

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FROM FIELDS TO RANDOM TREES

Anonymous authors

Paper under double-blind review

ABSTRACT

This study introduces a novel method for performing Maximum A Posteriori (MAP) estimation on Markov Random Fields (MRFs) that are defined on locally and sparsely connected graphs, broadly existing in real-world applications. We address this long-standing challenge by sampling uniform random spanning trees (SPT) from the associated graph. Such a sampling procedure effectively breaks the cycles and decomposes the original MAP inference problem into overlapping subproblems on trees, which can be solved exactly and efficiently. We demonstrate the effectiveness of our approach on various types of graphical models, including grids, cellular/cell networks, and Erdős–Rényi graphs. Our algorithm outperforms various baselines on synthetic, UAI inference competition, and real-world PCI problems, specifically in cases involving locally and sparsely connected graphs. Furthermore, our method achieves comparable results to these methods in other scenarios. The code of our model can be accessed at <https://anonymous.4open.science/r/From-fields-to-trees-iclr-EB75>.

1 INTRODUCTION

In this paper, we investigate a novel approach to infer on Markov Random Fields defined over *sparsely and locally connected graphs* via random spanning tree sampling. Formally, an MRF is defined over an undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where \mathcal{V} represents the index set of random variables and \mathcal{E} corresponds to the edge set implying dependencies among these variables. Each random variable in $x_i \in \mathcal{X}$ takes a value from a finite alphabet \mathcal{X} (x_i can be a vector) with node index $i \in \mathcal{V}$, and the joint distribution is expressed as a product of potential functions, each associated with a subset of variables that forms a clique in \mathcal{G} . In this paper, we consider minimizing energy functions with unary terms θ_i and pairwise terms θ_{ij} , then the MAP estimate is:

$$\min_X E(X) = \min_{\{x_i\}, \forall i \in \mathcal{V}} \left\{ \sum_{i \in \mathcal{V}} \theta_i(x_i) + \sum_{(i,j) \in \mathcal{E}} \theta_{ij}(x_i, x_j) \right\}. \quad (1)$$

where $X = \{x_i\}_{i \in \mathcal{V}}$. Optimization problem over MRFs expressed in equation 1 is a prevalent model in the realm of probabilistic graphical modeling (Clifford & Hammersley, 1971). Notably, MRF and its counterparts enable the principled and simplified representation of joint probability distributions over a set of variables, conditioned upon the structure of an undirected graph. The intrinsic capability of MRFs to model contextual relationships in data offers a cohesive and efficient framework for addressing inference and estimation challenges across a diverse array of scientific and engineering disciplines, including computer vision (Wang et al., 2013; Su et al., 2021), 5G networks (Kumar et al., 2022), pathology image analysis (Li et al., 2020) and in other fields combining the power of GNN (Xu et al., 2021a; Wu et al., 2020).

The problem in equation 1 is known to be NP-hard in general. Early trials to efficiently and suboptimally solve equation 1 dates back to the 80's of the previous century, when Judea Pearl developed the prestigious Belief Propagation (BP) algorithm (Pearl, 1988). Motivated by this breakthrough, a series of BP variants were further proposed (Wiegerinck & Heskes, 2002; Yedidia et al., 2005; Montanari & Rizzo, 2005). Other prominent methods include Mean Field Approximation (Saito et al., 2012; Zhang, 1993; Zhang & Hanauer, 1995), Graph Cuts (Greig et al., 1989), and Junction Trees (Aji & McEliece, 2000), to name a few. These methods offer varying trade-offs between accuracy and computational efficiency. To the best of our knowledge, no single method stands out as state-of-the-art over all existing problems spanning various scales, topologies, and problem distribution.

In this study, we put our special focus on sparsely and locally connected graphs. In realistic scenarios, such topologies broadly exist in power grid (Cuffe & Keane, 2017), 5G networks (Agiwal et al., 2016; Liu & Zou, 2020), transportation networks (Yunfei Ma & Razavi, 2022), and even social networks (Majeed et al., 2020).

054 Efficient MAP inference in the corresponding applications is crucial. Beyond our focus, we emphasize that our
 055 study can be flexibly extended into other types of graphs.
 056

057 Diverging from existing well-established strategies, our approach leverages the structure of random spanning
 058 trees to efficiently infer on MRFs. In a nutshell, our approach consists of “sampling random trees – solving
 059 MRFs on trees – merging” steps. Concretely, instead of solving the MRF on the entire graph directly, we sample
 060 multiple spanning trees from the original graph and solve the MRF independently on each tree, on which exact
 061 inference is tractable. The final solution to equation 1 is then approximated by merging the solutions from
 062 all sampled trees. Our approach thus combines the benefits of exact tree-based inference procedures with the
 063 flexibility of sampling methods, creating a balance between computational efficiency and accuracy.
 064

065 We conduct experiments on synthetic instances, UAI competition instances (uai), and real-world Physical Cell
 066 Identity (PCI) instances, covering a variety of problem scales, types of topologies, and energy functions. We
 067 observe superior performance against several baselines in the sparse and local network setting, and comparable
 068 performance in other settings, which strongly pose the promise of the proposed method in various scenarios.
 069

070 In summary, our contribution through this proposed method introduces a scalable and efficient sampling-based
 071 **approach to infer MRFs** on locally and sparsely connected graphs, mitigating the drawbacks of existing meth-
 072 ods. Superior performance is observed in benchmarks across a wide spectrum. By transcending the traditional
 073 methodologies and introducing structural simplification via topological sampling over trees, this work posits
 074 rich potential to solve intricate MRF problems in the real world.
 075

076 2 RELATED WORKS

077 In MRFs, the energy function is linked to a graph-structured probability distribution. A significant inference
 078 challenge in MRFs is determining the MAP configuration. Although minimizing the energy function of MRF
 079 models is NP-hard, advances in inference techniques have significantly expanded the model’s capabilities.
 080 The success in solving the MAP estimation problem on cycle-free graphs is highly dependent on the graph’s
 081 structure. In these graphs, the MAP problem can be effectively tackled using a variant of the min-sum al-
 082 gorithm (Clifford & Hammersley, 1971; Besag, 1974; Kumar et al., 2005), which facilitates message passing
 083 between nodes and serves as an extension of the Viterbi algorithm (Yedidia et al., 2003) to arbitrary cycle-free
 084 graphs. For graphs containing cycles, graph cut methods (Komodakis et al., 2007; Roy & Cox, 1998; Boykov
 085 et al., 1998; Ishikawa & Geiger, 1998; Szummer et al., 2008; Ishikawa, 2003; Schlesinger & FLACH, 2006)
 086 offer a potent solution by employing min-cut/max-flow strategies to efficiently reduce discrete MRFs’ energy.
 087

088 The belief propagation (BP) algorithm, introduced by Pearl (Pearl, 1982; 1988) in 1982, is an efficient iterative
 089 inference algorithm for Bayesian belief networks, functioning through fixed-point message passing. Its adapt-
 090 ability has made it a widespread solution for various types of MRFs. Nonetheless, BP encounters difficulties
 091 with models containing loops. Loopy belief propagation (LBP) attempts to resolve this by iterating message
 092 passing within graphs, even with loop presence (Weiss & Freeman, 2001; Felzenszwalb & Huttenlocher, 2004;
 093 Frey & Mackay, 2002). While LBP has shown efficacy in several vision tasks (Sun et al., 2002), it does not
 094 ensure fixed-point convergence, and its theoretical underpinnings remain elusive. The quest for a flexible,
 095 convergence-guaranteed method persists, yet significant advancements have been made to enhance BP’s per-
 096 formance. The method proposed by Grim & Felzenszwalb (2023) enhances BP by adjusting the significance of
 097 input messages through a discount factor for remote nodes in the message passing chain. Additionally, lever-
 098 aging graph topology for decomposition mitigates the impact of loops. In Yan et al. (2023), BP’s inefficiency
 099 in large-scale MRFs is addressed by constructing a hierarchical framework, facilitating inference via energy
 100 connections between layers. Another strategy, detailed by Hamze & de Freitas (2004), involves partitioning
 101 graphs into two segments to serve as mutual evidence for updates, although its applicability is limited to graphs
 102 with predefined structures. In Kirkley et al. (2021), they propose graph decomposition using primary circles
 103 of a specified length from any given node, aiming to circumvent short loop influences, yet it is not effective
 104 for large-scale graphs. Integrating tree structures to break loops within the graph, the Junction Tree Algorithm
 105 (JTA) (Aji & McEliece, 2000), an exact inference method for arbitrary graphs, entails finding a maximum
 106 spanning tree across the largest cliques of a triangulated graph, a task known to be NP-hard, thereby limit-
 107 ing its practicality. In the realm of pairwise MRFs, problems are formulated as integer linear programming
 108 (ILP) (Wainwright et al., 2005; Kolmogorov, 2006), where solutions are derived from a dual problem using
 109 a convex combination of trees. This class of algorithms, known as tree-reweighted message passing (TRW)
 110 techniques, encompasses edge-based (TRW-E) and tree-based (TRW-T) schemes, both of which lack guar-
 111 anteed convergence, potentially looping infinitely. The sequential TRW-S scheme (Kolmogorov, 2006) achieves
 112 a state of weak tree agreement (WTA), ensuring the lower bound stabilizes, albeit requiring substantial time
 113 to reach this stage. TRBP has long been considered the state-of-the-art (SOTA) methodology and has been
 114 adapted in Xu et al. (2021b) to exploit modern GPUs for accelerated inference processes.
 115

