
Policy Gradient With Serial Markov Chain Reasoning

Edoardo Cetin

Department of Engineering
King’s College London

edoardo.cetin@kcl.ac.uk

Oya Celiktutan

Department of Engineering
King’s College London

oya.celiktutan@kcl.ac.uk

Abstract

We introduce a new framework that performs decision-making in reinforcement
learning (RL) as an iterative reasoning process. We model agent behavior as
the steady-state distribution of a parameterized reasoning Markov chain (RMC),
optimized with a new tractable estimate of the policy gradient. We perform action
selection by simulating the RMC for enough reasoning steps to approach its steady-
state distribution. We show our framework has several useful properties that are
inherently missing from traditional RL. For instance, it allows agent behavior to
approximate any continuous distribution over actions by parameterizing the RMC
with a simple Gaussian transition function. Moreover, the number of reasoning
steps to reach convergence can scale adaptively with the difficulty of each action
selection decision and can be accelerated by re-using past solutions. Our resulting
algorithm achieves state-of-the-art performance in popular Mujoco and DeepMind
Control benchmarks, both for proprioceptive and pixel-based tasks.

1 Introduction

Reinforcement learning (RL) has the potential to provide a general and effective solution to many
modern challenges. Recently, this class of methods achieved numerous impressive milestones in
different problem domains, such as games [1–3], robotics [4–6], and other meaningful real-world
applications [7–9]. However, all these achievements relied on massive amounts of data, controlled
environments, and domain-specific tuning. These commonalities highlight some of the current
practical limitations that prevent RL to be widely applicable [10].

Figure 1: Depiction of agent decision-
making with serial Markov chain reasoning.

In the deep RL framework, practitioners train agents with
the end goal of obtaining optimal behavior. Traditionally,
agent behavior is modeled with feed-forward policies re-
gressing from any state to a corresponding distribution
over actions. Such formulation yields practical training ob-
jectives in both off-policy [11–13] and on-policy settings
[14–16]. However, we identify three inherent properties
of this rigid representation of behavior that could consid-
erably impact expressivity and efficiency in continuous
control tasks. First, agent behavior is restricted to a class
of tractable distributions, which might fail to capture the
necessary complexity and multi-modality of a task. Sec-
ond, the policy performs a fixed reasoning process with
a feed-forward computation, which potency cannot adapt
to the varying complexity of individual action selection
problems. Third, decision-making is performed every time from scratch, without re-using any past
information that might still inform and facilitate the current action selection problem.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Unlike RL policies, human reasoning does not appear to follow a rigid feed-forward structure. In fact,
a range of popular psychological models characterize human decision-making as a sequential process
with adaptive temporal dynamics [17–20]. Many of these models have found empirical groundings in
neuroscience [21–24] and have shown to effectively complement RL for capturing human behavior
in experimental settings [25, 26]. Partly inspired by these works, we attempt to reframe the deep RL
framework by making use of a similar flexible model of agent behavior, in order to counteract its
aforementioned limitations.

We introduce serial Markov chain reasoning - a new powerful framework for representing agent
behavior. Our framework treats decision-making as an adaptive reasoning process, where the agent
sequentially updates its beliefs regarding which action to execute in a series of reasoning steps. We
model this process by replacing the traditional policy with a parameterized transition function, which
defines a reasoning Markov chain (RMC). The steady-state distribution of the RMC represents the
distribution of agent behavior after performing enough reasoning for decision-making. Our framework
naturally overcomes the aforementioned limitations of traditional RL. In particular, we show that our
agent’s behavior can approximate any arbitrary distribution even with simple parameterized transition
functions. Moreover, the required number of reasoning steps adaptively scales with the difficulty of
individual action selection problems and can be accelerated by re-using samples from similar RMCs.

To optimize behavior modeled by the steady-state distribution of the RMC, we derive a new tractable
method to estimate the policy gradient. Hence, we implement a new effective off-policy algorithm
for maximum entropy reinforcement learning (MaxEnt RL) [27, 28], named Steady-State Policy
Gradient (SSPG). Using SSPG, we empirically validate the conceptual properties of our framework
over traditional MaxEnt RL. Moreover, we obtain state-of-the-art results for popular benchmarks
from the OpenAI Gym Mujoco suite [29] and the DeepMind Control suite from pixels [30].

In summary, this work makes the following key contributions:

1. We propose serial Markov Chain reasoning a framework to represent agent behavior that can
overcome expressivity and efficiency limitations inherent to traditional reinforcement learning.

2. Based on our framework, we derive SSPG, a new tractable off-policy algorithm for MaxEnt RL.

3. We provide experimental results validating theorized properties of serial Markov Chain reasoning
and displaying state-of-the-art performance on the Mujoco and DeepMind Control suites.

2 Background

2.1 Reinforcement learning problem

We consider the classical formulation of the reinforcement learning (RL) problem setting as a Markov
Decision Process (MDP) [31], defined by the tuple (S,A, P, p0, r, �). In particular, at each discrete
time step t the agent experiences a state from the environment’s state-space, st 2 S, based on which
it selects an action from its own action space, at 2 A. In continuous control problems (considered
in this work), the action space is typically a compact subset of an Euclidean space Rdim(A). The
evolution of the environment’s state through time is determined by the transition dynamics and initial
state distribution, P and p0. Lastly, the reward function r represents the immediate level of progress
for any state-action tuple towards solving a target task. The agent’s behavior is represented by a
state-conditioned parameterized policy distribution ⇡✓. Hence, its interaction with the environment
produces trajectories, ⌧ = (s0, a0, s1, ..., sT , aT), according to a factored joint distribution p⇡✓ (⌧) =

p0(s0)
QT

t=0 ⇡✓(at|st)P (st+1|st, at). The RL objective is to optimize agent behavior as to maximize
the discounted sum of expected future rewards: argmax✓ Ep⇡✓

(⌧)

hPT
t=0 �

tr(st, at)
i
.

2.2 Maximum entropy reinforcement learning and inference

Maximum entropy reinforcement learning (MaxEnt RL) [32] considers optimizing agent behavior for
a different objective that naturally arises when formulating action selection as an inference problem
[33–36]. Following Levine [28], we consider modeling a set of binary optimality random variables
with realization probability proportional to the exponentiated rewards scaled by the temperature ↵,
p(Ot|st, at) / exp(1

↵r(st, at)). The goal of MaxEnt RL is to minimize the KL-divergence between

2

trajectories stemming from agent behavior, p⇡✓ (⌧), and the inferred optimal behavior, p(⌧ |O0:T):

DKL (p⇡✓ (⌧)||p(⌧ |O0:T)) = Ep⇡✓(⌧)

"
log

p0(s0)
QT

t=0 ⇡✓(at|st)P (st+1|st, at)
p0(s0)

QT
t=0 exp(

1
↵r(st, at))P (st+1|st, at)

#

= �Ep⇡✓
(⌧)

"
TX

t=0

r(st, at) + ↵H(⇡(·|st))
#
.

