files. 270

Phase 2: Complete the edges. The second phase ad- 271
dresses the limitations of shallow indexing by focus- 272
ing on cross-file relationships. We employ Depth-First 273
Search (DFS) to traverse each code file, using abstract 274
syntax tree parsing to identify modules and classes. 275
This approach is particularly effective in resolving 276
Python’s re-export issues. We convert relative imports 277

1https://github.com/CoatiSoftware/
Sourcetrail
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# math/geometric_shapes.py

PI = 3.14159

class Shape:
    def __init__(self, name):
        self.name = name

    def describe(self):
        return f"This is a {self.name}."

class Circle(Shape):
    def __init__(self, radius):
        super().__init__("Circle")
        self.radius = radius

    def calculate_area(self):
        return PI * self.radius ** 2

def 
calculate_circle_circumference(circle):
    return 2 * PI * circle.radius

# math/math_utils.py

from geometric_shapes import Circle, PI

EULER_NUMBER = 2.71828

class GeometryCalculator:
    def __init__(self):
        self.last_result = 0

    def calculate_shape_area(self, shape):
        if isinstance(shape, Circle):
            self.last_result = 
shape.calculate_area()
        else:
            self.last_result = 0
        return self.last_result

def square_root(number):
    return number ** 0.5

# example nodes
MODULE: “math.geometric_shapes” 
CLASS: “Shape”, “Circle”
METHOD: “__init__”, “calculate_area”
FUNCTION: “square_root”
FIELD: “last_result”, “radius”
GLOBAL_VARIABLE: “PI”

# example edges
CONTAINS:
(“math.geometric_shapes”) -> (“Circle”)
INHERITS:
(“Circle”) -> (“Shape”)
HAS_METHOD:
(“Circle”) -> (“calculate_area”)
HAS_FIELD:
(“Circle”) -> (“radius”)
USES:
(“calculate_area”) -> (“PI”)

# meta-info of an CLASS node (“Circle”):
name: “Circle”
file_path: “math/geometric_shapes.py”
signature: “class Circle(Shape)”
code: “class Circle(Shape):

    def __init__....”

(1) source code (2) nodes & edges (3) visualization in graph database 

Figure 2: Illustration of the process for indexing source code to generate a code graph based on the given graph database
schema. Subfigure (3) provides a visualization example of the resultant code graph in Neo4j.
to absolute imports, enabling accurate establishment278
of cross-file CONTAINS relationships through graph279
queries. Simultaneously, we record INHERITS rela-280
tionships for each class. For complex cases like multi-281
ple inheritance, DFS is used to establish edges for in-282
herited FIELD and METHOD nodes within the graph283
database. This comprehensive approach ensures ac-284
curate capture of both intra-file and cross-file relation-285
ships, providing a complete representation of the code-286
base structure.287

Summary. Our code graph database design offers288
four key advantages for subsequent use. First, it289
ensures efficient storage by storing code snippets290
as indexed references rather than directly in the291
graph database. Second, it enables multi-granularity292
searches, from module-level to variable-level, accom-293
modating diverse analytical needs. Third, it facilitates294
topological analysis of the codebase, revealing crucial295
insights into hierarchical and dependency structures.296
Last, this schema design supports multiple tasks with-297
out requiring modifications, demonstrating its versa-298
tility and general applicability. These features collec-299
tively enhance the system’s capability to handle com-300
plex code analysis tasks effectively across various sce-301
narios.302

3.2 Large Language Models Interaction with303
Code Graph Database304

Code structure-aware search. CODEXGRAPH305
leverages the flexibility of graph query language to306
construct complex and composite search conditions.307
By combining this flexibility with the structural proper-308
ties of graph databases, the LLM agent can effectively309

navigate through various nodes and edges in the code 310
graph. This capability allows for intricate queries such 311
as: “Find classes under a certain module that contain 312
a specific method”, or “Retrieve the module where 313
a certain class is defined, along with the functions it 314
contains”. This approach enables code structure-aware 315
searches, providing a level of code retrieval that is 316
difficult to achieve with similarity-based retrieval 317
methods (Robertson and Zaragoza, 2009; Guo et al., 318
2022) or conventional code-specific tools and APIs 319
(Zhang et al., 2024b; Deshpande et al., 2024). 320

Write then translate. LLMs power LLM agents and 321
operate based on user-provided prompts to break down 322
tasks, utilize tools, and perform reasoning. This de- 323
sign is effective for handling specific, focused tasks 324
(Gupta and Kembhavi, 2022; Yuan et al., 2024), but 325
when tasks are complex and multifaceted, LLM agents 326
may underperform. This limitation has led to the de- 327
velopment of multi-agent systems (Hong et al., 2023; 328
Qian et al., 2023; Guo et al., 2024), where multiple 329
LLM agents independently handle parts of the task. In- 330
spired by this approach, CODEXGRAPH implements a 331
streamlined “write then translate” strategy to optimize 332
LLM-database interactions. 333

As illustrated in Figure 3, the primary LLM agent 334
focuses on understanding context and generating nat- 335
ural language queries based on the user’s question. 336
These queries are then passed to a specialized trans- 337
lation LLM agent, which converts them into formal 338
graph queries. This division of labor allows the pri- 339
mary LLM agent to concentrate on high-level reason- 340
ing while ensuring syntactically correct and optimized 341
graph queries. By separating these tasks, CODEX- 342
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   Code Question

Primary LM
Agent

• complete the unfinished code
• resolve the github issue
• finish the function given the sigan-

ature and comment
• ....