116 Several approaches have leveraged tree structures to address graph-related challenges. Batra et al. (2010) pro-
 117 poses a graph decomposition method using outer-planar graphs. However, this approach is restricted to planar
 118 MRFs (such as grids or superpixel adjacency graphs), and the computational complexity in determining both
 119

the required number and structure of subgraphs limits its applicability to general and large-scale graphs. The method in Pletscher et al. (2009) employs tree log-likelihood for approximation, while Skurikhin (2014) combines log-likelihood maximization with gradient descent for inference, specifically on grid structures. Both methodologies rely on voting mechanisms for final predictions. Using trees and Non-parametric Belief Propagation (Savic & Zazo, 2010) improve the accuracy in solving the localization problem in communication networks under 100 nodes. None of these three methods implement message correction on edges, potentially leading to deviations from original messages, as demonstrated in Lemma 1. While Bradley & Guestrin (2010) addresses structure learning, our work specifically focuses on MAP inference in MRFs and CRFs. Additionally, their approach is limited to graphs exhibiting tree-like structures. Trees could also work on binary inference problems (Cesa-Bianchi et al., 2010) through graph transformation, converting tree structures into line graphs for prediction purposes. Our work proposes a novel methodology that addresses two critical challenges in MRFs: circumventing the computational complexities associated with loop structures while maintaining faithful approximations of the original problem formulation. This approach demonstrates particular efficacy in handling large-scale MRF instances and problems that can be formulated within the MRF framework.

3 PRELIMINARIES

Markov Random Field. MRFs can be used to model probabilistic undirected graphs. We follow the notations in Section. 1 and further suppose $|\mathcal{E}| = M$ and $|\mathcal{V}| = N$. In this paper, each node i corresponds to a discrete state variable $x_i \in \mathcal{X}$, $\forall i \in \mathcal{V}$, where \mathcal{X} is a finite alphabet. And there is a conditional independence between variables

$$\mathbb{P}(x_i|X \setminus \{x_i\}) = \mathbb{P}(x_i|\{x_j\} \text{ for } (i, j) \in \mathcal{E}). \quad (2)$$

where $\mathbb{P}(\cdot)$ is the probability function throughout this paper. Thus, the distribution on the graph \mathcal{G} can be factorized into a product of local Markov potentials

$$\mathbb{P}(X) = \frac{1}{Z} \exp(-E(X)) = \frac{1}{Z} \exp\left(-\sum_{i \in \mathcal{V}} \theta_i(x_i) - \sum_{(i,j) \in \mathcal{E}} \theta_{ij}(x_i, x_j)\right) \quad (3)$$

where Z is the partition function, $\theta_i(\cdot)$ denotes the unary energies, $\theta_{ij}(\cdot)$ represent the pairwise interaction energies, and E is the energy function. The specific forms of energy functions are determined by the nature of the problems and they are all known in most cases. In our study, we aim to maximize the posterior probability by finding the optimal configuration of the hidden variables $X := \{x_i\}$ (assign appropriate values to each of the random variables). This corresponds to minimizing the energy function:

$$X^{\text{opt}} = \arg \max_{X \in \mathcal{X}} \mathbb{P}(X) = \arg \min_{X \in \mathcal{X}} E(X) \quad (4)$$

Sum-Product Belief Propagation. The key subroutine of our Spanning Tree message passing algorithms is sum-product belief propagation of Pearl (Pearl, 1988). BP is an algorithm for approximate minimization of energy $E(x)$ as in equation 3; it is exact if the graph does not have loops (e.g., trees and chains). Sum-product BP maintains a directional message M_{ij} from node i to node j . The basic operation of BP is to pass the message from node i to node j along the edge (i, j) . After receiving all the messages from node i 's neighbors, the marginal distribution of node i reads:

$$\mathbb{P}(x_i|X \setminus \{x_i\}) = \mathbb{P}(x_i) \prod_{(i,j) \in \mathcal{E}} M_{ji} \quad (5)$$

where $\mathbb{P}(x_i)$ is the prior marginal of x_i . In the absence of specific prior information, we will assume that all priors are uniformly distributed. BP algorithm iteratively passes messages in a specific order until a stopping criterion is met. One numerical method that improves the performance of BP is to stabilize the fixed point iteration scheme with damping (Murphy et al., 2013), which helps prevent oscillations between two steady states. This method involves replacing the term $\prod_{(i,j)} M_{ij}$ in equation 5 with a convex combination of the received messages:

$$M_{ij}^t = (1 - \alpha)M_{ij}^t + \alpha M_{ij}^{t-1} \quad (6)$$

where $\alpha \in (0, 1)$ is known as the damping factor and t refers to the iteration number.

Random Spanning Trees. Given a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, we denote \mathcal{T} the collection of all the spanning trees T in \mathcal{G} and $\Omega(\mathcal{T})$ some distribution over \mathcal{T} . The spanning trees we select from \mathcal{T} is $\{T_k \in \mathcal{T} | k \in \mathcal{K}\}$, where \mathcal{K} is the index set of the trees. Denote ρ_T the probability of sampling a spanning tree T from \mathcal{T} . Throughout the paper, we assume that each distinct tree is sampled with equal probability, *i.e.*, for any two distinct spanning trees $T_1, T_2 \sim \Omega(\mathcal{T})$, $\rho_{T_1} = \rho_{T_2}$. For each edge $(i, j) \in \mathcal{E}$, we denote $\rho_{ij} = \mathbb{P}((i, j) \in T, T \sim \Omega(\mathcal{T}))$ the probability that an edge (i, j) appears in a random spanning tree.

162 **4 MAP INFERENCE USING TREE SAMPLING**
163

164 In this section, we present our approach and examine the potential benefits of approximating the original problem
165 by combining the results via the analysis of random spanning trees in the original graph. Furthermore,
166 we present a heuristic that has the potential to improve the approximation outcome by capitalizing on the in-
167 formation obtained during the “BP – update – inference” procedure. Subsequently, we dive into a thorough
168 examination of the underlying logic behind our algorithm and conduct a comprehensive analysis of its com-
169 plexity.

170 **Algorithm 1: MAP on Graph using Spanning Tree Sampling**
171

172 **Input:** Graph \mathcal{G} , index set of spanning trees \mathcal{K} , number of iterations $iter$.
173 **Output:** overall states X .
174 1 $\mathcal{T}^{\text{cand}} \leftarrow \{T_k\}_{k=1}^{|\mathcal{K}|}$, for $T_k \sim \mathcal{T}$; // sample a candidate tree set
175 2 **while** not converge **do**
176 3 **for** $k \in \mathcal{K}$ **do**
177 4 **Apply BP to** $T_k \in \mathcal{T}^{\text{cand}}$ **to compute** $p_{T_k}^t(x_i | X \setminus \{x_i\}) \forall x_i \in X$;
178 5 $\mathcal{M} = \{p(x_i | X \setminus \{x_i\}) | x_i \in X\} = \{\prod_{k \in \mathcal{K}} (p_{T_k}^t(x_i | X \setminus \{x_i\})) | x_i \in X\}$; // update marginals
179 6 $X^{\text{Gibbs}} = \text{GibbsSampler}(\mathcal{M})$;
180 7 $X^{\text{Greedy}} = \text{GreedySelector}(\mathcal{M})$;
181 8 $E_{\text{temp}}^{best,t} = \min(E_{\text{temp}}^{best,t-1}, E(X^{\text{Gibbs}}), E(X^{\text{Greedy}}))$;
182 9 Update $X_{\text{temp}}^{best,t}$ according to $E_{\text{temp}}^{best,t}$; // update best x
183 10 $X = X_{\text{temp}}^{best,t}$;

186 **4.1 ALGORITHM**
187

188 Procedures in the proposed approach are summarized in Algorithm 1 and a pipeline diagram is illustrated
189 in Fig. 3 in **Appendix A**. While the presence of loops in the original graph renders it analytically intractable,
190 conducting belief propagation on each of the spanning trees efficiently delivers exact solutions. Note a spanning
191 tree is a structure that can encompass all nodes and capture a significant amount of the relationships between
192 nodes without loops, which maximally utilizes original information and avoids the oscillations.

193 By sampling spanning trees from the graph and doing belief propagation on these trees, we are actually trying
194 to formulate a series of sub-problems of the original problem and solve the original problem by solving these
195 sub-problems. The sub-problem on a spanning tree T is shown below:

$$196 \min_X E^T(X) = \min_{\{x_i\}, \forall i \in \mathcal{V}} \left\{ \sum_{i \in \mathcal{V}} \theta_i(x_i) + \sum_{(i,j) \in \mathcal{T}} \theta_{ij}(x_i, x_j) \right\}. \quad (7)$$

197 To ensure that the combined energy of the spanning trees aligns with the energy of the original graph, and
198 consequently that the joint distribution over the trees matches the joint distribution of the original graph, it
199 is crucial to validate the correctness of the beliefs propagated within the trees. During the belief propagation
200 procedure, messages passed along an edge represent the marginalized joint distribution of that edge, which
201 inherently depends on the pairwise energy term.

