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Abstract001

Back-translation has been proven effective in002
enhancing the performance of Neural Machine003
Translation (NMT), with its core mechanism004
relying on synthesizing parallel corpora to005
strengthen model training. However, while tra-006
ditional back-translation methods alleviate the007
data scarcity in low-resource machine trans-008
lation, their dependence on random sampling009
strategies ignores the semantic quality of mono-010
lingual data. This results in the contamination011
of model training through the inclusion of sub-012
stantial low-quality samples in the generated013
corpora. To mitigate noise interference, addi-014
tional training iterations or model scaling are re-015
quired, significantly increasing computational016
costs. To address this challenge, this study pro-017
poses a Semantic Uncertainty Sampling strat-018
egy, which prioritizes sentences with higher se-019
mantic uncertainty as training samples by com-020
putationally evaluating the complexity of unan-021
notated monolingual data. Experiments were022
conducted on three typical low-resource agglu-023
tinative language pairs: Mongolian-Chinese,024
Uyghur-Chinese, and Korean-Chinese. Results025
demonstrate an average BLEU score improve-026
ment of +1.7 on test sets across all three trans-027
lation tasks, confirming the methods effective-028
ness in enhancing translation accuracy and flu-029
ency. This approach provides a novel pathway030
for the efficient utilization of unannotated data031
in low-resource language scenarios.032

1 Introduction033

The heavy reliance of NMT on large-scale paral-034

lel corpora significantly constrains performance035

improvement for low-resource languages (particu-036

larly minority languages), due to the difficulty in037

constructing high-quality bilingual datasets. In con-038

trast, monolingual data has become a research fo-039

cus given its accessibility, and methods leveraging040

monolingual resources to optimize model perfor-041

mance have been widely applied in low-resource042

scenarios (Edunov et al., 2018; Xu et al., 2022; Had- 043

dow et al., 2022; Ranathunga et al., 2023). Among 044

these approaches, back-translationas a represen- 045

tative semi-supervised methodbreaks through the 046

constraints of manual annotation by reversely gen- 047

erating pseudo-parallel data. It has been validated 048

as a core strategy for enhancing translation qual- 049

ity (Sennrich et al., 2016a; Poncelas et al., 2018) 050

and has become standard practice in building large- 051

scale NMT systems due to its practicality (Siddhant 052

et al., 2020; Huang et al., 2021). 053

Nevertheless, conventional back-translation im- 054

plementations typically employ unfiltered mono- 055

lingual corpora. While capitalizing on data abun- 056

dance, this practice inevitably incorporates syn- 057

tactically simplistic or semantically homogeneous 058

sentencesa dual detriment that not only squanders 059

computational resources but also introduces noise 060

that undermines models’ capacity to capture sophis- 061

ticated linguistic patterns. Although recent studies 062

(Edunov et al., 2018) have attempted to enhance 063

output diversity through optimized beam search 064

strategies (Meister et al., 2020), these methods re- 065

main insufficient in mitigating the inherent noise 066

from semantically redundant training instances. 067

This limitation manifests as constrained model gen- 068

eralization capabilities, exposing critical gaps in 069

proactive quality screening mechanisms for corpus 070

curation. 071

To address these issues, this study proposes a se- 072

mantic uncertainty back-translation sampling strat- 073

egy. By identifying monolingual sentences with 074

high semantic uncertainty and leveraging them for 075

back-translation, this method efficiently improves 076

model performance and mitigates the scarcity of 077

low-resource corpora. Large-scale experiments 078

demonstrate that the proposed uncertainty-based 079

sampling strategy for self-training significantly out- 080

performs random sampling. Extensive analysis of 081

the generated outputs validates our claims and con- 082

tributes to existing research in the following ways: 083
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Demonstrates the necessity of semantic uncer-084

