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ABSTRACT

Recent normalization-based methods have shown great success in tackling the
distribution shift issue, facilitating non-stationary time series forecasting. Since
these methods operate in the time domain, they may fail to fully capture the
dynamic patterns that are more apparent in the frequency domain, leading to
suboptimal results. This paper first theoretically analyzes how normalization
methods affect frequency components. We prove that the current normaliza-
tion methods that operate in the time domain uniformly scale non-zero frequen-
cies. Thus, they struggle to determine components that contribute to more ro-
bust forecasting. Therefore, we propose FredNormer, which observes datasets
from a frequency perspective and adaptively up-weights the key frequency com-
ponents. To this end, FredNormer consists of two components: a statisti-
cal metric that normalizes the input samples based on their frequency stabil-
ity and a learnable weighting layer that adjusts stability and introduces sample-
specific variations. Notably, FredNormer is a plug-and-play module, which
does not compromise the efficiency compared to existing normalization meth-
ods. Extensive experiments show that FredNormer improves the averaged MSE
of backbone forecasting models by 33.3% and 55.3% on the ETTm2 dataset.
Compared to the baseline normalization methods, FredNormer achieves 18
top-1 results and 6 top-2 results out of 28 settings. Our code is available at:
https://anonymous.4open.science/r/ICLR2025-13956-8F84

1 INTRODUCTION

Deep learning models have demonstrated significant success in time series forecasting (Moosavi
et al., 2019; Zhou et al., 2021; Wu et al., 2021; M. et al., 2022; Nie et al., 2023; Zhang & Yan, 2023;
Liu et al., 2024b). These models aim to extract diverse and informative patterns from historical
observations to enhance the accuracy of future time series predictions. To achieve accurate time
series predictions, a key challenge is that time series data derived from numerous real-world systems
exhibit dynamic and evolving patterns, i.e., a phenomenon known as non-stationarity (Stoica et al.,
2005; Box et al., 2015; Xie et al., 2018; Rhif et al., 2019). This characteristic typically results in
discrepancies among training, testing, and future unseen data distributions. Consequently, the non-
stationary characteristics of time series data necessitate the development of forecasting models that
are robust to such temporal shifts in data distribution, while failing to address this challenge often
leads to representation degradation and compromised model generalization (Kim et al., 2021; Du
et al., 2021; Lu et al., 2023).

A recent fashion to tackle the above-mentioned distribution shift issue is leveraging plug-and-play
normalization methods (Kim et al., 2021; Fan et al., 2023; Liu et al., 2023b; Han et al., 2024). These
methods typically normalize the input time series to a unified distribution, removing non-stationarity
explicitly to reduce discrepancies in data distributions. During the forecasting stage, a denormaliza-
tion is applied, reintroducing the distribution statistics information to the data. This step ensures the
forecasting results are accurate while reflecting the inherent variability and fluctuation in the time
series, enhancing generalization. Since they focus on scaling the inputs and outputs, these methods
function as “model-friendly modules” that could be easily integrated into various forecasting models
without any transformation. However, existing works still face several challenges.
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(a) Time domain normalization
results in a compact distribution

(b) Normalization unformly scale
amplitudes of non-zero frequencies

Figure 1: How does z-score normalization affect the frequency amplitudes? (a) Normalization in the
time domain compresses the variability of the data, leading to a more compact distribution. (b) The
amplitudes of non-zero frequencies are just uniformly scaled after normalization.

(1) Existing methods model non-stationary in the time domain that may not fully capture dynamic
and evolving patterns in time series. Conceptually, a series of time observations is considered a
complex set of waves that varies over time (Proakis & Manolakis, 1996). These temporal variations,
manifested as various frequency waves, are intermixed in the real world (He et al., 2023; Wu et al.,
2023; Piao et al., 2024). Modeling solely in the time domain struggles to distinguish between dif-
ferent frequency components within superimposed time series, resulting in entangled patterns and
sub-optimal performance. Recent works have shown that explicitly modeling frequency can enhance
representation quality and forecasting accuracy (Yi et al., 2023; Zhang et al., 2024; Piao et al., 2024).
(2) Existing methods primarily rely on z-score normalization to rescale the input distribution. How-
ever, as illustrated in Figure 1, this normalization applies uniform scaling across all frequency com-
ponents, which leaves frequency-specific patterns unaltered. Such uniform scaling may reduce dis-
tributional differences across frequencies, potentially obscuring important time-invariant features
crucial for generalization to unseen time series.

To tackle the challenges above, this paper proposes a novel solution for the distribution shift issue in
time series forecasting by modeling the non-stationarity in the frequency domain. We first investigate
why time-domain normalization does not provide significant benefits for capturing dynamics in
frequencies and theoretically prove our findings. We then propose FredNormer based on the
insight we have gained. Specifically, FredNormer learns time-invariant frequency components,
termed stable frequencies, to suppress non-stationary for robust forecasting. Finally, we propose a
new normalization metric tailored for quantifying the importance or stability of frequencies. Since
FredNormer operates only on the input time series, it is plug-and-play, making it easily adaptable
to various forecasting models and complementary to existing normalization methods.

Contributions and Novelty. FredNormer tackles the aforementioned two challenges as follows:
(1) We first transform the input time series data from the time domain to the spectral domain and
extract the statistical significance of frequencies across training sets. We then propose a linear pro-
jection to capture data-specific properties, which adjusts the statistical significance used to weight
the spectrum. The processed time series data, which carries more stable components while filter-
ing out non-stationary elements, is finally used as input for the forecasting models. (2) To quantify
frequency significance, we propose a stability metric based on the well-known Coefficient of Vari-
ation (CV) (Aja-Fernández & Alberola-López, 2006; Jalilibal et al., 2021). It computes the ratio
between the mean and variance of frequency amplitude, providing a relative measure (scaling) of
variability rather than the absolute scaling/rescaling (Reed et al., 2002; Abdi, 2010). In summary,
our contributions lie in:
• Theoretical Analysis. We theoretically analyze how normalization-based methods function in the

frequency domain and why they fail to suppress non-stationary frequencies.
• Novel Problem Formulation. We are the first to investigate a frequency-based module to tackle

the distributional issue in non-stationary time series. Hence, we formulate a key research question
in this paper: How can we effectively capture stable frequencies to support robust forecasting?

• Simple, Efficient, Model-Agnostic Method. We propose FredNormer, which explicitly learns
the statistical significance of frequencies using a new stability metric. Only simple linear projec-
tion layers with a few parameters need learning and tuning.
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We apply FredNormer to different forecasting models to validate its effectiveness across various
datasets. Overall, in non-stationary datasets, such as Traffic, we improved PatchTST and iTrans-
former by 33.3% and 55.3%, respectively. FredNormer achieved 18 top-1 results and 6 top-2
results out of 28 settings compared to the baselines and outperformed the SOTA normalization
method, with speed improvements ranging from 60% to 70% in 16 out of 28 settings.