•   Analysis & Natural Langugae Queries

translation LM Agent

  Analysis & Natural Langugae Queries

   Graph Query Translation

# Analysis #
<analysis_context>
# Natural Language Queries #

Retrieve the module where class 
`LinearClassifier` is defined, along 
with the functions it contains
...

MATCH (c:Class {name: 'LinearClassifier'})<-[:CONTAINS]-(m:Module)

MATCH (c)-[:CONTAINS]->(f:Function)

RETURN m.name AS module_name, collect(f.name) AS functions

Schema

Figure 3: The primary LLM agent analyzes the given code question, writting natural language queries. These queries are then
processed by the translation LLM agent, which translates them into executable graph queries.
GRAPH enhances query success rates and improves the343
system’s ability to accurately retrieve relevant code in-344
formation.345

Iterative pipeline. Instead of completing the code346
task in a single step, CODEXGRAPH employs an itera-347
tive pipeline for interactions between LLM agents and348
code graph databases, drawing insights from existing349
agent systems (Yao et al., 2023; Yang et al., 2024b).350
In each round, LLM agents formulate multiple queries351
based on the user’s question and previously gathered352
information. Similar to (Madaan et al., 2023), the353
agent then analyzes the aggregated results to determine354
whether sufficient context has been acquired or if ad-355
ditional rounds are necessary. This iterative approach356
fully leverages the reasoning capabilities of the LLM357
agent, thereby enhancing problem-solving accuracy.358

4 Experimental Setting359

Benchmarks. We employ three diverse repository-360
level code benchmarks to evaluate CODEXGRAPH:361
CrossCodeEval (Ding et al., 2024), SWE-bench (Yang362
et al., 2024b), and EvoCodeBench (Li et al., 2024b).363
CrossCodeEval is a multilingual scope cross-file com-364
pletion dataset for Python, Java, TypeScript, and C#.365
SWE-bench evaluates a model’s ability to solve GitHub366
issues with 2, 294 Issue-Pull Request pairs from 12367
Python repositories. EvoCodeBench is an evolutionary368
code generation benchmark with comprehensive anno-369
tations and evaluation metrics.370

We report our primary results on the CrossCodeEval371
Lite (Python) and SWE-bench Lite test sets for Cross-372
CodeEval and SWE-bench, respectively, and on the373
full test set for EvoCodeBench. CrossCodeEval Lite374
(Python) and SWE-bench Lite represent subsets of375
their respective datasets. CrossCodeEval Lite (Python)376
consists of 1000 randomly sampled Python instances,377

while SWE-bench Lite includes 300 instances ran- 378
domly sampled after filtering out those with poor issue 379
descriptions. 380

Remark: During indexing of 43 Sympy samples from 381
the SWE-bench dataset, we face out-of-memory issues 382
due to numerous files and complex dependencies, lead- 383
ing to their exclusion. Similarly, some EvoCodeBench 384
samples are omitted due to test environment configura- 385
tion issues. Thus, SWE-bench Lite and EvoCodeBench 386
results are based on 257 and 212 samples, respectively. 387

Baselines. We evaluate whether CODEXGRAPH is a 388
powerful solution for Retrieval-Augmented Code Gen- 389
eration (RACG) (Jiang et al., 2024). We specifically as- 390
sess how effectively code graph database interfaces aid 391
LLMs in understanding code repositories, particularly 392
when handling diverse code questions across different 393
benchmarks to test CODEXGRAPH ’s general applica- 394
bility. To achieve this, we select resilient RACG base- 395
lines that can be adapted to various tasks. Based on the 396
categories in Section 2.2, we choose BM25 (Robertson 397
and Zaragoza, 2009) and AUTOCODEROVER (Zhang 398
et al., 2024b), which are widely recognized in code 399
tasks (Jimenez et al., 2023; Ding et al., 2024; Kovrigin 400
et al., 2024; Chen et al., 2024), along with a NO-RAG 401
method. Besides, since our work focuses on RACG 402
methods and their generalizability, we exclude meth- 403
ods that interact with external websites (OpenDevin 404
Team, 2024; Zhang et al., 2024a) and runtime envi- 405
ronments (Yang et al., 2024b), as well as task-specific 406
methods that are not easily adaptable across multiple 407
benchmarks (Cheng et al., 2024; Örwall, 2024). These 408
methods fall outside the scope of our project. 409