tainty sampling for back-translation.085

Proposes a semantic uncertainty-aware back-086

translation sampling strategy, empirically validated087

for feasibility in low-resource language scenarios.088

Transfers semantic information from the target089

language to the source language in low-resource090

settings, reducing the translation models reliance091

on parallel corpora.092

2 Related Work093

The development of data augmentation techniques094

for low-resource neural machine translation has095

seen researchers continuously overcome the bottle-096

neck of parallel corpora through multi-dimensional097

innovations. Back-translation has been extensively098

explored: The monolingual data back-translation099

paradigm pioneered by Sennrich et al. (Sennrich100

et al., 2016b) established the foundation for pseudo-101

data generation. Subsequently, Daimeng et al. (Wei102

et al., 2023) introduced text style transfer technol-103

ogy (TST BT) to align generated data more closely104

with natural language distribution characteristics.105

Concurrently, Jiao et al. (Jiao et al., 2021) pro-106

posed a self-training strategy based on uncertainty107

probability from bilingual dictionaries, enhancing108

the model’s predictive capability for low-frequency109

words by filtering high-uncertainty monolingual110

sentences. Wei et al. (Wei et al., 2022) proposed111

an adjacency semantic space modeling framework,112

which dynamically partitions semantic boundaries113

and selects high-quality samples through a Gaus-114

sian mixture cyclic chain algorithm, achieving sys-115

tematic optimization.116

For neural machine translation of low-resource117

language pairs, researchers address challenges118

of corpus scarcity and morphological complex-119

ity through multi-dimensional technological in-120

novations. In Mongolian-Chinese translation, Ji121

et al. (Ji et al., 2019) enhanced model robust-122

ness by injecting Mongolian morphological noise123

via an adversarial training framework. Zhang’s124

team(Zhang et al., 2023) optimized document-125

level context modeling through dual encoders with126

dynamic caching mechanisms. Sun et al.(Sun127

et al., 2021) combined back-translation with a128

dual-learning framework, achieving a 22% im-129

provement in translation robustness. In Uyghur-130

Chinese translation, Feng et al.(Feng et al., 2023)131

designed an ensemble pruning algorithm based132

on back-translation to balance resource consump-133

tion and performance, while Yan et al. (Yan 134

et al., 2024)improved Uyghur-to-Chinese trans- 135

lation performance by leveraging zero-resource 136

transfer learning in multilingual translation mod- 137

els. For Korean-Chinese translation, Li et al. 138

(Li et al., 2023) proposed the LW-Transformer 139

model incorporating pre-normalization and local- 140

ized self-attention mechanisms, which significantly 141

improved Sino-Korean machine translation perfor- 142

mance. These approaches synergistically advanced 143

the practical application of low-resource translation 144

technology through multi-level system collabora- 145

tion. 146

At the foundational architecture level, the evo- 147

lution of cross-lingual pretraining models has 148

injected new momentum into low-resource lan- 149

guage research. Although general models like 150

XLM-R (Conneau et al., 2020) excel in multilin- 151

gual tasks, their support for Chinese minority lan- 152

guages remains limited. The CINO model (Yang 153

et al., 2022), through secondary pretraining on 154

corpora of Tibetan, Mongolian (Uyghur script) 155

and Uyghur , achieved a 13% Macro-F1 improve- 156

ment over baselines, providing critical infrastruc- 157

ture for low-resource language studies. These ad- 158

vancements jointly enhance the robustness and do- 159

main adaptability of translation models in resource- 160

constrained scenarios. 161

The performance enhancement of low-resource 162

NMT remains constrained by three factors: agglu- 163

tinative morphological structures, free word-order 164

characteristics, and scarce parallel corpora. While 165

existing methods demonstrate commendable re- 166

sults in specific domains, two critical limitations 167

persist: (1) Traditional data filtering strategies fail 168

to effectively capture the semantic complexity of 169

low-resource languages; (2) Current evaluation sys- 170

tems lack fine-grained quantitative analysis of trans- 171

lations. To address these issues, this study proposes 172

semantic uncertainty sampling, which optimizes 173

training sample selection through dynamic evalu- 174

ation of uncertainty distributions in source-target 175

semantic spaces, while employing multiple eval- 176

uation metrics to comprehensively assess model 177

performance. 178

3 Methodology 179

As proposed by Zhou et al. (Zhou et al., 2019), the 180

complexity of parallel corpora can be quantified by 181

aggregating the translation uncertainty across all 182

source sentences. Formally, for a source sentence x, 183
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中文：侦查员在办案
English:Investigators are handling the case

侦查员(Investigator)：
������ ��������� (0.7)；
��������(0.3)