202 To mitigate the bias introduced by the sampling procedure, we adjust the pairwise beliefs on each uniformly
203 sampled spanning tree using the probability ρ_{ij} of an edge (i, j) appearing in a uniformly sampled spanning
204 tree. The adjustment coefficient for the pairwise energy on edge (i, j) is given by $w_{ij} = 1/\rho_{ij}$.

205 To accurately estimate the probability ρ_{ij} of an edge appearing in a uniformly sampled spanning tree, we utilize
206 the concept of *effective resistance*, as detailed in Section 4.3. The adjusted sub-problem on a spanning tree T
207 is formulated as follows:

$$208 \min_X E^T(X) = \min_{\{x_i\}, \forall i \in \mathcal{V}} \left\{ \sum_{i \in \mathcal{V}} \theta_i(x_i) + \sum_{(i,j) \in \mathcal{T}} w_{ij} \theta_{ij}(x_i, x_j) \right\}. \quad (8)$$

209 Then we could use the energy of each sampled tree to approximate the original energy of the graph:

$$210 \tilde{E}(X) = \sum_{k \in \mathcal{K}} \rho_{T_k} \left[\sum_{i \in \mathcal{V}} \theta_i(x_i) + \sum_{(i,j) \in T_k} w_{ij} \theta_{ij}(x_i, x_j) \right] = \sum_{i \in \mathcal{V}} \theta_i(x_i) + \mathbb{E}_{T \sim \Omega(\mathcal{T})} [\tilde{\Theta}(X, X)], \quad (9)$$

216 where ρ_{T_k} is the probability that T_k is sampled and $\tilde{\Theta}(X, X)$ is the pairwise energy term after reweighted.
 217 And the second term of the right-hand side is the expectation of the adjustment pairwise term according to
 218 the distribution of the random uniform spanning trees. By Lemma 1, we could make sure the merged MAP
 219 problem is actually an approximation of the original problem. We use a toy example to show the necessity of
 220 weight adjustment in **Appendix J**.

221 After adjustment, the incoming message of vertex i from vertex j now becomes $\tilde{M}_{ji} = (M_{ji})^{w_{ij}}$.
 222 Then equation 3 on a certain tree T now becomes

$$224 \quad \mathbb{P}^T(X) = \frac{1}{Z^T} \exp(-E^T(X)) = \frac{1}{Z^T} \exp \left(-\sum_{i \in \mathcal{V}} \theta_i(x_i) - \sum_{(i,j) \in T} w_{ij} \theta_{ij}(x_i, x_j) \right). \quad (10)$$

227 Now we could approximate the joint distribution via:

$$229 \quad \tilde{\mathbb{P}}(X) = \prod_{k \in \mathcal{K}} \mathbb{P}_{T_k}(X)^{\rho_{T_k}} = \frac{1}{Z} \exp \left(-\sum_{k \in \mathcal{K}} \rho_{T_k} \left[\sum_{i \in \mathcal{V}} \theta_i(x_i) + \sum_{(i,j) \in T_k} w_{ij} \theta_{ij}(x_i, x_j) \right] \right). \quad (11)$$

232 After applying belief propagation on sampled trees, we could obtain the marginals $p_{T_k}(x_i | X \setminus \{x_i\})$ on each
 233 tree. They are subsequently merged to approximate the true marginal distribution. For the initial marginals,
 234 without any specification, we will assume they are all uniform. To obtain the estimations, we do the following
 235 procedure to merge the marginals of each variables on each trees since the summation in energy is the
 236 multiplication when calculating probability:

$$237 \quad \tilde{p}(x_i | X \setminus \{x_i\}) \propto \prod_{k \in \mathcal{K}} (p_{T_k}(x_i | X \setminus \{x_i\})). \quad (12)$$

239 We employed two methods, Gibbs sampling (Geman & Geman, 1984), and Greedy selection, to assign values
 240 to each of the variables based on the estimation of the marginal distributions as in Line 6 and 7 in Algorithm 1.
 241 These methods are implemented in modules named GibbsSampler and GreedySelector. The GibbsSampler
 242 samples a label for each variable based on the estimated marginal distribution, this label configuration is called
 243 X^{Gibbs} , while the GreedySelector selects the label with the highest value from the estimated marginal distribution,
 244 this label configuration is called X^{Greedy} . Since the sampling procedure will introduce uncertainty and
 245 greedy selection on nodes doesn't mean the combination is the best, we will keep recording the best configuration
 246 so far $X_{temp}^{best,t}$ during the iterations. We will update this configuration if some of the configuration given by
 247 the two modules yields the lowest energy so far $E_{temp}^{best,t}$. When the algorithm terminate, the best configuration
 248 that is found would be the final output.

248 **Complexity Analysis** can be found in **Appendix E**.

249 **Lemma 1.** *Given a uniform spanning tree distribution $\Omega(\mathcal{T})$ and the corresponding edge appearance probabilities $\{\rho_{ij} | \forall (i, j) \in \mathcal{E}\}$, when $|\mathcal{K}| = |\mathcal{T}|$, the approximation energy Eq. 9 and the original energy coincide.*

252 **Since acquiring the true tree** selection probability ρ_T is intractable in practice, we use Monte Carlo Approximation to do the approximation when implementation the algorithm, by Lemma 2, you can see the condition in
 253 Lemma 1 still holds.

254 **Lemma 2.** *By applying the Monte Carlo Approximation, the expectation of the approximation is the original
 255 energy.*

$$257 \quad \mathbb{E}_{T_k \sim \Omega(\mathcal{T})} \left[\sum_{i \in \mathcal{X}} \theta_i(x_i) + \frac{1}{|\mathcal{K}|} \sum_{k \in \mathcal{K}} \sum_{(i,j) \in T_k} w_{ij} \theta_{ij}(x_i, x_j) \right] = \sum_{i \in \mathcal{X}} \theta_i(x_i) + \sum_{(i,j) \in \mathcal{E}} \theta_{ij}(x_i, x_j) \quad (13)$$

260 **Theorem 1.** *Given spanning tree distribution $\Omega(\mathcal{T})$ and the corresponding edge appearance probability
 261 $\{\rho_{ij} | \forall (i, j) \in \mathcal{E}\}$, the following error bound of the approximation energy Eq. equation 9 holds with probability at least $1 - \delta$.*

$$264 \quad |E(X) - \tilde{E}(X)| \leq \sqrt{\frac{1}{|\mathcal{K}|} \sum_{(i,j) \in \mathcal{E}} \theta_{ij}^2(x_i, x_j) \left(\frac{1 - \rho_{ij}}{\rho_{ij}} \right)} \frac{1}{\sqrt{\delta}}. \quad (14)$$

266 When

$$268 \quad |\mathcal{K}| \geq \frac{1}{\delta \eta^2} \sum_{(i,j) \in \mathcal{E}} \theta_{ij}^2(x_i, x_j) \left(\frac{1 - \rho_{ij}}{\rho_{ij}} \right), \quad (15)$$

269 we have $P(|E(X) - \tilde{E}(X)| \geq \eta) \leq \delta$.

270 The proof of Lemma 1, Lemma C and Theorem 1 can be found in Appendix B and Appendix D respectively.
 271 It is obvious that due to the term $(\frac{1-\rho_{ij}}{\rho_{ij}})$, we can achieve good quality results with only a few trees when the
 272 graph is sparse.
 273

274 The error bound exhibits an inverse relationship with the edge selection probability ρ_{ij} . As ρ_{ij} approaches
 275 smaller values, the factor $(\frac{1-\rho_{ij}}{\rho_{ij}})$ grows significantly, leading to a looser error bound. This relationship pro-
 276 vides insight into the performance disparity between sparse and dense graphs. In sparse graphs, each edge
 277 typically has a higher probability of being included in a spanning tree, since fewer alternative paths exist be-
 278 tween vertices. Conversely, in dense graphs, the abundance of potential paths results in lower individual edge
 279 selection probabilities. Consequently, when ρ_{ij} is larger (as in sparse graphs), the term $(\frac{1-\rho_{ij}}{\rho_{ij}})$ remains rela-
 280 tively small, yielding a tighter error bound and better estimation accuracy. Moreover, this theoretical analysis
 281 aligns with our empirical observations of superior performance on sparse graphs. This mathematical relation-
 282 ship explains why our method naturally performs better on sparse structures, where the higher edge selection
 283 probabilities contribute to more reliable estimates.
 284

284 4.2 RANDOM UNIFORM SPANNING TREE

285 The key idea behind our algorithm is utilizing the partial information contained inside the original graphs.
 286 To uniformly sample a random spanning tree from the given graph, we employed the widely used Wilson’s
 287 algorithm (Wilson, 1996). This algorithm, based on random walks and removal, ensures the uniformity of the
 288 resulting spanning tree selection. In general, the time complexity of Wilson’s algorithm is $O(N^3)$. It could
 289 be significant when the size of the graph increases. Using methods such as Depth-First Search (DFS) would
 290 be more efficient, given the time complexity of $O(M + N)$. However, these methods make it challenging to
 291 identify the distribution of the trees. As a result, we cannot adjust the messages based on the edge selection
 292 probabilities. Therefore, one of the future trials is to incorporate advanced (approximate) sampling procedures
 293 such as Schild (2018) to reduce the time complexity.
 294