(1)

The resulting entropy-regularized objective introduces an explicit trade-off between exploitation and
exploration, regulated by the temperature parameter ↵ scaling the policy’s entropy. An effective
choice to optimize this objective is to learn an auxiliary parameterized soft Q-function [37]:

Q⇡
�(st, at) = Ep⇡✓

(⌧ |st,at)

"
r(st, at) +

TX

t0=t+1

r(st0 , at0) + ↵H(⇡(at0 |st0)
#
. (2)

Given some state, Q⇡
�(s, ·) represents an energy-function based on the expected immediate reward and

the agent’s future likelihood of optimality from performing any action. Thus, we can locally optimize
the MaxEnt objective by reducing the KL-divergence between ⇡ and the canonical distribution of
its current soft Q-function. This is equivalent to maximizing the expected soft Q-function’s value
corrected by the policy’s entropy, resembling a regularized policy gradient objective [11, 12]:

argmax
✓

Es,a⇠⇡✓(·|s)
⇥
Q⇡

�(s, a) + ↵H(⇡✓(a|s))
⇤
. (3)

The policy is usually modeled with a neural network outputting the parameters of some tractable
distribution, such as a factorized Gaussian, ⇡✓(·|s) = N(µ✓(s);⌃✓(s)). This practice allows to
efficiently approximate the gradients from Eqn. 3 via the reparameterization trick [38]. We consider
the off-policy RL setting, where the agent alternates learning with storing new experience in a data
buffer, D. We refer the reader to Haarnoja et al. [13, 39] for further derivation and practical details.

3 Policy Gradient with serial reasoning

3.1 Reasoning as a Markov chain

We introduce Serial Markov Chain Reasoning, a new framework to model agent behavior, based on
conceptualizing action selection as an adaptive, sequential process which we refer to as reasoning.
Instead of using a traditional policy, the agent selects which action to execute by maintaining an
internal action-belief and a belief transition (BT-) policy, ⇡b(a0|a, s). During the reasoning process,
the agent updates its action-belief for a series of reasoning steps by sampling a new action with
the BT-policy ⇡b taking both environment state and previous action-belief as input. We naturally
represent this process with a reasoning Markov chain (RMC), a discrete-time Markov chain over
different action-beliefs, with transition dynamics given by the BT-policy. Hence, for any input
environment state s and initial action-belief a0, the n-step transition probabilities of the RMC for
future reasoning steps n = 1, 2, 3, ... are defined as:

⇡b
n(a|a0, s) =

Z

A
⇡b(a|a0, s)⇡b

n�1(a
0|a0, s)da0, for n > 1, and ⇡b

1 = ⇡b. (4)

Given a compact action space and a BT-policy with a non-zero infimum density, we can ensure that
as the number of reasoning steps grows, the probability of any action-belief in the RMC converges
to some steady-state probability which is independent of the initial action-belief.1 We denote this
implicit probability distribution as the steady-state (SS-) policy, symbolized by ⇡s(a|s):
Lemma 3.1. Steady-state convergence. For any environment state s, consider a reasoning Markov
chain (RMC) defined on a compact action space A with transition probabilities given by ⇡b(a0|a, s).
Suppose that inf{⇡b(a0|a, s) : a0, a 2 A} > 0. Then there exists a steady-state probability distribu-
tion function ⇡s(·|s) such that:

lim
n!1

⇡b
n(a|a0, s) ! ⇡s(a|s) for all a 2 A. (5)

Proof. See Appendix A.

3

Figure 2: (Left) BT-policy transition probabilities and quantized RMC state diagram. (Right) Sample
approximation of related steady-state distribution as compared to canonical distribution of the soft Q-function.

The RMC’s steady-state probabilities can be interpreted as representing the distribution of agent’s
behavior after an appropriate number of reasoning steps are performed. In this work, we strive to op-
timize the agent’s behavior following the MaxEnt RL framework described in Section 2. In particular,
we consider learning a parameterized BT-policy, ⇡b

✓, to produce appropriate transition probabilities
for each environment state such that the SS-policy, ⇡s

✓ , from the resulting RMC optimizes:

argmax
✓

J(✓) = Es,a⇠⇡s
✓(·|s)

⇥
Qs

�(s, a) + ↵H(⇡s
✓(a|s))

⇤
. (6)

Here, Qs
� is a parameterized soft Q-function for the agent’s behavior from ⇡s, which we learn by

minimizing a squared soft Bellman loss utilizing delayed parameters �0 and samples from ⇡s
✓:

argmin
�

J(�) = Es,a,s0

h
(Qs

�(s, a)�
⇣
r(s, a) + � Ea0⇠⇡s

✓(·|s)
⇥
Q

s
�0(s0, a0) + ↵H(⇡s

✓(a
0|s0)

⇤⌘i2
. (7)

In Fig. 2, we illustrate the relationship between a learned BT-policy, the corresponding SS-policy,
and the soft Q-function in a 1-dimensional toy task (see App. C for details). In this example, the
BT-policy is parameterized as a simple squashed Gaussian distribution, with unimodal transitions
between consecutive action beliefs (Fig. 2, Left). We obtain samples of agent behavior (the SS-policy)
by performing a series of reasoning steps, using the BT-policy to simulate the RMC until we approach
steady-state convergence. By plotting the resulting empirical distribution of agent behavior, we see
it closely matches the multi-modal, non-Gaussian canonical distribution from its soft Q-function
(Fig. 2, Right). This example shows how the expressive power of agent behavior in our framework
can go far beyond the BT-policy’s simple parameterization, enabling for the effective maximization
of complex and multi-modal MaxEnt objectives.

3.2 Learning the belief transition policy

We propose a new method to estimate the policy gradient of the BT-policy, ⇡b
✓, for optimizing the

steady-state MaxEnt objective described in Section 3.1. We note that the gradient from Eq. 6 involves
differentiating through an expectation of the steady-state policy, ⇡s

✓ . However, ⇡s
✓ is only implicitly

defined, and its connection with the actual BT-policy or its parameters does not have a tractable
closed-form expression. To approach this problem, we introduce a family of n-step extensions to the
soft Q-function, Qs

n : S ⇥A 7! R for n = 0, 1, 2, . . . , defined as:

Qs
n(s, a) =

Z

A
⇡b
n(a

0|a, s)Qs
�(s, a

0)da0, with r✓Q
s
n(s, a) = 0. (8)

Intuitively, each n-step soft Q-function Qs
n(s, a) outputs the expected soft Q-value after performing n

reasoning steps in the RMC from the initial action-belief a. However, we treat the output of each
n-step soft Q-function as being independent of the actual parameters of the BT-policy, ✓. Hence, we
can interpret computing Qs

n(s, a) as simulating the RMC with a fixed and immutable copy of the
current ⇡b

✓. We use this definition to provide a convenient notation in the following new Theorem that
expresses the policy gradient without differentiating through ⇡s

✓:
1This is unrelated to the steady-state distribution for infinite-horizon MDPs considered in prior work [40].