在(are)：
���� (0.6)；
������� (0.3)；
�� / ��� ᠠ(0.1)

办案(handling the case)：
���� ���������� (0.7)；
���� ������(0.3)

H(侦查员)=−0.7log20.7−0.3log20.3

H(侦查员)≈0.835689470664

H(在)=−0.6log2 0.6−0.3log2 0.3−0.1log2 0.1

H(在)≈1.250860916207

H(办案)=−0.7log2 0.7−0.3log2 0.3

H(办案)≈0.835689470664

H(句子)= 1/Tx(H(侦查员)+H(在)+H(办案))

H(句子)≈0.974079952512

Figure 1: Graph of semantic uncertainty computation

the translation uncertainty of its selected translation184

y can be formulated as the conditional entropy:185

H(Y|X = x) = −
∑
y∈Y

p(y|x) log p(y|x) (1)186

≈
Tx∑
t=1

H(y|x = xt) (2)187

Here, Tx denotes the length of the source sen-188

tence, X and Y represent the sets of source-189

language and target-language sentences, respec-190

tively. x and y denote specific instances of source191

and target sentences, while x and y correspond to192

words in the source and target vocabularies. xt in-193

dicates the segmented sub-unit. Generally, a high a194

higher H(Y |X = x) (conditional entropy) implies195

a greater number of plausible translation candidates196

for the source sentence X. Equation (2) estimates197

the translation uncertainty of a source sentence198

by aggregating all potential translation candidates199

from a parallel corpus. However, this method can-200

not be directly applied to monolingual sentences201

due to the absence of corresponding translation202

candidates.203

To address this limitation, Jiao et al. (Jiao et al.,204

2021) utilized authentic parallel corpora to esti-205

mate the target word distribution P (y|x) condi-206

tioned on each source word x. This distribution207

is then employed to quantify the translation uncer-208

tainty of monolingual instances. Furthermore, the209

process incorporates bilingual dictionaries as ref-210

erence knowledge to measure the uncertainty of211

monolingual sentences.212

Although Jiao’s method provides a partial solu-213

tion, it still has limitations. In our experiments, the214

lack of sufficient parallel corpora makes obtaining215

precise translation probabilities extremely difficult,216

directly resulting in the loss of critical information217

during computation. These factors collectively con-218

strain the effectiveness of improving translation219

quality through alignment methods alone.220

Therefore, this paper employs multilingual mod-221

els to directly estimate word-level translation dis-222

tributions. By introducing semantic similarity to223

refine translation probabilities, we use the model to224

generate vectorized representations of the source 225

word x and candidate target word y. The formula 226

is extended as: 227

Hsem(x) = − 1

Tx

Tx∑
t=1

yi∑
i=1

psem(yi | xt) log psem(yi | xt)

(3) 228

Here, Hsem denotes the semantic uncertainty on 229

the source-language sentence x. For each source 230

word x, the semantic similarity of the target word 231

y is transformed into a probability: 232

psem(yi | xt) =
s(xt, yi)∑

y′∈Y s(xt, y′)
(4) 233

Where s(xt, yi) denotes the semantic similarity 234

score between the source term xt and target termyi, 235

Y represents semantically similar lexical items in 236

the candidate targets.
∑

y′∈Y s(xt, y
′) indicates the 237

summation of semantic similarity scores over all 238

candidate target terms s(xt, yi) , used for normal- 239

ization. 240

p =

[
α ·Hsem(x)]β∑

Mx

[
α ·Hsem(x)]β

, (5) 241

α =

1, Hsem(x)) ≤ Hmax

max
(

2Hmax
Hsem(x)

