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ABSTRACT

This study introduces a novel method for performing Maximum A Posteriori
(MAP) estimation on Markov Random Fields (MRFs) that are defined on locally
and sparsely connected graphs, broadly existing in real-world applications. We
address this long-standing challenge by sampling uniform random spanning trees
(SPT) from the associated graph. Such a sampling procedure effectively breaks the
cycles and decomposes the original MAP inference problem into overlapping sub-
problems on trees, which can be solved exactly and efficiently. We demonstrate
the effectiveness of our approach on various types of graphical models, including
grids, cellular/cell networks, and Erdős–Rényi graphs. Our algorithm outperforms
various baselines on synthetic, UAI inference competition, and real-world PCI
problems, specifically in cases involving locally and sparsely connected graphs.
Furthermore, our method achieves comparable results to these methods in other
scenarios. The code of our model can be accessed at https://anonymous.
4open.science/r/From-fields-to-trees-iclr-EB75.

1 INTRODUCTION

In this paper, we investigate a novel approach to infer on Markov Random Fields defined over
sparsely and locally connected graphs via random spanning tree sampling. Formally, an MRF is
defined over an undirected graph G = (V, E), where V represents the index set of random variables
and E corresponds to the edge set implying dependencies among these variables. Each random
variable in xi ∈ X takes a value from a finite alphabet X (xi can be a vector) with node index i ∈ V ,
and the joint distribution is expressed as a product of potential functions, each associated with a
subset of variables that forms a clique in G. In this paper, we consider minimizing energy functions
with unary terms θi and pairwise terms θij , then the MAP estimate is:

min
X

E(X) = min
{xi},∀i∈V

∑
i∈V

θi(xi) +
∑

(i,j)∈E

θij(xi, xj)

 . (1)

where X = {xi}i∈V . Optimization problem over MRFs expressed in equation 1 is a prevalent model in the
realm of probabilistic graphical modeling (Clifford & Hammersley, 1971). Notably, MRF and its counterparts
enable the principled and simplified representation of joint probability distributions over a set of variables,
conditioned upon the structure of an undirected graph. The intrinsic capability of MRFs to model contextual
relationships in data offers a cohesive and efficient framework for addressing inference and estimation chal-
lenges across a diverse array of scientific and engineering disciplines, including computer vision (Wang et al.,
2013; Su et al., 2021), 5G networks (Kumar et al., 2022), pathology image analysis (Li et al., 2020) and in other
fields combining the power of GNN (Xu et al., 2021a; Wu et al., 2020).

Problem equation 1 is known NP-hard in general (Kolmogorov & Zabin, 2004). Early trials to efficiently
and suboptimally solve equation 1 can date back to 80’s of the previous century, when Judea Pearl developed
the prestigious Belief Propagation (BP) algorithm (Pearl, 1988). Motivated by this breakthrough, a series of
BP variants were further proposed (Wiegerinck & Heskes, 2002; Yedidia et al., 2005; Montanari & Rizzo,
2005). Other prominent methods include Mean Field Approximation (Saito et al., 2012; Zhang, 1993; Zhang
& Hanauer, 1995), Graph Cuts (Greig et al., 1989), and Junction Trees (Aji & McEliece, 2000), to name a
few. These methods offer varying trade-offs between accuracy and computational efficiency. To the best of our
knowledge, no single method stands out as state-of-the-art over all existing problems spanning various scales,
topologies, and problem distribution.

In this study, we put our special focus on sparsely and locally connected graphs. In realistic scenarios, such
topologies broadly exist in power grid (Cuffe & Keane, 2017), 5G networks (Agiwal et al., 2016; Liu & Zou,
2020), transportation networks (Yunfei Ma & Razavi, 2022), and even social networks (Majeed et al., 2020).
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Efficient MAP inference in the corresponding applications is crucial. Beyond our focus, we emphasize that our
study can be flexibly extended into other types of graphs.

Diverging from existing well-established strategies, our approach leverages the structure of random spanning
trees to efficiently infer on MRFs. In a nutshell, our approach consists of “sampling random trees – solving
MRFs on trees – merging” steps. Concretely, instead of solving the MRF on the entire graph directly, we sample
multiple spanning trees from the original graph and solve the MRF independently on each tree, on which exact
inference is tractable. The final solution to equation 1 is then approximated by merging the solutions from
all sampled trees. Our approach thus combines the benefits of exact tree-based inference procedures with the
flexibility of sampling methods, creating a balance between computational efficiency and accuracy.

We conduct experiments on synthetic instances, UAI competition instances (uai), and real-world Physical Cell
Identity (PCI) instances, covering a variety of problem scales, types of topologies, and energy functions. We
observe superior performance against several baselines in the sparse and local network setting, and comparable
performance in other settings, which strongly pose the promise of the proposed method in various scenarios.

In summary, our contribution through this proposed method introduces a scalable and efficient sampling-based
approach to infer on MRFs on locally and sparsely connected graphs, mitigating the drawbacks of existing
methods. Superior performance is observed in benchmarks across a wide spectrum. By transcending the
traditional methodologies and introducing structural simplification via topological sampling over trees, this
work posits rich potential to solve intricate MRF problems in the real world.

2 RELATED WORKS

In MRFs, the energy function is linked to a graph-structured probability distribution. A significant inference
challenge in MRFs is determining the MAP configuration. Although minimizing the energy function of MRF
models is NP-hard, advances in inference techniques have significantly expanded the model’s capabilities.
The success in solving the MAP estimation problem on cycle-free graphs is highly dependent on the graph’s
structure. In these graphs, the MAP problem can be effectively tackled using a variant of the min-sum al-
gorithm (Clifford & Hammersley, 1971; Besag, 1974; Kumar et al., 2005), which facilitates message passing
between nodes and serves as an extension of the Viterbi algorithm (Yedidia et al., 2003) to arbitrary cycle-free
graphs. For graphs containing cycles, graph cut methods (Komodakis et al., 2007; Roy & Cox, 1998; Boykov
et al., 1998; Ishikawa & Geiger, 1998; Szummer et al., 2008; Ishikawa, 2003; Schlesinger & FLACH, 2006)
offer a potent solution by employing min-cut/max-flow strategies to efficiently reduce discrete MRFs’ energy.

The belief propagation (BP) algorithm, introduced by Pearl (Pearl, 1982; 1988) in 1982, is an efficient iterative
inference algorithm for Bayesian belief networks, functioning through fixed-point message passing. Its adapt-
ability has made it a widespread solution for various types of MRFs. Nonetheless, BP encounters difficulties
with models containing loops. Loopy belief propagation (LBP) attempts to resolve this by iterating message
passing within graphs, even with loop presence (Weiss & Freeman, 2001; Felzenszwalb & Huttenlocher, 2004;
Frey & Mackay, 2002). While LBP has shown efficacy in several vision tasks (Sun et al., 2002), it does not
ensure fixed-point convergence, and its theoretical underpinnings remain elusive. The quest for a flexible,
convergence-guaranteed method persists, yet significant advancements have been made to enhance BP’s per-
formance. The method proposed by Grim & Felzenszwalb (2023) enhances BP by adjusting the significance of
input messages through a discount factor for remote nodes in the message passing chain. Additionally, lever-
aging graph topology for decomposition mitigates the impact of loops. In Yan et al. (2023), BP’s inefficiency
in large-scale MRFs is addressed by constructing a hierarchical framework, facilitating inference via energy
connections between layers. Another strategy, detailed by Hamze & de Freitas (2004), involves partitioning
graphs into two segments to serve as mutual evidence for updates, although its applicability is limited to graphs
with predefined structures. In Kirkley et al. (2021), they propose graph decomposition using primary circles
of a specified length from any given node, aiming to circumvent short loop influences, yet it is not effective
for large-scale graphs. Integrating tree structures to break loops within the graph, the Junction Tree Algorithm
(JTA) (Aji & McEliece, 2000), an exact inference method for arbitrary graphs, entails finding a maximum
spanning tree across the largest cliques of a triangulated graph, a task known to be NP-hard, thereby limit-
ing its practicality. In the realm of pairwise MRFs, problems are formulated as integer linear programming
(ILP) (Wainwright et al., 2005; Kolmogorov, 2006), where solutions are derived from a dual problem using
a convex combination of trees. This class of algorithms, known as tree-reweighted message passing (TRW)
techniques, encompasses edge-based (TRW-E) and tree-based (TRW-T) schemes, both of which lack guaran-
teed convergence, potentially looping infinitely. The sequential TRW-S scheme (Kolmogorov, 2006) achieves
a state of weak tree agreement (WTA), ensuring the lower bound stabilizes, albeit requiring substantial time
to reach this stage. TRBP has long been considered the state-of-the-art (SOTA) methodology and has been
adapted in Xu et al. (2021b) to exploit modern GPUs for accelerated inference processes.