4

Theorem 3.2. Steady-state policy gradient. Let ⇡b
✓(·|a, s) be a parameterized belief transition policy

which defines a reasoning Markov chain with a stationary distribution given by the steady-state
policy ⇡s

✓(·|s). Let Qs be a real function defined on S ⇥A, with a family of n-step extensions {Qs
n}

as defined in Eq. 8. Suppose ⇡b, Qs and their gradient with respect to ✓ (denoted r✓) are continuous
and bounded functions. Then

r✓ Ea⇠⇡s
✓(·|s) [Q

s(s, a)] = Ea⇠⇡s
✓(·|s)

"
lim

N!1

NX

n=0

r✓ Ea0⇠⇡b
✓(·|a,s) [Q

s
n(s, a

0)]

#
. (9)

Proof. See Appendix A.

Using Lemma 3.1 (steady-state convergence), we can approximate the policy gradient expression
in Eq. 9 with an arbitrarily small expected error using a finite number of n-step soft Q-functions,
i.e., N (see App. A). An intuition for this property follows from the fact that for large enough
n, Lemma 3.1 implies that ⇡b

n(a|a0, s) ⇡ ⇡s
✓(a|s) and, thus, Qs

n(s, a
0) ⇡

R
A ⇡b

✓s(a|s)Qs
�(s, a)da.

Therefore, the value of each Qs
n(s, a

0) will be independent of the BT-policy’s action a0, such that
r✓ Ea0⇠⇡b

✓(·|a,s) [Q
s
n(s, a

0)] ⇡ 0. In other words, each subsequent step in the RMC introduces
additional randomness that is independent of a0, causing a warranted vanishing gradient phenomenon
[41] which culminates with converging to ⇡s

✓ . Using a similar notation as Haarnoja et al. [39], we
apply the reparameterization trick [38] to express the BT-policy in terms of a deterministic function
f b
✓ (a, s, ✏), taking as input a Gaussian noise vector ✏. This allows to rewrite the gradient in each inner

expectation in the sum from Eq. 9 as:

r✓ Ea0⇠⇡b
✓(·|a,s) [Q

s
n(s, a

0)] = E✏0⇠N(0,1)

⇥
ra0Q

s
n(s, a0)r✓f

b
✓ (a, s, ✏0)

⇤
, (10)

where a0 = f b
✓ (a, s, ✏0). We can apply the same reparameterization for all n-step soft Q-functions, to

establish a new relationship between the gradient terms ra0Q
s
n(s, a0):

ra0Q
s
n(s, a0) = ra0

Z

A
⇡b
n(an|a0, s)Qs

�(s, an)dan = ra0

Z

A
⇡b(a1|a0, s)Qs

n�1(s, a1)da1

= E✏1

⇥
ra1Q

s
n�1(s, a1)ra0f

b(a0, s, ✏1)
⇤
, where, a1 = f(a0, s, ✏1). (11)

In Eq. 11, we purposefully omit the dependence of f b and ⇡b from ✓ since each Qs
n term is a local

approximation of the RMC that does not depend on ✓ (as defined in Eq. 8). By recursively applying
this relationship (Eq. 11) to ra1Q

s
n�1(s, a1) and all subsequent gradient terms we obtain:

ra0Q
s
n(s, a0) = E✏1,...,✏n

"
ranQ

s
�(s, an)

n�1Y

i=0

raif
b(ai, s, ✏i+1)

#
, (12)

where ai = f b(ai�1, s, ✏i) for i = 1, . . . , n. By combining Eq. 10 and Eq. 12, we can thus
reparameterize and express the whole sum in Eq. 9 as:

r✓ Ea⇠⇡s
✓(·|s) [Q

s(s, a)] ⇡
NX

n=0

r✓ Ea0⇠⇡b
✓(·|a,s) [Q

s
n(s, a

0)]

= E✏0,...,✏N

"
NX

n=0

ranQ
s
�(s, an)

n�1Y

i=0

raif
b(ai, s, ✏i+1)

!
r✓f

b
✓ (a, s, ✏0)

#
.

(13)

Eq. 13 intuitively corresponds to differentiating through each Qs
n(s, a

0) term by reparameterizing the
RMC. Hence, to get a sample estimate of the policy gradient we can simulate the reparameterized
RMC for N reasoning steps to obtain a1, ..., aN , compute each Qs

�(s, an) term, and backpropagate
(e.g., with autodifferentiation). Following Haarnoja et al. [13, 39], we can apply Theorem 3.2 and
easily extend the same methodology to estimate the MaxEnt policy gradient from Eq. 6 that also
involves an extra entropy term. We include this alternative derivation in App. A for completeness.

5

Algorithm 1 Agent Acting
input: s, current state
a0 ⇠ Â

N 0
R

p +1
while R

p
> 1.1 do

aN+1 ⇠ ⇡
b
✓(·|aN)

N N + 1
Update R

p with a1:N . Eq.16
N̂ ⇢N̂ + (1� ⇢)N . ⇢ 2 [0, 1)
Â Â [a1:N

output: a ⇠ a1:N

Algorithm 2 Agent Learning
input: D, data buffer
(s, a, s0, r) ⇠ D

a0 ⇠ ⇡
b
✓(·|a, s0)

for n 0, dN̂e do

Q
s
n Q

s
�(s

0
, an) . Eq. 8

✏n+1 ⇠ N(0, 1), an+1 = f
b(an, s, ✏n+1)

r✓Q
s
� r✓(

PdNe
n=0 Q

s
n) . Thm. 3.2

argmin✓ J(✓) . Eq. 6
a
0 ⇠ a1:dN̂e

argmin� J(�) . Eq. 7

3.3 Action selection and temporal consistency

To collect experience in the environment, we propose to perform reasoning with the BT-policy starting
from a set of different initial action-beliefs {a00, ..., aM0 }. We batch this set as a single input matrix,
a0, to make effective use of parallel computation. To reduce the required number of reasoning steps
and facilitate detecting convergence to ⇡s

✓ , we identify two desirable properties for the distribution of
action-beliefs in a0. In particular, initial action-beliefs should 1) be likely under ⇡s

✓ , and 2) cover
diverse modes of ⇡s

✓ . Property (1) should logically accelerate reasoning by providing the BT-policy
with already-useful information about optimal behavior. Property (2) serves to provide the BT-policy
with initial information of diverse behavior, which facilitates convergence detection (Sec. 3.4) and
expedites reasoning even if the RMC has slow mixing times between multiple modes. To satisfy these
properties, we use a simple effective heuristic based on common temporal-consistency properties of
MDPs [42, 43]. Especially in continuous environments, actions tend to have small individual effects,
making them likely relevant also for environment states experienced in the near future. Thus, we
propose storing past action-beliefs in a fixed sized buffer, called the short-term action memory, Â, and
use them to construct a0. We find this strategy allows to effectively regulate the initial action-beliefs
quality and diversity through the size of Â, accelerating convergence at negligible cost.