− 1, 0

)
, else

(6) 242

As shown in Figure 1, a cross-lingual model was 243

used to calculate the semantic similarity between 244

the Chinese sentence “侦查员在办案” (lit. “inves- 245

tigators are handling the case”) and its Mongolian 246

counterpart. The process first involved detailed to- 247

kenization of the sentences, followed by entropy 248

calculations for individual words to quantify in- 249

ternal uncertainty. The total sentence information 250

entropy was approximately 0.974, indicating that 251

the original sentence possesses a certain level of 252

complexity and uncertainty. 253

According to the uncertainty measurement for 254

monolingual data specified in Formula (3), the 255

uncertainty-aware self-training sampling strategy 256

prioritizes sampling sentences with relatively 257

higher uncertainty. To ensure data diversity and 258

mitigate the risk of dominance by overly uncer- 259

tain sentences, we sample monolingual sentences 260

based on an uncertainty distribution that penalizes 261

peak uncertainty. Specifically, given the number 262

of sentences to sample, the sampling probability is 263
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Figure 3: Semantic uncertainty sampling structure diagram: The proposed framework for self-training sampling
based on semantic uncertainty is illustrated in the figure. The yellow and purple sections represent the methods
integrated into the standard self-training framework. “Bitext”, “Monolingual” and “Synthetic” denote authentic
parallel data, monolingual data, and synthetic parallel data, respectively.

controlled by configuring two hyperparameters as264

follows:265

Here, α penalizes excessively high uncertain-266

ties surpassing the maximum uncertainty threshold267

Umax, while parameter β adjusts the distribution268

such that larger β values allocate more probability269

mass to sentences with higher uncertainty.270

(a) Monolingual uncertainty
probability distribution
graph.

(b) Sampling probability dis-
tribution graph.

Figure 2: Comparison of uncertainty and probability
distributions.

As shown in Fig.2, the model’s performance un-271

der different monolingual data scales is demon-272

strated. When applying the penalty term (W/273

penalty) with β=3, the model exhibits lower se-274

mantic uncertainty and higher probability increase275

rate under small data volumes; however, perfor-276

mance degradation occurs with increasing data due277

to over-regularization. In contrast, when β=1, the278

model effectively balances generalization capabil-279

ity and uncertainty control through gradual proba-280

bility variations and stable regularization strength.281

This indicates that the β value not only affects 282

model stability on small datasets, but also deter- 283

mines its overfitting risk and performance on large 284

datasets, highlighting β’s pivotal role in regulating 285

penalty term intensity. 286

The back-translation process involves several 287

key steps: first, training a reverse NMT model 288

on real parallel data; second, aligning words in 289

the alignment model, computing semantic similar- 290

ity, and sampling monolingual sentences based on 291

semantic uncertainty; third, translating the sam- 292

pled monolingual sentences using the reverse NMT 293

model to generate synthetic parallel data; and fi- 294

nally, training a new NMT model on the combined 295

synthetic and real parallel data. Figure 3 illustrates 296

the framework of our semantic uncertainty-based 297

sampling approach. 298

4 Experiments 299

4.1 Dataset 300

In this experiment, the research group utilized a 301

Mongolian-Chinese NMT corpus comprising 1.2 302

million sentence pairs. The corpus spans multi- 303

ple domains: 300k CCMT evaluation benchmarks, 304

200k government documents, 300k legal statutes, 305

50k historical archives, 100k specialized articles, 306

daily conversational texts and other fields.. Addi- 307

tionally, the test set incorporates a challenging and 308

representative 50k bilingual legal question-answer 309

dataset (Zhaomuerlige and Wang, 2024).Through- 310
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out the experiment, all corpora were tokenized311