295 4.3 EFFECTIVE RESISTANCE

296 We employ algorithms approximating effective resistance to obtain ρ_{ij} . Effective resistance is used in electrical
 297 network analysis and graph theory to measure the resistance between two vertices in a graph (Lyons & Peres,
 298 2016) – how difficult it is for current to flow between two points in a network. The terminology of effective
 299 resistance originates from the following observation: Given the resistance on all edges, if one removes all
 300 vertices of \mathcal{G} except (s, t) and replaces the whole network with a resistance of resistor $\text{Reff}(s, t)$ between
 301 (s, t) , then, the energy (and the potential difference) of all electrical flows between (s, t) remains invariant.
 302

303 There is a strong connection between ρ_{ij} and the corresponding effective resistance. By applying Kirchhoff’s
 304 effective resistance formula (Lyons & Peres, 2016), we can establish the following lemma.
 305

Lemma 3 ((Madry et al., 2014; Doyle & Snell, 2000)). *For any unweighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, any edge
 306 $(i, j) \in \mathcal{E}$, $\rho_{ij} = \mathbb{P}[(i, j) \in T, T \sim \Omega(\mathcal{T})] = \text{Reff}(i, j)$.*

307 As such, we resort to an efficient alternative algorithm approximating effective resistance (Vos, 2016) for ρ_{ij} . In
 308 our research, we only need the appearance probabilities of all the edges to calculate the weight of the pairwise
 309 energies, so we only need to calculate the effective resistance between directly connected nodes instead of do
 310 the calculation between all the nodes. **Note**, the value $\text{Reff}(i, j)$ represents the probability of *sampling* edge
 311 (i, j) when reaching node i or node j in Wilson’s algorithm. In this sense, it is unnecessary to directly reweight
 312 the pairwise terms θ_{ij} . More details are in **Appendix F**.
 313

314 5 EXPERIMENTS

315 We present a comprehensive investigation into the performance of the variational inference method Mean-
 316 field and three belief-based inference algorithms: the Loopy Belief Propagation algorithm (LBP), the Tree-
 317 reweighted Belief Propagation algorithm (TRBP), and a novel sampling algorithm proposed in this study, re-
 318 ferred to as **SPT**. The experiments aim to validate the arguments presented in the previous sections and estab-
 319 lish the superiority of our proposed algorithm over LBP and TRBP. Performance evaluations are conducted on
 320 synthetic problems with diverse graph structures, encompassing energy functions such as the square function
 321 $\theta_{ij} = \alpha(x_i - x_j)^2$, absolute difference function $\theta_{ij} = \alpha|x_i - x_j|$ and Potts function $\theta_{ij} = \alpha(x_i = x_j) + \beta$,
 322 where α and β are constant penalty terms. In this section, we use $\alpha = 1$ and $\beta = 0.1$.
 323

324 Experiments involve grid-based and cell-based structures, as well as Erdős-Rényi (ER) random graphs. The
 325 LBP algorithm and TRBP algorithm are from Kappes et al. (2015); Andres et al. (2012); Maxwell Forbes
 326 (2017). TRBP here is the refined version of TRW-based algorithms. The mean-field algorithm we used is from

Figure 1: Results on Grid, Erdős-Rényi (ER), Cellular, and Cell graph types (rows) with Potts, Absolute difference (Abs), and Squared difference energies. Each plot shows energy $E(x|\theta)$ vs. iterations. Blue: LBP, orange: TRBP, green: SPT. The error bars show the standard deviation of each algorithm. Note: LBP and TRBP curves sometimes overlap due to minimal differences.

Table 1: Results on real PCI instances. Numbers are obtained energy values. Best in bold.

GRAPH	#VAR/#CON	#NODES/#EDGES	LBP	TRBP	MAPMAP	SPT
PCLINSTANCE_1	955/2496	30/165	3.72662E+08	3.72662E+08	101259.1	84382.6
PCLINSTANCE_2	1588/4409	40/311	3.72704E+08	3.72704E+08	214875	186848
PCLINSTANCE_3	17684/52673	80/1522	0.303468	0.303468	0.299465	0.295245
PCLINSTANCE_4	65713/193287	286/10565	0.751074	0.751074	0.725626	0.552074

Wang et al. (2022) and the mapMAP solver is from Thuerck et al. (2016). Furthermore, the applicability of our algorithm on real-world MRF inference datasets is demonstrated.

5.1 SYNTHETIC PROBLEMS

We first conduct experiments on synthetic problem instances. To test the applicability of the proposed method in a wide spectrum of settings, we test four types of graph topologies: Grid, Erdős-Rényi (ER), Cellular, and Cell. There are illustrative figures in Appendix P.1 visualizing typical layouts of cell graphs (Fig. 7(a)) and cellular graphs (Fig. 7(b)). All the experimental results are in Fig. 1. Concrete settings are as follows.

Grid. We first test these algorithms on 70×70 grids with 4900 nodes, and each random node has 5 possible discrete labels to select. In addition, each label is attached to an explicit energy generated randomly and the energy $e_l \in (0, 1)$. For the setting of LBP and TRBP, we set the maximum round of iterations to 40 rounds. The damping factor of both of them is 0.8 since it is the best configuration as we could see from the results of the experiments. For our SPT, the maximum round of iterations is set to 20 and the damping factor is 0. We run the experiment for 10 different test cases and the final result is the average result over these cases.

Erdős-Rényi. Random MRF instances under Erdős-Rényi setting comprise 2,500 nodes, with an average degree of 12. The test cases are configured with different energy functions, and all the unary energy terms are generated randomly. In order to show the inference ability clearly, we attach 10 possible labels for each node in this part. The damping factors are set to 0 in this part of experiment. The maximum iterations, including our SPT algorithm are all set to 40. The number of trees used by SPT for the tests is 20.

Cellular & Cell. In addition to these two most common type of networks. We then run the tests on cellular and cell networks which are widely applied in communication networks. Each of the cellular networks has 4,998 nodes and 7,398 edges, the average degree is about 2.96. Each of the cell networks has 4,900 nodes and 14,421 edges, the average degree is about 5.89. The other settings are as same as we used for the experiments on Erdős-Rényi graphs.

Table 2: Results on the UAI dataset. Numbers are the obtained energy values. Best in bold.

GRAPH	#NODES#EDGES	Mean-field		LBP		TRBP		mapMAP		SPT	
		Energy	Time(s)	Energy	Time(s)	Energy	Time(s)	Energy	Time(s)	Energy	Time(s)
ProteinFolding_11	400/7160	1.0414e+08	0.0343	7.11675e+07	0.880201	7.54224e+07	0.967124	8.54620e+07	0.04	7.49639e+07	13.2087 (ρ_{ij} time 1.66887)
ProteinFolding_12	250/1848	5852.2148	2.2345	0.949	13.4593	0.949	15.4034	0.949	0.106	0.949	15.9054 (ρ_{ij} time 0.448073)
Grids_19	1600/3200	10613.0645	0.1503	7053.72	3.32058	6056.45	3.66748	7523.18	0.093	6275.56	112.945 (ρ_{ij} time 89.1308)
Grids_21	1600/3200	3.3756e+08	0.1595	2.5577e+08	3.30869	2.56852e+08	3.6697	3.33740e+08	0.141	3.22289e+08	137.674 (ρ_{ij} time 89.106)
Grids_24	1600/3120	3.8874e+08	0.1423	3.08505e+08	3.22656	3.01668e+08	3.56594	3.53902e+08	0.046	3.09172e+08	142.921 (ρ_{ij} time 89.0508)
Grids_25	1600/3120	10487.6113	0.1337	5476.03	3.099	5441.52	3.47539	7635.35	0.071	5931.11	115.198 (ρ_{ij} time 90.8171)
Grids_26	400/800	818490.187	0.0317	792987	0.824318	556629	0.914945	794293	0.048	759351.5	12.3774 (ρ_{ij} time 1.619495)
Grids_27	1600/3120	3.892e+6	0.1375	2.06277e+06	3.22343	2.14945e+06	3.57305	3.54505e+06	0.105	3.41471e+06	132.454 (ρ_{ij} time 89.1219)
Grids_30	400/760	1044407.0625	0.0313	567339	0.7504	663905	0.831959	817746	0.04	809344	13.4867 (ρ_{ij} time 1.65657)
Segmentation_11	228/624	401.231	0.2086	346.647	24.8519	348.097	29.679	286.022	0.024	200.866	12.2192 (ρ_{ij} time 0.366381)
Segmentation_12	231/625	805.6727	0.0212	735.259	0.822135	735.259	0.899114	724.025	0.018	611.347	3.72848 (ρ_{ij} time 0.377893)
Segmentation_13	225/607	785.7468	0.0208	726.144	0.632035	726.144	0.708431	7689.666	0.027	596.606	3.05409 (ρ_{ij} time 0.347453)
Segmentation_14	231/632	803.2781	0.229	742.241	0.752022	742.241	0.824835	684.055	0.021	629.95	3.63654 (ρ_{ij} time 0.375578)
Segmentation_15	229/622	314.47	0.1961	362.61	24.764	362.61	29.4172	277.087	0.023	191.924	9.8776 (ρ_{ij} time 0.364987)
Segmentation_16	228/610	776.0317	0.211	720.009	0.811115	720.009	0.886003	647.788	0.026	578.114	3.53684 (ρ_{ij} time 0.363007)
Segmentation_17	225/612	516.1681	0.1895	392.83	25.8389	370.852	30.3104	296.107	0.022	187.432	9.67083 (ρ_{ij} time 0.34816)
Segmentation_18	235/647	820.7836	0.0235	782.282	0.745899	782.282	0.825011	662.122	0.031	595.11	3.68485 (ρ_{ij} time 0.396227)
Segmentation_19	228/624	798.2877	0.221	742.197	0.72549	742.197	0.807067	660.399	0.023	624.649	3.39231 (ρ_{ij} time 0.360591)
Segmentation_20	232/635	578.8339	0.3630	373.14	26.832	371.839	31.4758	287.187	0.023	196.558	10.7515 (ρ_{ij} time 0.368231)

Results & Analysis. The results are displayed in Fig. 1. These charts show our algorithm effectively handles various energy functions on graphs with specific local structures and randomly generated graphs. For grid, cellular, and cell graphs (all locally and sparsely connected), our algorithm outperforms both LBP, TRBP and mapMAP in final energy and iteration efficiency. These structures commonly appear in wireless communication and traffic control industries, where strategically placed interconnected devices create potential interference patterns similar to our experimental setup. Our algorithm performs consistently well on completely randomly generated graphs, even when graph density is approximately twice that of cellular networks. In addition, the error bars indicate that these algorithms remain highly stable after convergence, with our SPT algorithm exhibiting particularly robust performance. However, it slightly underperforms compared to LBP and TRBP when using absolute difference as the energy function. This occurs because when different choices have similar costs, the algorithm may converge to sub-optimal positions.