Especially, although (Zhang et al., 2024b) evalu- 410
ate AUTOCODEROVER exclusively on SWE-bench, 411
we extend its implementation to CrossCodeEval and 412
EvoCodeBench, while retaining its core set of 7 code- 413
specific tools for code retrieval. 414
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Table 1: Performance comparison of CODEXGRAPH and RACG baselines across three benchmarks using various LLMs. The
absence of values in SWE-bench Lite for the NO RAG method is due to issues with mismatches between the dataset and the
code when running inference scripts 2. Similarly, the missing values in EvoCodeBench are attributable to task inputs being
unsuitable for constructing the required BM25 queries, and the original paper also does not provide the corresponding imple-
mentation. Notably, the two agent-based methods, AUTOCODEROVER and CODEXGRAPH, perform poorly when equipped
with Qwen2-72b-instruct. Appendix A.4 provides a detailed explanation for this. The best results for each metric are bolded.

Model Method CrossCodeEval Lite (Python) SWE-bench Lite EvoCodeBench

EM ES ID-EM ID-F1 Pass@1 Pass@1 Recall@1

Qwen2

NO RAG 8.20 46.16 13.0 36.92 - 19.34 11.34
BM25 15.50 51.74 22.60 45.44 0.00 - -
AUTOCODEROVER 5.21 47.63 10.16 36.54 9.34 16.91 7.86
CODEXGRAPH 5.00 47.99 9.10 36.44 1.95 14.62 8.60

DS-Coder

NO RAG 11.70 60.73 16.90 47.85 - 25.47 11.04
BM25 21.90 67.52 30.60 59.04 1.17 - -
AUTOCODEROVER 14.90 59.78 22.30 51.34 15.56 20.28 7.56
CODEXGRAPH 20.20 63.14 28.10 54.88 12.06 27.62 12.01

GPT-4o

NO RAG 10.80 59.36 16.70 48.22 - 27.83 11.79
BM25 21.20 66.18 30.20 58.71 3.11 - -
AUTOCODEROVER 21.20 61.92 28.10 54.81 22.96 28.78 11.17
CODEXGRAPH 27.90 67.98 35.60 61.08 22.96 36.02 11.87

Large Language Models (LLMs). We evaluate415
CODEXGRAPH on three advanced LLMs with long text416
processing, tool use, and code generation capabilities:417
GPT-4o, DeepSeek-Coder-V2 (Zhu et al., 2024), and418
Qwen2-72b-Instruct (Yang et al., 2024a).419
• GPT-4o: Developed by OpenAI 3, this model excels420

in commonsense reasoning, mathematics, and code,421
and is among the top-performing models as of July422
2024 4.423

• DeepSeek-Coder-V2 (DS-Coder): A specialized424
code-specific LLM by DeepSeek 5 with 236B pa-425
rameters, it retains general capabilities while being426
highly proficient in code-related tasks.427

• Qwen2-72b-Instruct (Qwen2): Developed by Al-428
ibaba 6, this open-source model has about 72 billion429
parameters and a 128k long context, making it suit-430
able for evaluating existing methods.431
For the hyperparameters of the selected large lan-432

guage models, we empirically set the temperature coef-433
ficient to 0.0 for both GPT-4o and Qwen2-72b-Instruct,434
and to 1.0 for DeepSeek-Coder-V2. All other parame-435
ters are kept at their default settings.436

Metrics. In metrics selection, we follow the original437
papers’ settings (Jimenez et al., 2023; Ding et al., 2024;438
Li et al., 2024b). Specifically, for CrossCodeEval, we439
measure performance with code match and identifier440
match metrics, assessing accuracy with exact match441
(EM), edit similarity (ES), and F1 scores. SWE-bench442
utilizes % Resolved (Pass@1) to gauge the effective-443

2https://github.com/princeton-nlp/
SWE-bench/issues/2

3We use the gpt-4o-2024-05-13 version, https:
//openai.com/api

4https://huggingface.co/spaces/lmsys/
chatbot-arena-leaderboard

5https://chat.deepseek.com/coder
6https://dashscope.console.aliyun.com/

model

ness of model-generated patches based on provided 444
unit tests. EvoCodeBench employs Pass@k, where k 445
represents the number of generated programs, for func- 446
tional correctness and Recall@k to assess the recall of 447
reference dependencies in generated programs. We set 448
k to 1 in our main experiments. 449

Implementation details. Before indexing, we filter 450
the Python repositories for each benchmark to retain 451
only Python files. For the SWE-bench dataset, we also 452
exclude test files to avoid slowing down the creation of 453
the code graph database. Following the process out- 454
lined in Section 3.1, we construct code graph databases 455
for the indexed repositories, storing the correspond- 456
ing nodes and edges. We select Neo4j as the graph 457
database and Cypher as the query language. 458

