
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FREDNORMER : FREQUENCY DOMAIN NORMALIZA-
TION FOR NON-STATIONARY TIME SERIES FORECAST-
ING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent normalization-based methods have shown great success in tackling the
distribution shift issue, facilitating non-stationary time series forecasting. Since
these methods operate in the time domain, they may fail to fully capture the
dynamic patterns that are more apparent in the frequency domain, leading to
suboptimal results. This paper first theoretically analyzes how normalization
methods affect frequency components. We prove that the current normaliza-
tion methods that operate in the time domain uniformly scale non-zero frequen-
cies. Thus, they struggle to determine components that contribute to more ro-
bust forecasting. Therefore, we propose FredNormer, which observes datasets
from a frequency perspective and adaptively up-weights the key frequency com-
ponents. To this end, FredNormer consists of two components: a statisti-
cal metric that normalizes the input samples based on their frequency stabil-
ity and a learnable weighting layer that adjusts stability and introduces sample-
specific variations. Notably, FredNormer is a plug-and-play module, which
does not compromise the efficiency compared to existing normalization meth-
ods. Extensive experiments show that FredNormer improves the averaged MSE
of backbone forecasting models by 33.3% and 55.3% on the ETTm2 dataset.
Compared to the baseline normalization methods, FredNormer achieves 18
top-1 results and 6 top-2 results out of 28 settings. Our code is available at:
https://anonymous.4open.science/r/ICLR2025-13956-8F84

1 INTRODUCTION

Deep learning models have demonstrated significant success in time series forecasting (Moosavi
et al., 2019; Zhou et al., 2021; Wu et al., 2021; M. et al., 2022; Nie et al., 2023; Zhang & Yan, 2023;
Liu et al., 2024b). These models aim to extract diverse and informative patterns from historical
observations to enhance the accuracy of future time series predictions. To achieve accurate time
series predictions, a key challenge is that time series data derived from numerous real-world systems
exhibit dynamic and evolving patterns, i.e., a phenomenon known as non-stationarity (Stoica et al.,
2005; Box et al., 2015; Xie et al., 2018; Rhif et al., 2019). This characteristic typically results in
discrepancies among training, testing, and future unseen data distributions. Consequently, the non-
stationary characteristics of time series data necessitate the development of forecasting models that
are robust to such temporal shifts in data distribution, while failing to address this challenge often
leads to representation degradation and compromised model generalization (Kim et al., 2021; Du
et al., 2021; Lu et al., 2023).

A recent fashion to tackle the above-mentioned distribution shift issue is leveraging plug-and-play
normalization methods (Kim et al., 2021; Fan et al., 2023; Liu et al., 2023b; Han et al., 2024). These
methods typically normalize the input time series to a unified distribution, removing non-stationarity
explicitly to reduce discrepancies in data distributions. During the forecasting stage, a denormaliza-
tion is applied, reintroducing the distribution statistics information to the data. This step ensures the
forecasting results are accurate while reflecting the inherent variability and fluctuation in the time
series, enhancing generalization. Since they focus on scaling the inputs and outputs, these methods
function as “model-friendly modules” that could be easily integrated into various forecasting models
without any transformation. However, existing works still face several challenges.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) Time domain normalization
results in a compact distribution

(b) Normalization unformly scale
amplitudes of non-zero frequencies

Figure 1: How does z-score normalization affect the frequency amplitudes? (a) Normalization in the
time domain compresses the variability of the data, leading to a more compact distribution. (b) The
amplitudes of non-zero frequencies are just uniformly scaled after normalization.

(1) Existing methods model non-stationary in the time domain that may not fully capture dynamic
and evolving patterns in time series. Conceptually, a series of time observations is considered a
complex set of waves that varies over time (Proakis & Manolakis, 1996). These temporal variations,
manifested as various frequency waves, are intermixed in the real world (He et al., 2023; Wu et al.,
2023; Piao et al., 2024). Modeling solely in the time domain struggles to distinguish between dif-
ferent frequency components within superimposed time series, resulting in entangled patterns and
sub-optimal performance. Recent works have shown that explicitly modeling frequency can enhance
representation quality and forecasting accuracy (Yi et al., 2023; Zhang et al., 2024; Piao et al., 2024).
(2) Existing methods primarily rely on z-score normalization to rescale the input distribution. How-
ever, as illustrated in Figure 1, this normalization applies uniform scaling across all frequency com-
ponents, which leaves frequency-specific patterns unaltered. Such uniform scaling may reduce dis-
tributional differences across frequencies, potentially obscuring important time-invariant features
crucial for generalization to unseen time series.

To tackle the challenges above, this paper proposes a novel solution for the distribution shift issue in
time series forecasting by modeling the non-stationarity in the frequency domain. We first investigate
why time-domain normalization does not provide significant benefits for capturing dynamics in
frequencies and theoretically prove our findings. We then propose FredNormer based on the
insight we have gained. Specifically, FredNormer learns time-invariant frequency components,
termed stable frequencies, to suppress non-stationary for robust forecasting. Finally, we propose a
new normalization metric tailored for quantifying the importance or stability of frequencies. Since
FredNormer operates only on the input time series, it is plug-and-play, making it easily adaptable
to various forecasting models and complementary to existing normalization methods.

Contributions and Novelty. FredNormer tackles the aforementioned two challenges as follows:
(1) We first transform the input time series data from the time domain to the spectral domain and
extract the statistical significance of frequencies across training sets. We then propose a linear pro-
jection to capture data-specific properties, which adjusts the statistical significance used to weight
the spectrum. The processed time series data, which carries more stable components while filter-
ing out non-stationary elements, is finally used as input for the forecasting models. (2) To quantify
frequency significance, we propose a stability metric based on the well-known Coefficient of Vari-
ation (CV) (Aja-Fernández & Alberola-López, 2006; Jalilibal et al., 2021). It computes the ratio
between the mean and variance of frequency amplitude, providing a relative measure (scaling) of
variability rather than the absolute scaling/rescaling (Reed et al., 2002; Abdi, 2010). In summary,
our contributions lie in:
• Theoretical Analysis. We theoretically analyze how normalization-based methods function in the

frequency domain and why they fail to suppress non-stationary frequencies.
• Novel Problem Formulation. We are the first to investigate a frequency-based module to tackle

the distributional issue in non-stationary time series. Hence, we formulate a key research question
in this paper: How can we effectively capture stable frequencies to support robust forecasting?

• Simple, Efficient, Model-Agnostic Method. We propose FredNormer, which explicitly learns
the statistical significance of frequencies using a new stability metric. Only simple linear projec-
tion layers with a few parameters need learning and tuning.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

We apply FredNormer to different forecasting models to validate its effectiveness across various
datasets. Overall, in non-stationary datasets, such as Traffic, we improved PatchTST and iTrans-
former by 33.3% and 55.3%, respectively. FredNormer achieved 18 top-1 results and 6 top-2
results out of 28 settings compared to the baselines and outperformed the SOTA normalization
method, with speed improvements ranging from 60% to 70% in 16 out of 28 settings.

Notations. Vectors and matrices are denoted by lowercase and uppercase boldface letters, re-
spectively (e.g., x, X). We consider a training dataset with N labeled samples consisting of L
timestamps of past observations and H timestamps of future data. The Discrete Fourier Trans-
form (DFT) of a time series X is represented by the coefficient matrix F ∈ RL: F(k) =∑L−1

t=0 x(t)e−j
2π
L kt, for k = 0, 1, . . . , L−1. The amplitude matrix A of a time series X is defined

as A =
[∣∣∣∑L−1

t=0 x(t)e−j
2π
L kt

∣∣∣]L−1
k=0

, where | · | represents the 2-norm of the DFT coefficients. The

indicator function 1{k = 0} equals 1 if k does not equal 0, and 0 otherwise. µ(·) and δ(·) represent
the mean and the standard deviation, respectively.