5.2 UAI INFERENCE COMPETITION

We extend evaluation to factor graphs from the 2022 UAI Inference Competition’s MAP tasks¹. Table 2 compares Mean-field, LBP, TRBP, and our SPT method, reporting final energy values. Algorithm settings match those used on synthetic problems, except SPT uses 20 trees for estimation in this section. Overall, SPT achieves competitive performance comparable to LBP and TRBP, with significant improvements on various segmentation tasks. On segmentation instances, SPT outperforms all other methods. These instances have graph structures similar to those in the synthetic experiments and share the same Potts model characteristics. For ProteinFolding_11 and Grid cases, our algorithm’s performance matches LBP and TRBP, consistent with findings from Grid graph experiments in the synthetic problem set. Graph structures for ProteinFolding_11, ProteinFolding_12, Segmentation_14 and Grids_30 instances are shown in Appendix P.2. We display only one Segmentation class instance since they all share similar graph structure.

5.3 REAL-WORLD PCI PROBLEM OF 5G NETWORKS

PCI (Physical Cell Identity) uniquely identifies cells in LTE and 5G networks. We evaluate using internal PCI data transformed into pairwise MRFs for MAP inference. Appendix L details the MIP formulation and transformation process. We evaluate our algorithm on four internal *real industry-level PCI instances* compared to LBP and TRBP, using final energy (corresponding to the objective function in equation 52) as our comparison standard. Results appear in Table 1 with instance topologies in Appendix P.3. When MAP estimation is formulated as integer programming, problem size increases significantly, as shown in the table. Both LBP and SPT yield identical results, but our algorithm achieves superior performance compare to all the baselines, with substantial energy reductions for PCI_INSTANCE_1 and PCI_INSTANCE_2. The inference time are shown in Table. 4 in Appendix. K.

5.4 MORE ANALYSIS

To investigate the impact of various factors, we examine the following aspects: the number of trees used, the number of iterations, stopping criteria, other sub-graph structures, and impact of sparsity. The main part of the result figures in this section is displayed in Fig. 2.

Number of trees. We evaluated our algorithm’s performance on the PCI_INSTANCE_2 model using 1, 5, 20, 80, 160 spanning trees. After 10 iterations per configuration, the final energy values revealed a V-shaped curve, with optimal performance at 5 spanning trees (Fig. 2a). This suggests that for complicate graphs, approximately 5-10 spanning trees provide sufficient structure representation without redundant information. As

¹https://www.auai.org/uai2022/uai2022_competition

Figure 2: Part of the results for the analysis in Section 5.4.

demonstrated in Appendix I, for trivial MRFs with known optimal energies, increasing the number of trees can further minimize the optimality gap.

Number of iterations & Stopping criterion. Fig. 2b shows energy curves for our algorithm on the PCI_INSTANCE_1 dataset using 20 spanning trees over 40 iterations. The optimal configuration is achieved at iteration 19 and persists until the end. Notably, the provisional best configuration remains stable during several periods within the first 20 iterations. Common early stopping criteria based on monitoring consecutive iterations without improvement (marked by red, green, and yellow dotted lines at thresholds of 3, 5, and 10 iterations) would fail to capture the best solution found at iteration 19. Given our algorithm’s efficiency, we recommend running it for the maximum number of iterations in practice.

Inference Time. In Table 2, we show both overall inference time and edge selection probability calculation time (marked as “ ρ_{ij} time 1.324”). For complex problems like “Segmentation_11”, all methods require more computation time, but SPT demonstrates more stable performance and faster convergence. Our analysis identifies calculating edge selection probabilities as the main computational bottleneck, especially for larger graphs. Developing more efficient probability estimation methods is an important future research direction. The algorithm could be accelerated through parallelization, with details available in Appendix N

Other sub-graph structures. We evaluated several structural alternatives: chains, random trees (covering 75% of nodes), and random walks (1600 steps for greater node coverage). Testing details are in Appendix H. Tests used 1600-node grids with 10-16 possible states per node and square function pairwise energy without unary terms. Unlike our fixed-tree SPT approach, alternative structures were resampled each iteration since they don’t guarantee full node coverage. Running 20 iterations with SPT using 10 trees, Fig. 2c shows SPT achieved superior results with significantly fewer iterations. Random trees and walks delivered acceptable results but required more iterations to converge. Comparison with the tree-coupling approach from Hamze & de Freitas (2004) appears in Appendix G.

Impact of sparsity. From Fig. 1, our algorithm outperforms LBP and TRBP on both grid and cell structures, with a larger performance gap on denser cell graphs. To evaluate effectiveness on locally and sparsely connected MRFs (Fig. 8, Appendix P) and analyze local structure complexity impact, we tested LBP and SPT on graphs described in Appendix M. These graphs had average degrees of 3.8, 7.6, 11.3, 18.5, and 22.0. SPT used 10 trees, with 10-16 states per random variable and nodes linked to random observations. Pairwise energy used the Potts function. Performance comparison used the relative energy gap (equation 16), averaged over 10 trials.

$$\text{GAP} = (E_{SPT} - E_{LBP})/E_{LBP} \times 100\% \quad (16)$$

Fig. 2d shows that as local structures become denser, SPT increasingly outperforms LBP. This occurs because loop impacts become more significant, making it crucial to balance variable values within local graph structures—a strength of our algorithm. The shaded areas indicate modest gap variances.

Our algorithm also performs effectively on random graphs, especially when they’re not highly dense. We conducted similar experiments on ER graphs with 900 nodes, varying average node degrees from 2 to 12 using squared energy functions (as performance with Potts functions is similar). Results in Fig. 2d (orange line) show our algorithm performs effectively on sparse graphs, even without specific graph topologies. The algorithm achieves satisfactory results on sparse graphs, but as average node degree increases, the performance gap between our algorithm and LBP increases linearly. Without local structure to leverage, SPT’s performance is reduced.

6 CONCLUSION

MAP inference on MRFs remains a persistent challenge. We propose a novel, efficient approach for MAP estimation on locally and sparsely connected MRFs using spanning tree sampling. Our method works by solving MAP problems on individual sampled trees and merging these solutions into a final configuration. Experiments

486 demonstrate superior performance against strong baselines across diverse settings, with particularly significant
487 improvements on real-world PCI instances, indicating broad applicability potential.
488

489 7 REPRODUCIBILITY STATEMENT 490

491 To ensure the reproducibility of our research findings, we have taken the following comprehensive measures:
492

493 Our implementation code has been made publicly available, with the repository link provided at the end of the
494 abstract. This allows other researchers to directly access and utilize our algorithm for their own applications or
495 verification purposes.
496

497 Detailed instructions for setting up and running our code are included in the repository documentation. These
498 instructions cover all necessary steps from environment setup to execution of experiments, enabling smooth
499 replication of our work.
500

501 In Section 5, we have explicitly documented all algorithm settings used in our experiments, including pa-
502 rameter configurations, optimization choices, and implementation details. These specifications are critical for
503 reproducing our experimental results.
504

505 Access information for the UAI Inference Competition datasets used in our evaluation is clearly provided
506 in Section 5.2. This includes source links and preprocessing steps applied to the data before running our
507 experiments.
508

509 For synthetic experiments, we have thoroughly documented our instance generation methodology in Sec-
510 tion 5.4, with additional technical details available in Appendix H. This documentation ensures that synthetic
511 test cases can be precisely recreated.
512

513 We provide comprehensive instructions for transforming PCI problems from their original Mixed Integer Pro-
514 gramming (MIP) format into the MRF format required by our algorithm. This transformation process is crucial
515 for applying our method to real-world telecommunication network optimization problems.
516

517 Through these measures, we have ensured that all aspects of our research can be independently verified and
518 built upon by the research community.
519

520 8 ETHICS STATEMENT 521

522 During the preparation and submission of this paper, we have strictly adhered to the Code of Ethics in scientific
523 research. We ensured proper citation of all relevant work, maintained integrity in our experimental procedures,
524 reported results accurately without manipulation, and respected confidentiality of data sources where applica-
525 ble. All authors have contributed substantially to this work and approved the final manuscript, with no conflicts
526 of interest undisclosed.
527

528

529

530

531

532

533

534

535

536

537

538

539

540 REFERENCES

541
 542 Uai 2022 competition. <https://uaicompetition.github.io/uci-2022/>.