5 Results 459

5.1 Analysis of Repository-Level Code Tasks 460

RACG is crucial for repository-level code tasks. 461
In Table 1, RACG-based methods—BM25, AU- 462
TOCODEROVER, and CODEXGRAPH—basically out- 463
perform the NO-RAG method across all benchmarks 464
and evaluation metrics. For instance, on the Cross- 465
CodeEval Lite (Python) dataset, using GPT-4o as the 466
backbone LLM, RACG methods improve performance 467
by 10.4% to 17.1% on the EM metric compared to NO- 468
RAG. This demonstrates that the NO-RAG approach, 469
which relies solely on in-file context and lacks interac- 470
tion with the code repository, significantly limits per- 471
formance. 472

Existing RACG methods struggle to adapt to var- 473
ious repo-level code tasks. Experimental results in Ta- 474
ble 1 reveal the shortcomings of existing RACG-based 475
methods like BM25 and AUTOCODEROVER. While 476
these methods perform well in specific tasks, they often 477
underperform when applied to other repository-level 478
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Table 2: Average token cost comparison across three bench-
marks (GPT-4o as the backbone LLM). CCEval∗ refers to
CrossCodeEval Lite (Python) and SWE-bench† refers to
SWE-bench Lite in this table.

Method CCEval∗ SWE-bench† EvoCodeBench

BM25 1.47k 14.76k -
AUTOCODEROVER 10.74k 76.01k 21.41k

CODEXGRAPH 22.16k 102.25k 24.49k

code tasks. This discrepancy typically arises from their479
inherent characteristics or task-specific optimizations.480

Specifically, AUTOCODEROVER is designed with481
code tools tailored for SWE-bench tasks, leveraging482
expert knowledge and the unique features of SWE-483
bench to optimize tool selection and design. This484
optimization refines the LLM agent’s action spaces,485
enabling it to gather valuable information more effi-486
ciently and boosting its performance on SWE-bench487
tasks (22.96%). However, these task-specific optimiza-488
tions limit its flexibility and effectiveness in other cod-489
ing tasks, as evidenced by its subpar results on Cross-490
CodeEval Lite (Python) and EvoCodeBench compared491
to other methods.492

Similarly, BM25 faces the same issues. In Cross-493
CodeEval Lite (Python), its similarity-based retrieval494
aligns well with code completion tasks, enabling it to495
retrieve relevant usage references or direct answers eas-496
ily. This results in strong performance, particularly in497
the ES metric. However, BM25 lacks the reasoning498
capabilities of LLMs during query construction, mak-499
ing its retrieval process less intelligent. Consequently,500
when confronted with reasoning-heavy tasks like those501
in SWE-bench, BM25 often fails to retrieve appropri-502
ate code snippets, leading to poor performance.503

CODEXGRAPH shows versatility and efficacy504
across diverse benchmarks. Table 1 shows that505
CODEXGRAPH achieves competitive results across506
various repository-level code tasks with general code507
graph database interfaces. Specifically, with GPT-4o as508
the LLM backbone, CODEXGRAPH outperforms other509
RACG baselines on CrossCodeEval Lite (Python) and510
EvoCodeBench, while also achieving results compara-511
ble to AUTOCODEROVER on SWE-bench Lite. This512
demonstrates the generality and effectiveness of the513
code graph database interface design.514

CODEXGRAPH increases token consumption.515
CODEXGRAPH uses code graph databases as interfaces516
and retrieves information from the code repository by517
writing graph queries. While benefiting from larger and518
more flexible action spaces, it also incurs increased to-519
ken costs. The primary reason for this is that the length520
of the query outcomes is not controllable. Moreover,521
CODEXGRAPH sometimes encounters loops where522
it fails to generate executable graph queries. As523
demonstrated in Table 2, this leads to a higher token524
usage compared to existing RACG methods.525
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Figure 4: Performance comparison of two querying strate-
gies on CrossCodeEval Lite (Python) and SWE-bench Lite.

5.2 Deeper Analysis of CODEXGRAPH 526

Optimal querying strategies vary across different 527
benchmarks. There are two strategies for formulat- 528
ing queries in each round within CODEXGRAPH: ei- 529
ther generating a single query or producing multiple 530
queries for code retrieval. Opting for a single query per 531
round can enhance precision in retrieving relevant con- 532
tent but may compromise the recall rate. Conversely, 533
generating multiple queries per round can improve re- 534
call but may reduce precision. Experimental results, 535
as illustrated in Figure 4, reveal that for CrossCodeE- 536
val Lite (Python), which involves lower reasoning dif- 537
ficulty (26.43 vs. 27.90 in the EM metric), the “mul- 538
tiple queries” strategy is more effective. In contrast, 539
for SWE-bench Lite, which presents higher reasoning 540
difficulty, the “single query” strategy yields better out- 541
comes (22.96 vs. 17.90 in the Pass@1 metric). These 542
findings provide valuable guidance for researchers in 543
selecting the most appropriate querying strategy. 544