using the Moses scripts. Sentences with lengths312

between 1 and 1000 tokens were retained from313

the original corpus. Subsequently, BPE (Sennrich314

et al., 2016b) with 40K merge operations was ap-315

plied to enhance vocabulary representation effi-316

ciency and flexibility.317

The monolingual Chinese corpus used for sam-318

pling tasks was sourced from the WMT2024 news319

dataset (Kocmi et al., 2024), which contains over 5320

million sentences crawled in 2023.321

To validate the generalizability and adaptabil-322

ity of the semantic uncertainty sampling method323

across low-resource language translation tasks, this324

study extended experiments beyond Mongolian-to-325

Chinese to include Korean-to-Chinese and Uyghur-326

to-Chinese translation tasks. This cross-lingual de-327

sign ensures consistent performance across diverse328

language pairs.329

For the Korean-to-Chinese task, the CCAligned330

dataset (El-Kishky et al., 2020) was employed, con-331

taining approximately 1.02 million parallel sen-332

tences. In the Uyghur-to-Chinese task, a dataset333

with 600,000 parallel sentences was utilized.334

4.2 Model335

This study employs a standard TRANSFORMER336

architecture (Vaswani et al., 2017) as the core337

framework, comprising 6-layer stacked encoder338

modules and 6-layer symmetrical decoder mod-339

ules. The implementation specifies a word em-340

bedding dimension of 512, with the feed-forward341

network hidden layer dimension expanded to 2048.342

Each attention sublayer incorporates 8 parallel at-343

tention heads. The system was deeply customized344

through the Fairseq (v0.10.2) open-source frame-345

work (Ott et al., 2019), strictly adhering to the346

TRANSFORMER_BASE parameter configuration347

scheme proposed by Vaswani et al. (Vaswani et al.,348

2017) (2017).Deployed on an NVIDIA GeForce349

RTX 3090 GPU (24GB VRAM) using PyTorch 1.9,350

the single-GPU training environment employed351

a mixed-precision training strategy to optimize352

VRAM utilization. Validation was performed after353

each epoch, with the best-performing intermediate354

model on the validation set retained as the final355

model.356

4.3 Evaluation Metrics357

Within our research framework, to ensure experi-358

mental objectivity and reliability while providing359

a solid reference for subsequent studies, we se-360

Figure 4: Parallel corpus diagram: The scale of the cor-
pora used in the experiments is shown in the figure. The
three sections separated by dashed lines represent the
mn-zh, ko-zh, and ug-zh parallel corpora, respectively.
The bar charts represent the number of sentences, while
the (pentagram) and (triangle) markers denote the num-
ber of tokens in the training sets.

lected multiple evaluation metrics to quantify ma- 361

chine translation system performance. Specifically, 362

we employ the sacreBLEU (Post, 2018) tool to 363

compute BLEU (Bilingual Evaluation Understudy) 364

(Papineni et al., 2002) scores as the primary met- 365

ric, supplemented by CHRF (Character n-gram F- 366

score) (Popović, 2015) and TER (Translation Edit 367

Rate) (Snover et al., 2006). 368

4.4 Experimental Results and Analysis 369

As shown in Figure 4, this chart illustrates the 370

distribution of sentence counts and word num- 371

bers across different parallel corpora. For the 372

Mongolian-Chinese (mn-zh), Korean-Chinese (ko- 373

zh), and Uyghur-Chinese (ug-zh) parallel corpora, 374

the training sets exhibit varying degrees of expan- 375

sion in both sentence counts and word numbers 376

after applying three augmentation methods: ran- 377

dom sampling, uncertainty-aware sampling, and 378

semantic uncertainty-aware sampling. For instance, 379

the mn-zh corpus increased its training sentences 380

from approximately 0.8 million to around 1.2 mil- 381

lion through these augmentation methods, with 382

word counts correspondingly rising from 1.1 mil- 383

lion to about 2.8 million. Overall, the chart clearly 384

demonstrates the scale variations of different cor- 385

pora across datasets. 386

This study employed the experimental configu- 387

ration described in Section 4.2, using the TRANS- 388

FORMER_BASE model as the base architecture. 389

It was compared against several sampling meth- 390

ods: Baseline, Random Sampling, Uncertainty 391

Sampling, and our proposed Semantic Uncertainty 392

Sampling. The experiments aimed to evaluate the 393

impact of different sampling strategies on machine 394
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System Model BLEU-4 sacreBLEU chrF TER

(Zhang et al., 2024) BITEXT – 32.73 – –
+Easy Data Augmentation – 33.15 – –
+Back Translation – 33.57 – –
+ Iterative Back-Translation – 34.55 – –

(Wei and Ren, 2024) BITEXT – 32.48 – –
+Methods(Dropout) – 33.93 – –
+Methods(Swap) – 35.16 – –
+Methods(Replacement) – 35.27 – –

16w Law 16w Law 16w Law 16w Law

This Work
BITEXT(mn-zh) 27.87 15.48 33.8 23.6 31.1 22.0 64.1 66.0
+40w randomSamp 31.34 22.17 35.4 29.3 32.8 26.7 60.3 59.1
+40w UncSamp 31.12 22.64 35.2 29.7 32.7 27.0 60.3 58.8
+40w SemUncSamp(ours) 31.48 22.38 35.8 31.1 33.3 28.4 59.5 57.7