3.4 Detecting convergence to the steady-state policy

A key requirement for learning and acting with BT-policies, as described in Sections 3.2 and 3.3, is
the ability to determine a sufficient number of reasoning steps (N) for the action-belief distribution to
converge. Given the properties of the RMC, there exist different analytical methods that provide a
priori bounds on the rate of convergence [44–46]. However, using any fixed N would be extremely
limiting as we expect the BT-policy and the properties of its resulting RMCs to continuously evolve
during training. Moreover, different tasks, states, and initial action-beliefs might affect the number of
reasoning steps required for convergence due to different levels of complexity for the relative decision-
making problems. To account for similar conditions, in the Markov Chain Monte Carlo literature,
the predominant approach is to perform a statistical analysis of the properties of the simulated chain,
choosing from several established convergence diagnostic tools [47–49]. Hence, we propose to
employ a similar adaptive strategy by analyzing the history of the simulated RMC to determine
the appropriate number of reasoning steps. Since we apply ⇡b

✓ from a diverse set of initial action
beliefs (see Section 3.3), we base our convergence-detection strategy on the seminal Gelman-Rubin
(GR) diagnostic [50] and its multivariate extension [51]. In particular, the multivariate GR diagnostic
computes the pseudo scale reduction factor (PSRF), a score representing whether the statistics of a
multivariate variable of interest have converged to the steady-state distribution. The intuition behind
this diagnostic is to compare two different estimators of the covariance for the unknown steady-state
distribution, making use of either the samples within each individual chain and between all different
chains. Thus, as the individual chains approach the true steady-state distribution, the two estimates
should expectedly get closer to each other. The PSRF measures this precise similarity based on the
largest eigenvalue of their matrix product.

For our use-case, we employ the PSRF to determine the convergence of the set of action-beliefs a1:N,
as we perform consecutive reasoning steps with ⇡b

✓. Following [51], we calculate the average sample

6

covariance of the action-beliefs within each of the parallel chains (W) computed from a batched set
of initial action-beliefs a0 = [a10, a

2
0, . . . a

M
0]:

ām =
1

N

NX

n=1

amn , Wm =
1

N � 1

NX

n=1

(a� ām)(a� ām)T , W =
1

M

MX

m=1

Wm. (14)

We compare W with an unbiased estimate of the target covariance, constructed from the sample
covariance between the different parallel chains (B):

ā =
1

N ⇥M

NX

n=1

MX

n=1

amn , B =
1

M � 1

NX

n=1

(ām � ā)(ām � ā)T . (15)

The PSRF for a1:N is then computed from the largest eigenvalue (�max) of the product W�1B, as:

Rp =

r
N � 1

N
+ �max(W�1B). (16)

Thus, as the individual chains approach the distribution of ⇡s
✓ , the PSRF (Rp) will approach 1.

Following Brooks and Gelman [51], we use Rp < 1.1 as an effective criterion for determining the
convergence of a1:N. In practice, we also keep a running mean of the current number of reasoning
steps for convergence, N̂ . We use dN̂e as the number of reasoning steps to simulate the RMC with ⇡b

✓

when computing gradients from Eqs. 6-7. dN̂e is a safe choice to ensure near unbiased optimization
since Rp < 1.1 is considered a very conservative criterion [52] and we can learn by simulating
the RMC from recent actions stored in the data buffer, which are already likely close to optimal.
We provide further details regarding our implementation and its rationale in App. B. We provide a
simplified summary of our adaptive reasoning process for acting and learning in Algs. 1-2.

3.5 Advantages of serial Markov chain reasoning

Based on the above specification, we identify three main conceptual advantages of our serial Markov
chain reasoning framework. 1. Unlimited expressiveness. The distribution of agent behavior given
by the SS-policy ⇡s

✓ , is a mixture model with potentially infinitely many components. Thus, even
a simple Gaussian parameterization of the BT-policy ⇡b

✓ would make ⇡s
✓ a universal approximator

of densities, providing unlimited expressive power to the agent [53, 54]. 2. Adaptive computation.

The number of reasoning steps performed to reach approximate convergence is determined by the
properties of each environment state’s RMC. Hence, the agent can flexibly spend different amounts of
computation time based on the complexity of each action-selection problem, with potential gains in
both precision and efficiency. 3. Information reuse. By storing past solutions to similar RMCs, we
can initialize the reasoning process with initial action-beliefs that are already close to ⇡s

✓ . This allows
using the temporal-consistency properties of the MDP to exploit traditionally discarded information
and accelerate agent reasoning. We provide empirical validation for these properties in Section 4.2.

4 Experimentation

4.1 Performance evaluation

We evaluate the serial Markov chain reasoning framework by comparing its performance with current
state-of-the-art baselines based on traditional RL. We consider 6 challenging Mujoco tasks from
Gym [29, 56] and 12 tasks pixel-based tasks from the DeepMind Control Suite (DMC) [30]. In both
settings, we base our implementation on MaxEnt RL, replacing the traditional policy with a Gaussian
BT-policy optimized with the training procedures specified in Sec. 3. Other orthogonal design choices
(e.g., network architectures) follow contemporary RL practices, we refer to App. C or the code for
full details. We call the resulting algorithm Steady-State Policy Gradient (SSPG).

We report the mean performance curves and aggregate metrics using the statistical tools from Rliable
[55]. In particular, we compare normalized performance profiles [57], interquantile mean (IQM), and
probability of improvements over baselines with the Mann-Whitney U statistic [58]. The reported
ranges/shaded regions represent 95% stratified bootstrap confidence intervals (CIs) [59]. In App. D,
we provide per-task results and further statistical analysis. For each experiment, we collect the returns
of SSPG over five seeds, by performing 100 evaluation rollouts during the last 5% of steps.

7

Figure 3: Performance evaluation of SSPG and recent state-of-the-art baselines using Rliable [55]. We consider
six OpenAI Gym Mujoco tasks [29] (Top) and twelve DeepMind Control tasks from pixels [30] (Bottom).

Mujoco suite. We evaluate on a challenging set of Mujoco tasks popular in recent literature. We
compare SSPG with recent RL algorithms achieving state-of-the-art sample-efficiency performance
on these tasks, which utilize large critic ensembles and high update-to-data (UTD) ratios. We consider
REDQ [60] and MBPO [61] for state-of-the-art algorithms based on the traditional model-free and
model-based RL frameworks. We also compare with iterative amortized policy optimization (IAPO)
[62], in which the agent performs iterative amortization to optimize its policy distribution [63]. This
procedure for action selection is more computationally involved than our agent’s reasoning process,
as it requires both evaluating the policy and computing gradients at several iterations. Yet, as IAPO is
still based on the traditional policy gradient framework, its benefits are solely due to reducing the
amortization gap with an alternative action inference procedure. To ground different results, we
also show the performance of the seminal Soft Actor-Critic (SAC) algorithm [39], upon which all
considered policy gradient baselines are based on. To account for the additional computational cost
of training an agent with serial Markov chain reasoning, we use a UTD ratio that is half the other
algorithms. On our hardware, this makes SSPG faster than all other modern baselines (see App. D).