“Write then translate” eases reasoning load. 545
When the assistance of the translation LLM agent is 546
removed, the primary LLM agent must independently 547
analyze the coding question and directly formulate the 548
graph query for code retrieval. This increases the rea- 549
soning load on the primary LLM agent, leading to a 550
decline in the syntactic accuracy of the graph queries. 551
Experimental results in Table 3 highlight the signifi- 552
cant negative impact of the removal of the translation 553
LLM agent on CODEXGRAPH’s performance across 554
all selected LLMs in the CrossCodeEval Lite (Python) 555
benchmark. Even when GPT-4o is used as the back- 556
bone model, performance metrics exhibit a signifi- 557
cant drop (e.g., the EM metric drops from 27.90% to 558
8.30%), underscoring the critical role of the translation 559
LLM agent in alleviating the primary LLM agent’s rea- 560
soning burden. 561

Edges in code graphs matter. Table 3 illustrates 562
that removing edges from code graphs significantly de- 563
grades the performance of CODEXGRAPH across vari- 564
ous backbone LLMs on CrossCodeEval Lite (Python). 565
For instance, when GPT-4o is used as the LLM, the Ex- 566
act Match (EM) metric drops from 27.90% to 14.50%. 567
This decline can be attributed to incomplete code 568
graphs, which increase the failure rate of graph queries 569
and hinder deep searches that rely on the combination 570
of complex conditions. 571
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Table 3: Ablation study about the translation LLM agent and the edges of code graphs on CrossCodeEval Lite (Python).

Model Method CrossCodeEval Lite (Python)

EM ES ID-EM ID-F1

Qwen2
CODEXGRAPH 5.00 47.99 9.10 36.44
w/o translation LLM Agent 0.50 (-4.50) 10.45 (-37.54) 0.60 (-8.50) 2.62 (-33.82)
w/o edges 4.80 (-0.20) 48.74 (+0.75) 9.10 (-0.00) 36.90 (+0.46)

DS-Coder
CODEXGRAPH 20.20 63.14 28.10 54.88
w/o translation LLM Agent 5.50 (-14.70) 53.56 (-9.58) 11.20 (-16.90) 39.75 (-15.13)
w/o edges 14.50 (-13.40) 56.64 (-11.34) 21.00 (-14.60) 47.18 (-13.90)

GPT-4o
CODEXGRAPH 27.90 67.98 35.60 61.08
w/o translation LLM Agent 8.30 (-19.60) 56.36 (-11.62) 14.40 (-21.20) 44.08 (-17.00)
w/o edges 16.40 (-11.50) 57.14 (-10.84) 22.70 (-12.90) 48.27 (-12.81)

Figure 5: WebUI for Code Chat, used for answering any questions related to code repositories.

CODEXGRAPH is enhanced when equipped with572
advanced LLMs. Code graph databases provide573
CODEXGRAPH with a flexible interface, expanding574
its capabilities beyond existing methods. However,575
this approach demands strong reasoning and coding576
abilities from the underlying LLM to formulate effec-577
tive queries. As shown in Table 1, CODEXGRAPH’s578
performance improves with more advanced LLMs,579
progressing from Qwen2-72b-Instruct to DeepSeek-580
Coder-v2 to GPT-4o. This trend indicates that as581
LLMs advance in coding, reasoning, and text compre-582
hension, they become better equipped to leverage code583
graph databases within CODEXGRAPH, overcoming584
potential retrieval failures and enhancing overall585
performance across various benchmarks and metrics.586

6 Real-World Application Scenario587

To showcase CODEXGRAPH’s practical value, we de-588
veloped five code agents using the ModelScope-Agent589
framework (Li et al., 2023). These agents address590
common coding challenges that involve understanding591
and navigating complex inter-file dependencies: Code592
Chat (repository inquiry), Code Debugger (bug diag-593

nosis and resolution), Code Unittestor (test genera- 594
tion), Code Generator (new feature implementation), 595
and Code Commentor (documentation enhancement). 596
Each agent integrates key CODEXGRAPH concepts to 597
solve specific production environment issues. Exam- 598
ples and details are provided in Appendix A.3, with 599
Figure 5 illustrating Code Chat’s WebUI. 600

7 Conclusion 601

CODEXGRAPH addresses the limitations of existing 602
RACG methods, which often struggle with flexibility 603
and generalization across different code tasks. By 604
integrating LLMs with code graph database interfaces, 605
CODEXGRAPH facilitates effective, code structure- 606
aware retrieval for diverse repository-level code tasks. 607
Our evaluations highlight its competitive performance 608
and broad applicability on academic benchmarks. 609
Additionally, we provide several code applications in 610
ModelScope-Agent, demonstrating CODEXGRAPH ’s 611
capability to enhance the accuracy and usability of 612
automated software development. The qualitative anal- 613
ysis and the schema explanation have been postponed 614
to Appendix A.1 and A.2, respectively. 615
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8 Limitations616

CODEXGRAPH has only been evaluated on Python. In617
the future, we plan to extend CODEXGRAPH to more618
programming languages, such as Java and C++. Sec-619
ondly, there is room for improvement in the construc-620
tion efficiency and schema completeness of the code621
graph database. Faster database indexing and a more622
comprehensive schema (e.g., adding edges related to623
function calls) will enhance the broader applicability624
of CODEXGRAPH. Finally, the design of CODEX-625
GRAPH’s workflow can further integrate with existing626
advanced agent techniques, such as finer-grained multi-627
agent collaboration.628