Several approaches have leveraged tree structures to address graph-related challenges. Batra et al. (2010) pro-
poses a graph decomposition method using outer-planar graphs. However, this approach is restricted to planar
MRFs (such as grids or superpixel adjacency graphs), and the computational complexity in determining both
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the required number and structure of subgraphs limits its applicability to general and large-scale graphs. The
method in Pletscher et al. (2009) employs tree log-likelihood for approximation, while Skurikhin (2014) com-
bines log-likelihood maximization with gradient descent for inference, specifically on grid structures. Both
methodologies rely on voting mechanisms for final predictions. Using trees and Non-parametric Belief Prop-
agation (Savic & Zazo, 2010) improve the accuracy in solving the localization problem in communication
networks under 100 nodes. None of these three methods implement message correction on edges, potentially
leading to deviations from original messages, as demonstrated in Lemma 1. While Bradley & Guestrin (2010)
addresses structure learning, our work specifically focuses on MAP inference in MRFs and CRFs. Additionally,
their approach is limited to graphs exhibiting tree-like structures. Trees could also work on binary inference
problems (Cesa-Bianchi et al., 2010) through graph transformation, converting tree structures into line graphs
for prediction purposes. Our work proposes a novel methodology that addresses two critical challenges in
MRFs: circumventing the computational complexities associated with loop structures while maintaining faith-
ful approximations of the original problem formulation. This approach demonstrates particular efficacy in
handling large-scale MRF instances and problems that can be formulated within the MRF framework.

3 PRELIMINARIES

Markov Random Field. MRFs can be used to model probabilistic undirected graphs. We follow the notations
in Section. 1 and further suppose |E| = M and |V| = N . In this paper, each node i corresponds to a discrete
state variable xi ∈ X , ∀i ∈ V , where X is a finite alphabet. And there is a conditional independence between
variables

P(xi|X\{xi}) = P(xi|{xj} for (i, j) ∈ E). (2)

where P(·) is the probability function throughout this paper. Thus, the distribution on the graph G can be
factorized into a product of local Markov potentials

P(X) = 1
Z
exp(−E(X)) = 1

Z
exp

(
−
∑

i∈V θi(xi)−
∑

(i,j)∈E θij(xi, xj)
)

(3)

where Z is the partition function, θi(·) denotes the unary energies, θij(·) represent the pairwise interaction
energies, and E is the energy function. The specific forms of energy functions are determined by the nature of
the problems and they are all known in most cases. In our study, we aim to maximize the posterior probability
by finding the optimal configuration of the hidden variables X := {xi} (assign appropriate values to each of
the random variables). This corresponds to minimizing the energy function:

Xopt = argmax
X∈X

P(X) = argmin
X∈X

E(X) (4)

Sum-Product Belief Propagation. The key subroutine of our Spanning Tree message passing algorithms is
sum-product belief propagation of Pearl (Pearl, 1988). BP is an algorithm for approximate minimization of
energy E(x) as in equation 3; it is exact if the graph does not have loops (e.g., trees and chains). Sum-product
BP maintains a directional message Mij from node i to node j. The basic operation of BP is to pass the
message from node i to node j along the edge (i, j). After receiving all the messages from node i’s neighbors,
the marginal distribution of node i reads:

P(xi|X\{xi}) = P(xi)
∏

(i,j)∈E

Mji (5)

where P(xi) is the prior marginal of xi. In the absence of specific prior information, we will assume that all
priors are uniformly distributed. BP algorithm iteratively passes messages in a specific order until a stopping
criterion is met. One numerical method that improves the performance of BP is to stabilize the fixed point
iteration scheme with damping (Murphy et al., 2013), which helps prevent oscillations between two steady
states. This method involves replacing the term

∏
(i,j) Mij in equation 5 with a convex combination of the

received messages:

M t
ij = (1− α)M t

ij + αM t−1
ij (6)

where α ∈ (0, 1) is known as the damping factor and t refers to the iteration number.

Random Spanning Trees. Given a graph G = (V, E), we denote T the collection of all the spanning trees T
in G and Ω(T ) some distribution over T . The spanning trees we select from T is {Tk ∈ T |k ∈ K}, where K
is the index set of the trees. Denote ρT the probability of sampling a spanning tree T from T . Throughout the
paper, we assume that each distinct tree is sampled with equal probability, i.e., for any two distinct spanning
trees T1, T2 ∼ Ω(T ), ρT1 = ρT2 . For each edge (i, j) ∈ E , we denote ρij = P((i, j) ∈ T, T ∼ Ω(T )) the
probability that an edge (i, j) appears in a random spanning tree.

3
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4 MAP INFERENCE USING TREE SAMPLING

In this section, we present our approach and examine the potential benefits of approximating the original prob-
lem by combining the results via the analysis of random spanning trees in the original graph. Furthermore,
we present a heuristic that has the potential to improve the approximation outcome by capitalizing on the in-
formation obtained during the “BP – update – inference” procedure. Subsequently, we dive into a thorough
examination of the underlying logic behind our algorithm and conduct a comprehensive analysis of its com-
plexity.

Algorithm 1: MAP on Graph using Spanning Tree Sampling
Input: Graph G, index set of spanning trees K, number of iterations iter.
Output: overall states X .

1 T cand ← {Tk}|K|
k=1, for Tk ∼ T ; // sample a candidate tree set

2 while not converge do
3 for k ∈ K do
4 Apply BP to Tk ∈ T cand to compute ptTk

(xi|X\{xi}) ∀xi ∈ X ;

5 M = {p(xi|X\{xi})|xi ∈ X} = {
∏
k∈K

(ptTk
(xi|X\{xi})|xi ∈ X} ; // update marginals

6 XGibbs = GibbsSampler(M);
7 XGreedy = GreedySelector(M);
8 Ebest,t

temp = min(Ebest,t−1
temp , E(XGibbs), E(XGreedy));

9 Update Xbest,t
temp according to Ebest,t

temp ; // update best X

10 X = Xbest,t
temp ;

4.1 ALGORITHM

Procedures in the proposed approach are summarized in Algorithm 1 and a pipeline diagram is illustrated
in Fig. 3 in Appendix A. While the presence of loops in the original graph renders it analytically intractable,
conducting belief propagation on each of the spanning trees efficiently delivers exact solutions. Note a spanning
tree is a structure that can encompass all nodes and capture a significant amount of the relationships between
nodes without loops, which maximally utilizes original information and avoids the oscillations.