Figure 3 (Top) shows the performance results after 100K environment steps. Individual scores are
normalized using the performance of SAC after 3M steps, enough to reach convergence in most
tasks. SSPG considerably outperforms all prior algorithms with statistically meaningful gains, as
per the conservative Neyman-Pearson statistical testing criterion [64]. Furthermore, SSPG even
stochastically dominates all considered state-of-the-art baselines [65]. We obtain similar results
evaluating at 50K and 200K steps (App. D). In comparison, IAPO obtains lower performance than
other non-iterative baselines while being the most compute-intensive algorithm. This indicates that,
for sample-efficiency, only reducing the amortization gap beyond direct estimation might not provide
significant benefits. Instead, serial Markov chain reasoning’s improved expressivity and flexibility
appear to considerably accelerate learning, yielding state-of-the-art performance in complex tasks.

DeepMind Control suite. To validate the generality of our framework, we also evaluate on a
considerably different set of problems: 12 pixel-based DMC tasks. We follow the recent task
specifications and evaluation protocols introduced by Yarats et al. [66]. We compare SSPG with
DrQv2 [66], the current state-of-the-art policy gradient algorithm on this benchmark, which employs
a deterministic actor and hand-tuned exploration. We also compare with additional baselines that,
like SSPG, are based on MaxEnt RL: DrQ [67], CURL [68], and a convolutional version of SAC [39].

Figure 3 (Bottom) shows the performance results after 1.5M environment steps. DMC tasks yield
returns scaled within a set range, [0, 1000], which we use for normalization. Remarkably, also in
this domain, SSPG attains state-of-the-art performance with statistically significant improvements
over all baselines. Unlike for the Mujoco tasks, the other considered algorithms based on MaxEnt
RL underperform as compared to the deterministic DrQv2, a result Yarats et al. [66] attributed to
ineffective exploration. In contrast, SSPG yields performance gains especially on sparser reward
tasks where the other baselines struggle (see App. D). These results validate the scalability of our
framework to high-dimensional inputs and its ability to successfully complement MaxEnt RL.

8

Figure 4: (A) Samples visualizations for learned policies in positional bandits of increasing complexity. (B)
Mean number of reasoning steps required to reach convergence in each task with SSPG. (C) Mean performance
ablating the adaptive strategy for detecting reasoning convergence and using fixed numbers of steps. (D) Number
of reasoning steps throughout training with and without reusing recent actions as initial action-beliefs.

4.2 Properties of serial Markov chain reasoning

We test if theorized benefits of our framework (Sec. 3.5) hold in practical settings with deep networks
and stochastic optimization. We provide further ablation studies and analysis of SSPG in App. E.

1. Policy expressiveness. First, we test the expressiveness of the behavior learned with SSPG using a
Gaussian BT-policy. We design a series of single-step toy RL problems where the agent needs to
position itself on a small 2D environment with a reward function based on unknown goal locations,
which we name positional bandits (see App. C for details). The objective of these experiments
is to isolate how our framework compares with traditional policies for MaxEnt RL to explore the
environments and learn to match the true canonical distributions of returns. As displayed in Fig. 4 A,
even in highly multi-modal positional bandits, the SS-policy successfully learns to visit all relevant
goals with similar frequencies. Furthermore, quantizing the state space around the goals reveals
that the relative RMC intuitively learns to transition between action-beliefs that visit the different
goals as reasoning progresses, with a transition matrix matching a cyclic permutation (App. F). In
comparison, a squashed Gaussian policy expectedly fails to capture the complexity of the canonical
distribution, with samples either collapsing to a single mode or covering large suboptimal parts of
the action space. We also show results for a policy based on normalizing flows [69, 70], modeled
with a deep expressive network (App. C). After several attempts, we find these models require orders
of magnitude more training iterations and data to learn any behavior that is more complex than a
uni-modal distribution. Yet, even after increasing training by a factor of 1000, we still observe the
flow policy distribution collapsing in the more complex positional bandits. We attribute our findings
to training inefficiencies from a lack of proper inductive biases for flow models in the non i.i.d. RL
problem setting [71]. In particular, as flows can assign arbitrarily low probability mass to some
regions of the action space, initial local optima can greatly hinder future exploration, exacerbating
coverage of the data buffer distribution in a vicious circle.

2. Policy adaptivity. Second, we examine the adaptivity of our framework for tackling decision-
making problems with different complexities. We compare the average number of reasoning steps
(N̄) performed by SSPG for each task from Sec. 4.1 (Fig. 4 B). We identify a general correlation
between task difficulty and reasoning computation, with complex robotic manipulation and humanoid
locomotion problems requiring the most steps. By concentrating on two representative tasks, we
validate the effectiveness of the reasoning process and our adaptive convergence detection strategy
with an ablation study where we train SSPG using a fixed number of reasoning steps Nfix 2
{1, dN̄e, d3N̄e}. For the case Nfix = 1, which closely resembles traditional RL, we use double the
UTD ratio to improve performance and offset any training-time gains from multi-step reasoning. As
shown in Fig. 4 C, increasing Nfix yields clear performance improvements, validating that agents
can greatly benefit from performing longer reasoning processes. Furthermore, our adaptive SSPG

9

attains the same performance as Nfix = d3N̄e and visibly outperforms Nfix = dN̄e. These results
show how different action selection problems require different amounts of reasoning computation
and validate the practical effectiveness of our adaptive strategy to detect steady-state convergence.
We obtain analogous findings for additional tasks and values of Nfix in App. F.

3. Solution reuse. Last, we examine the effects of the short-term action memory buffer (Â) to sample
initial action beliefs (a0) in two tasks. We evaluate ablating Â, randomly re-initializing a0 from
a uniform distribution. While there are only minor differences performance-wise between the two
approaches (App. F), sampling a0 from the short-term action memory considerably decreases the
number of reasoning steps for convergence (Fig. 4 D). Moreover, we observe the gap in reasoning
efficiency expands throughout training as the agent’s steady-state behavior further improves for the
target task. This result validates that a simple temporal heuristic can provide considerable efficiency
benefits, amortizing the additional computational cost of our powerful new framework.