2 PROBLEM FORMULATION

In this section, we first define frequency stability and then investigate how normalization in the time
domain affects the frequency domain and its influences. Finally, we formulate the research question.

Definition 1 (Frequency Stability). Given a training set containing N samples, we define the sta-
tistical stability of the k-th component as the reciprocal of the Coefficient of Variation γ:

S(k) :=
1

γ(A(k))
=

µ(A(k))

σ(A(k))
(1)

where µ(A(k)) = 1
N

∑N
i=1 A

i(k) and σ(A(k)) =
√

1
N

∑N
i=1 (A

i(k)− µ(A(k)))
2 are the mean

and standard deviation of the amplitude across the training set.

S(k) measures the statistical significance of each frequency across the dataset. A frequency compo-
nent with higher stability denotes lower relative variability, i.e., more stable; otherwise, it is consid-
ered unstable. All stable components are included in the subset O.

Definition 2 (Stable Frequency Subset). Given K − 1 non-zero frequencies, a subset O =
{1, . . . ,M}, where M ≪ K, contains M components with higher stability S(k).

Definition 3 (Linearity of Fourier Transform.) For any functions f1 and f2, and constants a and b,
the Fourier Transform F satisfies:

F(af1 + bf2) = aF(f1) + bF(f2) (2)

Thus, we investigate the variations of O (Def. 2) before and after z-score normalization in the
time domain. Meanwhile, the linearity property (Def. 3) allows us to map this normalization to its
corresponding operations in the frequency domain.

Lemma 1 Normalization in the time domain uniformly scales non-zero frequency components.

Proof 1. For a normalized time series Xz(t) =
X(t)−µ(X)

σ(X) , a Fourier transform F(·) is applied by:

F(Xz(t)) = F(
X(t)− µ(X)

σ(X)
) =

1

σ(X)
(F(X(t))− µ(X)1{k = 0}) (by linearity, Def. 3)

(3)

The left item F(X(t)) is the Fourier Transform of X. Since µ(X) is a constant, the resulted Fourier
transformation can be represented by µ(X)1{k = 0}, where 1{k = 0} is an indicator function, that
is, for k ̸= 0, 1{k = 0} = 0. Then for the non-zero frequencies (k ̸= 0),

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

PatchTST
DLinear

etc.

Forecasting
models

DFT

IDFT

Frequency domain
modelingFrequency

Stability

Weighting layer

(b)(a)

A A

F F F

A

Unstable ComponentsStable Components

Figure 2: (a) Frequency variations across a sequence of time series samples. The red bar denotes the
unstable frequency components, while stable ones are in gray. (b) An overview of FredNormer.

F(Xz(t)) =
1

σ(X)
(F(X(t))− µ(X) · 0) = 1

σ(X)
F(X(t)) for k ̸= 0 (4)

Here, the amplitudes of the non-zero frequency components are scaled by 1
σ(X) :

|Az(k)| =
1

σ(X)
|A(k)|, for k ̸= 0 (5)

Here, A is the amplitudes of frequencies. Its definition can be found in Notation in Section 1.
Thus, normalization uniformly scales all non-zero frequency components in the frequency domain.
A more detailed proof of Lemma 1 can be found in Appendix A.1.

Theorem 1 (The proportion of O to the spectrum is unchanged after normalization).

The energy proportion of O in the spectrum is defined by the sum of the amplitudes divided by the
energy of the entire spectrum. Then if Lemma 1 holds, we have:∑

k∈O |Az(k)|∑K−1
k=1 |Az(k)|

=

∑
k∈O |A(k)|∑K−1
k=1 |A(k)|

(6)

The left and right items represent the ratio after and before normalization, respectively. As shown,
this ratio remains the same. A proof of Theorem 1 can be found in Appendix A.2.

Remark. Since Theorem 1 holds, the normalization operation keeps the proportion unchanged. The
stable components in O are often intermixed with unstable components in the time series data. This
makes forecasting models struggle to distinguish between stable and unstable components, resulting
in entangled patterns and sub-optimal performance (Elvander & Jakobsson, 2020; Piao et al., 2024).
This motivates us to increase the weights of stable components and suppress unstable ones. In this
paper, we aim to learn a frequency-based method for assigning higher weights to stable components
and improving forecasting performance for future data.

Problem 1 (Enhancing stable components for better generalization). Given a time series dataset
with stable frequency components O, our goal is to develop a module f(·) that dynamically adjusts
O, or the amplitudes, increasing the energy proportion to the spectrum:

f(A(k)) := w(k) ·A(k), where w(k1) > w(k2), for k1 ∈ O and k2 /∈ O.

Here w(·) represents the weighting function. In this paper, we assume w(·) should have two proper-
ties: (i) extracting the statistical significance of frequencies across samples in the training set; (ii)
capturing data-specific properties to adjust the statistical significance.

3 METHOD: FREDNORMER

In this section, we present FredNormer (as shown in Figure 2), which consists of two components:
(i) a frequency stability measure, and (ii) a frequency stability weighting layer, followed by:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Frequency Stability Measure
1: input: train loader contains N samples
2: for each sample X(i) in train loader do
3: A(i) ← |FFT(X(i))|
4: sum(A)← sum(A) +

∑
k A(i)(k)

5: sum(A2)← sum(A2) +
∑

k

(
A(i)(k)

)2

6: end for
7: µ(A)← sum(A)/N

8: σ(A)←
√

(sum(A2)/N − µ(A)2 + 10−5)

9: S ← µ(A)/(σ(A) + 10−5)
10: return S

Algorithm 2 Frequency Stability Weighting
1: input: stability S and sample X
2: X ← 1D-difference(X)
3: F ← DFT(X)
4: for k = 1 to K − 1 do
5: Wr(k), Br(k)← linear r(S)
6: Wi(k), Bi(k)← linear i(S)
7: Freal(k)← F.real(k) ◦Wr(k) + Br(k)
8: Fimag(k)← F.imag(k) ◦Wi(k) + Bi(k)

9: end for
10: Fweighted ← complex(Freal, Fimag)

11: X′ ← IDFT(Fweighted).real

12: return X′

• First, we compute the frequency stability, defined in Definition 1, for a given time series dataset.
The output is a statistical measure that can be tuned for different data scenarios.

• Second, the input time series is transformed into the frequency spectrum using the DFT.
• Third, during the training phase, a learnable linear projection adjusts the frequency stability mea-

sure for the spectrum to introduce sample-specific variation, increasing distributional diversity.
• Finally, FredNormer transforms the adjusted frequency spectrum back into the time domain

using the Inverse-DFT (IDFT) that serves as input for subsequent various forecasting models.

The detailed workflows, including two key components, are presented in Algorithms 1 and 2.

Frequency Stability Measure. Given a training set contains N time series samples X = {X(i)}Ni=1,
we first apply the DFT to each sample X(i) ∈ RL×C to transform it into A(i) ∈ RK×C . Here, K
is the number of frequency components, and C denotes the number of channels. The frequency
stability measure S(k) ∈ RK×C is then applied:

S(k) =
µ(A(k))

σ(A(k))
=

1
N

∑N
i=1 A(k)(i)√

1
N

∑N
i=1

(
A(k)(i) − µ(A(k))

)2 (7)

where µ(A(k)) ∈ RK×C and σ(A(k)) ∈ RK×C . A larger µ(·) indicates a higher energy proportion
in the spectrum, while a higher σ(·) denotes greater sample dispersion. S has two key properties:

• It captures the distribution of each frequency component across the entire training set. This allows
the forecasting model to learn the overall stability of each component across different samples.

• S is a dimensionless measure that allows for a fair comparison between different frequency com-
ponents, thus avoiding uniform frequency scaling, as defined in Theorem 1.