By sampling spanning trees from the graph and doing belief propagation on these trees, we are actually trying
to formulate a series of sub-problems of the original problem and solve the original problem by solving these
sub-problems. The sub-problem on a spanning tree T is shown below:

min
X

ET (X) = min
{xi},∀i∈V

∑
i∈V

θi(xi) +
∑

(i,j)∈T

θij(xi, xj)

 . (7)

To ensure that the combined energy of the spanning trees aligns with the energy of the original graph, and
consequently that the joint distribution over the trees matches the joint distribution of the original graph, it
is crucial to validate the correctness of the beliefs propagated within the trees. During the belief propagation
procedure, messages passed along an edge represent the marginalized joint distribution of that edge, which
inherently depends on the pairwise energy term.

To mitigate the bias introduced by the sampling procedure, we adjust the pairwise beliefs on each uniformly
sampled spanning tree using the probability ρij of an edge (i, j) appearing in a uniformly sampled spanning
tree. The adjustment coefficient for the pairwise energy on edge (i, j) is given by wij = 1/ρij .

To accurately estimate the probability ρij of an edge appearing in a uniformly sampled spanning tree, we utilize
the concept of effective resistance, as detailed in Section 4.3. The adjusted sub-problem on a spanning tree T
is formulated as follows:

min
X

ET (X) = min
{xi},∀i∈V

∑
i∈V

θi(xi) +
∑

(i,j)∈T

wijθij(xi, xj)

 . (8)

Then we could use the energy of each sampled tree to approximate the original energy of the graph:

Ẽ(X) =
∑
k∈K

ρTk

∑
i∈V

θi(xi) +
∑

(i,j)∈Tk

wijθij(xi, xj)

 =
∑
i∈V

θi(xi) + ET∼Ω(T )[Θ̃(X,X)], (9)

4
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where ρTk is the probability that Tk is sampled and Θ̃(X,X) is the pairwise energy term after reweighted.
And the second term of the right-hand side is the expectation of the adjustment pairwise term according to
the distribution of the random uniform spanning trees. By Lemma 1, we could make sure the merged MAP
problem is actually an approximation of the original problem. We use a toy example to show the necessity of
weight adjustment in Appendix J.

After adjustment, the incoming message of vertex i from vertex j now becomes M̃ji = (Mji)
wij .

Then equation 3 on a certain tree T now becomes

PT (X) =
1

ZT
exp(−ET (X)) =

1

ZT
exp

−∑
i∈V

θi(xi)−
∑

(i,j)∈T

wijθij(xi, xj)

 . (10)

Now we could approximate the joint distribution via:

P̃(X) =
∏
k∈K

PTk (X)ρTk =
1

Z̃
exp

−∑
k∈K

ρTk

∑
i∈V

θi(xi) +
∑

(i,j)∈Tk

wijθij(xi, xj)

 . (11)

After applying belief propagation on sampled trees, we could obtain the marginals pTk (xi|X\{xi}) on each
tree. They are subsequently merged to approximate the true marginal distribution. For the initial marginals,
without any specification, we will assume they are all uniform. To obtain the estimations, we do the follow-
ing procedure to merge the marginals of each variables on each trees since the summation in energy is the
multiplication when calculating probability:

p̃(xi|X\{xi}) =
∏
k∈K

(pT t
k
(xi|X\{xi})). (12)

We employed two methods, Gibbs sampling (Geman & Geman, 1984), and Greedy selection, to assign values
to each of the variables based on the estimation of the marginal distributions as in Line 6 and 7 in Algorithm 1.
These methods are implemented in modules named GibbsSampler and GreedySelector. The GibbsSampler
samples a label for each variable based on the estimated marginal distribution, this label configuration is called
XGibbs, while the GreedySelector selects the label with the highest value from the estimated marginal distri-
bution, this label configuration is called XGreedy . Since the sampling procedure will introduce uncertainty and
greedy selection on nodes doesn’t mean the combination is the best, we will keep recording the best configura-
tion so far Xbest,t

temp during the iterations. We will update this configuration if some of the configuration given by
the two modules yields the lowest energy so far Ebest,t

temp . When the algorithm terminate, the best configuration
that is found would be the final output.

Complexity Analysis can be found in Appendix E.

Lemma 1. Given a uniform spanning tree distribution Ω(T ) and the corresponding edge appearance proba-
bilities {ρij |∀(i, j) ∈ E}, when |K| = |T |, the approximation energy Eq. 9 and the original energy coincide.

Since Acquire the true tree selection probability ρT is intractable in practice, we use Monte Carlo Approxima-
tion to do the approximation when implementation the algorithm, by Lemma 2, you could see the condition in
Lemma 1 still holds.

Lemma 2. By applying the Monte Carlo Approximation, the expectation of the approximation is the original
energy.

ET∼Ω(T )

∑
i∈X

θi(xi) +
1

|K|
∑
k∈K

∑
(i,j)∈Tk

wijθi,j(xi, xj)

 =
∑
i∈X

θi(xi) +
∑

(i,j)∈E

θij(xi, xj) (13)

Theorem 1. Given spanning tree distribution Ω(T ) and the corresponding edge appearance probability
{ρij |∀(i, j) ∈ E}, the following error bound of the approximation energy Eq. equation 9 holds with prob-
ability at least 1− δ.

|E(X)− Ẽ(X)| ≤
√

1

|K|
∑

(i,j)∈E

θ2ij(xi, xj)(
1− ρij
ρij

)
1√
δ
. (14)

When
|K| ≥ 1

δη2

∑
(i,j)∈E

θ2ij(xi, xj)(
1− ρij
ρij

), (15)

we have P (|E(X)− Ẽ(X)| ≥ η) ≤ δ.

5
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The proof of Lemma 1, Lemma C and Theorem 1 could be found in Appendix B and Appendix D respectively.
It is obvious that due to the term (

1−ρij
ρij

), we could achieve good quality results with only a few trees when the
graph is sparse.

The error bound exhibits an inverse relationship with the edge selection probability ρij . As ρij approaches
smaller values, the factor ( 1−ρij

ρij
) grows significantly, leading to a looser error bound. This relationship pro-

vides insight into the performance disparity between sparse and dense graphs. In sparse graphs, each edge
typically has a higher probability of being included in a spanning tree, since fewer alternative paths exist be-
tween vertices. Conversely, in dense graphs, the abundance of potential paths results in lower individual edge
selection probabilities. Consequently, when ρij is larger (as in sparse graphs), the term (

1−ρij
ρij

) remains rela-
tively small, yielding a tighter error bound and better estimation accuracy. Moreover, this theoretical analysis
aligns with our empirical observations of superior performance on sparse graphs. This mathematical relation-
ship explains why our method naturally performs better on sparse structures, where the higher edge selection
probabilities contribute to more reliable estimates.

4.2 RANDOM UNIFORM SPANNING TREE

The key idea behind our algorithm is utilizing the partial information contained inside the original graphs.
To uniformly sample a random spanning tree from the given graph, we employed the widely used Wilson’s
algorithm (Wilson, 1996). This algorithm, based on random walks and removal, ensures the uniformity of the
resulting spanning tree selection. In general, the time complexity of Wilson’s algorithm is O(N3). It could
be significant when the size of the graph increases. Using methods such as Depth-First Search (DFS) would
be more efficient, given the time complexity of O(M + N). However, these methods make it challenging to
identify the distribution of the trees. As a result, we cannot adjust the messages based on the edge selection
probabilities. Therefore, one of the future trials is to incorporate advanced (approximate) sampling procedures
such as Schild (2018) to reduce the time complexity.

4.3 EFFECTIVE RESISTANCE

We employ algorithms approximating effective resistance to obtain ρij . Effective resistance is used in electrical
network analysis and graph theory to measure the resistance between two vertices in a graph (Lyons & Peres,
2016) – how difficult it is for current to flow between two points in a network. The terminology of effective
resistance originates from the following observation: Given the resistance on all edges, if one removes all
vertices of G except (s, t) and replaces the whole network with a resistance of resistor Reff(s, t) between
(s, t), then, the energy (and the potential difference) of all electrical flows between (s, t) remains invariant.