Notations. Vectors and matrices are denoted by lowercase and uppercase boldface letters, re-
spectively (e.g., x, X). We consider a training dataset with N labeled samples consisting of L
timestamps of past observations and H timestamps of future data. The Discrete Fourier Trans-
form (DFT) of a time series X is represented by the coefficient matrix F ∈ RL: F(k) =∑L−1

t=0 x(t)e−j
2π
L kt, for k = 0, 1, . . . , L−1. The amplitude matrix A of a time series X is defined

as A =
[∣∣∣∑L−1

t=0 x(t)e−j
2π
L kt

∣∣∣]L−1
k=0

, where | · | represents the 2-norm of the DFT coefficients. The

indicator function 1{k = 0} equals 1 if k does not equal 0, and 0 otherwise. µ(·) and δ(·) represent
the mean and the standard deviation, respectively.

2 PROBLEM FORMULATION

In this section, we first define frequency stability and then investigate how normalization in the time
domain affects the frequency domain and its influences. Finally, we formulate the research question.

Definition 1 (Frequency Stability). Given a training set containing N samples, we define the sta-
tistical stability of the k-th component as the reciprocal of the Coefficient of Variation γ:

S(k) :=
1

γ(A(k))
=

µ(A(k))

σ(A(k))
(1)

where µ(A(k)) = 1
N

∑N
i=1 A

i(k) and σ(A(k)) =
√

1
N

∑N
i=1 (A

i(k)− µ(A(k)))
2 are the mean

and standard deviation of the amplitude across the training set.

S(k) measures the statistical significance of each frequency across the dataset. A frequency compo-
nent with higher stability denotes lower relative variability, i.e., more stable; otherwise, it is consid-
ered unstable. All stable components are included in the subset O.

Definition 2 (Stable Frequency Subset). Given K − 1 non-zero frequencies, a subset O =
{1, . . . ,M}, where M ≪ K, contains M components with higher stability S(k).

Definition 3 (Linearity of Fourier Transform.) For any functions f1 and f2, and constants a and b,
the Fourier Transform F satisfies:

F(af1 + bf2) = aF(f1) + bF(f2) (2)

Thus, we investigate the variations of O (Def. 2) before and after z-score normalization in the
time domain. Meanwhile, the linearity property (Def. 3) allows us to map this normalization to its
corresponding operations in the frequency domain.

Lemma 1 Normalization in the time domain uniformly scales non-zero frequency components.

Proof 1. For a normalized time series Xz(t) =
X(t)−µ(X)

σ(X) , a Fourier transform F(·) is applied by:

F(Xz(t)) = F(
X(t)− µ(X)

σ(X)
) =

1

σ(X)
(F(X(t))− µ(X)1{k = 0}) (by linearity, Def. 3)

(3)

The left item F(X(t)) is the Fourier Transform of X. Since µ(X) is a constant, the resulted Fourier
transformation can be represented by µ(X)1{k = 0}, where 1{k = 0} is an indicator function, that
is, for k ̸= 0, 1{k = 0} = 0. Then for the non-zero frequencies (k ̸= 0),
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Figure 2: (a) Frequency variations across a sequence of time series samples. The red bar denotes the
unstable frequency components, while stable ones are in gray. (b) An overview of FredNormer.

F(Xz(t)) =
1

σ(X)
(F(X(t))− µ(X) · 0) = 1

σ(X)
F(X(t)) for k ̸= 0 (4)

Here, the amplitudes of the non-zero frequency components are scaled by 1
σ(X) :

|Az(k)| =
1

σ(X)
|A(k)|, for k ̸= 0 (5)

Here, A is the amplitudes of frequencies. Its definition can be found in Notation in Section 1.
Thus, normalization uniformly scales all non-zero frequency components in the frequency domain.
A more detailed proof of Lemma 1 can be found in Appendix A.1.

Theorem 1 ( The proportion of O to the spectrum is unchanged after normalization ).

The energy proportion of O in the spectrum is defined by the sum of the amplitudes divided by the
energy of the entire spectrum. Then if Lemma 1 holds, we have:∑

k∈O |Az(k)|∑K−1
k=1 |Az(k)|

=

∑
k∈O |A(k)|∑K−1
k=1 |A(k)|

(6)

The left and right items represent the ratio after and before normalization, respectively. As shown,
this ratio remains the same. A proof of Theorem 1 can be found in Appendix A.2.

Remark. Since Theorem 1 holds, the normalization operation keeps the proportion unchanged. The
stable components in O are often intermixed with unstable components in the time series data. This
makes forecasting models struggle to distinguish between stable and unstable components, resulting
in entangled patterns and sub-optimal performance (Elvander & Jakobsson, 2020; Piao et al., 2024).
This motivates us to increase the weights of stable components and suppress unstable ones. In this
paper, we aim to learn a frequency-based method for assigning higher weights to stable components
and improving forecasting performance for future data.

Problem 1 (Enhancing stable components for better generalization). Given a time series dataset
with stable frequency components O, our goal is to develop a module f(·) that dynamically adjusts
O, or the amplitudes, increasing the energy proportion to the spectrum:

f(A(k)) := w(k) ·A(k), where w(k1) > w(k2), for k1 ∈ O and k2 /∈ O.

Here w(·) represents the weighting function. In this paper, we assume w(·) should have two proper-
ties: ( i ) extracting the statistical significance of frequencies across samples in the training set; ( ii )
capturing data-specific properties to adjust the statistical significance.

3 METHOD: FREDNORMER

In this section, we present FredNormer (as shown in Figure 2), which consists of two components:
( i ) a frequency stability measure, and ( ii ) a frequency stability weighting layer, followed by:

4
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Algorithm 1 Frequency Stability Measure
1: input: train loader contains N samples
2: for each sample X(i) in train loader do
3: A(i) ← |FFT(X(i))|
4: sum(A)← sum(A) +

∑
k A(i)(k)

5: sum(A2)← sum(A2) +
∑

k

(
A(i)(k)

)2

6: end for
7: µ(A)← sum(A)/N

8: σ(A)←
√

(sum(A2)/N − µ(A)2 + 10−5)

9: S ← µ(A)/(σ(A) + 10−5)
10: return S

Algorithm 2 Frequency Stability Weighting
1: input: stability S and sample X
2: X ← 1D-difference(X)
3: F ← DFT(X)
4: for k = 1 to K − 1 do
5: Wr(k), Br(k)← linear r(S)
6: Wi(k), Bi(k)← linear i(S)
7: Freal(k)← F.real(k) ◦Wr(k) + Br(k)
8: Fimag(k)← F.imag(k) ◦Wi(k) + Bi(k)

9: end for
10: Fweighted ← complex(Freal, Fimag)

11: X′ ← IDFT(Fweighted).real

12: return X′

• First, we compute the frequency stability, defined in Definition 1, for a given time series dataset.
The output is a statistical measure that can be tuned for different data scenarios.