5 Related work

There have been several prior attempts to extend ubiquitous Gaussian policies [13, 39, 72, 73]
with simple normalizing flows [69, 70], both to improve expressiveness [74, 75] and to instantiate
behavior hierarchies [76]. Yet, the expressiveness of normalizing flows is coupled with some training
challenges [71], which we show can lead to premature convergence to suboptimal solutions in RL
(Sec. 4.2). Other works also considered entirely replacing policy models with gradient-free [4] or
gradient-based optimization over the predicted values [77]. Marino et al. [62] similarly considered
learning an optimizer to infer Gaussian behavior [28] with iterative amortization [63]. However,
while all these works consider alternative modeling of agent behavior, they are still based on the
traditional RL framework of representing decision-making as the output of a fixed process. Instead,
our work entails a conceptually different approach and enables implicit modeling of agent behavior
as the result of an adaptive reasoning process, orthogonally providing agents also with additional
flexibility to scale computation based on the properties of each individual input state.

Outside RL, there have been efforts to model generation processes with parameterized Markov chains
learned to revert fixed noise injection processes acting on data [78–82]. Based on this framework,
diffusion models [83–85] recently achieved remarkable results for image generation [85, 86]. While
applied to inherently different problem settings, these works share some conceptual resemblances
with our framework and highlight the vast scaling potential of implicit modeling.

6 Conclusion

We introduced serial Markov chain reasoning, a novel framework for modeling agent behavior in
RL with several benefits. We showed our framework allows an agent to 1) learn arbitrary continuous
action distributions, 2) flexibly scale computation based on the complexity of individual action-
selection decisions, and 3) re-use prior solutions to accelerate future reasoning. Hence, we derived
SSPG an off-policy maximum entropy RL algorithm for serial Markov chain reasoning, achieving
state-of-the-art performance on two separate continuous control benchmarks. While for problems with
discrete action spaces simple multinomial policy distributions already provide unlimited expressivity,
we note that the inherent computational adaptivity of our framework could still yield benefits over
traditional fixed policies in these settings. Furthermore, we believe our motivation and early results
provide a strong argument for the future potential of serial Markov chain reasoning, even beyond
off-policy RL and simulation tasks. We provide our implementation for transparency and to facilitate
future extensions at sites.google.com/view/serial-mcr/.

Acknowledgments

We thank Johannes Lutzeyer for providing valuable feedback on an earlier draft of this work. Edoardo
Cetin would like to acknowledge the support from the Engineering and Physical Sciences Research
Council [EP/R513064/1]. Oya Celiktutan would also like to acknowledge the support from the
LISI Project, funded by the Engineering and Physical Sciences Research Council [EP/V010875/1].
Furthermore, we thank Toyota Motor Europe and Toyota Motor Corporation for providing support
towards funding the utilized computational resources.

10

sites.google.com/view/serial-mcr/

References

[1] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[2] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering
chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint
arXiv:1712.01815, 2017.

[3] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik,
Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grand-
master level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):
350–354, 2019.

[4] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang,
Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Qt-opt: Scal-
able deep reinforcement learning for vision-based robotic manipulation. arXiv preprint
arXiv:1806.10293, 2018.

[5] OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew,
Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider,
Nikolas Tezak, Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba,
and Lei Zhang. Solving rubik’s cube with a robot hand. CoRR, abs/1910.07113, 2019.

[6] Alex X Lee, Coline Manon Devin, Yuxiang Zhou, Thomas Lampe, Konstantinos Bousmalis,
Jost Tobias Springenberg, Arunkumar Byravan, Abbas Abdolmaleki, Nimrod Gileadi, David
Khosid, et al. Beyond pick-and-place: Tackling robotic stacking of diverse shapes. In 5th
Annual Conference on Robot Learning, 2021.

[7] Marc G Bellemare, Salvatore Candido, Pablo Samuel Castro, Jun Gong, Marlos C Machado,
Subhodeep Moitra, Sameera S Ponda, and Ziyu Wang. Autonomous navigation of stratospheric
balloons using reinforcement learning. Nature, 588(7836):77–82, 2020.

[8] Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco
Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de Las Casas, et al.
Magnetic control of tokamak plasmas through deep reinforcement learning. Nature, 602(7897):
414–419, 2022.

[9] Amol Mandhane, Anton Zhernov, Maribeth Rauh, Chenjie Gu, Miaosen Wang, Flora Xue,
Wendy Shang, Derek Pang, Rene Claus, Ching-Han Chiang, et al. Muzero with self-
competition for rate control in vp9 video compression. arXiv preprint arXiv:2202.06626,
2022.

[10] Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world rein-
forcement learning. arXiv preprint arXiv:1904.12901, 2019.

[11] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. 2014.

[12] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
arXiv preprint arXiv:1509.02971, 2015.

[13] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer Dy
and Andreas Krause, editors, Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages 1861–1870. PMLR,
10–15 Jul 2018. URL https://proceedings.mlr.press/v80/haarnoja18b.html.

[14] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lilli-
crap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In International conference on machine learning, pages 1928–1937,
2016.

[15] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/
abs/1707.06347.

11

https://proceedings.mlr.press/v80/haarnoja18b.html
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

[16] Karl W Cobbe, Jacob Hilton, Oleg Klimov, and John Schulman. Phasic policy gradient. In
International Conference on Machine Learning, pages 2020–2027. PMLR, 2021.

[17] AR Pike. Stochastic models of choice behaviour: response probabilities and latencies of finite
markov chain systems 1. British Journal of Mathematical and Statistical Psychology, 19(1):
15–32, 1966.

[18] Roger Ratcliff. A theory of memory retrieval. Psychological review, 85(2):59, 1978.
[19] Marius Usher and James L McClelland. The time course of perceptual choice: the leaky,

competing accumulator model. Psychological review, 108(3):550, 2001.
[20] Scott D Brown and Andrew Heathcote. The simplest complete model of choice response time:

Linear ballistic accumulation. Cognitive psychology, 57(3):153–178, 2008.
[21] Joshua I Gold and Michael N Shadlen. Neural computations that underlie decisions about

sensory stimuli. Trends in cognitive sciences, 5(1):10–16, 2001.
[22] Leendert van Maanen, Scott D Brown, Tom Eichele, Eric-Jan Wagenmakers, Tiffany Ho, John

Serences, and Birte U Forstmann. Neural correlates of trial-to-trial fluctuations in response
caution. Journal of Neuroscience, 31(48):17488–17495, 2011.

[23] Sebastian Gluth, Jörg Rieskamp, and Christian Büchel. Deciding when to decide: time-variant
sequential sampling models explain the emergence of value-based decisions in the human
brain. Journal of Neuroscience, 32(31):10686–10698, 2012.

[24] Leendert Van Maanen, Laura Fontanesi, Guy E Hawkins, and Birte U Forstmann. Striatal
activation reflects urgency in perceptual decision making. Neuroimage, 139:294–303, 2016.

[25] Mads Lund Pedersen, Michael J Frank, and Guido Biele. The drift diffusion model as the
choice rule in reinforcement learning. Psychonomic bulletin & review, 24(4):1234–1251, 2017.