Frequency Stability Weighting Layer. Given the input multivariate time series data X ∈ RL×C ,
we first apply a 1-D differencing operation to smooth the data and then transform X into the spec-
trum, decomposing it into the DFT coefficients:

F(k, c) =

L−1∑
l=0

∆(X(l, c)) · e−2πikn/L, k = 0, 1, . . . ,K − 1 (8)

where ∆(·) denotes the differencing operation, and two matrices are produced, representing the real
and imaginary parts, (Fr,Fi), formulated as:

Fr(k, c) =

L−1∑
l=0

X(l, c) · cos
(
2πkn

L

)
Fi(k, c) = −

L−1∑
l=0

X(l, c) · sin
(
2πkn

L

)
(9)

Next, we apply two linear projections to S to the real and imaginary parts separately:

F′r = Fr ⊙ (S×Wr +Br) , F′i = Fi ⊙ (S×Wi +Bi) , (10)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where Wr and Wi ∈ RK×1 denote weight matrices for the Fr and Fi, respectively. Br,Bi ∈
RK are bias vectors, and ⊙ denotes Hadamard product. We handle the real and imaginary parts
with separate networks because they correspond to different basis functions, allowing us to capture
diverse temporal dynamics (Zhang et al., 2024; Piao et al., 2024). Finally, we transform (Fr,Fi),
with enhanced stable frequency components, back into the time domain by:

X′(l, c) =

K−1∑
k=0

(
F′r(k, c) · cos

(
2πkl

L

)
− F′i(k, c) · sin

(
2πkl

L

))
(11)

where X′, with the same size as X ∈ RL×C , serves as the input for various forecasting models.

4 EXPERIMENTS

Table 1: Multivariate forecasting results (average) with forecasting lengths H ∈ {96, 192, 336, 720}
for all datasets and fixed input sequence length L = 96.

Models PatchTST (Nie et al., 2023) iTransformer (Liu et al., 2024b)
Methods + Ours Ori + Ours Ori
Metric MSE MAE MSE MAE MSE MAE MSE MAE

Electricity 0.197 ± 0.027 0.296 ± 0.033 0.218 ± 0.31 0.307 ± 0.032 0.169 ± 0.035 0.262 ± 0.041 0.179 ± 0.28 0.279 ± 0.046

ETTh1 0.438 ± 0.024 0.437 ± 0.035 0.480 ± 0.037 0.481 ± 0.031 0.445 ± 0.017 0.443 ± 0.026 0.511 ± 0.033 0.496 ± 0.036

ETTh2 0.379 ± 0.032 0.380 ± 0.038 0.604 ± 0.130 0.524 ± 0.027 0.376 ± 0.041 0.400 ± 0.057 0.813 ± 0.134 0.666 ± 0.072

ETTm1 0.390 ± 0.027 0.398 ± 0.025 0.419 ± 0.055 0.432 ± 0.047 0.396 ± 0.026 0.406 ± 0.056 0.447 ± 0.026 0.457 ± 0.061

ETTm2 0.280 ± 0.032 0.325 ± 0.031 0.420 ± 0.035 0.424 ± 0.044 0.283 ± 0.020 0.327 ± 0.026 0.633 ± 0.055 0.489 ± 0.041

Traffic 0.427 ± 0.029 0.285 ± 0.025 0.619 ± 0.077 0.365 ± 0.029 0.424 ± 0.031 0.282 ± 0.027 0.576 ± 0.069 0.372 ± 0.035

Weather 0.251 ± 0.019 0.276 ± 0.017 0.255 ± 0.021 0.312 ± 0.031 0.246 ± 0.023 0.274 ± 0.017 0.274 ± 0.029 0.320 ± 0.041

4.1 EXPERIMENTAL SETTINGS

Datasets. We conducted experiments on seven public time series datasets, including Weather, four
ETT repositories (ETTh1, ETTh2, ETTm1, ETTm2), Electricity (ECL), and Traffic dataset. For ex-
ample, the Electricity dataset includes the hourly electricity consumption record in 321 households.
All datasets are available in (Liu et al., 2024b) .

Baselines. We selected RevIN (Kim et al., 2021) and SAN (Liu et al., 2023b) as our baselines.

• RevIN is widely used as a fundamental module in various forecasting models, including PatchTST
(Nie et al., 2023), Crossformer (Zhang & Yan, 2023), iTransformer (Liu et al., 2024b), Fredformer
(Piao et al., 2024), among others (Wang et al., 2024).

• SAN (Liu et al., 2023b) is the new state-of-the-art (SOTA) method, outperforming several non-
stationary forecasting modules (Kim et al., 2021; Fan et al., 2023) and models (Liu et al., 2022b).

Backbones and Setup. For fair comparisons, we selected three forecasting models, including DLin-
ear (Zeng et al., 2023), PatchTST (Nie et al., 2023), and iTransformer (Liu et al., 2024b), as the back-
bone, and deployed all three modules (FredNormer, RevIN, and SAN) for evaluation. DLinear is
a simple yet efficient forecasting model with an architecture solely involving MLPs. PatchTST and
iTransformer are two well-known Transformer methods that frequently serve as baselines in various
forecasting research (Liu et al., 2024b;a; Piao et al., 2024; Zhang et al., 2024). We followed the
implementation and setup provided in (Liu et al., 2023b)1 and (Liu et al., 2024b)2.

Experiments Details. We used mean squared error (MSE) and mean absolute error (MAE) as
the evaluation metrics, where lower values indicate better performance. All experiments were im-
plemented on a single NVIDIA RTX A6000 48GB GPU with CUDA V12.4. More details of the
datasets are in Appendix B.1, the baselines are in B.2, the backbones and setup are in B.3, and other
details of the experiments are in B.4.

1https://github.com/icantnamemyself/SAN
2https://github.com/thuml/Time-Series-Library

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Multivariate forecasting results (average) with H ∈ {96, 192, 336, 720} for all datasets
and fixed input sequence length L = 96. The best and second best results are highlighted. Ours*
represents the results where both FredNormer and SAN are used in the backbones.

Models MLP-based (DLinear(Zeng et al., 2023)) Transformer-based (iTransformer(Liu et al., 2024b))
Methods + Ours* + Ours +SAN + RevIN + Ours* + Ours +SAN + RevIN
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Electricity 0.161 0.257 0.168 0.262 0.163 0.260 0.225 0.316 0.175 0.273 0.169 0.262 0.195 0.283 0.205 0.272

ETTh1 0.413 0.424 0.407 0.419 0.421 0.427 0.460 0.456 0.455 0.449 0.445 0.443 0.466 0.455 0.463 0.452

ETTh2 0.339 0.384 0.337 0.384 0.342 0.387 0.561 0.518 0.378 0.408 0.376 0.400 0.392 0.413 0.385 0.412

ETTm1 0.341 0.372 0.357 0.375 0.344 0.376 0.413 0.407 0.389 0.398 0.396 0.406 0.401 0.406 0.406 0.410

ETTm2 0.255 0.316 0.256 0.313 0.260 0.318 0.350 0.413 0.285 0.334 0.283 0.327 0.287 0.336 0.294 0.337

Traffic 0.432 0.297 0.430 0.291 0.440 0.302 0.624 0.383 0.459 0.313 0.424 0.282 0.520 0.341 0.430 0.312

Weather 0.224 0.271 0.237 0.272 0.227 0.276 0.265 0.317 0.244 0.282 0.246 0.274 0.247 0.291 0.263 0.288

Count 4 4 3 4 0 0 0 0 2 1 5 6 0 0 0 0

Table 3: Detailed results of three selected datasets with H ∈ {96, 192, 336, 720} and input sequence
length L ∈ {96, 336}. The best and second best results are highlighted. Ours* represents the results
where both FredNormer and SAN are used in the backbones.