9 Potential Risks629

Given that CODEXGRAPH requires scanning the en-630
tire code repository, any sensitive information not ade-631
quately sanitized by users could lead to data breaches632
and privacy risks. Furthermore, the implementation633
of CODEXGRAPH may partially supplant human labor,634
potentially leading to job displacement, though it also635
has the potential to create new opportunities in the field.636

10 Ethical Considerations637

The introduction of CODEXGRAPH aims to aid code638
professionals in addressing repository-level coding639
tasks and to assist practitioners in comprehending and640
familiarizing themselves with complex code reposito-641
ries. However, the quality and accuracy of CODEX-642
GRAPH’s outputs remain questionable. Overreliance643
on CODEXGRAPH by novice coders, who may lack the644
ability to discern the veracity of its results, could lead645
to misuse of the tool. Additionally, CODEXGRAPH’s646
operation incurs a computational overhead, and the en-647
vironmental impact of these computational resources648
warrants consideration.649
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A Appendix 916

A.1 Details of the Graph Database Schema 917

This schema is designed to abstract code repositories 918
into code graphs for Python, where nodes represent 919
symbols in the source code, and edges represent rela- 920
tionships between these symbols. 921

A.1.1 Node Types 922

In the code graph, each node represents a distinct el- 923
ement of Python code, with each node type character- 924
ized by a specific set of attributes that capture its meta- 925
data. These node types and their associated attributes 926
are comprehensively outlined in the Nodes Schema. 927

A.1.2 Edge Types 928

Edges in the code graph define the relationships be- 929
tween nodes, illustrating how various elements within 930
Python code are interconnected. Each edge type rep- 931
resents a specific kind of relationship, which helps to 932
clarify the overall structure and flow of the code. The 933
defined edge types, along with the relationships they 934
represent, are detailed in the Edges Schema below: 935

A.2 Qualitative Analysis 936

CODEXGRAPH demonstrates robustness and adapt- 937
ability across various benchmarks. In this section, we 938
illustrate how CODEXGRAPH effectively addresses a 939
GitHub issue through a bug fix task example. The pro- 940
cess involves collecting code context and generating 941
a patch based on the issue description and the corre- 942
sponding codebase. The workflow is depicted in Fig- 943
ure 6. The specific issue, labeled as “django-11848” 944
and included in the SWE-bench lite dataset, involves a 945
flaw in the Django project related to date parsing logic. 946

The issue centers on the ‘parse http date’ function, 947
which parses dates according to the HTTP RFC7231 948
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Graph Database Schema: Nodes

## Nodes
MODULE:

Attributes:
- name (String): Name of the module (dotted name)
- file_path (String): File path of the module

CLASS:
Attributes:

- name (String): Name of the class
- file_path (String): File path of the class
- signature (String): The signature of the class
- code (String): Full code of the class

FUNCTION:
Attributes:

- name (String): Name of the function
- file_path (String): File path of the function
- code (String): Full code of the function
- signature (String): The signature of the function

FIELD:
Attributes:

- name (String): Name of the field
- file_path (String): File path of the field
- class (String): Name of the class the field belongs to

METHOD:
Attributes:

- name (String): Name of the method
- file_path (String): File path of the method
- class (String): Name of the class the method belongs to
- code (String): Full code of the method
- signature (String): The signature of the method

GLOBAL_VARIABLE:
Attributes:

- name (String): Name of the global variable
- file_path (String): File path of the global variable
- code (String): The code segment in which the global variable is defined

Graph Database Schema: Edges

## Edges
CONTAINS:
Source: MODULE
Target: CLASS or FUNCTION or GLOBAL_VARIABLE

HAS_METHOD:
Source: CLASS
Target: METHOD

HAS_FIELD:
Source: CLASS
Target: FIELD

INHERITS:
Source: CLASS
Target: CLASS (base class)

USES:
Source: FUNCTION or METHOD
Target: GLOBAL_VARIABLE or FIELD
Attributes:

- source_association_type (String): FUNCTION, METHOD
- target_association_type (String): GLOBAL_VARIABLE, FIELD
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GitHub Issue

Description: `django.utils.http.parse_http_date`  two digit year check is incorrect

Recipients of a timestamp value in rfc850-date format, which uses a two-digit year, 
MUST interpret a timestamp that appears to be more than 50 years in the future as 
representing the most recent year in the past that had the same last two digits. 
Current logic is hard coded to consider 0-69 to be in 2000-2069, and 70-99 to be 
1970-1999, instead of comparing versus the current year.

Analysis & Natural Language Queries

# Analysis #
The problem is that the current logic for interpreting two-digit years is hardcoded to 
consider years 0-69 as 2000-2069 and years 70-99 as 1970-1999. This approach does 
not comply with the RFC 7231 standard, which states that a timestamp in the rfc850-
date format with a two-digit year should be interpreted as the most recent past year 
if it appears to be more than 50 years in the future.