[26] Laura Fontanesi, Sebastian Gluth, Mikhail S Spektor, and Jörg Rieskamp. A reinforcement
learning diffusion decision model for value-based decisions. Psychonomic bulletin & review,
26(4):1099–1121, 2019.

[27] Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. 2010.

[28] Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and
review. arXiv preprint arXiv:1805.00909, 2018.

[29] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[30] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite.
arXiv preprint arXiv:1801.00690, 2018.

[31] Richard Bellman. A markovian decision process. Indiana Univ. Math. J., 6:679–684, 1957.
ISSN 0022-2518.

[32] Brian D Ziebart, Andrew Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy
inverse reinforcement learning. 2008.

[33] Hagai Attias. Planning by probabilistic inference. In International Workshop on Artificial
Intelligence and Statistics, pages 9–16. PMLR, 2003.

[34] Emanuel Todorov. General duality between optimal control and estimation. In 2008 47th
IEEE Conference on Decision and Control, pages 4286–4292. IEEE, 2008.

[35] Marc Toussaint and Amos Storkey. Probabilistic inference for solving discrete and continuous
state markov decision processes. In Proceedings of the 23rd international conference on
Machine learning, pages 945–952, 2006.

[36] Brian D Ziebart, J Andrew Bagnell, and Anind K Dey. Modeling interaction via the principle
of maximum causal entropy. In ICML, 2010.

[37] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning
with deep energy-based policies. In International Conference on Machine Learning, pages
1352–1361. PMLR, 2017.

[38] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

12

[39] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan,
Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms
and applications. arXiv preprint arXiv:1812.05905, 2018.

[40] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford
Book, Cambridge, MA, USA, 2018. ISBN 0262039249.

[41] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with
gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

[42] Sahil Sharma, Aravind S Lakshminarayanan, and Balaraman Ravindran. Learning to
repeat: Fine grained action repetition for deep reinforcement learning. arXiv preprint
arXiv:1702.06054, 2017.

[43] Will Dabney, Georg Ostrovski, and André Barreto. Temporally-extended {\epsilon}-greedy
exploration. arXiv preprint arXiv:2006.01782, 2020.

[44] Jeffrey S Rosenthal. Minorization conditions and convergence rates for markov chain monte
carlo. Journal of the American Statistical Association, 90(430):558–566, 1995.

[45] Peter H Baxendale. Renewal theory and computable convergence rates for geometrically
ergodic markov chains. The Annals of Applied Probability, 15(1B):700–738, 2005.

[46] Christophe Andrieu, Gersende Fort, and Matti Vihola. Quantitative convergence rates for
subgeometric markov chains. Journal of Applied Probability, 52(2):391–404, 2015.

[47] Mary Kathryn Cowles and Bradley P Carlin. Markov chain monte carlo convergence diagnos-
tics: a comparative review. Journal of the American Statistical Association, 91(434):883–904,
1996.

[48] Stephen P Brooks and Gareth O Roberts. Assessing convergence of markov chain monte carlo
algorithms. Statistics and Computing, 8(4):319–335, 1998.

[49] Vivekananda Roy. Convergence diagnostics for markov chain monte carlo. Annual Review of
Statistics and Its Application, 7:387–412, 2020.

[50] Andrew Gelman and Donald B Rubin. Inference from iterative simulation using multiple
sequences. Statistical science, 7(4):457–472, 1992.

[51] Stephen P Brooks and Andrew Gelman. General methods for monitoring convergence of
iterative simulations. Journal of computational and graphical statistics, 7(4):434–455, 1998.

[52] Dootika Vats and Christina Knudson. Revisiting the gelman–rubin diagnostic. Statistical
Science, 36(4):518–529, 2021.

[53] D Michael Titterington, Smith Afm, Adrian FM Smith, UE Makov, et al. Statistical analysis
of finite mixture distributions, volume 198. John Wiley & Sons Incorporated, 1985.

[54] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[55] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc
Bellemare. Deep reinforcement learning at the edge of the statistical precipice. Advances in
Neural Information Processing Systems, 34, 2021.

[56] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026–5033, 2012. doi: 10.1109/IROS.2012.6386109.

[57] Elizabeth D Dolan and Jorge J Moré. Benchmarking optimization software with performance
profiles. Mathematical programming, 91(2):201–213, 2002.

[58] H. B. Mann and D. R. Whitney. On a Test of Whether one of Two Random Variables
is Stochastically Larger than the Other. The Annals of Mathematical Statistics, 18(1):50
– 60, 1947. doi: 10.1214/aoms/1177730491. URL https://doi.org/10.1214/aoms/
1177730491.

[59] Bradley Efron. Bootstrap methods: another look at the jackknife. In Breakthroughs in statistics,
pages 569–593. Springer, 1992.

[60] Xinyue Chen, Che Wang, Zijian Zhou, and Keith Ross. Randomized ensembled double
q-learning: Learning fast without a model. arXiv preprint arXiv:2101.05982, 2021.

13

https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1214/aoms/1177730491

[61] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model:
Model-based policy optimization. In Advances in Neural Information Processing Systems.
2019.

[62] Joseph Marino, Alexandre Piché, Alessandro Davide Ialongo, and Yisong Yue. Iterative
amortized policy optimization. Advances in Neural Information Processing Systems, 34, 2021.

[63] Joe Marino, Yisong Yue, and Stephan Mandt. Iterative amortized inference. In International
Conference on Machine Learning, pages 3403–3412. PMLR, 2018.

[64] Xavier Bouthillier, Pierre Delaunay, Mirko Bronzi, Assya Trofimov, Brennan Nichyporuk,
Justin Szeto, Nazanin Mohammadi Sepahvand, Edward Raff, Kanika Madan, Vikram Voleti,
et al. Accounting for variance in machine learning benchmarks. Proceedings of Machine
Learning and Systems, 3:747–769, 2021.

[65] Rotem Dror, Segev Shlomov, and Roi Reichart. Deep dominance-how to properly compare
deep neural models. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 2773–2785, 2019.

[66] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous
control: Improved data-augmented reinforcement learning. In International Conference
on Learning Representations, 2022. URL https://openreview.net/forum?id=_SJ-_
yyes8.

[67] Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regu-
larizing deep reinforcement learning from pixels. In International Conference on Learning
Representations. 2021.

[68] Michael Laskin, Aravind Srinivas, and Pieter Abbeel. CURL: Contrastive unsupervised
representations for reinforcement learning. In Proceedings of the 37th International Conference
on Machine Learning, 2020.

[69] Esteban G Tabak and Cristina V Turner. A family of nonparametric density estimation
algorithms. Communications on Pure and Applied Mathematics, 66(2):145–164, 2013.

[70] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp.
arXiv preprint arXiv:1605.08803, 2016.

[71] Ivan Kobyzev, Simon JD Prince, and Marcus A Brubaker. Normalizing flows: An introduction
and review of current methods. IEEE transactions on pattern analysis and machine intelligence,
43(11):3964–3979, 2020.