• Second, the input time series is transformed into the frequency spectrum using the DFT.
• Third, during the training phase, a learnable linear projection adjusts the frequency stability mea-

sure for the spectrum to introduce sample-specific variation, increasing distributional diversity.
• Finally, FredNormer transforms the adjusted frequency spectrum back into the time domain

using the Inverse-DFT (IDFT) that serves as input for subsequent various forecasting models.

The detailed workflows, including two key components, are presented in Algorithms 1 and 2.

Frequency Stability Measure. Given a training set contains N time series samples X = {X(i)}Ni=1,
we first apply the DFT to each sample X(i) ∈ RL×C to transform it into A(i) ∈ RK×C . Here, K
is the number of frequency components, and C denotes the number of channels. The frequency
stability measure S(k) ∈ RK×C is then applied:

S(k) =
µ(A(k))

σ(A(k))
=

1
N

∑N
i=1 A(k)(i)√

1
N

∑N
i=1

(
A(k)(i) − µ(A(k))

)2 (7)

where µ(A(k)) ∈ RK×C and σ(A(k)) ∈ RK×C . A larger µ(·) indicates a higher energy proportion
in the spectrum, while a higher σ(·) denotes greater sample dispersion. S has two key properties:

• It captures the distribution of each frequency component across the entire training set. This allows
the forecasting model to learn the overall stability of each component across different samples.

• S is a dimensionless measure that allows for a fair comparison between different frequency com-
ponents, thus avoiding uniform frequency scaling, as defined in Theorem 1.

Frequency Stability Weighting Layer. Given the input multivariate time series data X ∈ RL×C ,
we first apply a 1-D differencing operation to smooth the data and then transform X into the spec-
trum, decomposing it into the DFT coefficients:

F(k, c) =

L−1∑
l=0

∆(X(l, c)) · e−2πikn/L, k = 0, 1, . . . ,K − 1 (8)

where ∆(·) denotes the differencing operation, and two matrices are produced, representing the real
and imaginary parts, (Fr,Fi), formulated as:

Fr(k, c) =

L−1∑
l=0

X(l, c) · cos
(
2πkn

L

)
Fi(k, c) = −

L−1∑
l=0

X(l, c) · sin
(
2πkn

L

)
(9)

Next, we apply two linear projections to S to the real and imaginary parts separately:

F′r = Fr ⊙ (S×Wr +Br) , F′i = Fi ⊙ (S×Wi +Bi) , (10)

5
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where Wr and Wi ∈ RK×1 denote weight matrices for the Fr and Fi, respectively. Br,Bi ∈
RK are bias vectors, and ⊙ denotes Hadamard product. We handle the real and imaginary parts
with separate networks because they correspond to different basis functions, allowing us to capture
diverse temporal dynamics (Zhang et al., 2024; Piao et al., 2024). Finally, we transform (Fr,Fi),
with enhanced stable frequency components, back into the time domain by:

X′(l, c) =

K−1∑
k=0

(
F′r(k, c) · cos

(
2πkl

L

)
− F′i(k, c) · sin

(
2πkl

L

))
(11)

where X′, with the same size as X ∈ RL×C , serves as the input for various forecasting models.

4 EXPERIMENTS

Table 1: Multivariate forecasting results (average) with forecasting lengths H ∈ {96, 192, 336, 720}
for all datasets and fixed input sequence length L = 96.

Models PatchTST (Nie et al., 2023) iTransformer (Liu et al., 2024b)
Methods + Ours Ori + Ours Ori
Metric MSE MAE MSE MAE MSE MAE MSE MAE

Electricity 0.197 ± 0.027 0.296 ± 0.033 0.218 ± 0.31 0.307 ± 0.032 0.169 ± 0.035 0.262 ± 0.041 0.179 ± 0.28 0.279 ± 0.046

ETTh1 0.438 ± 0.024 0.437 ± 0.035 0.480 ± 0.037 0.481 ± 0.031 0.445 ± 0.017 0.443 ± 0.026 0.511 ± 0.033 0.496 ± 0.036

ETTh2 0.379 ± 0.032 0.380 ± 0.038 0.604 ± 0.130 0.524 ± 0.027 0.376 ± 0.041 0.400 ± 0.057 0.813 ± 0.134 0.666 ± 0.072

ETTm1 0.390 ± 0.027 0.398 ± 0.025 0.419 ± 0.055 0.432 ± 0.047 0.396 ± 0.026 0.406 ± 0.056 0.447 ± 0.026 0.457 ± 0.061

ETTm2 0.280 ± 0.032 0.325 ± 0.031 0.420 ± 0.035 0.424 ± 0.044 0.283 ± 0.020 0.327 ± 0.026 0.633 ± 0.055 0.489 ± 0.041

Traffic 0.427 ± 0.029 0.285 ± 0.025 0.619 ± 0.077 0.365 ± 0.029 0.424 ± 0.031 0.282 ± 0.027 0.576 ± 0.069 0.372 ± 0.035

Weather 0.251 ± 0.019 0.276 ± 0.017 0.255 ± 0.021 0.312 ± 0.031 0.246 ± 0.023 0.274 ± 0.017 0.274 ± 0.029 0.320 ± 0.041

4.1 EXPERIMENTAL SETTINGS

Datasets. We conducted experiments on seven public time series datasets, including Weather, four
ETT repositories (ETTh1, ETTh2, ETTm1, ETTm2), Electricity (ECL), and Traffic dataset. For ex-
ample, the Electricity dataset includes the hourly electricity consumption record in 321 households.
All datasets are available in (Liu et al., 2024b) .

Baselines. We selected RevIN (Kim et al., 2021) and SAN (Liu et al., 2023b) as our baselines.

• RevIN is widely used as a fundamental module in various forecasting models, including PatchTST
(Nie et al., 2023), Crossformer (Zhang & Yan, 2023), iTransformer (Liu et al., 2024b), Fredformer
(Piao et al., 2024), among others (Wang et al., 2024).

• SAN (Liu et al., 2023b) is the new state-of-the-art (SOTA) method, outperforming several non-
stationary forecasting modules (Kim et al., 2021; Fan et al., 2023) and models (Liu et al., 2022b).

Backbones and Setup. For fair comparisons, we selected three forecasting models, including DLin-
ear (Zeng et al., 2023), PatchTST (Nie et al., 2023), and iTransformer (Liu et al., 2024b), as the back-
bone, and deployed all three modules (FredNormer, RevIN, and SAN) for evaluation. DLinear is
a simple yet efficient forecasting model with an architecture solely involving MLPs. PatchTST and
iTransformer are two well-known Transformer methods that frequently serve as baselines in various
forecasting research (Liu et al., 2024b;a; Piao et al., 2024; Zhang et al., 2024). We followed the
implementation and setup provided in (Liu et al., 2023b)1 and (Liu et al., 2024b)2.