Models DLinear (Zeng et al., 2023) iTransformer (Liu et al., 2024b)
Methods + Ours* + Ours + SAN + RevIN + Ours* + Ours + SAN + RevIN
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
le

ct
ri

ci
ty 96 0.135 0.230 0.140 0.237 0.137 0.234 0.210 0.278 0.145 0.244 0.143 0.237 0.171 0.262 0.152 0.251

192 0.149 0.245 0.155 0.249 0.151 0.247 0.210 0.304 0.169 0.266 0.159 0.252 0.180 0.270 0.264 0.255
336 0.165 0.262 0.171 0.267 0.166 0.264 0.223 0.309 0.178 0.271 0.172 0.266 0.194 0.284 0.180 0.272
720 0.198 0.291 0.208 0.298 0.201 0.295 0.257 0.349 0.210 0.311 0.205 0.295 0.237 0.319 0.227 0.312

E
T

T
h1

96 0.375 0.398 0.371 0.392 0.383 0.399 0.396 0.410 0.380 0.400 0.389 0.404 0.398 0.411 0.394 0.409
192 0.410 0.417 0.404 0.412 0.419 0.419 0.445 0.440 0.429 0.427 0.447 0.440 0.438 0.435 0.460 0.449
336 0.430 0.427 0.426 0.426 0.437 0.432 0.487 0.465 0.479 0.451 0.492 0.463 0.481 0.456 0.501 0.475
720 0.437 0.455 0.428 0.448 0.446 0.459 0.512 0.510 0.491 0.471 0.496 0.482 0.528 0.502 0.521 0.504

Tr
af

fic

96 0.410 0.286 0.408 0.277 0.412 0.288 0.648 0.396 0.400 0.271 0.394 0.268 0.502 0.329 0.401 0.277
192 0.427 0.288 0.422 0.283 0.429 0.297 0.598 0.370 0.470 0.319 0.413 0.277 0.490 0.331 0.421 0.282
336 0.439 0.305 0.436 0.295 0.445 0.306 0.605 0.373 0.489 0.333 0.428 0.283 0.512 0.341 0.434 0.389
720 0.454 0.311 0.455 0.311 0.474 0.319 0.645 0.395 0.478 0.330 0.463 0.301 0.576 0.364 0.465 0.302

4.2 RESULTS

Main Results. Table 1 presents the overall forecasting results using iTransformer and PatchTST as
the backbone across seven datasets. We set the forecasting lengths as H ∈ {96, 192, 336, 720}, with
the input sequence length L = 96. Here, we present the averaged MSE and MAE over four fore-
casting lengths. We combine our module with a z-score normalization-denormalization operation in
all experiments. Obviously, applying FredNormer consistently improved the performance of the
backbone models across all datasets, as shown in all bold results. More importantly, in datasets with
complex frequency characteristics, such as ETTm2, FredNormer improves PatchTST and iTrans-
former by 33.3% (0.420 → 0.280) and 55.3% (0.633 → 0.283), respectively. This improvement is
attributed to giving higher weights to stable frequency components, allowing them to dominate the
adjusted input time series.

Comparison with Baseline Normalization Methods. Table 2 presents the average comparison
results between FredNormer and the baseline normalization methods, i.e., RevIN and SAN. We
use the same parameters and forecasting length as in Table 1. For iTransformer, the input sequence
length is L = 96, and L = 336 for DLinear. As shown, FredNormer (denoted as ”Ours” in the
table) achieves 18 top-1 results and 6 top-2 results out of 28 settings. For instance, n the ETTh1
dataset, FredNormer improves the MSE values for DLinear and iTransformer to 0.407 and 0.445,
outperforming RevIN (0.460 and 0.463) and SAN (0.421 and 0.466). Similarly, in the Traffic
dataset, FredNormer improves the MSE value to 0.430, compared to RevIN (0.624) and SAN
(0.440). Notably, as we highlighted in Section 1, one purpose of FredNormer is to complement
existing normalization methods in the frequency domain. Here, Ours* represents the incorporation
of SAN into the backbones, which further improves the second-best results (underlined in the table)
to the best. For example, in the ETTh1 dataset with H = 96 and 192 on the iTransformer backbone,
the results improved from 0.389 and 0.447 to 0.380 and 0.429. Table 3 shows detailed results on
three selected datasets, with all results provided in Appendix C.1.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Traffic ETTh1

Frequency

A
m

pl
itu

de

Frequency

Adjusted input (+Ours)

Frequency

Electricity

Frequency stability score

F

Input Forecasting target

Figure 3: Visualization of input sequences before and after applying FredNormer on the Traffic,
ETTh1, and ETTh2 datasets. The green line shows the input data, the blue line represents the
forecasting target, and the orange line illustrates the input data generated by FredNormer. The
red line represents the frequency stability measure of each dataset.

PatchTST
H=720

PatchTST
H=96

DLinear
H=720

DLinear
H=96

s/epoch s/epoch s/epoch s/epoch

Electricity ETTh1 ETTm1 Traffic

+SAN
+Ours

Figure 4: Comparison of running times (s/epoch) between FredNormer and SAN on DLinear and
PatchTST. Forecasting lengths H ∈ {96, 720} for all datasets and input sequence length L = 96.

Frequency Stability Measure Analysis. Figure 3 presents an empirical analysis visualizing the
frequency stability measures across three datasets. The green line and the blue line represent the
amplitudes (FFT outputs) of the input series and forecasting target, respectively. The orange line
shows the adjusted input series using FredNormer. The red line represents the frequency sta-
bility measures, assigning higher weights to components with significant fluctuations appearing in
both the input series and forecasting target, while down-weighting components with low ampli-
tudes. Meanwhile, we observe that these measures are adaptive to different datasets. Interestingly,
the fourth-shaped frequency component exhibits relatively consistent amplitudes, and although its
amplitude value is lower, our metric assigns it a higher weight. In the Electricity dataset, there is
a degeneration trend in amplitude, but due to high consistency, the higher frequency components
maintain a higher weight.

Running Time. Figure 3 presents the running time results for FredNormer and the SOTA SAN
across four datasets. Full computation results for all seven datasets are available in Appendix C.2.
We compare the computation time for both methods at the shortest forecasting length (H = 96)
and the longest (H = 720). The results show the average computation time (in seconds per epoch)
using DLinear and PatchTST as backbone models. FredNormer consistently outperforms SAN
across all datasets. Notably, we achieved improvements of 60% to 70% in 16 out of 28 settings (see
Appendix C.2). These improvements are primarily due to the fact that FredNormer only utilizes
DFT and linear layers during the training phase, minimizing its impact on computation time.

Frequency Measure Ablation. Table 4 shows the results of replacing the frequency stability mea-
sure with two alternative filters. Our metric can be viewed as a filter that learns statistical measures
across datasets and then applies filtering. Since FredNormer may focus on higher frequency
components, we first compare it to a low-pass filter. Additionally, we include frequency random

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Results for each setting in the ablation study with forecasting lengths H ∈ {96, 720} for
all datasets. The best results are highlighted.

Dataset ETTh1 ETTm1 Weather
Length 96 720 96 720 96 720

Ours DLinear 0.371 ± 0.032 0.428 ± 0.039 0.299 ± 0.021 0.425 ± 0.032 0.162 ± 0.045 0.325 ± 0.041
iTransformer 0.389 ± 0.023 0.496 ± 0.034 0.330 ± 0.035 0.475 ± 0.043 0.162 ± 0.044 0.340 ± 0.036

Low-pass DLinear 0.379 ± 0.025 0.435 ± 0.036 0.305 ± 0.022 0.431 ± 0.031 0.170 ± 0.089 0.337 ± 0.024
iTransformer 0.401 ± 0.017 0.502 ± 0.029 0.335 ± 0.033 0.483 ± 0.047 0.171 ± 0.055 0.356 ± 0.039

Random DLinear 0.393 ± 0.066 0.440 ± 0.087 0.308 ± 0.053 0.429 ± 0.079 0.171 ± 0.102 0.345 ± 0.065
iTransformer 0.407 ± 0.048 0.533 ± 0.055 0.339 ± 0.055 0.487 ± 0.061 0.172 ± 0.088 0.372 ± 0.059

selection, a selective method proposed by FEDformer (Zhou et al., 2022b). The results show that
our frequency stability score consistently achieved the best accuracy, demonstrating that extracting
stable features from the spectrum helps the model learn consistent patterns.