[72] Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and
Martin Riedmiller. Maximum a posteriori policy optimisation. In International Conference on
Learning Representations, 2018.

[73] Alex X Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic latent
actor-critic: Deep reinforcement learning with a latent variable model. arXiv preprint
arXiv:1907.00953, 2019.

[74] Yunhao Tang and Shipra Agrawal. Boosting trust region policy optimization by normalizing
flows policy. arXiv preprint arXiv:1809.10326, 2018.

[75] Bogdan Mazoure, Thang Doan, Audrey Durand, Joelle Pineau, and R Devon Hjelm. Leveraging
exploration in off-policy algorithms via normalizing flows. In Conference on Robot Learning,
pages 430–444. PMLR, 2020.

[76] Tuomas Haarnoja, Kristian Hartikainen, Pieter Abbeel, and Sergey Levine. Latent space
policies for hierarchical reinforcement learning. In International Conference on Machine
Learning, pages 1851–1860. PMLR, 2018.

[77] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning
with deep energy-based policies. In International Conference on Machine Learning, pages
1352–1361. PMLR, 2017.

[78] Yoshua Bengio, Li Yao, Guillaume Alain, and Pascal Vincent. Generalized denoising auto-
encoders as generative models. Advances in neural information processing systems, 26,
2013.

[79] Guillaume Alain, Yoshua Bengio, Li Yao, Jason Yosinski, Eric Thibodeau-Laufer, Saizheng
Zhang, and Pascal Vincent. Gsns: generative stochastic networks. Information and Inference:
A Journal of the IMA, 5(2):210–249, 2016.

14

https://openreview.net/forum?id=_SJ-_yyes8
https://openreview.net/forum?id=_SJ-_yyes8

[80] Florian Bordes, Sina Honari, and Pascal Vincent. Learning to generate samples from noise
through infusion training. arXiv preprint arXiv:1703.06975, 2017.

[81] Anirudh Goyal, Nan Rosemary Ke, Surya Ganguli, and Yoshua Bengio. Variational walkback:
Learning a transition operator as a stochastic recurrent net. Advances in Neural Information
Processing Systems, 30, 2017.

[82] Erik Nijkamp, Mitch Hill, Song-Chun Zhu, and Ying Nian Wu. Learning non-convergent
non-persistent short-run mcmc toward energy-based model. Advances in Neural Information
Processing Systems, 32, 2019.

[83] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep un-
supervised learning using nonequilibrium thermodynamics. In International Conference on
Machine Learning, pages 2256–2265. PMLR, 2015.

[84] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. Advances in Neural Information Processing Systems, 32, 2019.

[85] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in Neural Information Processing Systems, 33:6840–6851, 2020.

[86] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in Neural Information Processing Systems, 34, 2021.

[87] Steven Orey. Limit theorems for Markov chain transition probabilities. van Nostrand London,
1971.

[88] Esa Nummelin. General irreducible Markov chains and non-negative operators. Number 83.
Cambridge University Press, 2004.

[89] Gareth O Roberts and Jeffrey S Rosenthal. Small and pseudo-small sets for markov chains.
Stochastic Models, 17(2):121–145, 2001.

[90] Esa Nummelin. General irreducible Markov chains and non-negative operators. Number 83.
Cambridge University Press, 2004.

[91] G Ch Pflug. Gradient estimates for the performance of markov chains and discrete event
processes. Annals of Operations Research, 39(1):173–194, 1992.

[92] Bernd Heidergott, Arie Hordijk, and Heinz Weisshaupt. Measure-valued differentiation for
stationary markov chains. Mathematics of Operations Research, 31(1):154–172, 2006.

[93] Tom Rainforth, Rob Cornish, Hongseok Yang, Andrew Warrington, and Frank Wood. On
nesting monte carlo estimators. In International Conference on Machine Learning, pages
4267–4276. PMLR, 2018.

[94] Don McLeish. A general method for debiasing a monte carlo estimator. Monte Carlo methods
and applications, 17(4):301–315, 2011.

[95] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):
436–444, 2015.

[96] Vassili Nestoridis and Vangelis Stefanopoulos. Universal series and approximate identities.
Technical report, Technical Report TR-28-2007, Department of Mathematics and Statistics . . . ,
2007.

[97] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[98] Edoardo Cetin and Oya Celiktutan. Learning pessimism for robust and efficient off-policy
reinforcement learning. arXiv preprint arXiv:2110.03375, 2021.

[99] Johan Bjorck, Carla P Gomes, and Kilian Q Weinberger. Towards deeper deep reinforcement
learning. arXiv preprint arXiv:2106.01151, 2021.

[100] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error
in actor-critic methods. In ICML, pages 1582–1591, 2018. URL http://proceedings.mlr.
press/v80/fujimoto18a.html.

[101] Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling.
Improved variational inference with inverse autoregressive flow. Advances in neural informa-
tion processing systems, 29, 2016.

15

http://proceedings.mlr.press/v80/fujimoto18a.html
http://proceedings.mlr.press/v80/fujimoto18a.html

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See Section 3 for the derivation of our new framework
and Section 4 for empirical evaluation.

(b) Did you describe the limitations of your work? [Yes] We describe limitations related to
our implementation in Sections B and C of the Appendix. We also discuss limitations
related to computational costs in Section D of the Appendix.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See
Section G of the Appendix.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] See Section A of the

Appendix.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] We include code
and instructions in the supplementary material of our submission. We will provide a link
to our open-sourced implementation at sites.google.com/view/serial-mcr/.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section C of the Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section D of the Appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] We include the licenses with the

supplementary material.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

16

sites.google.com/view/serial-mcr/

	Introduction
	Background
	Reinforcement learning problem
	Maximum entropy reinforcement learning and inference

	Policy Gradient with serial reasoning
	Reasoning as a Markov chain
	Learning the belief transition policy
	Action selection and temporal consistency
	Detecting convergence to the steady-state policy
	Advantages of serial Markov chain reasoning

	Experimentation
	Performance evaluation
	Properties of serial Markov chain reasoning

	Related work
	Conclusion
	Proofs and extensions
	Lemma 3.1, steady-state convergence
	Theorem 3.2, steady-state policy gradient
	Policy gradient estimation for arbitrary regularized objectives
	Unlimited expressivity

	Convergence detection
	Implementations details
	OpenAI Gym Mujoco
	DeepMind Control
	Positional bandits
	Other considerations

	Extended evaluation results
	OpenAI Gym Mujoco
	DeepMind Control
	Comparison with normalizing flows
	Computational requirements
	Analysis of the cost of acting during deployment

	Ablations and parameter studies
	Loss backpropagation
	Initial action beliefs
	Short term action memory buffer size

	Additional supporting analysis results
	Positional bandits quantized transition probabilities
	Reasoning with fixed action beliefs
	Effects of short-term action memory buffer

	Societal impact