Experiments Details. We used mean squared error (MSE) and mean absolute error (MAE) as
the evaluation metrics, where lower values indicate better performance. All experiments were im-
plemented on a single NVIDIA RTX A6000 48GB GPU with CUDA V12.4. More details of the
datasets are in Appendix B.1, the baselines are in B.2, the backbones and setup are in B.3, and other
details of the experiments are in B.4.

1https://github.com/icantnamemyself/SAN
2https://github.com/thuml/Time-Series-Library
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Table 2: Multivariate forecasting results (average) with H ∈ {96, 192, 336, 720} for all datasets
and fixed input sequence length L = 96. The best and second best results are highlighted. Ours*
represents the results where both FredNormer and SAN are used in the backbones.

Models MLP-based (DLinear(Zeng et al., 2023)) Transformer-based (iTransformer(Liu et al., 2024b))
Methods + Ours* + Ours +SAN + RevIN + Ours* + Ours +SAN + RevIN
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Electricity 0.161 0.257 0.168 0.262 0.163 0.260 0.225 0.316 0.175 0.273 0.169 0.262 0.195 0.283 0.205 0.272

ETTh1 0.413 0.424 0.407 0.419 0.421 0.427 0.460 0.456 0.455 0.449 0.445 0.443 0.466 0.455 0.463 0.452

ETTh2 0.339 0.384 0.337 0.384 0.342 0.387 0.561 0.518 0.378 0.408 0.376 0.400 0.392 0.413 0.385 0.412

ETTm1 0.341 0.372 0.357 0.375 0.344 0.376 0.413 0.407 0.389 0.398 0.396 0.406 0.401 0.406 0.406 0.410

ETTm2 0.255 0.316 0.256 0.313 0.260 0.318 0.350 0.413 0.285 0.334 0.283 0.327 0.287 0.336 0.294 0.337

Traffic 0.432 0.297 0.430 0.291 0.440 0.302 0.624 0.383 0.459 0.313 0.424 0.282 0.520 0.341 0.430 0.312

Weather 0.224 0.271 0.237 0.272 0.227 0.276 0.265 0.317 0.244 0.282 0.246 0.274 0.247 0.291 0.263 0.288

Count 4 4 3 4 0 0 0 0 2 1 5 6 0 0 0 0

Table 3: Detailed results of three selected datasets with H ∈ {96, 192, 336, 720} and input sequence
length L ∈ {96, 336}. The best and second best results are highlighted. Ours* represents the results
where both FredNormer and SAN are used in the backbones.

Models DLinear (Zeng et al., 2023) iTransformer (Liu et al., 2024b)
Methods + Ours* + Ours + SAN + RevIN + Ours* + Ours + SAN + RevIN
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
le

ct
ri

ci
ty 96 0.135 0.230 0.140 0.237 0.137 0.234 0.210 0.278 0.145 0.244 0.143 0.237 0.171 0.262 0.152 0.251

192 0.149 0.245 0.155 0.249 0.151 0.247 0.210 0.304 0.169 0.266 0.159 0.252 0.180 0.270 0.264 0.255
336 0.165 0.262 0.171 0.267 0.166 0.264 0.223 0.309 0.178 0.271 0.172 0.266 0.194 0.284 0.180 0.272
720 0.198 0.291 0.208 0.298 0.201 0.295 0.257 0.349 0.210 0.311 0.205 0.295 0.237 0.319 0.227 0.312

E
T

T
h1

96 0.375 0.398 0.371 0.392 0.383 0.399 0.396 0.410 0.380 0.400 0.389 0.404 0.398 0.411 0.394 0.409
192 0.410 0.417 0.404 0.412 0.419 0.419 0.445 0.440 0.429 0.427 0.447 0.440 0.438 0.435 0.460 0.449
336 0.430 0.427 0.426 0.426 0.437 0.432 0.487 0.465 0.479 0.451 0.492 0.463 0.481 0.456 0.501 0.475
720 0.437 0.455 0.428 0.448 0.446 0.459 0.512 0.510 0.491 0.471 0.496 0.482 0.528 0.502 0.521 0.504

Tr
af

fic

96 0.410 0.286 0.408 0.277 0.412 0.288 0.648 0.396 0.400 0.271 0.394 0.268 0.502 0.329 0.401 0.277
192 0.427 0.288 0.422 0.283 0.429 0.297 0.598 0.370 0.470 0.319 0.413 0.277 0.490 0.331 0.421 0.282
336 0.439 0.305 0.436 0.295 0.445 0.306 0.605 0.373 0.489 0.333 0.428 0.283 0.512 0.341 0.434 0.389
720 0.454 0.311 0.455 0.311 0.474 0.319 0.645 0.395 0.478 0.330 0.463 0.301 0.576 0.364 0.465 0.302

4.2 RESULTS

Main Results. Table 1 presents the overall forecasting results using iTransformer and PatchTST as
the backbone across seven datasets. We set the forecasting lengths as H ∈ {96, 192, 336, 720}, with
the input sequence length L = 96. Here, we present the averaged MSE and MAE over four fore-
casting lengths. We combine our module with a z-score normalization-denormalization operation in
all experiments. Obviously, applying FredNormer consistently improved the performance of the
backbone models across all datasets, as shown in all bold results. More importantly, in datasets with
complex frequency characteristics, such as ETTm2, FredNormer improves PatchTST and iTrans-
former by 33.3% (0.420 → 0.280) and 55.3% (0.633 → 0.283), respectively. This improvement is
attributed to giving higher weights to stable frequency components, allowing them to dominate the
adjusted input time series.

Comparison with Baseline Normalization Methods. Table 2 presents the average comparison
results between FredNormer and the baseline normalization methods, i.e., RevIN and SAN. We
use the same parameters and forecasting length as in Table 1. For iTransformer, the input sequence
length is L = 96, and L = 336 for DLinear. As shown, FredNormer (denoted as ”Ours” in the
table) achieves 18 top-1 results and 6 top-2 results out of 28 settings. For instance, n the ETTh1
dataset, FredNormer improves the MSE values for DLinear and iTransformer to 0.407 and 0.445,
outperforming RevIN (0.460 and 0.463) and SAN (0.421 and 0.466). Similarly, in the Traffic
dataset, FredNormer improves the MSE value to 0.430, compared to RevIN (0.624) and SAN
(0.440). Notably, as we highlighted in Section 1, one purpose of FredNormer is to complement
existing normalization methods in the frequency domain. Here, Ours* represents the incorporation
of SAN into the backbones, which further improves the second-best results (underlined in the table)
to the best. For example, in the ETTh1 dataset with H = 96 and 192 on the iTransformer backbone,
the results improved from 0.389 and 0.447 to 0.380 and 0.429. Table 3 shows detailed results on
three selected datasets, with all results provided in Appendix C.1.
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Traffic ETTh1

Frequency

A
m

pl
itu

de

Frequency

Adjusted input (+Ours)

Frequency

Electricity

Frequency stability score

F

Input Forecasting target

Figure 3: Visualization of input sequences before and after applying FredNormer on the Traffic,
ETTh1, and ETTh2 datasets. The green line shows the input data, the blue line represents the
forecasting target, and the orange line illustrates the input data generated by FredNormer. The
red line represents the frequency stability measure of each dataset.