543 Mamta Agiwal, Abhishek Roy, and Navrati Saxena. Next generation 5g wireless networks: A comprehensive
 544 survey. *IEEE Communications Surveys Tutorials*, 18(3):1617–1655, 2016. doi: 10.1109/COMST.2016.
 545 2532458.

546 S.M. Aji and R.J. McEliece. The generalized distributive law. *IEEE Transactions on Information Theory*, 46
 547 (2):325–343, 2000. doi: 10.1109/18.825794.

548 B. Andres, T. Beier, and J.H. Kappes. OpenGM: A C++ library for discrete graphical models. *CoRR*,
 549 abs/1206.0111, 2012. URL <http://arxiv.org/abs/1206.0111>.

550 MOSEK ApS. *The MOSEK Python Fusion API manual. Version 11.0.*, 2025. URL <https://docs.mosek.com/latest/pythonfusion/index.html>.

551 Dhruv Batra, A. C. Gallagher, Devi Parikh, and Tsuhan Chen. Beyond trees: Mrf inference via outer-planar
 552 decomposition. In *2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition*,
 553 pp. 2496–2503, 2010. doi: 10.1109/CVPR.2010.5539951.

554 Julian Besag. Spatial interaction and the statistical analysis of lattice systems. *Journal of the Royal Statistical
 555 Society. Series B (Methodological)*, 36(2):192–236, 1974. ISSN 00359246. URL <http://www.jstor.org/stable/2984812>.

556 Y. Boykov, O. Veksler, and R. Zabih. Markov random fields with efficient approximations. In *Proceedings. 1998
 557 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231)*, pp.
 558 648–655, 1998. doi: 10.1109/CVPR.1998.698673.

559 Joseph K. Bradley and Carlos Guestrin. Learning tree conditional random fields. In *Proceedings of the 27th
 560 International Conference on International Conference on Machine Learning*, ICML’10, pp. 127–134, Madison,
 561 WI, USA, 2010. Omnipress. ISBN 9781605589077.

562 Nicolò Cesa-Bianchi, Claudio Gentile, Fabio Vitale, and Giovanni Zappella. Random spanning trees and the
 563 prediction of weighted graphs. pp. 175–182, 01 2010.

564 P Clifford and JM Hammersley. Markov fields on finite graphs and lattices, 1971.

565 Paul Cuffe and Andrew Keane. Visualizing the electrical structure of power systems. *IEEE Systems Journal*,
 566 11(3):1810–1821, 2017.

567 Peter G. Doyle and J. Laurie Snell. Random walks and electric networks, 2000. URL <https://arxiv.org/abs/math/0001057>.

568 Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient belief propagation for early vision. *International
 569 Journal of Computer Vision*, 70:41–54, 2004. URL <https://api.semanticscholar.org/CorpusID:8702465>.

570 Brendan Frey and David Mackay. A revolution: Belief propagation in graphs with cycles. 08 2002.

571 Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and the bayesian restoration of
 572 images. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 6(6):721–741, 1984.

573 D.M. Greig, B.T. Porteous, and Allan Seheult. Exact maximum a posteriori estimation for binary images.
 574 *Journal of the Royal Statistical Society, Series B*, 51:271–279, 01 1989. doi: 10.1111/j.2517-6161.1989.tb01764.x.

575 Anna Grim and Pedro Felzenszwalb. Convex combination belief propagation. *Applied Mathematics and
 576 Computation*, 438:127572, 2023. ISSN 0096-3003. doi: <https://doi.org/10.1016/j.amc.2022.127572>. URL
 577 <https://www.sciencedirect.com/science/article/pii/S0096300322006464>.

578 Firas Hamze and Nando de Freitas. From fields to trees. In *Proceedings of the 20th Conference on Uncertainty
 579 in Artificial Intelligence*, pp. 243–250, 2004.

580 H. Ishikawa. Exact optimization for markov random fields with convex priors. *IEEE Transactions on Pattern
 581 Analysis and Machine Intelligence*, 25(10):1333–1336, 2003. doi: 10.1109/TPAMI.2003.1233908.

582 H. Ishikawa and D. Geiger. Segmentation by grouping junctions. In *Proceedings. 1998 IEEE Computer Society
 583 Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231)*, pp. 125–131, 1998. doi:
 584 10.1109/CVPR.1998.698598.

594 JörgH. Kappes, Bjoern Andres, FredA. Hamprecht, Christoph Schnörr, Sebastian Nowozin, Dhruv Batra, Sung-
 595 woong Kim, BernhardX. Kausler, Thorben Kröger, Jan Lellmann, Nikos Komodakis, Bogdan Savchynskyy,
 596 and Carsten Rother. A comparative study of modern inference techniques for structured discrete energy min-
 597 imization problems. *International Journal of Computer Vision*, 115(2):155–184, 2015. ISSN 0920-5691.
 598 doi: 10.1007/s11263-015-0809-x.

599 Alec Kirkley, George T. Cantwell, and M. E. J. Newman. Belief propagation for networks with loops. *Science*
 600 *Advances*, 7(17):eabf1211, 2021. doi: 10.1126/sciadv.abf1211. URL <https://www.science.org/doi/abs/10.1126/sciadv.abf1211>.

602 V. Kolmogorov. Convergent Tree-Reweighted Message Passing for Energy Minimization. *IEEE Transac-*
 603 *tions on Pattern Analysis and Machine Intelligence*, 28(10):1568–1583, October 2006. ISSN 0162-8828,
 604 2160-9292. doi: 10.1109/TPAMI.2006.200. URL <http://ieeexplore.ieee.org/document/1677515/>.

606 Nikos Komodakis, Nikos Paragios, and Georgios Tziritas. Mrf optimization via dual decomposition: Message-
 607 passing revisited. pp. 1–8, 11 2007. ISBN 978-1-4244-1631-8. doi: 10.1109/ICCV.2007.4408890.

608 Arun Kumar, Aniruddha A. Dutta, Nayan Jain, and Sanjay K. Dhurandher. Mrfbp: Markov random field-driven
 609 spatial entropy-based routing protocol in opportunistic networks. *International Journal of Communication*
 610 *Systems*, 35(1), January 2022. ISSN 1074-5351. doi: 10.1002/dac.5018. Publisher Copyright: © 2021 John
 611 Wiley Sons Ltd.

613 Sanjiv Kumar, Jonas August, and Martial Hebert. Exploiting inference for approximate parameter learning in
 614 discriminative fields: An empirical study. In Anand Rangarajan, Baba Vemuri, and Alan L. Yuille (eds.), *En-*
 615 *ergy Minimization Methods in Computer Vision and Pattern Recognition*, pp. 153–168, Berlin, Heidelberg,
 2005. Springer Berlin Heidelberg. ISBN 978-3-540-32098-2.

617 Yixin Li, Chen Li, Xiaoyan Li, Kai Wang, Md Mamanur Rahaman, Changhao Sun, Hao Chen, Xinran Wu,
 618 Hong Zhang, and Qian Wang. A comprehensive review of markov random field and conditional random
 619 field approaches in pathology image analysis. *Archives of Computational Methods in Engineering*, 29:609–
 639, 2020. URL <https://api.semanticscholar.org/CorpusID:221995730>.

621 Zhiliang Liu and Zengzhi Zou. Analysis of network topology and deployment mode of 5g wireless ac-
 622 cess network. *Computer Communications*, 160:34–42, 2020. ISSN 0140-3664. doi: <https://doi.org/10.1016/j.comcom.2020.05.045>. URL <https://www.sciencedirect.com/science/article/pii/S014036642030654X>.

625 Russell Lyons and Yuval Peres. *Probability on Trees and Networks*, volume 42 of *Cambridge Series in Statisti-*
 626 *cal and Probabilistic Mathematics*. Cambridge University Press, New York, 2016. ISBN 978-1-107-16015-
 6.

628 Aleksander Madry, Damian Straszak, and Jakub Tarnawski. Fast generation of random spanning trees
 629 and the effective resistance metric. In *Proceedings of the Twenty-Sixth Annual ACM-SIAM Sym-
 630 posium on Discrete Algorithms*. Society for Industrial and Applied Mathematics, December 2014. doi:
 10.1137/1.9781611973730.134. URL <http://dx.doi.org/10.1137/1.9781611973730.134>.

632 Sadia Majeed, Muhammad Uzair, Usman Qamar, and Aftab Farooq. Social network analysis visualization
 633 tools: A comparative review. In *2020 IEEE 23rd International Multitopic Conference (INMIC)*, pp. 1–6,
 2020.

635 Yan Wong. Maxwell Forbes. py-factorgraph. <https://github.com/mbforbes/py-factorgraph>,
 636 2017.

637 Andrea Montanari and Tommaso Rizzo. How to compute loop corrections to the bethe approximation. *Journal*
 638 *of Statistical Mechanics: Theory and Experiment*, 2005:P10011 – P10011, 2005. URL <https://api.semanticscholar.org/CorpusID:15437986>.