To address this issue, we need to locate the `parse_http_date` function within the 
`django.utils.http` module and examine its implementation. This will help us 
understand the current logic and identify the necessary changes to comply with the 
RFC 7231 standard.

# Text Query #  
Retrieve the code of the function named `parse_http_date` from the module 
`django.utils.http`.

Graph Query Translation

MATCH (m:MODULE {name:'django.utils.http'})-[:CONTAINS]->
(f:FUNCTION {name: 'parse_http_date'})
RETURN f.code

Graph Query Execution Result

def parse_http_date(date):
   for regex in RFC1123_DATE, RFC850_DATE, ASCTIME_DATE:
      m = regex.match(date)
      if m is not None:
          break
      else:
          raise ValueError("%r is not in a valid HTTP date 
format" % date)
      try:
          year = int(m.group('year'))
          if year < 100:
              if year < 70:
                  year += 2000
              else:
                  year += 1900
          month = MONTHS.index(m.group('mon').lower()) + 1
      ...
   return calendar.timegm(result.utctimetuple())

Analysis && Bug Location

# Analysis #
We have identified the problematic function `parse_http_date` in the 
`django.utils.http` module. The file path for this module is `django/utils/http.py`. 
The issue lies in the hardcoded logic for interpreting two-digit years, which does not 
comply with RFC 7231. The function needs to be updated to dynamically determine 
the century based on the current year.With the file path and the function code in 
hand, we have sufficient context to proceed with writing a patch to fix the issue.

# Bug Location #
The bug is located in the `parse_http_date` function in the module 
`django.utils.http`, located at `django/utils/http.py`

Modification Patch

def parse_http_date(date):
   ...
       year = int(m.group('year'))
       if year < 100:
-         if year < 70:
-            year += 2000
-         else:
-            year += 1900
+         current_year = datetime.datetime.utcnow().year
+         current_century = current_year - (current_year % 100)
+         if year > (current_year % 100) + 50:
+            year += current_century - 100
+         else:
+            year += current_century
          month = MONTHS.index(m.group('mon').lower()) + 1
   ...
   return calendar.timegm(result.utctimetuple())

<file>django/utils/http.py</file>

Issue id: django__django-11848

Analysis && Bug Location

# Analysis #
The `parse_http_date` function is designed to parse dates according to the HTTP 
RFC7231 section 7.1.1.1. The function supports three date formats: RFC1123, 
RFC850, and ASCTIME. The current implementation uses regular expressions to 
match the date format and then extracts the year, month, day, hour, minute, 
and second components.

# Text Query #  
Retrieve the file path of the module `django.utils.http`.

Graph Query Translation

MATCH (m:MODULE {name: 'django.utils.http'})
RETURN m.file_path

Graph Query Execution Result

'django/utils/http.py'

Figure 6: Workflow for Resolving Issue #11848 in Django’s ‘parse http date’ Function

section 7.1.1.1. The function supports three date for-949
mats: RFC1123, RFC850, and ASCTIME. However,950
the problem arises due to the hardcoded logic for in-951
terpreting two-digit years, which does not dynami-952
cally adjust based on the current year, leading to non-953
compliance with the RFC 7231 standard.954

Given this issue description, CODEXGRAPH begins955
by analyzing the potential cause, identifying that the956
core of the issue lies in the ‘parse http date function’.957
To address this, it is essential to retrieve the code of the958
‘parse http date’ function for further analysis. Here,959
CODEXGRAPH employs a combination of the “gener-960
ating a single query” and “Write then translate” strate-961
gies. Specifically, the primary LLM agent first gener-962
ates a natural language query, which is then translated963
into a Cypher query by the translation LM agent.964

By executing this Cypher query, CODEXGRAPH re-965
trieves the relevant data from the graph database and966
returns it to the primary LLM agent for further anal-967
ysis. Upon analyzing the results, the primary LLM968
agent concludes that to accurately locate the problem-969
atic function, it is necessary to identify the file path of970
the module containing the ‘parse http date function’.971
After another iteration, the primary LLM agent suc-972

cessfully identifies the bug’s location and generates the 973
required patch to fix it. 974

The CODEXGRAPH demonstrates the ability to it- 975
erate and refine its analysis, effectively handling com- 976
plex code issues. By identifying the exact location of 977
the bug and proposing a patch, the CODEXGRAPH re- 978
solves the problem, showcasing its utility in automated 979
code analysis and bug fixing. 980

A.3 Real-World Application 981

In this section, we present the WebUI interface for 982
CODEXGRAPH, showcasing its five practical applica- 983
tions: Code Chat, Code Debugger, Code Unittestor, 984
Code Generator, and Code Commentor. The inter- 985
face is designed to facilitate user interaction, provid- 986
ing a streamlined and intuitive environment for various 987
code-related tasks. We built the WebUI interface us- 988
ing Streamlit7, a powerful and user-friendly framework 989
that allows for the rapid development of interactive web 990
applications. 991