There is a strong connection between ρij and the corresponding effective resistance. By applying Kirchhoff’s
effective resistance formula (Lyons & Peres, 2016), we can establish the following lemma.

Lemma 3 ( (Madry et al., 2014; Doyle & Snell, 2000)). For any unweighted graph G = (V, E), any edge
(i, j) ∈ E , ρij = P[(i, j) ∈ T, T ∼ Ω(T )] = Reff(i, j).

As such, we resort to an efficient alternative algorithm approximating effective resistance (Vos, 2016) for ρij . In
our research, we only need the appearance probabilities of all the edges to calculate the weight of the pairwise
energies, so we only need to calculate the effective resistance between directly connected nodes instead of do
the calculation between all the nodes. Note, the value Reff(i, j) represents the probability of sampling edge
(i, j) when reaching node i or node j in Wilson’s algorithm. In this sense, it is unnecessary to directly reweight
the pairwise terms θij . More details are in Appendix F.

5 EXPERIMENTS

We present a comprehensive investigation into the performance of the variational inference method Mean-
field and three belief-based inference algorithms: the Loopy Belief Propagation algorithm (LBP), the Tree-
reweighted Belief Propagation algorithm (TRBP), and a novel sampling algorithm proposed in this study, re-
ferred to as SPT. The experiments aim to validate the arguments presented in the previous sections and estab-
lish the superiority of our proposed algorithm over LBP and TRBP. Performance evaluations are conducted on
synthetic problems with diverse graph structures, encompassing energy functions such as the square function
θij = α(xi − xj)

2, absolute difference function θij = α|xi − xj | and Potts function θij = α(xi = xj) + β,
where α and β are constant penalty terms. In this section, we use α = 1 and β = 0.1.

Experiments involve grid-based and cell-based structures, as well as Erdős-Rényi (ER) random graphs. The
LBP algorithm and TRBP algorithm are from Kappes et al. (2015); Andres et al. (2012); Maxwell Forbes
(2017). TRBP here is the refined version of TRW-based algorithms. The mean-field algorithm we used is from

6
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Figure 1: Results on Grid, Erdős-Rényi (ER), Cellular, and Cell graph types (rows) with Potts,
Absolute difference (Abs), and Squared difference energies. Each plot shows energy E(x|θ̄) vs.
iterations. Blue: LBP, orange: TRBP, green: SPT. Note: LBP and TRBP curves sometimes overlap
due to minimal differences.

Table 1: Results on real PCI instances. Numbers are obtained energy values. Best in bold.

GRAPH #VAR/#CON #NODES/#EDGES LBP TRBP SPT

PCI INSTANCE 1 955/2496 30/165 3.72662E+08 3.72662E+08 84382.6
PCI INSTANCE 2 1588/4409 40/311 3.72704E+08 3.72704E+08 186848
PCI INSTANCE 3 17684/52673 80/1522 0.303468 0.303468 0.295245
PCI INSTANCE 4 65713/193287 286/10565 0.751074 0.751074 0.552074

Wang et al. (2022). Furthermore, the applicability of our algorithm on real-world MRF inference datasets is
demonstrated.

5.1 SYNTHETIC PROBLEMS

We first conduct experiments on synthetic problem instances. To test the applicability of the proposed method
in a wide spectrum of settings, we test four types of graph topologies: Grid, Erdős-Rényi (ER), Cellular, and
Cell. There are illustrative figures in Appendix O.1 visualizing typical layouts of cell graphs (Fig. 7(a)) and
cellular graphs (Fig. 7(b)). All the experimental results are in Fig. 1. Concrete settings are as follows.

Grid. We first test these algorithms on 70×70 grids with 4900 nodes, and each random node has 5 possible
discrete labels to select. In addition, each label is attached to an explicit energy generated randomly and the
energy el ∈ (0, 1). For the setting of LBP and TRBP, we set the maximum round of iterations to 40 rounds.
The damping factor of both of them is 0.8 since it is the best configuration as we could see from the results of
the experiments. For our SPT, the maximum round of iterations is set to 20 and the damping factor is 0. We
run the experiment for 10 different test cases and the final result is the average result over these cases.

Erdős-Rényi. Random MRF instances under Erdős-Rényi setting comprise 2,500 nodes, with an average
degree of 12. The test cases are configured with different energy functions, and all the unary energy terms are
generated randomly. In order to show the inference ability clearly, we attach 10 possible labels for each node
in this part. The damping factors are set to 0 in this part of experiment. The maximum iterations, including our
SPT algorithm are all set to 40. The number of trees used by SPT for the tests is 20.

Cellular & Cell. In addition to these two most common type of networks. We then run the tests on cellular
and cell networks which are widely applied in communication networks. Each of the cellular networks has
4,998 nodes and 7,398 edges, the average degree is about 2.96. Each of the cell networks has 4,900 nodes and
14,421 edges, the average degree is about 5.89. The other settings are as same as we used for the experiments
on Erdős-Rényi graphs.
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Table 2: Results on the UAI dataset. Numbers are the obtained energy values. Best in bold.

GRAPH #NODES/#EDGES
Mean-field LBP TRBP SPT

Energy Time(s) Energy Time(s) Energy Time(s) Energy Time(s)
ProteinFolding 11 400/7160 1.0414e+08 0.0343 7.11675e+07 0.880201 7.54224e+07 0.967124 7.49639e+07 13.2087 (ρij time 1.66887)
ProteinFolding 12 250/1848 5852.2148 2.2345 0.949 13.4593 0.949 15.4034 0.949 15.9054 (ρij time 0.448073)

Grids 19 1600/3200 10613.0645 0.1503 7053.72 3.32058 6056.45 3.66748 6275.56 112.945 (ρij time 89.1308)
Grids 21 1600/3200 3.3756e+08 0.1598 2.5577e+08 3.30869 2.56852e+08 3.6697 3.22289e+08 137.674(ρij time 89.106)
Grids 24 1600/3120 3.8874e+08 0.1423 3.08505e+08 3.22656 3.01668e+08 3.56594 3.09172e+08 142.921 (ρij time 89.0508)
Grids 25 1600/3120 10487.6113 0.1337 5476.03 3.099 5441.52 3.47539 5931.11 115.198 (ρij time 90.8171)
Grids 26 400/800 818490.187 0.0317 792987 0.824318 556629 0.914945 759351.5 12.3774(ρij time 1.61949s)
Grids 27 1600/3120 3.892e+6 0.1375 2.06277e+06 3.22343 2.14945e+06 3.57305 3.41471e+06 132.454 (ρij time 89.1219)
Grids 30 400/760 1044407.0625 0.0313 567339 0.7504 663905 0.831959 809344 13.4867 (ρij time 1.65657)

Segmentation 11 228/624 401.231 0.2086 346.647 24.8519 348.097 29.679 200.866 12.2192 (ρij time 0.366381)
Segmentation 12 231/625 805.6727 0.0212 735.259 0.822135 735.259 0.899114 611.347 3.72848 (ρij time 0.377893)
Segmentation 13 225/607 785.7468 0.0208 726.144 0.632035 726.144 0.708431 596.606 3.05409 (ρij time 0.347453)
Segmentation 14 231/632 803.2781 0.229 742.241 0.752022 742.241 0.824835 629.95 3.63654 (ρij time 0.375578)
Segmentation 15 229/622 314.47 0.1961 362.61 24.764 362.61 29.4172 191.924 9.8776 (ρij time 0.364987)
Segmentation 16 228/610 776.0317 0.211 720.009 0.811115 720.009 0.886003 578.114 3.53684 (ρij time 0.363007)
Segmentation 17 225/612 516.1681 0.1895 392.83 25.8389 370.852 30.3104 187.432 9.67083 (ρij time 0.34816)
Segmentation 18 235/647 820.7836 0.0235 782.282 0.745899 782.282 0.825011 595.11 3.68485 (ρij time 0.396227)
Segmentation 19 228/624 798.2877 0.221 742.197 0.72549 742.197 0.807067 624.649 3.39231(ρij time 0.360591)
Segmentation 20 232/635 578.8339 0.3630 373.14 26.832 371.839 31.4758 196.558 10.7515 (ρij time 0.368231)