640 Kevin Murphy, Yair Weiss, and Michael I. Jordan. Loopy belief propagation for approximate inference: An
 641 empirical study, 2013.

643 Judea Pearl. Reverend bayes on inference engines: a distributed hierarchical approach. In *Proceedings of the*
 644 *Second AAAI Conference on Artificial Intelligence*, AAAI'82, pp. 133–136. AAAI Press, 1982.

645 Judea Pearl. Chapter 4 - belief updating by network propagation. In Judea Pearl (ed.), *Probabilistic Reasoning*
 646 *in Intelligent Systems*, pp. 143–237. Morgan Kaufmann, San Francisco (CA), 1988. ISBN 978-0-08-051489-
 647 5. doi: <https://doi.org/10.1016/B978-0-08-051489-5.50010-2>. URL <https://www.sciencedirect.com/science/article/pii/B9780080514895500102>.

648 Patrick Pletscher, Cheng Soon Ong, and Joachim Buhmann. Spanning tree approximations for conditional
 649 random fields. In David van Dyk and Max Welling (eds.), *Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics*, volume 5 of *Proceedings of Machine Learning Research*, pp.
 650 408–415, Hilton Clearwater Beach Resort, Clearwater Beach, Florida USA, 16–18 Apr 2009. PMLR. URL
 651 <https://proceedings.mlr.press/v5/pletscher09a.html>.
 652

653 S. Roy and I.J. Cox. A maximum-flow formulation of the n-camera stereo correspondence problem. In *Sixth
 654 International Conference on Computer Vision (IEEE Cat. No.98CH36271)*, pp. 492–499, 1998. doi: 10.
 655 1109/ICCV.1998.710763.

656 Masaki Saito, Takayuki Okatani, and Koichiro Deguchi. Application of the mean field methods to mrf optimi-
 657 zation in computer vision. In *2012 IEEE Conference on Computer Vision and Pattern Recognition*, pp.
 658 1680–1687, 2012. doi: 10.1109/CVPR.2012.6247862.

659 Vladimir Savic and Santiago Zazo. Nonparametric belief propagation based on spanning trees for cooperative
 660 localization in wireless sensor networks. In *2010 IEEE 72nd Vehicular Technology Conference - Fall*, pp.
 661 1–5, 2010. doi: 10.1109/VETECF.2010.5594105.

662 Aaron Schild. An almost-linear time algorithm for uniform random spanning tree generation. In *Proceedings of
 663 the 50th Annual ACM SIGACT Symposium on Theory of Computing*, STOC 2018, pp. 214–227, New York,
 664 NY, USA, 2018. Association for Computing Machinery. ISBN 9781450355599. doi: 10.1145/3188745.
 665 3188852. URL <https://doi.org/10.1145/3188745.3188852>.

666 Dmitrij Schlesinger and BORIS FLACH. Transforming an arbitrary minsum problem into a binary one. 01
 667 2006.

668 Alexei N. Skurikhin. Learning tree-structured approximations for conditional random fields. In *2014 IEEE
 669 Applied Imagery Pattern Recognition Workshop (AIPR)*, pp. 1–8, 2014. doi: 10.1109/AIPR.2014.7041937.

670 Wenkang Su, Jiangqun Ni, Xianglei Hu, and Jessica Fridrich. Image steganography with symmetric embed-
 671 ding using gaussian markov random field model. *IEEE Transactions on Circuits and Systems for Video
 672 Technology*, 31(3):1001–1015, 2021. doi: 10.1109/TCSVT.2020.3001122.

673 Jian Sun, Heung-Yeung Shum, and Nan-Ning Zheng. Stereo matching using belief propagation. In *Proceedings
 674 of the 7th European Conference on Computer Vision-Part II*, ECCV '02, pp. 510–524, Berlin, Heidelberg,
 675 2002. Springer-Verlag. ISBN 3540437444.

676 Martin Szummer, Pushmeet Kohli, and Derek Hoiem. Learning crfs using graph cuts. volume 5303, pp.
 677 582–595, 10 2008. ISBN 978-3-540-88685-3. doi: 10.1007/978-3-540-88688-4_43.

678 Daniel Thuerck, Michael Waechter, Sven Widmer, Max von Buelow, Patrick Seemann, Marc E. Pfetsch, and
 679 Michael Goesele. A fast, massively parallel solver for large, irregular pairwise Markov random fields. In
 680 *Proceedings of High Performance Graphics 2016*, 2016.

681 Vaya Sapobi Samui Vos. *Methods for determining the effective resistance*. Master's thesis, Mathematisch
 682 Instituut Universiteit Leiden, 2016.

683 M.J. Wainwright, T.S. Jaakkola, and A.S. Willsky. Map estimation via agreement on trees: message-passing
 684 and linear programming. *IEEE Transactions on Information Theory*, 51(11):3697–3717, 2005. doi: 10.
 685 1109/TIT.2005.856938.

686 Chaohui Wang, Nikos Komodakis, and Nikos Paragios. Markov random field modeling, inference learning
 687 in computer vision image understanding: A survey. *Computer Vision and Image Understanding*, 117(11):
 688 1610–1627, 2013. ISSN 1077-3142. doi: <https://doi.org/10.1016/j.cviu.2013.07.004>. URL <https://www.sciencedirect.com/science/article/pii/S1077314213001343>.

689 Lihao Wang, Yi Zhou, Yiqun Wang, Xiaoqing Zheng, Xuanjing Huang, and Hao Zhou. Regularized molecular
 690 conformation fields. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Ad-
 691 vances in Neural Information Processing Systems*, 2022. URL <https://openreview.net/forum?id=7XCFxnG8nGS>.

692 Y. Weiss and W.T. Freeman. On the optimality of solutions of the max-product belief-propagation algorithm in
 693 arbitrary graphs. *IEEE Transactions on Information Theory*, 47(2):736–744, 2001. doi: 10.1109/18.910585.

694 Wim Wiegerinck and Tom Heskes. Fractional belief propagation. In S. Becker, S. Thrun,
 695 and K. Obermayer (eds.), *Advances in Neural Information Processing Systems*, volume 15. MIT
 696 Press, 2002. URL https://proceedings.neurips.cc/paper_files/paper/2002/file/35936504a37d53e03abdfbc7318d9ec7-Paper.pdf.

702 David Bruce Wilson. Generating random spanning trees more quickly than the cover time. In *Symposium*
 703 *on the Theory of Computing*, 1996. URL [https://api.semanticscholar.org/CorpusID:
 704 207198080](https://api.semanticscholar.org/CorpusID:207198080).

705 Yongji Wu, Defu Lian, Yiheng Xu, Le Wu, and Enhong Chen. Graph convolutional networks with markov
 706 random field reasoning for social spammer detection. *Proceedings of the AAAI Conference on Artificial*
 707 *Intelligence*, 34(01):1054–1061, Apr. 2020. doi: 10.1609/aaai.v34i01.5455. URL <https://ojs.aaai.org/index.php/AAAI/article/view/5455>.

708 Bingbing Xu, Huawei Shen, Bingjie Sun, Rong An, Qi Cao, and Xueqi Cheng. Towards consumer loan fraud
 709 detection: Graph neural networks with role-constrained conditional random field. *Proceedings of the AAAI*
 710 *Conference on Artificial Intelligence*, 35(5):4537–4545, May 2021a. doi: 10.1609/aaai.v35i5.16582. URL
 711 <https://ojs.aaai.org/index.php/AAAI/article/view/16582>.

712 Zhiwei Xu, Thalaiyasingam Ajanthan, and Richard Hartley. Fast and differentiable message passing on pairwise
 713 markov random fields. In Hiroshi Ishikawa, Cheng-Lin Liu, Tomas Pajdla, and Jianbo Shi (eds.), *Computer*
 714 *Vision – ACCV 2020*, pp. 523–540, Cham, 2021b. Springer International Publishing. ISBN 978-3-030-
 715 69535-4.

716 Tingman Yan, Xilian Yang, Genke Yang, and Qunfei Zhao. Hierarchical belief propagation on image seg-
 717 mentation pyramid. *IEEE Transactions on Image Processing*, 32:4432–4442, 2023. doi: 10.1109/TIP.2023.
 718 3299192.

719 Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. *Understanding Belief Propagation and Its Gen-*
 720 *eralizations*, pp. 239–269. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003. ISBN
 721 1558608117.

722 J.S. Yedidia, W.T. Freeman, and Yair Weiss. Constructing free-energy approximations and generalized belief
 723 propagation algorithms. *Information Theory, IEEE Transactions on*, 51:2282 – 2312, 08 2005. doi: 10.1109/
 724 TIT.2005.850085.

725 Elkafi Hassini Yunfei Ma, Amir Amiri and Saiedeh Razavi. Transportation data visualization with a focus on
 726 freight: a literature review. *Transportation Planning and Technology*, 45(4):358–401, 2022.

727 J. Zhang. The mean field theory in em procedures for blind markov random field image restoration. *IEEE*
 728 *Transactions on Image Processing*, 2(1):27–40, 1993. doi: 10.1109/83.210863.

729 Jun Zhang and G.G. Hanauer. The application of mean field theory to image motion estimation. *IEEE Trans-*
 730 *actions on Image Processing*, 4(1):19–33, 1995. doi: 10.1109/83.350816.

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

Figure 3: Pipeline of the proposed approach.