5 RELATED WORKS.

Time Series Forecasting. Transformers have demonstrated significant success in time series fore-
casting (Nie et al., 2023; Zhang & Yan, 2023; Jiang et al., 2023), with early works focusing on
improving computational efficiency (Li et al., 2019; Beltagy et al., 2020; Zhou et al., 2021; Liu
et al., 2022a) and recent works focusing on modeling temporal dependencies (Nie et al., 2023; Liu
et al., 2024b). Some other works argue that understanding cross-channel correlations is critical
for accurate forecasting. Approaches utilizing Graph Neural Networks (GNNs) (Wu et al., 2020;
Cao et al., 2021) and channel-wise Transformer-based frameworks like Crossformer (Zhang & Yan,
2023) and iTransformer (Liu et al., 2024b) captures channel-wise dependencies for forecasting.
Normalization-based Methods. RevIN (Kim et al., 2021) is an innovative normalization work
for suppressing non-stationary. It employs z-score normalization (i.e., mean of 0 and variance of
1) for input samples, then denormalizes the outputs using the same statistics. Dish-TS (Fan et al.,
2023) utilizes learned mean and variance for denormalization. SAN (Liu et al., 2023b) models non-
stationary in a set of fine-grained sub-series and proposes an additional loss function to predict their
statistics. Instead of mean and variance, SIN (Han et al., 2024) proposes an independent neural net-
work to learn features as the objectives of normalization and denormalization adaptively. However,
existing methods focus on modeling statistical variations in the time domain (Liu et al., 2024a).
Frequency Analysis Methods. Incorporating frequency information into models can improve fore-
casting (Wu et al., 2021; Zhou et al., 2022b; Wang et al., 2022; Wu et al., 2023; Yi et al., 2023).
Recent study (Piao et al., 2024) recognizes a learning bias issue of frequency in the time domain
modeling. CoST (Woo et al., 2022) proposes a pre-training strategy to learn time-invariant repre-
sentations in the frequency domain. FiLM (Zhou et al., 2022a) employs a low-rank approximation
method to extract informative frequencies. Koopa (Liu et al., 2023a) introduces Koopman dynamics
(Koopman, 1931) to learn time-invariant frequency features. While promising, existing methods are
costly and architecture-specific, limiting their generalization to other forecasting models.

6 CONCLUSION

This paper theoretically analyzed the effect of normalization methods on frequency components.
We proved that current time-domain normalization methods uniformly scale non-zero frequencies,
making it difficult to identify components that contribute to robust forecasting. To address this,
we proposed FredNormer, which analyzed datasets from a frequency perspective and adaptively
up-weighted key frequency components. FredNormer consisted of two components: a statistical
metric that normalized input samples based on frequency stability, and a learnable weighting layer
that adjusted stability and introduced sample-specific variations. Notably, FredNormer was a
plug-and-play module that maintained efficiency compared to existing normalization methods. Ex-
tensive experiments showed that FredNormer reduced the average MSE of backbone forecasting
models by 33.3% and 55.3% on the ETTm2 dataset. Compared to baseline normalization methods,
FredNormer achieved 18 top-1 and 6 top-2 results out of 28 settings.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Hervé Abdi. Coefficient of variation. In Encyclopedia of research design, pp. 169–171, 2010.

Santiago Aja-Fernández and Carlos Alberola-López. On the estimation of the coefficient of variation
for anisotropic diffusion speckle filtering. In IEEE Transactions on Image Processing, pp. 2694–
2701, 2006.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer.
2020.

George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time series analysis:
forecasting and control. 2015.

Defu Cao, Yujing Wang, Juanyong Duan, Ce Zhang, Xia Zhu, Conguri Huang, Yunhai Tong, Bix-
iong Xu, Jing Bai, Jie Tong, and Qi Zhang. Spectral temporal graph neural network for multivari-
ate time-series forecasting. 2021.

Yuntao Du, Jindong Wang, Wenjie Feng, Sinno Pan, Tao Qin, Renjun Xu, and Chongjun Wang.
Adarnn: Adaptive learning and forecasting of time series. In Proceedings of the 30th ACM
International Conference on Information & Knowledge Management, pp. 402–411, 2021.

Filip Elvander and Andreas Jakobsson. Defining fundamental frequency for almost harmonic sig-
nals. In IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020.

Wei Fan, Pengyang Wang, Dongkun Wang, Dongjie Wang, Yuanchun Zhou, and Yanjie Fu. Dish-ts:
A general paradigm for alleviating distribution shift in time series forecasting. In Proceedings of
the AAAI Conference on Artificial Intelligence, pp. 7522–7529, 2023.

Lu Han, Han-Jia Ye, and De-Chuan Zhan. SIN: Selective and interpretable normalization for long-
term time series forecasting. In Forty-first International Conference on Machine Learning, 2024.

Huan He, Owen Queen, Teddy Koker, Consuelo Cuevas, Theodoros Tsiligkaridis, and Marinka Zit-
nik. Domain adaptation for time series under feature and label shifts. In International Conference
on Machine Learning, 2023.

Zahra Jalilibal, Amirhossein Amiri, Philippe Castagliola, and Michael BC Khoo. Monitoring the
coefficient of variation: A literature review. In Computers & Industrial Engineering, pp. 107600,
2021.

Jiawei Jiang, Chengkai Han, Wayne Xin Zhao, and Jingyuan Wang. Pdformer: Propagation delay-
aware dynamic long-range transformer for traffic flow prediction. In AAAI, pp. 4365–4373, 2023.

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Re-
versible instance normalization for accurate time-series forecasting against distribution shift. In
International Conference on Learning Representations, 2021.

Bernard O Koopman. Hamiltonian systems and transformation in hilbert space. pp. 315–318, 1931.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long- and short-term
temporal patterns with deep neural networks. In The 41st International ACM SIGIR Conference
on Research & Development in Information Retrieval, pp. 95–104, 2018a.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long- and short-term
temporal patterns with deep neural networks. In The International ACM SIGIR Conference on
Research & Development in Information Retrieval, pp. 95–104, 2018b.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng Yan.
Enhancing the locality and breaking the memory bottleneck of transformer on time series fore-
casting. In Proceedings of the 33rd International Conference on Neural Information Processing
Systems, 2019.

Harshavardhan Liu, Kamarthi, Lingkai Kong, Zhiyuan Zhao, Chao Zhang, B Aditya Prakash,
et al. Time-series forecasting for out-of-distribution generalization using invariant learning. In
Forty-first International Conference on Machine Learning, 2024a.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dustdar.
Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and fore-
casting. In International Conference on Learning Representations, 2022a.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
the stationarity in time series forecasting. In Advances in Neural Information Processing Systems,
2022b.

Yong Liu, Chenyu Li, Jianmin Wang, and Mingsheng Long. Koopa: Learning non-stationary time
series dynamics with koopman predictors. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023a.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. In The Twelfth
International Conference on Learning Representations, 2024b.

Zhiding Liu, Mingyue Cheng, Zhi Li, Zhenya Huang, Qi Liu, Yanhu Xie, and Enhong Chen. Adap-
tive normalization for non-stationary time series forecasting: A temporal slice perspective. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023b.

Wang Lu, Jindong Wang, Xinwei Sun, Yiqiang Chen, and Xing Xie. Out-of-distribution rep-
resentation learning for time series classification. In International Conference on Learning
Representations, 2023.

Liu M., Zeng A., Chen M., Xu Z., Lai Q., Ma L., and Q. Xu. Scinet: Time series modeling
and forecasting with sample convolution and interaction. In Advances in Neural Information
Processing Systems, pp. 5816–5828, 2022.

Sobhan Moosavi, Mohammad Hossein Samavatian, Arnab Nandi, Srinivasan Parthasarathy, and
Rajiv Ramnath. Short and long-term pattern discovery over large-scale geo-spatiotemporal data.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 2905–2913, 2019.

Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In International Conference on Learning
Representations, 2023.

Xihao Piao, Zheng Chen, Taichi Murayama, Yasuko Matsubara, and Yasushi Sakurai. Fredformer:
Frequency debiased transformer for time series forecasting. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 2400–2410, 2024.

John G. Proakis and Dimitris G. Manolakis. Digital signal processing (3rd ed.): Principles, algo-
rithms, and applications. 1996.

George F Reed, Freyja Lynn, and Bruce D Meade. Use of coefficient of variation in assessing
variability of quantitative assays. In Clinical and Vaccine Immunology, pp. 1235–1239, 2002.

Manel Rhif, Ali Ben Abbes, Imed Riadh Farah, Beatriz Martı́nez, and Yanfang Sang. Wavelet
transform application for/in non-stationary time-series analysis: A review. In Applied Sciences,
pp. 1345, 2019.

Petre Stoica, Randolph L Moses, et al. Spectral analysis of signals. 2005.

Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Yong Liu, Mingsheng Long, and Jianmin Wang. Deep
time series models: A comprehensive survey and benchmark. In arXiv preprint arXiv:2407.13278,
2024.

Zhiyuan Wang, Xovee Xu, Weifeng Zhang, Goce Trajcevski, Ting Zhong, and Fan Zhou. Learn-
ing latent seasonal-trend representations for time series forecasting. In Advances in Neural
Information Processing Systems, 2022.

Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Cost: Contrastive learn-
ing of disentangled seasonal-trend representations for time series forecasting. In International
Conference on Learning Representations, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. In Advances in Neural Information
Processing Systems, 2021.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In International Conference on
Learning Representations, 2023.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang. Con-
necting the dots: Multivariate time series forecasting with graph neural networks. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 753–763, 2020.

Christopher Xie, Avleen Bijral, and Juan Lavista Ferres. Nonstop: A nonstationary online prediction
method for time series. In IEEE Signal Processing Letters, pp. 1545–1549, 2018.

Kun Yi, Qi Zhang, Wei Fan, Shoujin Wang, Pengyang Wang, Hui He, Ning An, Defu Lian, Longbing
Cao, and Zhendong Niu. Frequency-domain MLPs are more effective learners in time series
forecasting. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI Conference on Artificial Intelligence, 2023.

Xinyu Zhang, Shanshan Feng, Jianghong Ma, Huiwei Lin, Xutao Li, Yunming Ye, Fan Li, and
Yew Soon Ong. Frnet: Frequency-based rotation network for long-term time series forecasting. In
Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 3586–3597, 2024.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In International Conference on Learning Representations,
2023.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, pp. 11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Liang Sun, Tao Yao, Wotao Yin, Rong Jin, et al. Film:
Frequency improved legendre memory model for long-term time series forecasting. In Advances
in neural information processing systems, pp. 12677–12690, 2022a.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In Proc. 39th International
Conference on Machine Learning, pp. 1–12, 2022b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

FredNormer: Frequency Domain Normalization for
Non-stationary Time Series Forecasting

———— Appendix ————

CONTENTS

1 Introduction 1

2 Problem Formulation 3

3 Method: FredNormer 4

4 Experiments 6

4.1 Experimental Settings . 6

4.2 Results . 7

5 Related Works. 9

6 Conclusion 9

A Proofs 13

A.1 Proof of Lemma 1 . 13

A.2 Proof of Theorem 1 . 14

B Details of the experiments 15

B.1 Details of the datasets. 15

B.2 Details of the baselines . 15

B.3 Details of the backbones and setup . 16

B.4 Other experiments details . 17

C The Full Results. 17

C.1 Full Long-term Forecasting results. 17

C.2 Full Results of Running Time . 17

A PROOFS

We now give the proof of Lemma and theorem in Sec.2. We begin with the proof of Lemma 1.

A.1 PROOF OF LEMMA 1

Now, we provide proof of normalization in the time domain uniformly scales non-zero frequency
components.

Lemma 1 (Time Domain Normalization Equates to Uniform Scaling in the Frequency Domain)

Normalization in the time domain uniformly scales non-zero frequency components.

Proof:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Let X(t) be a time series with mean µ(X) and standard deviation σ(X). After applying z-score
normalization, we obtain:

Xz(t) =
X(t)− µ(X)

σ(X)
(12)

Applying the Fourier Transform F to Xz(t) and using the linearity property (Definition 3), we have:

F [Xz(t)] = F
[
X(t)− µ(X)

σ(X)

]
(13)

=
1

σ(X)
F [X(t)− µ(X)] (14)

=
1

σ(X)
(F [X(t)]− µ(X)F [1]) (15)

Since F [1] is the Fourier Transform of the constant function 1, which equals 1{k = 0} (the indicator
function):

F [1] = 1{k = 0} (16)

The indicator function 1{k = 0} is nonzero only at k = 0. Therefore, for non-zero frequency
components (k ̸= 0):

F [Xz(t)] =
1

σ(X)
(F [X(t)]− µ(X)1{k = 0}) (17)

=
1

σ(X)
F [X(t)] for k ̸= 0 (18)

This shows that, for k ̸= 0, the Fourier Transform of the normalized signal is the original Fourier
Transform scaled by 1

σ(X) .

Therefore, the amplitudes satisfy:

|Az(k)| =
1

σ(X)
|A(k)|, for k ̸= 0 (19)

Here, |A(k)| and |Az(k)| are the amplitudes before and after normalization, respectively.

Thus, normalization in the time domain uniformly scales all non-zero frequency components by the
factor 1

σ(X) .

A.2 PROOF OF THEOREM 1

Now, based on the proof of lemma 1, we provide proof of normalization Preserves the Proportion of
O in the Spectrum.

Theorem 1 (Normalization Preserves the Proportion of O in the Spectrum)

The energy proportion of O in the spectrum is defined as the sum of its amplitudes divided by the
sum of amplitudes of the entire spectrum. If Lemma 1 holds, then:∑

k∈O |Az(k)|∑K−1
k=1 |Az(k)|

=

∑
k∈O |A(k)|∑K−1
k=1 |A(k)|

(20)

The left side represents the ratio after normalization, and the right side represents the ratio before
normalization. As shown, this ratio remains unchanged.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Proof:

From Lemma 1, for all non-zero frequencies k ̸= 0, we have:

|Az(k)| =
1

σ(X)
|A(k)| (21)

Therefore, the sum of amplitudes in O after normalization is:

∑
k∈O

|Az(k)| =
∑
k∈O

1

σ(X)
|A(k)| (22)

=
1

σ(X)

∑
k∈O

|A(k)| (23)

Similarly, the sum of amplitudes of the entire spectrum (excluding k = 0) after normalization is:

K−1∑
k=1

|Az(k)| =
K−1∑
k=1

1

σ(X)
|A(k)| (24)

=
1

σ(X)

K−1∑
k=1

|A(k)| (25)

Calculating the energy proportion after normalization:

∑
k∈O |Az(k)|∑K−1
k=1 |Az(k)|

=

1
σ(X)

∑
k∈O |A(k)|

1
σ(X)

∑K−1
k=1 |A(k)|

(26)

=

∑
k∈O |A(k)|∑K−1
k=1 |A(k)|

(27)

The scaling factor 1
σ(X) cancels out in the numerator and denominator. Therefore, the energy pro-

portion of O remains the same after normalization.

B DETAILS OF THE EXPERIMENTS

B.1 DETAILS OF THE DATASETS.

Weather contains 21 channels (e.g., temperature and humidity) and is recorded every 10 minutes in
2020. ETT (Zhou et al., 2021) (Electricity Transformer Temperature) consists of two hourly-level
datasets (ETTh1, ETTh2) and two 15-minute-level datasets (ETTm1, ETTm2). Electricity (Lai
et al., 2018a), from the UCI Machine Learning Repository and preprocessed by, is composed of the
hourly electricity consumption of 321 clients in kWh from 2012 to 2014. Solar-Energy (Lai et al.,
2018b) records the solar power production of 137 PV plants in 2006, sampled every 10 minutes.
Traffic contains hourly road occupancy rates measured by 862 sensors on San Francisco Bay area
freeways from January 2015 to December 2016. More details of these datasets can be found in
Table.5.