Results & Analysis. The results are displayed in Fig. 1. These charts show our algorithm effectively handles
various energy functions on graphs with specific local structures and randomly generated graphs. For grid,
cellular, and cell graphs (all locally and sparsely connected), our algorithm outperforms both LBP and TRBP
in final energy and iteration efficiency. These structures commonly appear in wireless communication and traf-
fic control industries, where strategically placed interconnected devices create potential interference patterns
similar to our experimental setup. Our algorithm performs consistently well on completely randomly generated
graphs, even when graph density is approximately twice that of cellular networks. However, it slightly un-
derperforms compared to LBP and TRBP when using absolute difference as the energy function. This occurs
because when different choices have similar costs, the algorithm may converge to sub-optimal positions.

5.2 UAI INFERENCE COMPETITION

We extend evaluation to factor graphs from the 2022 UAI Inference Competition’s MAP tasks1. Table 2
compares Mean-field, LBP, TRBP, and our SPT method, reporting final energy values. Algorithm settings
match those used on synthetic problems, except SPT uses 20 trees for estimation in this section. Overall, SPT
achieves competitive performance comparable to LBP and TRBP, with significant improvements on various
segmentation tasks. On segmentation instances, SPT outperforms all other methods. These instances have
graph structures similar to those in the synthetic experiments and share the same Potts model characteristics.
For ProteinFolding 11 and Grid cases, our algorithm’s performance matches LBP and TRBP, consistent with
findings from Grid graph experiments in the synthetic problem set. Graph structures for ProteinFolding 11,
ProteinFolding 12, Segmentation 14 and Grids 30 instances are shown in Appendix O.2. We display only one
Segmentation class instance since they all share similar graph structure.

5.3 REAL-WORLD PCI PROBLEM OF 5G NETWORKS

PCI (Physical Cell Identity) uniquely identifies cells in LTE and 5G networks. We evaluate using internal
PCI data transformed into pairwise MRFs for MAP inference. Appendix K details the MIP formulation and
transformation process. We evaluate our algorithm on four internal real industry-level PCI instances compared
to LBP and TRBP, using final energy (corresponding to the objective function in equation 52) as our comparison
standard. Results appear in Table 1 with instance topologies in Appendix O.3. When MAP estimation is
formulated as integer programming, problem size increases significantly, as shown in the table. Both LBP and
SPT yield identical results, but our algorithm achieves superior performance, with substantial energy reductions
for PCI INSTANCE 1 and PCI INSTANCE 2.

5.4 MORE ANALYSIS

To investigate the impact of various factors, we examine the following aspects: the number of trees used, the
number of iterations, stopping criteria, other sub-graph structures, and impact of sparsity. ”The main part of
the result figures in this section is displayed in Fig. 2.

Number of trees. We evaluated our algorithm’s performance on the PCI INSTANCE 2 model using 1, 5,
20, 80, 160 spanning trees. After 10 iterations per configuration, the final energy values revealed a V-shaped
curve, with optimal performance at 5 spanning trees (Fig. 2a). This suggests that for complicate graphs, ap-
proximately 5-10 spanning trees provide sufficient structure representation without redundant information. As
demonstrated in Appendix I, for trivial MRFs with known optimal energies, increasing the number of trees can
further minimize the optimality gap.

1https://www.auai.org/uai2022/uai2022_competition
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Figure 2: Part of the results for the analysis in Section. 5.4.

Number of iterations & Stopping criterion. Fig. 2b shows energy curves for our algorithm on the
PCI INSTANCE 1 dataset using 20 spanning trees over 40 iterations. The optimal configuration is achieved
at iteration 19 and persists until the end. Notably, the provisional best configuration remains stable during
several periods within the first 20 iterations. Common early stopping criteria based on monitoring consecutive
iterations without improvement (marked by red, green, and yellow dotted lines at thresholds of 3, 5, and 10
iterations) would fail to capture the best solution found at iteration 19. Given our algorithm’s efficiency, we
recommend running it for the maximum number of iterations in practice.

Inference Time. In Table 2, we show both overall inference time and edge selection probability calculation
time (marked as ”ρij time 1.324”). For complex problems like ”Segmentation 11”, all methods require more
computation time, but SPT demonstrates more stable performance and faster convergence. Our analysis identi-
fies calculating edge selection probabilities as the main computational bottleneck, especially for larger graphs.
Developing more efficient probability estimation methods is an important future research direction. The algo-
rithm could be accelerated through parallelization, with details available in Appendix M

Other sub-graph structures.We evaluated several structural alternatives: chains, random trees (covering 75%
of nodes), and random walks (1600 steps for greater node coverage). Testing details are in Appendix. H.
Tests used 1600-node grids with 10-16 possible states per node and square function pairwise energy without
unary terms. Unlike our fixed-tree SPT approach, alternative structures were resampled each iteration since
they don’t guarantee full node coverage. Running 20 iterations with SPT using 10 trees, Fig. 2c shows SPT
achieved superior results with significantly fewer iterations. Random trees and walks delivered acceptable
results but required more iterations to converge. Comparison with the tree-coupling approach from Hamze &
de Freitas (2004) appears in Appendix G.

Impact of sparsity. From Fig.1, our algorithm outperforms LBP and TRBP on both grid and cell structures,
with a larger performance gap on denser cell graphs. To evaluate effectiveness on locally and sparsely connected
MRFs (Fig.8, Appendix O) and analyze local structure complexity impact, we tested LBP and SPT on graphs
described in Appendix L. These graphs had average degrees of 3.8, 7.6, 11.3, 18.5, and 22.0. SPT used 10 trees,
with 10-16 states per random variable and nodes linked to random observations. Pairwise energy used the Potts
function. Performance comparison used the relative energy gap (equation 16), averaged over 10 trials.

GAP = (ESPT − ELBP )/ELBP × 100% (16)

Fig. 2d shows that as local structures become denser, SPT increasingly outperforms LBP. This occurs be-
cause loop impacts become more significant, making it crucial to balance variable values within local graph
structures—a strength of our algorithm. The shaded areas indicate modest gap variances.

Our algorithm also performs effectively on random graphs, especially when they’re not highly dense. We
conducted similar experiments on ER graphs with 900 nodes, varying average node degrees from 2 to 12
using squared energy functions (as performance with Potts functions is similar). Results in Fig. 2d (orange
line) show our algorithm performs effectively on sparse graphs, even without specific graph topologies. The
algorithm achieves satisfactory results on sparse graphs, but as average node degree increases, the performance
gap between our algorithm and LBP increases linearly. Without local structure to leverage, SPT’s performance
is reduced.

6 CONCLUSION

MAP inference on MRFs remains a persistent challenge. We propose a novel, efficient approach for MAP es-
timation on locally and sparsely connected MRFs using spanning tree sampling. Our method works by solving
MAP problems on individual sampled trees and merging these solutions into a final configuration. Experiments
demonstrate superior performance against strong baselines across diverse settings, with particularly significant
improvements on real-world PCI instances, indicating broad applicability potential.
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7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research findings, we have taken the following comprehensive measures:

Our implementation code has been made publicly available, with the repository link provided at the end of the
abstract. This allows other researchers to directly access and utilize our algorithm for their own applications or
verification purposes.