Table 1: Model Performance Scores on 16w and Law Domains: “16w” represents a test set of 160,000 sentences
selected from the original Mongolian-Chinese parallel corpus, strictly independent of the training and validation
sets; “law” denotes the legal Q&A dataset(Zhou et al., 2019). Lower TER indicates better performance.

translation performance for the Mongolian dataset.395

According to Table 1, the model performance396

comparison among three research teams in ma-397

chine translation tasks is evaluated using BLEU-4,398

sacreBLEU, chrF and TER metrics. Zhang(Zhang399

et al., 2024) employed progressive data augmenta-400

tion techniques (e.g., iterative back-translation) on401

the BITEXT model to enhance sacreBLEU from402

32.73 to 34.55. Wei(Wei and Ren, 2024) achieved403

the highest sacreBLEU score of 35.27 among com-404

pared methods through regularization-based model405

improvements using replacement strategies. Our406

experiments on general domain (16w) and legal do-407

main (Law) datasets revealed insufficient domain408

adaptability of the baseline model, manifesting in409

a BLEU-4 of merely 15.48 and a TER as high410

as 66.0 for Law dataset. The proposed Semantic-411

UncSamp method optimized sampling strategies412

to achieve comprehensive optimal performance on413

Law dataset with sacreBLEU 31.1, chrF 28.4 and414

TER 57.7, demonstrating dual improvements in415

fluency and accuracy for specialized domain trans-416

lation, particularly validating its effectiveness in417

vertical fields like legal translation. Furthermore,418

Uncertainty Sampling (UncSamp) elevated BLEU-419

4 to 22.64 on Law dataset, indicating the superi-420

ority of flexible sampling strategies over conven-421

tional data augmentation methods. Collectively,422

our work demonstrates that focused optimization of423

sampling strategies can more significantly enhance424

translation performance compared to traditional425

data augmentation approaches, effectively balanc-426

ing semantic diversity enhancement with noise re-427

Figure 5: The Impact of Different Scales of Pseudo
Corpora in Mixed Corpora on Translation Results

duction, thereby providing an optimized direction 428

for machine translation model refinement. 429

Figure 5 demonstrates the impact of back- 430

translation data scale on model performance 431

in Mongolian-to-Chinese translation. Initially 432

(pseudo-corpus scale=0), the model achieves base- 433

line values of 15.48 BLEU4 and 23.6 sacreBLEU. 434

With pseudo-corpus expansion, performance im- 435

proves significantly: at 0.1M scale, both metrics 436

show rapid enhancement, indicating that minimal 437

back-translation data suffices for improvement; 438

when reaching 0.4M scale, BLEU4 rises to approx- 439

imately 22.38 with concurrent sacreBLEU growth. 440

Overall, model capability strengthens continuously 441

with pseudo-corpus enlargement, confirming back- 442

translation’s effectiveness in low-resource scenar- 443

iosmost pronounced in small-data conditions, while 444

performance gains gradually stabilize yet maintain 445

steady progression with increased data volume. 446

To validate whether different data partition- 447

ing strategies affect model performance, Table 2 448

presents control experiments using three indepen- 449
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Seed BLEU-4 sacre-BLEU chrF TER

Law 42 22.38 31.1 28.4 57.7
3048 22.05 31.1 28.3 57.9

114514 22.45 31.1 28.4 57.6

16w 42 31.48 35.8 33.3 59.5
3048 31.61 35.8 33.2 60.1

114514 31.46 35.4 32.8 60.4

Table 2: Experimental results of dataset partitioning
under different random seeds