B.2 DETAILS OF THE BASELINES

Reversible Instance Normalization. Reversible Instance Normalization (Revin) normalizes each
input sample using z-score normalization while preserving the original mean and variance. Revin

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 5: Overview of Datasets

Dataset Source Resolution Channels Time Range

Weather Autoformer(Wu et al., 2021) Every 10 minutes 21 (e.g., temperature, humidity) 2020
ETTh1 Informer(Zhou et al., 2021) Hourly 7 states of a electrical transformer 2016-2017
ETTh2 Informer(Zhou et al., 2021) Hourly 7 states of a electrical transformer 2017-2018
ETTm1 Informer(Zhou et al., 2021) Every 15 minutes 7 states of a electrical transformer 2016-2017
ETTm2 Informer(Zhou et al., 2021) Every 15 minutes 7 states of a electrical transformer 2017-2018
Electricity UCI ML Repository Hourly 321 clients’ consumption 2012-2014
Traffic Informer(Zhou et al., 2021) Hourly 862 sensors’ occupancy 2015-2016

Algorithm 3 Reversible Instance Normalization (Revin)
1: Input: Time-series data X , Forecasting model F
2: Output: Forecasted data X̂
3: for each instance Xi in X do
4: Compute mean µi ← mean(Xi)
5: Compute variance σ2

i ← variance(Xi)

6: Normalize X̃i ← Xi−µi
σi

7: Store µi and σ2
i

8: end for
9: X̃ ← {X̃1, X̃2, . . . , X̃N}

10: Ỹ ← F(X̃)

11: for each forecasted instance Ỹi do
12: Reverse Normalize Yi ← Ỹi × σi + µi

13: Apply learnable parameters Yi ← γ × Yi + β
14: end for
15: return X̂ = {Y1, Y2, . . . , YN}

reverses the normalization to model outputs by using the saved statistics and applies learnable scaling
and shifting parameters (γ and β).

Sequential Adaptive Normalization. Sequential Adaptive Normalization (SAN) has two train
phases. In the first phase, SAN is trained to learn the relationships between patches of input and
target data by mapping their means and variances. In the second phase, SAN parameters are frozen,
and only the forecasting model is trained. During inference, input data is normalized using SAN,
and the model output is reverse-normalized with predicted statistics by SAN.

B.3 DETAILS OF THE BACKBONES AND SETUP

In our study, we selected three distinct forecasting models to evaluate the effectiveness of our pro-
posed normalization techniques. DLinear is an MLP-based model renowned for its lightweight
architecture, utilizing two separate multilayer perceptrons (MLPs) to learn the periodic and trend
components of the data independently.

PatchTST and iTransformer are both Transformer-based models with unique approaches to handling
time-series data. PatchTST introduces a patching operation that segments each input time series into
multiple patches, which are then used as input tokens for the transformer, effectively capturing local
temporal patterns. In contrast, iTransformer emphasizes channel-wise attention by treating the entire
sequence of each channel as a transformer token and employing self-attention mechanisms to learn
the relationships between different channels.

For all models, we first compute the frequency stability measure across the entire training dataset,
a fixed computational process that typically takes less than one second. Following this, we apply a
simple, parameter-free normalization and denormalization method. After normalization, the input
data is processed through our custom weighting layer before being fed into the forecasting models.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 4 Sequential Adaptive Normalization (SAN)
1: Stage 1: Train SAN
2: Input: Training data X and targets Y
3: Divide X and Y into patches {Xp} and {Yp}
4: for each pair of patches (Xp, Yp) do
5: Compute means µX ← mean(Xp), µY ← mean(Yp)
6: Compute variances σ2

X ← variance(Xp), σ2
Y ← variance(Yp)

7: Train SAN to map (µX , σ2
X) to (µY , σ2

Y) using loss on µY and σ2
Y

8: end for
9: Stage 2: Train Forecasting Model

10: Freeze SAN parameters
11: for each training iteration do
12: Divide input X into patches {Xp}
13: for each patch Xp do
14: Normalize Xp ← Xp−µX

σX
using SAN’s learned µX and σ2

X

15: end for
16: Forecast Ỹ ← F(X)

17: Divide Ỹ into patches {Ỹp}
18: for each forecasted patch Ỹp do
19: Predict µY , σ2

Y using SAN
20: Reverse Normalize Yp ← Ỹp × σY + µY

21: end for
22: Compute loss L(Y, Ŷ)
23: Update forecasting model parameters θ via backpropagation
24: end for
25: return Trained forecasting model F

B.4 OTHER EXPERIMENTS DETAILS

Loss Function. For our experiments, we adhere to a conventional approach by employing the Mean
Squared Error (MSE) loss function, implemented as nn.MSELoss in our framework. The MSE
loss quantifies the average squared difference between the predicted values and the actual target
values, providing a straightforward measure of prediction accuracy. Mathematically, the MSE loss
is expressed as LMSE = 1

N

∑N
i=1 (ŷi − yi)

2, where N is the number of samples, ŷi represents
the predicted value, and yi denotes the true target value for the i-th sample. This loss function
effectively penalizes larger errors more heavily, encouraging the model to achieve higher precision
in its predictions.

Computational Resources. All experiments were conducted on an NVIDIA RTX A6000 GPU with
48GB of memory, utilizing CUDA version 12.4 for accelerated computation. This high-performance
computational setup facilitated efficient training and evaluation of our forecasting models, ensuring
timely execution of experiments even with large-scale time-series data.

C THE FULL RESULTS.

C.1 FULL LONG-TERM FORECASTING RESULTS.

Table C.1 presents the comprehensive results discussed in Section 4.2 of our paper. This table
includes the prediction accuracy outcomes on the [Electricity, ETTh1, ETTh2, ETTm1, ETTm2,
Traffic, Weather] dataset, utilizing the [DLinear, PatchTST, iTransformer] as the backbone model.
We have compared our method against all baseline models across all forecasting horizons (H ∈
{96, 192, 336, 720}).

C.2 FULL RESULTS OF RUNNING TIME

Table 7 presents the comprehensive results discussed in Section 4.2 of our paper. This table includes
the prediction accuracy outcomes on the [Electricity, ETTh1, ETTh2, ETTm1, ETTm2, Traffic,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 6: Detailed results of comparing our proposal and other normalization methods. The best
results are highlighted in bold.

Models DLinear (Zeng et al., 2023) PatchTST (Nie et al., 2023) iTransformer (Liu et al., 2024b)
Methods + Ours* + Ours + SAN + RevIN + Ours* + Ours + SAN + RevIN + Ours* + Ours + SAN + RevIN
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
le

ct
ri

ci
ty 96 0.135 0.230 0.140 0.237 0.137 0.234 0.210 0.278 0.175 0.266 0.190 0.280 0.182 0.271 0.212 0.297 0.145 0.244 0.143 0.237 0.171 0.262 0.152 0.251

192 0.149 0.245 0.155 0.249 0.151 0.247 0.210 0.304 0.183 0.273 0.195 0.286 0.186 0.276 0.213 0.300 0.169 0.266 0.159 0.252 0.180 0.270 0.165 0.255
336 0.165 0.262 0.171 0.267 0.166 0.264 0.223 0.309 0.198 0.289 0.211 0.301 0.200 0.290 0.227 0.314 0.178 0.271 0.172 0.266 0.194 0.284 0.180 0.272
720 0.198 0.291 0.208 0.298 0.201 0.295 0.257 0.349 0.233 0.317 0.253 0.334 0.237 0.322 0.268 0.344 0.210 0.311 0.205 0.295 0.237 0.319 0.227 0.312