Detailed instructions for setting up and running our code are included in the repository documentation. These
instructions cover all necessary steps from environment setup to execution of experiments, enabling smooth
replication of our work.

In Section 5, we have explicitly documented all algorithm settings used in our experiments, including pa-
rameter configurations, optimization choices, and implementation details. These specifications are critical for
reproducing our experimental results.

Access information for the UAI Inference Competition datasets used in our evaluation is clearly provided
in Section 5.2. This includes source links and preprocessing steps applied to the data before running our
experiments.

For synthetic experiments, we have thoroughly documented our instance generation methodology in Sec-
tion 5.4, with additional technical details available in Appendix H. This documentation ensures that synthetic
test cases can be precisely recreated.

We provide comprehensive instructions for transforming PCI problems from their original Mixed Integer Pro-
gramming (MIP) format into the MRF format required by our algorithm. This transformation process is crucial
for applying our method to real-world telecommunication network optimization problems.

Through these measures, we have ensured that all aspects of our research can be independently verified and
built upon by the research community.

8 ETHICS STATEMENT

During the preparation and submission of this paper, we have strictly adhered to the Code of Ethics in scientific
research. We ensured proper citation of all relevant work, maintained integrity in our experimental procedures,
reported results accurately without manipulation, and respected confidentiality of data sources where applica-
ble. All authors have contributed substantially to this work and approved the final manuscript, with no conflicts
of interest undisclosed.
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Ẽ(x) = ⇢
X

T
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Figure 3: Pipeline of the proposed approach.

A SCHEMATIC DIAGRAM OF SPT

Here we present the schematic diagram of the proposed approach in Fig. 3, anticipating to provide a more
intuitive understanding.

B PROOF OF LEMMA 1

Lemma 1. Given a uniform spanning tree distribution Ω(T ) and the corresponding edge appearance proba-
bilities {ρij |∀(i, j) ∈ E}, when |K| = |T |, the approximation energy Eq. 9 and the original energy coincide.

Proof. When |K| = |T |,

Ẽ(X) =
∑
i∈V

θi(xi) +
∑

(i,j)∈E

|{Tk|(i, j) ∈ Tk,∀k ∈ K}|
1

ρij
θij(xi, xj)

=
∑
i∈V

θi(xi) +
∑

(i,j)∈E

θij(xi, xj),
(17)

which precisely is the original energy.

C PROOF OF LEMMA. 2

Lemma 2. By applying the Monte Carlo Approximation, the expectation of the approximation is the original
energy.

ET∼Ω(T )

∑
i∈X

θi(xi) +
1

|K|
∑
k∈K

∑
(i,j)∈Tk

wijθi,j(xi, xj)

 =
∑
i∈X

θi(xi) +
∑

(i,j)∈E

θij(xi, xj) (13)

Proof. Since the unary term θi(xi) is included in all spanning trees, we only need to prove the pairwise term
in expectation is identical to the original pairwise energy term.

E

 1

|K|

|K|∑
k=1

∑
(i,j)∈T∥

wijθij(xi, xj)

 =
1

|K|

|K|∑
k=1

E

 ∑
(i,j)∈T∥

wijθij(xi, xj)

 (18)

Since each tree is sampling uniformly and independently

15
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1

|K|

|K|∑
k=1

E

 ∑
(i,j)∈T∥

wijθij(xi, xj)

 (19)

=
1

|K|

|K|∑
k=1

ET

 ∑
(i,j)∈T∥

wijθij(xi, xj)

 (20)

= ET

 ∑
(i,j)∈T∥

wijθij(xi, xj)

 (21)

Here we use ET to denote ET∼uniform(T ).

Introduce indicator variables:

I
(k)

(i,j) =

{
1 if edge (i, j) is in spanning tree Tk

0 otherwise
(22)

We have E[I(k)(i,j)] = ρij .

Then,

ET

 ∑
(i,j)∈T∥

wijθij(xi, xj)

 (23)

= ET

 ∑
(i,j)∈E

wijI
T
(i,j)θij(xi, xj)

 (24)

=
∑

(i,j)∈E

wijET [I
T
(i,j)]θij(xi, xj) (25)

=
∑

(i,j)∈E

1

ρij
ρijθij(xi, xj) (26)

=
∑

(i,j)∈E

θij(xi, xj) (27)

Therefore, you could see that the expectation of the approximation is the original energy function.

D PROOF OF THEOREM 1

Theorem 1. Given spanning tree distribution Ω(T ) and the corresponding edge appearance probability
{ρij |∀(i, j) ∈ E}, the following error bound of the approximation energy Eq. equation 9 holds with prob-
ability at least 1− δ.

|E(X)− Ẽ(X)| ≤
√

1

|K|
∑

(i,j)∈E

θ2ij(xi, xj)(
1− ρij
ρij

)
1√
δ
. (14)

When
|K| ≥ 1

δη2

∑
(i,j)∈E

θ2ij(xi, xj)(
1− ρij
ρij

), (15)

we have P (|E(X)− Ẽ(X)| ≥ η) ≤ δ.

Proof. Given

E(X) =
∑
i∈X

θi(xi) +
∑

(i,j)∈E

θi,j(xi, xj), (28)

Ẽ(X) =
∑
i∈X

θi(xi) +
1

|K|
∑
k∈K

∑
(i,j)∈E

wijθi,j(xi, xj), (29)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

We have

∆E(X) = E(X)− Ẽ(X) (30)

= (
1

|K|
∑
k∈K

∑
(i,j)∈E

wijθi,j(xi, xj))−
∑
(i,j)

θi,j(xi, xj). (31)

Introduce indicator variables:

I
(k)

(i,j) =

{
1 if edge (i, j) is in spanning tree Tk

0 otherwise
(32)

Then the error becomes:

∆E(X) =
∑

(i,j)∈E

((
1

|K|I
(k)

(i,j)wijθij(xi, xj))− θij(xi, xj)). (33)

Now define the Per-Edge error ∆Eij . Then

∆E(X) =
∑

(i,j)∈E

∆Eij . (34)

Define random variable Z
(k)
ij = (I

(k)

(i,j)wij − 1)θij(xi, xj). Then,

∆Eij =
1

|K|
∑
k∈|K|

∆Z
(k)
ij . (35)

Since E[I(k)ij ] = ρij

E[Z(k)
ij ] = (E[I(k)ij wij ]− 1θij(xi, xj) (36)

= (ρijwij − 1)θij(xi, xj) (37)
= 0. (38)

Then,

V ar[Z
(k)
ij ] = (wijθij(xi, xj))

2ρij(1− ρij) (39)

V ar[Z
(k)
ij ] = (

1

ρij
θij(xi, xj))

2ρij(1− ρij) (40)

V ar[∆Eij ] =
V ar[Z

(k)
ij ]

|K| (41)

V ar[∆E(X)] =
∑

(i,j)∈E

V ar[∆Eij ]. (42)

By Chebyshev’s Inequality,

P (|∆E(X)| ≥ η) ≤ V ar[∆E(X)]

η2
(43)

≤ 1

|K|η2

∑
(i,j)∈E

θ2ij(xi, xj)
(1− ρij)

ρij
. (44)

To ensure that the probability of the error exceeding η, is less than or equal to δ,

1

|K|η2

∑
(i,j)∈E

θ2ij(xi, xj)
(1− ρij)

ρij
≤ δ. (45)

Solving for |K|,

|K| ≥ 1

δη2

∑
(i,j)∈E

θ2ij(xi, xj)
(1− ρij)

ρij
. (46)
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Then, the error bound for the adjusted energy approximation E(X )is,

|∆E(X)| ≤

√√√√ 1

|K|
∑

(i,j)∈E

θ2ij(xi, xj)
(1− ρij)

ρij
· 1√

δ
. (47)

This bound holds with probability at least 1− δ.