PatchTST 
H=720

PatchTST 
H=96

DLinear 
H=720

DLinear 
H=96

s/epoch s/epoch s/epoch s/epoch

Electricity ETTh1 ETTm1 Traffic

+SAN
+Ours

Figure 4: Comparison of running times (s/epoch) between FredNormer and SAN on DLinear and
PatchTST. Forecasting lengths H ∈ {96, 720} for all datasets and input sequence length L = 96.

Frequency Stability Measure Analysis. Figure 3 presents an empirical analysis visualizing the
frequency stability measures across three datasets. The green line and the blue line represent the
amplitudes (FFT outputs) of the input series and forecasting target, respectively. The orange line
shows the adjusted input series using FredNormer. The red line represents the frequency sta-
bility measures, assigning higher weights to components with significant fluctuations appearing in
both the input series and forecasting target, while down-weighting components with low ampli-
tudes. Meanwhile, we observe that these measures are adaptive to different datasets. Interestingly,
the fourth-shaped frequency component exhibits relatively consistent amplitudes, and although its
amplitude value is lower, our metric assigns it a higher weight. In the Electricity dataset, there is
a degeneration trend in amplitude, but due to high consistency, the higher frequency components
maintain a higher weight.

Running Time. Figure 3 presents the running time results for FredNormer and the SOTA SAN
across four datasets. Full computation results for all seven datasets are available in Appendix C.2.
We compare the computation time for both methods at the shortest forecasting length (H = 96)
and the longest (H = 720). The results show the average computation time (in seconds per epoch)
using DLinear and PatchTST as backbone models. FredNormer consistently outperforms SAN
across all datasets. Notably, we achieved improvements of 60% to 70% in 16 out of 28 settings (see
Appendix C.2). These improvements are primarily due to the fact that FredNormer only utilizes
DFT and linear layers during the training phase, minimizing its impact on computation time.

Frequency Measure Ablation. Table 4 shows the results of replacing the frequency stability mea-
sure with two alternative filters. Our metric can be viewed as a filter that learns statistical measures
across datasets and then applies filtering. Since FredNormer may focus on higher frequency
components, we first compare it to a low-pass filter. Additionally, we include frequency random

8
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Table 4: Results for each setting in the ablation study with forecasting lengths H ∈ {96, 720} for
all datasets. The best results are highlighted.

Dataset ETTh1 ETTm1 Weather
Length 96 720 96 720 96 720

Ours DLinear 0.371 ± 0.032 0.428 ± 0.039 0.299 ± 0.021 0.425 ± 0.032 0.162 ± 0.045 0.325 ± 0.041
iTransformer 0.389 ± 0.023 0.496 ± 0.034 0.330 ± 0.035 0.475 ± 0.043 0.162 ± 0.044 0.340 ± 0.036

Low-pass DLinear 0.379 ± 0.025 0.435 ± 0.036 0.305 ± 0.022 0.431 ± 0.031 0.170 ± 0.089 0.337 ± 0.024
iTransformer 0.401 ± 0.017 0.502 ± 0.029 0.335 ± 0.033 0.483 ± 0.047 0.171 ± 0.055 0.356 ± 0.039

Random DLinear 0.393 ± 0.066 0.440 ± 0.087 0.308 ± 0.053 0.429 ± 0.079 0.171 ± 0.102 0.345 ± 0.065
iTransformer 0.407 ± 0.048 0.533 ± 0.055 0.339 ± 0.055 0.487 ± 0.061 0.172 ± 0.088 0.372 ± 0.059

selection, a selective method proposed by FEDformer (Zhou et al., 2022b). The results show that
our frequency stability score consistently achieved the best accuracy, demonstrating that extracting
stable features from the spectrum helps the model learn consistent patterns.

5 RELATED WORKS.

Time Series Forecasting. Transformers have demonstrated significant success in time series fore-
casting (Nie et al., 2023; Zhang & Yan, 2023; Jiang et al., 2023), with early works focusing on
improving computational efficiency (Li et al., 2019; Beltagy et al., 2020; Zhou et al., 2021; Liu
et al., 2022a) and recent works focusing on modeling temporal dependencies (Nie et al., 2023; Liu
et al., 2024b). Some other works argue that understanding cross-channel correlations is critical
for accurate forecasting. Approaches utilizing Graph Neural Networks (GNNs) (Wu et al., 2020;
Cao et al., 2021) and channel-wise Transformer-based frameworks like Crossformer (Zhang & Yan,
2023) and iTransformer (Liu et al., 2024b) captures channel-wise dependencies for forecasting.
Normalization-based Methods. RevIN (Kim et al., 2021) is an innovative normalization work
for suppressing non-stationary. It employs z-score normalization (i.e., mean of 0 and variance of
1) for input samples, then denormalizes the outputs using the same statistics. Dish-TS (Fan et al.,
2023) utilizes learned mean and variance for denormalization. SAN (Liu et al., 2023b) models non-
stationary in a set of fine-grained sub-series and proposes an additional loss function to predict their
statistics. Instead of mean and variance, SIN (Han et al., 2024) proposes an independent neural net-
work to learn features as the objectives of normalization and denormalization adaptively. However,
existing methods focus on modeling statistical variations in the time domain (Liu et al., 2024a).
Frequency Analysis Methods. Incorporating frequency information into models can improve fore-
casting (Wu et al., 2021; Zhou et al., 2022b; Wang et al., 2022; Wu et al., 2023; Yi et al., 2023).
Recent study (Piao et al., 2024) recognizes a learning bias issue of frequency in the time domain
modeling. CoST (Woo et al., 2022) proposes a pre-training strategy to learn time-invariant repre-
sentations in the frequency domain. FiLM (Zhou et al., 2022a) employs a low-rank approximation
method to extract informative frequencies. Koopa (Liu et al., 2023a) introduces Koopman dynamics
(Koopman, 1931) to learn time-invariant frequency features. While promising, existing methods are
costly and architecture-specific, limiting their generalization to other forecasting models.