To experience our application firsthand, you can visit 992
ModelScope-Agent and navigate to the CODEXGRAPH 993
This repository provides a detailed guide on how to set 994

7Streamlit: https://streamlit.io/
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(a) Code Debugger (b) Code Unittestor

(c) Code Generator (d) Code Commentor

Figure 7: WebUI for Code Debugger, Code Unittestor, Code Generator, and Code Commentor.

up and interact with the various applications we have995
described.996

A.3.1 Example of Code Chat997

Code Chat allows users to inquire about a code reposi-998
tory, providing insights into code structure and function999
usage. This functionality is particularly useful for un-1000
derstanding complex codebases, identifying dependen-1001
cies, and exploring the usage of specific classes, meth-1002
ods, and functions.1003

Here is an example of Code Chat. The user’s ques-1004
tion is “ Summarize the ‘CodexGraphAgentChat’ class,1005
what has method, and what for”.1006

Figure 8: Using Cypher queries to retrieve informa-
tion about the ‘CodexGraphAgentChat’ class, from the
code repository.
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Figure 9: Once the necessary information is gathered,
Code Chat constructs a comprehensive response to the
user’s question. This response includes a summary of
the ‘CodexGraphAgentChat’ class, a list of its meth-
ods, and a description of what each method does.

A.3.2 Example of Code Debugger1007

The Code Debugger diagnoses and resolves bugs by1008
applying iterative reasoning and information retrieval1009
to suggest targeted fixes. It utilizes Cypher queries to1010
analyze the code repository, identify the cause of the1011
issue, and recommend precise modifications.1012

Here is an example of Code Debugger. The user’s in-1013
put is a real issue8 where the outcome does not match1014
the expected behavior. The Code Debugger first ana-1015
lyzes the problem, then uses Cypher queries to retrieve1016
relevant information and infer the cause of the bug. Fi-1017
nally, it provides an explanation of the bug and suggests1018
the location for the modification.1019

Figure 10: The issue describes a problem where the
outcome does not match the expected behavior.

8https://github.com/modelscope/
modelscope-agent/pull/549

Figure 11: Analyzing the problem and retrieving infor-
mation using Cypher queries.

Figure 12: Executing Cypher queries to search the code
for relevant information.

Figure 13: Analyzing the retrieved information to iden-
tify potential causes of the bug.
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Figure 14: Performing additional Cypher code searches
to gather more information.

Figure 15: Inferring the cause of the bug based on the
analysis of the retrieved information.

Figure 16: Identifying the precise location of the bug
in the codebase.

Figure 17: Providing a detailed explanation of the issue
and the underlying cause of the bug.

Figure 18: Suggesting the first modification to resolve
the bug.

Figure 19: Suggesting the second modification to en-
sure the bug is resolved.

A.3.3 Example of Code Unittestor 1020

Here is an example of Code Unittestor. The user’s input 1021
is: ”Generate test cases for TaskManager.” The Codex- 1022
Graph agent will first retrieve all methods and inheri- 1023
tance relationships in ‘TaskManager’, and then gener- 1024
ate detailed test case code. 1025
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Figure 20: Generated detailed unit test code for the
‘TaskManager’ class, covering its methods and inher-
itance relationships.
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A.3.4 Example of Code Generator1026

The user has requested a function to retrieve the num-1027
ber of input and output tokens of ‘CypherAgent’. How-1028
ever, the challenge is identifying the corresponding1029
fields within ‘CypherAgent’ as this information is not1030
provided in the user’s input.1031

Figure 21: The thought process in determining how to
identify the relevant fields.

Figure 22: By using Cypher queries, it was discovered
that the corresponding fields are ‘input token num’ and
‘output token num’, which enables the generation of
the correct code.

A.3.5 Example of Code Commentor1032

The Code Commentor analyzes code to provide de-1033
tailed comments, enhancing code readability and main-1034
tainability. It leverages the code graph database to un-1035
derstand the code’s structure and behavior, ensuring ac-1036
curate and informative comments.1037

Figure 23: The thought process: Understand the ‘Task’
class and ‘add item’ method.

Figure 24: By using Cypher queries, the specific im-
plementation of the return function was obtained, and
the return type was clarified.

A.4 Analysis of the Poor Performance of 1038
Agent-Based Methods 1039

Table 1 shows that both AUTOCODEROVER and 1040
CODEXGRAPH, which are agent-based RACG meth- 1041
ods, unexpectedly perform poorly across all bench- 1042
marks when using Qwen2-72b-instruct, even falling 1043
behind BM25. We believe this is due to the complexity 1044
and fragility of the agent workflow. In particular, when 1045
handling repository-level code tasks, the agent system 1046
must simultaneously manage long-context understand- 1047
ing, code reasoning, tool or API invocation, and for- 1048
matted output. This multi-faceted process can easily 1049
lead to error accumulation from the very beginning, as 1050
every step in the workflow is critical. We argue that this 1051
issue is a general weakness of agent systems equipped 1052
with relatively “small” LLMs, rather than a problem 1053
specific to our method. 1054
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