E COMPLEXITY ANALYSIS

The algorithm consists of three parts: calculating the effective resistance, sampling spanning trees, and applying
belief propagation on the spanning trees. Generally, the time complexity of computing the effective resistance
is O(MN3). For sparse graphs, the factor M can be considered a negligible coefficient. However, in scenarios
involving large and complex graphs, the computational complexity of calculating the probability matrix be-
comes dominant relative to other operations. This computational burden represents the primary limitation for
the broader application of our proposed method.

For the second step, the time complexity depends on the chosen spanning algorithm. In our approach, we adopt
the method proposed in (Wilson, 1996), which has a runtime of O(N3). As discussed in Section. 4.2, Depth-
First Search (DFS) was proposed as a potential approach to enhance computational efficiency at this stage.
However, empirical results indicate that the performance difference between these two sampling methods is
relatively modest in practice. This can be attributed to the availability of optimization techniques and the
fundamental similarity between random walk-based sampling and DFS-based approaches.

The time complexity of the belief propagation is determined by the size of the spanning tree, which remains
fixed when the graph is constant. Given |Etree| = N − 1, the time complexity becomes O(N). It is worth
noting that our algorithm converges rapidly, typically concluding within fewer than 10 iterations in most cases.
Assume the average number of dependencies of each node is b, the time complexity of gibbs sampler would
be O(iter × Nk). This efficiency allows us to disregard the term iter without significantly affecting the
complexity of the algorithm. As a result, the overall time complexity of the algorithm is O(MN3 +N).

F EFFECTIVE RESISTANCE CALCULATION

The calculation of resistance distance generally follows the procedure outlined in Theorem 2. The main con-
tributor to the time complexity of this part is the computation of the Moore-Penrose inverse, as we need to use
the effective resistance on all the edges of the graph.
Theorem 2 (Theorem 2.7 in (Vos, 2016)). The effective resistance between a pair of vertices (i, j) is defined
as Reffi,j := Γi,i + Γj,j − Γi,j − Γj,i, where Γ = (L+ 1

|V|Φ)
†, with † denotes the Moore-Penrose inverse, L

the Laplacian matrix of G, |V| is the number of vertices in G, and Φ is the |V| × |V| matrix contain all 1s. Γi,j

is the (i, j) entry of the Moore-Penrose inverse of the Laplacian matrix.

G COMPARISON TO TREE SAMPLING ALGORITHM

As previously discussed, the Tree Sampling algorithm proposed by Hamze & de Freitas (2004) is applicable
only to graphs with specific structures that can be divided into two cycle-free parts. Under these conditions, the
algorithm focuses on solving the MAP estimation problems on grid graphs with observation nodes. The MAP
estimate is given by:

min
X

E(X) = min
{xi},∀i∈V

∑
i∈V

θi(xi, yi) +
∑

(i,j)∈E

θij(xi, xj)

 . (48)

here yi is the observation of the node i which is deterministic value and yi, i ∈ V has the same value range as
the xi, i ∈ V .

To comprehensively evaluate the performance of our Spanning Tree algorithm and the Tree Sampling algorithm,
we conducted experiments using grid graphs of varying sizes: 10×10 grids with 100 nodes, 20×20 grids with
400 nodes, and 30×30 grids with 900 nodes. Each node in these grids was assigned one of 10 possible labels.
The pairwise energy and the energy between variables and their observations were defined using a squared label
difference function. Observations were generated randomly for each instances.

For each grid size, we repeated the experiment across 10 different random instances to ensure robustness and
reliability of the results. Each of these two algorithms run for 20 iterations. The number of spanning trees used
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by SPT is 10. As illustrated in Fig. 4, our algorithm consistently outperformed the Tree Sampling algorithm
across all grid sizes. Importantly, the performance gap between the two algorithms remained consistent as the
grid size increased.
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Figure 4: Results of SPT and TS on synthetic grid problems with squared label difference. The
horizontal and vertical axes in the figure correspond to #number of iterations and average value of
energy E(x|θ̃, y), respectively. From top to bottom, the grid sizes are 10×10, 20×20, 30×30.

H GENERATION OF DIFFERENT SUB-GRAPH STRUCTURES

In our previous discussions, we proposed using cycle-free structures to decompose the original graph, allowing
us to leverage problems that can be solved exactly as approximations for the original problem. In addition to the
advantages we outlined earlier, the spanning trees have demonstrated an extraordinary ability to provide more
accurate approximations. We have also explored other structural alternatives, including chains, random trees
(not necessarily spanning trees), and random structures generated using random walks. To obtain the chains,
we used the following procedure: we would start at a randomly selected node and then perform a depth-first
search to traverse the graph and collect the subsequent nodes. When sampling random trees, we would stop
the sampling procedure once the number of nodes in the generated tree reached our target threshold. In this
process, we allowed an agent to walk along the edges of the graph for a certain number of steps. After the agent
stopped, the nodes it had visited and the edges it had traversed were extracted to form the sub-graph.
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Table 3: SPT inference optimality gaps with different number of trees on trivial MRF instances.
Numbers are obtained optimality gaps.

GRAPH #NODES/#EDGES 10 TREES 20 TREES 30 TREES 40 TREES 50 TREES 60 TREES 70 TREES 80 TREES 90 TREES 100 TREES OPT ENERGY

INSTANCE 1 64/143 5 6 3 2 2 3 2 2 3 2 94
INSTANCE 2 64/156 7 5 5 5 5 5 5 5 5 5 134
INSTANCE 3 64/124 1 2 2 2 2 2 2 1 1 1 104
INSTANCE 4 64/116 3 4 5 6 5 3 3 3 3 2 131
INSTANCE 5 64/133 1 1 2 2 2 1 2 2 2 1 117

I ERROR GAP ON TRIVIAL MRFS

We conducted additional experiments on MRFs with 64 nodes and increased the number of trees used to 100.
We use the optimality gap as the evaluation standard. The results are listed in the Table 3. You can see that
as more trees are sampled, the inference results converge to a point with only occasional fluctuations, and the
absolute fluctuation is 1. This could be caused by the problem structure where some variable values offer similar
energies that are difficult to distinguish, which is a characteristic of BP-based methods. Since our method is
also based on BP, it is inevitable that we encounter the same issue. The calculation of Optimality gap is shown
in Eq. 49 which could be found in the user manual of Mosek (ApS, 2025).

Optimality Gap = |Ẽ(X)− E∗(X)| (49)

J EXAMPLE OF ENERGY WEIGHT ADJUSTMENT

In this section we use a toy example to show the importance of weight adjustment when using uniform spanning
trees to decompose the original problem. In Fig. 5, we show a graph with four nodes and four edges, and we
show all of the three spanning trees of it. Except edge (1, 3), the probabilities of the other edges appear in a
uniform spanning tree are all 2

3
, which means the weights of the pairwise energies on these edges are all 3

2
. The

probability of each of the trees being sampled is 1
3

. In Fig. 5 we using color red to denote the edges that have
probability of 1

3
being selected and the color blue to denote the edge that appear in all the uniform spanning

trees.

Without loss of generality, we could assume the unary energies are all zero. Then we define the pairwise
energies as follows. Each random variable has 2 possible states {0, 1}.

x0

x1 0 1

0 1 0
1 0 0

x0

x2 0 1

0 2 0
1 0 0

x1

x2 0 1

0 3 0
1 0 0

x1

x3 0 1

0 4 0
1 0 0

Now we calculate the energy when all the variables are at state 0. The original energy is E(0, 0, 0, 0) = 1+2+
3 + 4 = 10. If without weight, the energies on these trees would be ET1(0, 0, 0, 0) = 8, ET2(0, 0, 0, 0) = 7,
ET3(0, 0, 0, 0) = 8.