6 CONCLUSION

This paper theoretically analyzed the effect of normalization methods on frequency components.
We proved that current time-domain normalization methods uniformly scale non-zero frequencies,
making it difficult to identify components that contribute to robust forecasting. To address this,
we proposed FredNormer, which analyzed datasets from a frequency perspective and adaptively
up-weighted key frequency components. FredNormer consisted of two components: a statistical
metric that normalized input samples based on frequency stability, and a learnable weighting layer
that adjusted stability and introduced sample-specific variations. Notably, FredNormer was a
plug-and-play module that maintained efficiency compared to existing normalization methods. Ex-
tensive experiments showed that FredNormer reduced the average MSE of backbone forecasting
models by 33.3% and 55.3% on the ETTm2 dataset. Compared to baseline normalization methods,
FredNormer achieved 18 top-1 and 6 top-2 results out of 28 settings.
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Hervé Abdi. Coefficient of variation. In Encyclopedia of research design, pp. 169–171, 2010.
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FredNormer: Frequency Domain Normalization for
Non-stationary Time Series Forecasting
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A PROOFS

We now give the proof of Lemma and theorem in Sec.2. We begin with the proof of Lemma 1.

A.1 PROOF OF LEMMA 1

Now, we provide proof of normalization in the time domain uniformly scales non-zero frequency
components.

Lemma 1 (Time Domain Normalization Equates to Uniform Scaling in the Frequency Domain)

Normalization in the time domain uniformly scales non-zero frequency components.

Proof:

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Let X(t) be a time series with mean µ(X) and standard deviation σ(X). After applying z-score
normalization, we obtain:

Xz(t) =
X(t)− µ(X)

σ(X)
(12)

Applying the Fourier Transform F to Xz(t) and using the linearity property (Definition 3), we have:

F [Xz(t)] = F
[
X(t)− µ(X)

σ(X)

]
(13)

=
1

σ(X)
F [X(t)− µ(X)] (14)

=
1

σ(X)
(F [X(t)]− µ(X)F [1]) (15)

Since F [1] is the Fourier Transform of the constant function 1, which equals 1{k = 0} (the indicator
function):

F [1] = 1{k = 0} (16)

The indicator function 1{k = 0} is nonzero only at k = 0. Therefore, for non-zero frequency
components (k ̸= 0):

F [Xz(t)] =
1

σ(X)
(F [X(t)]− µ(X)1{k = 0}) (17)

=
1

σ(X)
F [X(t)] for k ̸= 0 (18)

This shows that, for k ̸= 0, the Fourier Transform of the normalized signal is the original Fourier
Transform scaled by 1

σ(X) .

Therefore, the amplitudes satisfy:

|Az(k)| =
1

σ(X)
|A(k)|, for k ̸= 0 (19)

Here, |A(k)| and |Az(k)| are the amplitudes before and after normalization, respectively.

Thus, normalization in the time domain uniformly scales all non-zero frequency components by the
factor 1

σ(X) .

A.2 PROOF OF THEOREM 1

Now, based on the proof of lemma 1, we provide proof of normalization Preserves the Proportion of
O in the Spectrum.

Theorem 1 (Normalization Preserves the Proportion of O in the Spectrum)

The energy proportion of O in the spectrum is defined as the sum of its amplitudes divided by the
sum of amplitudes of the entire spectrum. If Lemma 1 holds, then:∑

k∈O |Az(k)|∑K−1
k=1 |Az(k)|

=

∑
k∈O |A(k)|∑K−1
k=1 |A(k)|

(20)

The left side represents the ratio after normalization, and the right side represents the ratio before
normalization. As shown, this ratio remains unchanged.
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Proof:

From Lemma 1, for all non-zero frequencies k ̸= 0, we have:

|Az(k)| =
1

σ(X)
|A(k)| (21)

Therefore, the sum of amplitudes in O after normalization is:

∑
k∈O

|Az(k)| =
∑
k∈O

1

σ(X)
|A(k)| (22)

=
1

σ(X)

∑
k∈O

|A(k)| (23)

Similarly, the sum of amplitudes of the entire spectrum (excluding k = 0) after normalization is:

K−1∑
k=1

|Az(k)| =
K−1∑
k=1

1

σ(X)
|A(k)| (24)

=
1

σ(X)

K−1∑
k=1

|A(k)| (25)

Calculating the energy proportion after normalization:

∑
k∈O |Az(k)|∑K−1
k=1 |Az(k)|

=

1
σ(X)

∑
k∈O |A(k)|

1
σ(X)

∑K−1
k=1 |A(k)|

(26)

=

∑
k∈O |A(k)|∑K−1
k=1 |A(k)|

(27)

The scaling factor 1
σ(X) cancels out in the numerator and denominator. Therefore, the energy pro-

portion of O remains the same after normalization.

B DETAILS OF THE EXPERIMENTS

B.1 DETAILS OF THE DATASETS.

Weather contains 21 channels (e.g., temperature and humidity) and is recorded every 10 minutes in
2020. ETT (Zhou et al., 2021) (Electricity Transformer Temperature) consists of two hourly-level
datasets (ETTh1, ETTh2) and two 15-minute-level datasets (ETTm1, ETTm2). Electricity (Lai
et al., 2018a), from the UCI Machine Learning Repository and preprocessed by, is composed of the
hourly electricity consumption of 321 clients in kWh from 2012 to 2014. Solar-Energy (Lai et al.,
2018b) records the solar power production of 137 PV plants in 2006, sampled every 10 minutes.
Traffic contains hourly road occupancy rates measured by 862 sensors on San Francisco Bay area
freeways from January 2015 to December 2016. More details of these datasets can be found in
Table.5.

B.2 DETAILS OF THE BASELINES

Reversible Instance Normalization. Reversible Instance Normalization (Revin) normalizes each
input sample using z-score normalization while preserving the original mean and variance. Revin
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Table 5: Overview of Datasets

Dataset Source Resolution Channels Time Range

Weather Autoformer(Wu et al., 2021) Every 10 minutes 21 (e.g., temperature, humidity) 2020
ETTh1 Informer(Zhou et al., 2021) Hourly 7 states of a electrical transformer 2016-2017
ETTh2 Informer(Zhou et al., 2021) Hourly 7 states of a electrical transformer 2017-2018
ETTm1 Informer(Zhou et al., 2021) Every 15 minutes 7 states of a electrical transformer 2016-2017
ETTm2 Informer(Zhou et al., 2021) Every 15 minutes 7 states of a electrical transformer 2017-2018
Electricity UCI ML Repository Hourly 321 clients’ consumption 2012-2014
Traffic Informer(Zhou et al., 2021) Hourly 862 sensors’ occupancy 2015-2016

Algorithm 3 Reversible Instance Normalization (Revin)
1: Input: Time-series data X , Forecasting model F
2: Output: Forecasted data X̂
3: for each instance Xi in X do
4: Compute mean µi ← mean(Xi)
5: Compute variance σ2

i ← variance(Xi)

6: Normalize X̃i ← Xi−µi
σi

7: Store µi and σ2
i

8: end for
9: X̃ ← {X̃1, X̃2, . . . , X̃N}

10: Ỹ ← F(X̃)

11: for each forecasted instance Ỹi do
12: Reverse Normalize Yi ← Ỹi × σi + µi

13: Apply learnable parameters Yi ← γ × Yi + β
14: end for
15: return X̂ = {Y1, Y2, . . . , YN}

reverses the normalization to model outputs by using the saved statistics and applies learnable scaling
and shifting parameters (γ and β).