dent random seeds (42/3048/114514). For the Law450

dataset, the standard deviation of BLEU-4 is 0.20451

while sacre-BLEU remains constant. On the 16w452

dataset, TER exhibits a fluctuation range of 0.9453

(59.5-60.4) and chrF shows a narrow range of only454

0.5. This cross-dataset metric stability (p > 0.05455

in ANOVA) confirms the model’s robustness to456

training data partitioning and provides statistically457

significant support for experimental reproducibil-458

ity.459

Mongolian RefTrans BITEXT SemUnSamp

ᠬᠠᠤᠯᠢᠴᠢᠳ ᠤᠨ ᠡᠪᠯᠡᠯ ᠡᠴᠡ
ᠤᠵᠢᠳᠯᠠᠭᠰᠠᠨ ᠶᠠᠯ ᠠ ᠶᠢ
ᠰᠢᠶᠢᠳᠪᠦᠷᠢᠯᠡᠬᠦ
ᠠᠰᠠᠭᠤᠳᠠᠯ ᠤᠨ ᠲᠠᠯ ᠠ ᠪᠠᠷ
ᠵᠢᠯᠣᠭᠣᠳᠬᠤ ᠵᠠᠷᠴᠢᠮ
ᠨᠡᠢᠲᠡᠯᠡᠪᠡ ᠃

律师协会就处

理强奸案问题

发布了指导原

则。

The Bar
Association
has issued
guidelines to
address the
issue of
handling rape
cases.

工会对解决暴

力犯罪问题的

指导原则已经

确立。

The labor
union has
established
guidelines for
resolving
violent crime
issues.

律师协会就处

理强奸罪问题

提出了指导原

则。

The Bar
Association
has proposed
guidelines to
address the
issue of
handling the
crime of rape.

ᠡᠨᠡ ᠤᠯᠤᠰ ᠲᠤ ᠵᠡᠪᠰᠡᠭ᠍
ᠣᠷᠣᠭᠤᠯᠵᠤ ᠥᠭ᠍ᠬᠦ ᠪᠣᠯ
ᠬᠠᠤᠯᠢ ᠪᠤᠰᠤ ᠬᠡᠷᠡᠭ᠍ ᠮᠥᠨ
᠃

向这个国家进

口武器是非法

的。

Importing
weapons into
this country is
illegal.

给这个国家带

来武器是不合

法的。

Bringing
weapons to
this country is
not lawful.

向这个国家提

供武器是非法

的。

Providing
weapons to
this country is
illegal.

Table 3: Comparative Example Illustration of
Mongolian-Chinese Translations

As shown in Table 3, the baseline model erro-460

neously translates “律师协会” (Bar Association)461

as “工会” (labor union), generalizes specific case462

types like “强奸案” (rape case) to “暴力犯罪” (vi-463

olent crime), and employs weak-action verbs like464

“确立” (establish) instead of active equivalents465

for “发布” (issue). In contrast, the SemanticUn-466

Samp model demonstrates superior performance467

through precise retention of core terminology such468

as “律师协会” (Bar Association) and “强奸罪”469

(rape case), along with context-appropriate verb se-470

lections like “提出” (propose) that maintain logical471

Figure 6: Attention heatmap

Figure 7: Position score map

framework integrity. However, discrepancies per- 472

sist in handling action verbs like “进口” (import), 473

where substitutions such as “提供”(bring) fail to 474

convey original semantic implications. While out- 475

performing the baseline in professional terminol- 476

ogy accuracy and informational completeness, this 477

model still requires further optimization in verb 478

precision to bridge the gap with reference transla- 479

tions. 480

To visually represent the distribution of attention 481

weights between source and target languages in 482

translation, this paper employs heatmaps (Figure 6) 483

to demonstrate decoding performance. Color inten- 484

sity reflects candidate word probabilities: darker 485

hues indicate higher probabilities. Highlighted re- 486

gions reveal successful alignment of words/phrases 487

between input and output sequences. For instance, 488

high alignment accuracy is observed between “ᠬᠢᠴᠢᠶᠡᠨ” 489

(“着力”, effort) and “ᠤᠰᠤᠯᠠᠯᠲᠠ” (“灌溉”, irrigation), 490

predicting subsequent translations consistent with 491

reference translations. 492

Further quantitative analysis of lexical impor- 493

tance in the sentence “努力改善农业灌溉条件。” 494

is conducted through positional score maps (Figure 495

7). Results show: “改善”(improve) and “灌溉” 496

(irrigation) achieve significant positional scores 497

(P=-0.07, probability≈0.93), indicating highest pre- 498

dictive confidence; while “条件”(conditions) re- 499

ceives a lower score (P=-0.24, probability≈0.78), 500

with reduced confidence in its Mongolian trans- 501

lation “ᠨᠥᠬᠥᠴᠡᠯ”. Nevertheless, the overall transla- 502

tion quality remains high. Potential discrepancies 503

may stem from ambiguous semantic boundaries 504

of “条件”(conditions) as supplementary content or 505
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Uyghur-to-Chinese Korean-to-Chinese