E
T

T
h1

96 0.375 0.398 0.371 0.392 0.383 0.399 0.396 0.410 0.380 0.401 0.374 0.395 0.387 0.405 0.392 0.413 0.380 0.400 0.389 0.404 0.398 0.411 0.394 0.409
192 0.410 0.417 0.404 0.412 0.419 0.419 0.445 0.440 0.442 0.439 0.424 0.428 0.445 0.440 0.448 0.436 0.429 0.427 0.447 0.440 0.438 0.435 0.460 0.449
336 0.430 0.427 0.426 0.426 0.437 0.432 0.487 0.465 0.480 0.456 0.471 0.452 0.505 0.471 0.489 0.456 0.479 0.451 0.492 0.463 0.481 0.456 0.501 0.475
720 0.437 0.455 0.428 0.448 0.446 0.459 0.512 0.510 0.519 0.501 0.514 0.500 0.527 0.507 0.525 0.503 0.491 0.471 0.496 0.482 0.528 0.502 0.521 0.504

E
T

T
h2

96 0.273 0.335 0.273 0.336 0.277 0.338 0.344 0.397 0.292 0.347 0.301 0.349 0.314 0.361 0.344 0.397 0.298 0.352 0.297 0.345 0.302 0.354 0.300 0.349
192 0.335 0.374 0.336 0.376 0.340 0.378 0.485 0.481 0.385 0.402 0.380 0.399 0.391 0.421 0.389 0.411 0.371 0.402 0.380 0.395 0.383 0.402 0.381 0.415
336 0.361 0.399 0.355 0.395 0.356 0.398 0.582 0.536 0.431 0.438 0.410 0.424 0.444 0.466 0.437 0.451 0.425 0.435 0.420 0.428 0.435 0.441 0.433 0.442
720 0.388 0.429 0.384 0.423 0.396 0.435 0.836 0.659 0.429 0.461 0.422 0.443 0.467 0.484 0.430 0.481 0.420 0.444 0.410 0.432 0.448 0.457 0.426 0.445

E
T

T
m

1 96 0.285 0.339 0.299 0.341 0.288 0.342 0.353 0.374 0.322 0.359 0.321 0.362 0.325 0.361 0.353 0.374 0.326 0.361 0.330 0.370 0.331 0.373 0.341 0.376
192 0.321 0.359 0.336 0.364 0.323 0.363 0.391 0.392 0.350 0.379 0.365 0.388 0.355 0.381 0.391 0.401 0.365 0.384 0.374 0.391 0.376 0.381 0.380 0.394
336 0.355 0.380 0.370 0.383 0.357 0.384 0.423 0.413 0.381 0.401 0.407 0.408 0.385 0.402 0.423 0.413 0.395 0.403 0.408 0.414 0.412 0.418 0.419 0.418
720 0.405 0.411 0.425 0.414 0.409 0.415 0.486 0.449 0.446 0.436 0.464 0.442 0.450 0.437 0.486 0.459 0.471 0.447 0.475 0.449 0.485 0.453 0.486 0.455

E
T

T
m

2 96 0.163 0.255 0.165 0.254 0.166 0.258 0.194 0.293 0.177 0.272 0.179 0.262 0.184 0.277 0.185 0.272 0.178 0.272 0.176 0.258 0.180 0.272 0.200 0.281
192 0.222 0.300 0.220 0.291 0.223 0.302 0.283 0.360 0.245 0.319 0.240 0.300 0.249 0.325 0.252 0.320 0.247 0.311 0.241 0.302 0.248 0.315 0.252 0.312
336 0.272 0.329 0.273 0.325 0.272 0.331 0.371 0.450 0.298 0.253 0.310 0.347 0.330 0.378 0.315 0.351 0.307 0.351 0.307 0.347 0.308 0.352 0.314 0.352
720 0.365 0.383 0.368 0.383 0.380 0.384 0.555 0.509 0.405 0.401 0.409 0.404 0.423 0.431 0.415 0.408 0.409 0.403 0.410 0.402 0.412 0.407 0.411 0.405

Tr
af

fic

96 0.410 0.286 0.408 0.277 0.412 0.288 0.648 0.396 0.497 0.342 0.527 0.339 0.530 0.340 0.650 0.396 0.400 0.271 0.394 0.268 0.502 0.329 0.401 0.277
192 0.427 0.288 0.422 0.283 0.429 0.297 0.598 0.370 0.499 0.339 0.502 0.331 0.516 0.338 0.597 0.359 0.470 0.319 0.413 0.277 0.490 0.331 0.421 0.282
336 0.439 0.305 0.436 0.295 0.445 0.306 0.605 0.373 0.520 0.349 0.510 0.327 0.533 0.343 0.605 0.362 0.489 0.333 0.428 0.283 0.512 0.341 0.434 0.389
720 0.454 0.311 0.455 0.311 0.474 0.319 0.645 0.395 0.550 0.349 0.545 0.345 0.575 0.367 0.642 0.381 0.478 0.330 0.463 0.301 0.576 0.364 0.465 0.302

W
ea

th
er 96 0.150 0.208 0.162 0.212 0.152 0.210 0.196 0.256 0.167 0.225 0.166 0.207 0.170 0.229 0.195 0.235 0.165 0.221 0.162 0.204 0.170 0.227 0.175 0.225

192 0.194 0.251 0.207 0.251 0.196 0.254 0.238 0.299 0.208 0.263 0.216 0.253 0.211 0.270 0.240 0.270 0.212 0.261 0.213 0.252 0.214 0.270 0.225 0.257
336 0.243 0.289 0.256 0.288 0.246 0.294 0.281 0.330 0.255 0.301 0.273 0.295 0.261 0.310 0.291 0.306 0.261 0.304 0.271 0.295 0.265 0.309 0.280 0.307
720 0.311 0.339 0.325 0.337 0.315 0.346 0.346 0.384 0.326 0.349 0.351 0.346 0.332 0.359 0.364 0.353 0.338 0.345 0.340 0.347 0.342 0.358 0.373 0.366

Table 7: Running time comparison with forecasting lengths H ∈ {96, 720} for all datasets and fixed
input sequence length L = 96. The best results are highlighted.

Model Electricity ETTh1 ETTh2 ETTm1 ETTm2 Traffic Weather

H 96 720 96 720 96 720 96 720 96 720 96 720 96 720

DLinear (Zeng et al., 2023)
+ Ours 16.718 27.545 3.004 3.082 2.820 3.222 13.456 13.124 11.839 12.949 23.217 43.413 13.970 16.536
+ SAN 19.159 34.914 8.688 8.054 8.373 7.811 36.706 36.564 36.620 36.550 31.378 54.518 37.739 40.731
IMP(%) 12.8% 21.1% 65.5% 60.5% 66.6% 58.3% 63.1% 64.2% 67.8% 64.3% 26.0% 20.3% 63.0% 59.9%

PatchTST (Nie et al., 2023)
+ Ours 99.104 103.781 7.952 8.215 14.687 14.122 54.526 28.944 59.406 26.233 209.006 215.718 69.107 49.628
+ SAN 313.697 322.083 16.226 15.309 16.078 14.998 63.686 65.839 65.978 66.798 550.026 557.730 81.973 81.462
IMP(%) 68.4% 67.7% 51.6% 46.2% 8.00% 5.20% 14.3% 56.0% 10.0% 60.7% 61.6% 61.2% 15.9% 39.8%

Weather] dataset, utilizing the [DLinear, PatchTST] as the backbone model. We have compared our
method against all baseline models across all forecasting horizons (H ∈ {96, 720}).

18

	Introduction
	Problem Formulation
	Method: FredNormer
	Experiments
	Experimental Settings
	Results

	Related Works.
	Conclusion
	Proofs
	Proof of Lemma 1
	Proof of Theorem 1

	Details of the experiments
	Details of the datasets.
	Details of the baselines
	Details of the backbones and setup
	Other experiments details

	The Full Results.
	Full Long-term Forecasting results.
	Full Results of Running Time