Sequential Adaptive Normalization. Sequential Adaptive Normalization (SAN) has two train
phases. In the first phase, SAN is trained to learn the relationships between patches of input and
target data by mapping their means and variances. In the second phase, SAN parameters are frozen,
and only the forecasting model is trained. During inference, input data is normalized using SAN,
and the model output is reverse-normalized with predicted statistics by SAN.

B.3 DETAILS OF THE BACKBONES AND SETUP

In our study, we selected three distinct forecasting models to evaluate the effectiveness of our pro-
posed normalization techniques. DLinear is an MLP-based model renowned for its lightweight
architecture, utilizing two separate multilayer perceptrons (MLPs) to learn the periodic and trend
components of the data independently.

PatchTST and iTransformer are both Transformer-based models with unique approaches to handling
time-series data. PatchTST introduces a patching operation that segments each input time series into
multiple patches, which are then used as input tokens for the transformer, effectively capturing local
temporal patterns. In contrast, iTransformer emphasizes channel-wise attention by treating the entire
sequence of each channel as a transformer token and employing self-attention mechanisms to learn
the relationships between different channels.

For all models, we first compute the frequency stability measure across the entire training dataset,
a fixed computational process that typically takes less than one second. Following this, we apply a
simple, parameter-free normalization and denormalization method. After normalization, the input
data is processed through our custom weighting layer before being fed into the forecasting models.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 4 Sequential Adaptive Normalization (SAN)
1: Stage 1: Train SAN
2: Input: Training data X and targets Y
3: Divide X and Y into patches {Xp} and {Yp}
4: for each pair of patches (Xp, Yp) do
5: Compute means µX ← mean(Xp), µY ← mean(Yp)
6: Compute variances σ2

X ← variance(Xp), σ2
Y ← variance(Yp)

7: Train SAN to map (µX , σ2
X) to (µY , σ2

Y ) using loss on µY and σ2
Y

8: end for
9: Stage 2: Train Forecasting Model

10: Freeze SAN parameters
11: for each training iteration do
12: Divide input X into patches {Xp}
13: for each patch Xp do
14: Normalize Xp ← Xp−µX

σX
using SAN’s learned µX and σ2

X

15: end for
16: Forecast Ỹ ← F(X)

17: Divide Ỹ into patches {Ỹp}
18: for each forecasted patch Ỹp do
19: Predict µY , σ2

Y using SAN
20: Reverse Normalize Yp ← Ỹp × σY + µY

21: end for
22: Compute loss L(Y, Ŷ )
23: Update forecasting model parameters θ via backpropagation
24: end for
25: return Trained forecasting model F

B.4 OTHER EXPERIMENTS DETAILS

Loss Function. For our experiments, we adhere to a conventional approach by employing the Mean
Squared Error (MSE) loss function, implemented as nn.MSELoss in our framework. The MSE
loss quantifies the average squared difference between the predicted values and the actual target
values, providing a straightforward measure of prediction accuracy. Mathematically, the MSE loss
is expressed as LMSE = 1

N

∑N
i=1 (ŷi − yi)

2, where N is the number of samples, ŷi represents
the predicted value, and yi denotes the true target value for the i-th sample. This loss function
effectively penalizes larger errors more heavily, encouraging the model to achieve higher precision
in its predictions.

Computational Resources. All experiments were conducted on an NVIDIA RTX A6000 GPU with
48GB of memory, utilizing CUDA version 12.4 for accelerated computation. This high-performance
computational setup facilitated efficient training and evaluation of our forecasting models, ensuring
timely execution of experiments even with large-scale time-series data.

C THE FULL RESULTS.

C.1 FULL LONG-TERM FORECASTING RESULTS.

Table C.1 presents the comprehensive results discussed in Section 4.2 of our paper. This table
includes the prediction accuracy outcomes on the [Electricity, ETTh1, ETTh2, ETTm1, ETTm2,
Traffic, Weather] dataset, utilizing the [DLinear, PatchTST, iTransformer] as the backbone model.
We have compared our method against all baseline models across all forecasting horizons (H ∈
{96, 192, 336, 720}).

C.2 FULL RESULTS OF RUNNING TIME

Table 7 presents the comprehensive results discussed in Section 4.2 of our paper. This table includes
the prediction accuracy outcomes on the [Electricity, ETTh1, ETTh2, ETTm1, ETTm2, Traffic,
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Table 6: Detailed results of comparing our proposal and other normalization methods. The best
results are highlighted in bold.

Models DLinear (Zeng et al., 2023) PatchTST (Nie et al., 2023) iTransformer (Liu et al., 2024b)
Methods + Ours* + Ours + SAN + RevIN + Ours* + Ours + SAN + RevIN + Ours* + Ours + SAN + RevIN
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
le

ct
ri

ci
ty 96 0.135 0.230 0.140 0.237 0.137 0.234 0.210 0.278 0.175 0.266 0.190 0.280 0.182 0.271 0.212 0.297 0.145 0.244 0.143 0.237 0.171 0.262 0.152 0.251

192 0.149 0.245 0.155 0.249 0.151 0.247 0.210 0.304 0.183 0.273 0.195 0.286 0.186 0.276 0.213 0.300 0.169 0.266 0.159 0.252 0.180 0.270 0.165 0.255
336 0.165 0.262 0.171 0.267 0.166 0.264 0.223 0.309 0.198 0.289 0.211 0.301 0.200 0.290 0.227 0.314 0.178 0.271 0.172 0.266 0.194 0.284 0.180 0.272
720 0.198 0.291 0.208 0.298 0.201 0.295 0.257 0.349 0.233 0.317 0.253 0.334 0.237 0.322 0.268 0.344 0.210 0.311 0.205 0.295 0.237 0.319 0.227 0.312

E
T

T
h1

96 0.375 0.398 0.371 0.392 0.383 0.399 0.396 0.410 0.380 0.401 0.374 0.395 0.387 0.405 0.392 0.413 0.380 0.400 0.389 0.404 0.398 0.411 0.394 0.409
192 0.410 0.417 0.404 0.412 0.419 0.419 0.445 0.440 0.442 0.439 0.424 0.428 0.445 0.440 0.448 0.436 0.429 0.427 0.447 0.440 0.438 0.435 0.460 0.449
336 0.430 0.427 0.426 0.426 0.437 0.432 0.487 0.465 0.480 0.456 0.471 0.452 0.505 0.471 0.489 0.456 0.479 0.451 0.492 0.463 0.481 0.456 0.501 0.475
720 0.437 0.455 0.428 0.448 0.446 0.459 0.512 0.510 0.519 0.501 0.514 0.500 0.527 0.507 0.525 0.503 0.491 0.471 0.496 0.482 0.528 0.502 0.521 0.504