Then merging them together by

Ẽ(x) =
∑
k∈K

ρTk

∑
(i,j)∈Tk

θij(xi, xj) (50)

(51)

we can get the approximation value is 23
3

, which deviates from the original energy.

If we we adjust the pairwise energy using 1/ρij . the energies on these trees would be ET1(0, 0, 0, 0) =
3
2
(1 + 3) + 4 = 10, ET2(0, 0, 0, 0) =

3
2
(1 + 2) + 4 = 8.5, ET3(0, 0, 0, 0) =

3
2
(2 + 3) + 4 = 11.5. Then

merging by Eq .equation 9, the approximation is 1
3
(10+8.5+11.5) = 30 which is exactly the original energy.
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Figure 5: Schematic diagrams of spanning trees of a graph with cycle.

K TRANSFORMING MIP PROBLEMS OF PCI INTO MRF PROBLEMS

The Mixed Integer Programming(MIP) format of PCI problems is as follows:

min
z,L

∑
(i,j)∈E

aijLij (52)

s.t. znp ∈ {0, 1}, ∀n ∈ N, p ∈ P (53)∑
p∈P

znp = 1, ∀n ∈ N. (54)

∑
p∈Mih

znip +
∑

p∈Mjh

znjp − 1 ≤ Lij ,∀(i, j) ∈ E ,∀h ∈ {0, 1, 2}. (55)

where n is the index for devices, and N is the set of these indices. P stands for the possible states of each
device. Mih stands for the possible states set for node ni. Lij is the cost when given a certain choices of the
states of device i and device j, aij is the coefficient of the cost in the objective function. There is an (i, j) ∈ E
means there exists interference between these two devices. In the MIP formulation of the PCI problems, there
are three types of constraints. Combining equation 53 and equation 54 together implies that each device must
select one state, and only one state can be chosen at a given time. The constraint equation 55 indicates that
interference occurs between two devices only if they choose specific states. The impact on the entire system is
determined by the corresponding value of Lij and its coefficient. Since interference always exists, the objective
is to minimize its degree.

To transform these problems into MRF problems, we can use equation 54 to represent nodes, where each
equation 53 corresponds to the discrete states of a given node. Since only one state can be chosen at a time,
the constraints equation 53 and equation 54 are naturally satisfied. By processing equation 55, we identify the
edges and their associated energies. If we find znip and znjp in the same constraint from equation 55, we can
formulate an edge (i, j). By selecting different values for znip and znjp, we can determine the minimum value
of Lij that satisfies the constraint. The product of Lij and aij represents the energy for the edge (i, j) under
the combination of these two states. When all the states of the nodes are fixed, the values of the edge costs
become fixed as well. This implies that the objective function is the summation of all the edge energies. Since
the PCI problems do not include unary terms, we will neglect them during the transformation process.
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Example
The original problem is

min
z,L

L1,2 + 2L2,3

s.t. znp ∈ {0, 1}, ∀n ∈ {1, 2, 3}, p ∈ {1, 2, 3}∑
p∈P

znp = 1, ∀n ∈ {1, 2, 3}.

z11 + z21 − 1 ≤ L1,2

z13 + z22 − 1 ≤ L1,2

z12 + z23 − 1 ≤ L1,2

z21 + z31 − 1 ≤ L2,3

z22 + z32 − 1 ≤ L2,3

z23 + z33 − 1 ≤ L2,3

(56)

Then the corresponding MRF problem is

min θ1,2(x1, x2) + θ2,3(x2, x3) (57)

the energy on edge (x1, x2) and edge (x2, x3) are as follows:

x1

x2 z21 z22 z23

z11 1 0 0
z12 0 0 1
z13 0 1 0

x2

x3 z31 z32 z33

z21 2 0 0
z22 0 2 0
z23 0 0 2

L GENERATION OF LOCALLY AND SPARSELY CONNECTED MRFS

We begin by uniformly placing the nodes in a 2-dimensional space. Next, we iteratively traverse all the nodes
in an arbitrary order. For each node visited, we identify its k-nearest neighbors and create edges between
them until the required average degree is achieved. Once all nodes have been visited, the graph construction is
complete.

M PARALLELIZATION

When the size of the graph increases, our algorithms still function, but they become time-consuming. This is
because the time complexity, as we have just analyzed, is highly dependent on both N and M (where M is
related to the number of states n in the Markov chain). Evidently, acquiring comprehensive information about
the entire graph would require more than one tree. Such a requirement could result in a notable slowdown of
our algorithm due to the necessity of performing belief propagation on each tree. Nonetheless, the algorithm
we have introduced can be seamlessly modified for parallel processing. Once the edge selection probabilities
have been calculated, both the spanning tree sampling process and the subsequent belief propagation on each
sampled tree can be performed independently and in parallel. This adaptability enables us to significantly
improve efficiency.

N ITERATION WITH DIFFERENT BATCHES OF SPANNING TREES

Besides using fixed trees to perform the estimation, we could also generate another batch of trees to conduct
the estimation in a new iteration, similar to what was done when using different subgraph structures for the
estimation. However, this could be an expensive strategy to adopt. Note the analysis in Appendix E, where the
time complexity of sampling a spanning tree is O(MN3 +N), which could incur a significant computational
cost as the graph size increases.

To get a comprehensive understanding of whether we could gain more by spending more time on sampling
trees and how the two strategies would perform with a similar time budget, we experimented on 40x40 grid
graphs with 1600 nodes. Each random node has 10 to 16 possible states to choose from, the pairwise energy is
determined by a square function, and the unary energy is set to zero. For the SPT method using fixed trees, the
number of trees is set to 20. For the SPT with tree resampling, the number of trees is varied as {1, 5, 10, 15,
20}. All the SPT variants are run for 20 iterations.
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As shown in Fig. 6, energy curves for each setting of the SPT methods reveal that both the SPT variants with 20
trees achieve the best and identical results. As the number of trees used per iteration increases, the gain on the
final energy decreases, and the improvement rate diminishes quickly. However, the actual time cost of the SPT
with fixed trees lies between the SPT with tree resampling using 1 tree and 5 trees and far less than re-sampling
20 trees at each iteration. This suggests that, although we could resample the trees during the iterative process,
the additional time spent on this may not be worthwhile.
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Figure 6: Energy curves of SPT using fixed trees or resample spanning trees at each iteration.

O INSTANCE TOPOLOGY

O.1 SYNTHETIC PROBLEMS

Fig. 7 illustrates schematic diagrams of cellular ,cell graph and Erdős–Rényi graph structures. And in Fig. 8
illustrates two schematic diagrams of the locally and sparsely connected graphs we generated. Note they do not
correspond to any testing instances.

(a) Cell graph (b) Cellular graph

(c) Erdős–Rényi graph

Figure 7: Schematic diagrams of cell graph, cellular graph and Erdős–Rényi graph.

O.2 UAI INFERENCE COMPETITION

We visualize the topology of four instances from UAI competition in Fig. 9.
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(a) Average degree 17 (b) Average degree 24

Figure 8: Schematic diagrams of locally and sparsely connected graphs.

(a) Segmentation 14 (b) ProteinFolding 11 (c) ProteinFolding 12 (d) Grids 30

Figure 9: Schematic diagrams of some UAI inference competition instances. Zoom in for better
view.

O.3 PCI INSTANCES

All the topologies of the PCI instances are in Fig. 10.

(a) PCI INSTANCE 1 (b) PCI INSTANCE 2 (c) PCI INSTANCE 3 (d) PCI INSTANCE 4

Figure 10: Schematic diagrams of PCI instances. Zoom in for better view.
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