Metric BITEXT +40w RandSamp +40w SemUncSamp(ours) BITEXT +40w RandSamp +40w SemUncSamp(ours)

BlEU-4 29.54 30.9 31.08 36.80 37.08 37.16
Precision 1-gram 60.9 62.2 62.2 59.7 60.2 60.9
Precision 2-gram 35.0 36.6 36.7 41.7 41.9 42.8
Precision 3-gram 23.4 24.8 24.9 34.2 34.2 35.3
Precision 4-gram 16.7 17.8 18.0 29.5 29.5 30.5
sacreBLEU 35.7 36.9 37.6 40.2 40.9 41.4
chrF 32.8 33.9 34.9 45.0 45.4 46.0
TER 58.4 57.3 56.4 57.1 56.6 55.7

Table 4: The comparative results of various model evaluation metrics on Uyghur-to-Chinese and Korean-to-Chinese
translation datasets. Notably, lower TER score indicates superior model performance.
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Figure 8: Chinese vs. Mongolian Text Embeddings in
t-SNE Space

diverse bilingual alignment patterns.506

This study employs t-SNE technique to perform507

dimensionality reduction visualization on Chinese-508

Mongolian bilingual word embedding spaces, gen-509

erating a 2D mapping atlas (Figure 8) that re-510

veals cross-lingual semantic alignment characteris-511

tics. Results indicate significant clustering between512

Chinese (red) and Mongolian (blue) lexical items513

in low-dimensional space, encompassing cross-514

lingual mappings of both domain-specific terms515

and high-frequency lexical items. The semantically516

correlated networks connected by gray dashed lines517

(annotated with confidence levels) further quanti-518

tatively validate cross-lingual lexical similarities,519

providing intuitive evidence for machine transla-520

tion model evaluation.521

This study conducted supplementary compara-522

tive experiments targeting Korean-to-Chinese and523

Uyghur-to-Chinese translation tasks to further val-524

idate the performance of the proposed sampling525

strategy across different language pairs.526

Experimental results (Table 4) demonstrate the527

superiority of the semantic uncertainty-aware sam-528

pling strategy in Uyghur-Chinese and Korean-529

Chinese translation tasks. The method effec-530

tively improves translation quality even in lin-531

guistically divergent contexts, such as those in- 532

volving substantial syntactic and lexical dispari- 533

ties. For the Uyghur-Chinese task, the approach 534

outperforms baseline models across all metrics 535

(BLEU, chrF, and TER). In the Korean-Chinese 536

task, leveraging 400k semantically uncertain train- 537

ing instances achieves state-of-the-art performance, 538

including a BLEU4 score of 37.16 and optimal 539

sacreBLEU/chrF values. These findings confirm 540

the strategy’s capability to model cross-lingual se- 541

mantic correspondences, significantly enhancing 542

translation robustness in morphosyntactically dis- 543

tinct language pairs. 544

5 Conclusion 545

In this work, addressing the dependency of back- 546

translation tasks on high-quality data in NMT, this 547

paper proposes a semantic uncertainty-based sam- 548

pling strategy. By identifying and sampling mono- 549

lingual data with higher semantic uncertainty, this 550

method enhances the quality of training data in 551

the back-translation process. Experimental results 552

demonstrate that compared to traditional random 553

sampling approaches, the semantic uncertainty- 554

based sampling strategy achieves improved trans- 555

lation quality. It ensures that the data used in 556

back-translation is both sufficient in quantity and 557

higher in quality, enabling targeted resolution of 558

the model’s weaknesses and blind spots. 559

6 Limitations 560

The experiment relies on advanced cross-lingual 561

models; however, for low-resource languages, their 562

training data volume is relatively limited, which 563

may lead to insufficient generalization capabili- 564

ties of the models. Consequently, how to enhance 565

the performance of these models on specific low- 566

resource languages has become a pressing issue to 567

be addressed. 568
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