E
T

T
h2

96 0.273 0.335 0.273 0.336 0.277 0.338 0.344 0.397 0.292 0.347 0.301 0.349 0.314 0.361 0.344 0.397 0.298 0.352 0.297 0.345 0.302 0.354 0.300 0.349
192 0.335 0.374 0.336 0.376 0.340 0.378 0.485 0.481 0.385 0.402 0.380 0.399 0.391 0.421 0.389 0.411 0.371 0.402 0.380 0.395 0.383 0.402 0.381 0.415
336 0.361 0.399 0.355 0.395 0.356 0.398 0.582 0.536 0.431 0.438 0.410 0.424 0.444 0.466 0.437 0.451 0.425 0.435 0.420 0.428 0.435 0.441 0.433 0.442
720 0.388 0.429 0.384 0.423 0.396 0.435 0.836 0.659 0.429 0.461 0.422 0.443 0.467 0.484 0.430 0.481 0.420 0.444 0.410 0.432 0.448 0.457 0.426 0.445

E
T

T
m

1 96 0.285 0.339 0.299 0.341 0.288 0.342 0.353 0.374 0.322 0.359 0.321 0.362 0.325 0.361 0.353 0.374 0.326 0.361 0.330 0.370 0.331 0.373 0.341 0.376
192 0.321 0.359 0.336 0.364 0.323 0.363 0.391 0.392 0.350 0.379 0.365 0.388 0.355 0.381 0.391 0.401 0.365 0.384 0.374 0.391 0.376 0.381 0.380 0.394
336 0.355 0.380 0.370 0.383 0.357 0.384 0.423 0.413 0.381 0.401 0.407 0.408 0.385 0.402 0.423 0.413 0.395 0.403 0.408 0.414 0.412 0.418 0.419 0.418
720 0.405 0.411 0.425 0.414 0.409 0.415 0.486 0.449 0.446 0.436 0.464 0.442 0.450 0.437 0.486 0.459 0.471 0.447 0.475 0.449 0.485 0.453 0.486 0.455

E
T

T
m

2 96 0.163 0.255 0.165 0.254 0.166 0.258 0.194 0.293 0.177 0.272 0.179 0.262 0.184 0.277 0.185 0.272 0.178 0.272 0.176 0.258 0.180 0.272 0.200 0.281
192 0.222 0.300 0.220 0.291 0.223 0.302 0.283 0.360 0.245 0.319 0.240 0.300 0.249 0.325 0.252 0.320 0.247 0.311 0.241 0.302 0.248 0.315 0.252 0.312
336 0.272 0.329 0.273 0.325 0.272 0.331 0.371 0.450 0.298 0.253 0.310 0.347 0.330 0.378 0.315 0.351 0.307 0.351 0.307 0.347 0.308 0.352 0.314 0.352
720 0.365 0.383 0.368 0.383 0.380 0.384 0.555 0.509 0.405 0.401 0.409 0.404 0.423 0.431 0.415 0.408 0.409 0.403 0.410 0.402 0.412 0.407 0.411 0.405

Tr
af

fic

96 0.410 0.286 0.408 0.277 0.412 0.288 0.648 0.396 0.497 0.342 0.527 0.339 0.530 0.340 0.650 0.396 0.400 0.271 0.394 0.268 0.502 0.329 0.401 0.277
192 0.427 0.288 0.422 0.283 0.429 0.297 0.598 0.370 0.499 0.339 0.502 0.331 0.516 0.338 0.597 0.359 0.470 0.319 0.413 0.277 0.490 0.331 0.421 0.282
336 0.439 0.305 0.436 0.295 0.445 0.306 0.605 0.373 0.520 0.349 0.510 0.327 0.533 0.343 0.605 0.362 0.489 0.333 0.428 0.283 0.512 0.341 0.434 0.389
720 0.454 0.311 0.455 0.311 0.474 0.319 0.645 0.395 0.550 0.349 0.545 0.345 0.575 0.367 0.642 0.381 0.478 0.330 0.463 0.301 0.576 0.364 0.465 0.302

W
ea

th
er 96 0.150 0.208 0.162 0.212 0.152 0.210 0.196 0.256 0.167 0.225 0.166 0.207 0.170 0.229 0.195 0.235 0.165 0.221 0.162 0.204 0.170 0.227 0.175 0.225

192 0.194 0.251 0.207 0.251 0.196 0.254 0.238 0.299 0.208 0.263 0.216 0.253 0.211 0.270 0.240 0.270 0.212 0.261 0.213 0.252 0.214 0.270 0.225 0.257
336 0.243 0.289 0.256 0.288 0.246 0.294 0.281 0.330 0.255 0.301 0.273 0.295 0.261 0.310 0.291 0.306 0.261 0.304 0.271 0.295 0.265 0.309 0.280 0.307
720 0.311 0.339 0.325 0.337 0.315 0.346 0.346 0.384 0.326 0.349 0.351 0.346 0.332 0.359 0.364 0.353 0.338 0.345 0.340 0.347 0.342 0.358 0.373 0.366

Table 7: Running time comparison with forecasting lengths H ∈ {96, 720} for all datasets and fixed
input sequence length L = 96. The best results are highlighted.

Model Electricity ETTh1 ETTh2 ETTm1 ETTm2 Traffic Weather

H 96 720 96 720 96 720 96 720 96 720 96 720 96 720

DLinear (Zeng et al., 2023)
+ Ours 16.718 27.545 3.004 3.082 2.820 3.222 13.456 13.124 11.839 12.949 23.217 43.413 13.970 16.536
+ SAN 19.159 34.914 8.688 8.054 8.373 7.811 36.706 36.564 36.620 36.550 31.378 54.518 37.739 40.731
IMP(%) 12.8% 21.1% 65.5% 60.5% 66.6% 58.3% 63.1% 64.2% 67.8% 64.3% 26.0% 20.3% 63.0% 59.9%

PatchTST (Nie et al., 2023)
+ Ours 99.104 103.781 7.952 8.215 14.687 14.122 54.526 28.944 59.406 26.233 209.006 215.718 69.107 49.628
+ SAN 313.697 322.083 16.226 15.309 16.078 14.998 63.686 65.839 65.978 66.798 550.026 557.730 81.973 81.462
IMP(%) 68.4% 67.7% 51.6% 46.2% 8.00% 5.20% 14.3% 56.0% 10.0% 60.7% 61.6% 61.2% 15.9% 39.8%

Weather] dataset, utilizing the [DLinear, PatchTST] as the backbone model. We have compared our
method against all baseline models across all forecasting horizons (H ∈ {96, 720}).
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