810

811

$$\frac{1}{|\mathcal{K}|} \sum_{k=1}^{|\mathcal{K}|} \mathbb{E}_{\mathbf{T}_k \sim \Omega(\mathcal{T})} \left[\sum_{(i,j) \in \mathcal{T}_k} w_{ij} \theta_{ij}(x_i, x_j) \right] \quad (19)$$

814

$$= \frac{1}{|\mathcal{K}|} \sum_{k=1}^{|\mathcal{K}|} \mathbb{E}_T \left[\sum_{(i,j) \in \mathcal{T}_k} w_{ij} \theta_{ij}(x_i, x_j) \right] \quad (20)$$

815

$$= \mathbb{E}_T \left[\sum_{(i,j) \in \mathcal{T}_k} w_{ij} \theta_{ij}(x_i, x_j) \right] \quad (21)$$

816

817

818

$$I_{(i,j)}^{(k)} = \begin{cases} 1 & \text{if edge } (i,j) \text{ is in spanning tree } T_k \\ 0 & \text{otherwise} \end{cases} \quad (22)$$

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

864 We have

$$866 \Delta E(X) = E(X) - \tilde{E}(X) \quad (30)$$

$$867 = \left(\frac{1}{|\mathcal{K}|} \sum_{k \in \mathcal{K}} \sum_{(i,j) \in \mathcal{E}} w_{ij} \theta_{i,j}(x_i, x_j) \right) - \sum_{(i,j)} \theta_{i,j}(x_i, x_j). \quad (31)$$

869 Introduce indicator variables:

$$871 I_{(i,j)}^{(k)} = \begin{cases} 1 & \text{if edge } (i,j) \text{ is in spanning tree } T_k \\ 872 0 & \text{otherwise} \end{cases} \quad (32)$$

874 Then the error becomes:

$$875 \Delta E(X) = \sum_{(i,j) \in \mathcal{E}} \left(\left(\frac{1}{|\mathcal{K}|} I_{(i,j)}^{(k)} w_{ij} \theta_{i,j}(x_i, x_j) \right) - \theta_{i,j}(x_i, x_j) \right). \quad (33)$$

877 Now define the Per-Edge error ΔE_{ij} . Then

$$879 \Delta E(X) = \sum_{(i,j) \in \mathcal{E}} \Delta E_{ij}. \quad (34)$$

881 Define random variable $Z_{ij}^{(k)} = (I_{(i,j)}^{(k)} w_{ij} - 1) \theta_{i,j}(x_i, x_j)$. Then,

$$883 \Delta E_{ij} = \frac{1}{|\mathcal{K}|} \sum_{k \in \mathcal{K}} \Delta Z_{ij}^{(k)}. \quad (35)$$

886 Since $\mathbb{E}[I_{ij}^{(k)}] = \rho_{ij}$

$$888 \mathbb{E}[Z_{ij}^{(k)}] = (\mathbb{E}[I_{ij}^{(k)} w_{ij}] - 1 \theta_{i,j}(x_i, x_j)) \quad (36)$$

$$889 = (\rho_{ij} w_{ij} - 1) \theta_{i,j}(x_i, x_j) \quad (37)$$

$$890 = 0. \quad (38)$$

892 Then,

$$893 \text{Var}[Z_{ij}^{(k)}] = (w_{ij} \theta_{i,j}(x_i, x_j))^2 \rho_{ij} (1 - \rho_{ij}) \quad (39)$$

$$894 \text{Var}[Z_{ij}^{(k)}] = \left(\frac{1}{\rho_{ij}} \theta_{i,j}(x_i, x_j) \right)^2 \rho_{ij} (1 - \rho_{ij}) \quad (40)$$

$$895 \text{Var}[\Delta E_{ij}] = \frac{\text{Var}[Z_{ij}^{(k)}]}{|\mathcal{K}|} \quad (41)$$

$$896 \text{Var}[\Delta E(X)] = \sum_{(i,j) \in \mathcal{E}} \text{Var}[\Delta E_{ij}]. \quad (42)$$

901 By Chebyshev's Inequality,

$$903 P(|\Delta E(X)| \geq \eta) \leq \frac{\text{Var}[\Delta E(X)]}{\eta^2} \quad (43)$$

$$906 \leq \frac{1}{|\mathcal{K}| \eta^2} \sum_{(i,j) \in \mathcal{E}} \theta_{ij}^2(x_i, x_j) \frac{(1 - \rho_{ij})}{\rho_{ij}}. \quad (44)$$

908 To ensure that the probability of the error exceeding η , is less than or equal to δ ,

$$911 \frac{1}{|\mathcal{K}| \eta^2} \sum_{(i,j) \in \mathcal{E}} \theta_{ij}^2(x_i, x_j) \frac{(1 - \rho_{ij})}{\rho_{ij}} \leq \delta. \quad (45)$$

913 Solving for $|\mathcal{K}|$,

$$916 |\mathcal{K}| \geq \frac{1}{\delta \eta^2} \sum_{(i,j) \in \mathcal{E}} \theta_{ij}^2(x_i, x_j) \frac{(1 - \rho_{ij})}{\rho_{ij}}. \quad (46)$$

918 Then, the error bound for the adjusted energy approximation $E(X)$ is,
 919

$$920 \quad 921 \quad 922 \quad 923 \quad 924 \quad 925 \quad 926 \quad 927 \quad 928 \quad 929 \quad 930 \quad 931 \quad 932 \quad 933 \quad 934 \quad 935 \quad 936 \quad 937 \quad 938 \quad 939 \quad 940 \quad 941 \quad 942 \quad 943 \quad 944 \quad 945 \quad 946 \quad 947 \quad 948 \quad 949 \quad 950 \quad 951 \quad 952 \quad 953 \quad 954 \quad 955 \quad 956 \quad 957 \quad 958 \quad 959 \quad 960 \quad 961 \quad 962 \quad 963 \quad 964 \quad 965 \quad 966 \quad 967 \quad 968 \quad 969 \quad 970 \quad 971$$

$$|\Delta E(X)| \leq \sqrt{\frac{1}{|\mathcal{K}|} \sum_{(i,j) \in \mathcal{E}} \theta_{ij}^2(x_i, x_j) \frac{(1 - \rho_{ij})}{\rho_{ij}}} \cdot \frac{1}{\sqrt{\delta}}. \quad (47)$$

This bound holds with probability at least $1 - \delta$. \square

E COMPLEXITY ANALYSIS

The algorithm consists of three parts: calculating the effective resistance, sampling spanning trees, and applying belief propagation on the spanning trees. Generally, the time complexity of computing the effective resistance is $O(MN^3)$. For sparse graphs, the factor M can be considered a negligible coefficient. However, in scenarios involving large and complex graphs, the computational complexity of calculating the probability matrix becomes dominant relative to other operations. This computational burden represents the primary limitation for the broader application of our proposed method.

For the second step, the time complexity depends on the chosen spanning algorithm. In our approach, we adopt the method proposed in (Wilson, 1996), which has a runtime of $O(N^3)$. As discussed in Section 4.2, Depth-First Search (DFS) was proposed as a potential approach to enhance computational efficiency at this stage. However, empirical results indicate that the performance difference between these two sampling methods is relatively modest in practice. This can be attributed to the availability of optimization techniques and the fundamental similarity between random walk-based sampling and DFS-based approaches.

The time complexity of the belief propagation is determined by the size of the spanning tree, which remains fixed when the graph is constant. Given $|\mathcal{E}_{\text{tree}}| = N - 1$, the time complexity becomes $O(N)$. It is worth noting that our algorithm converges rapidly, typically concluding within fewer than 10 iterations in most cases. Assume the average number of dependencies of each node is b , the time complexity of gibbs sampler would be $O(\text{iter} \times Nk)$. This efficiency allows us to disregard the term iter without significantly affecting the complexity of the algorithm. As a result, the overall time complexity of the algorithm is $O(MN^3 + N)$.

F EFFECTIVE RESISTANCE CALCULATION

The calculation of resistance distance generally follows the procedure outlined in Theorem 2. The main contributor to the time complexity of this part is the computation of the Moore-Penrose inverse, as we need to use the effective resistance on all the edges of the graph.

Theorem 2 (Theorem 2.7 in (Vos, 2016)). *The effective resistance between a pair of vertices (i, j) is defined as $\text{Reff}_{i,j} := \Gamma_{i,i} + \Gamma_{j,j} - \Gamma_{i,j} - \Gamma_{j,i}$, where $\Gamma = (L + \frac{1}{|\mathcal{V}|} \Phi)^\dagger$, with \dagger denotes the Moore-Penrose inverse, L the Laplacian matrix of \mathcal{G} , $|\mathcal{V}|$ is the number of vertices in \mathcal{G} , and Φ is the $|\mathcal{V}| \times |\mathcal{V}|$ matrix contain all 1s. $\Gamma_{i,j}$ is the (i, j) entry of the Moore-Penrose inverse of the Laplacian matrix.*

G COMPARISON TO TREE SAMPLING ALGORITHM

As previously discussed, the Tree Sampling algorithm proposed by Hamze & de Freitas (2004) is applicable only to graphs with specific structures that can be divided into two cycle-free parts. Under these conditions, the algorithm focuses on solving the MAP estimation problems on grid graphs with observation nodes. The MAP estimate is given by:

$$\min_X E(X) = \min_{\{x_i\}, \forall i \in \mathcal{V}} \left\{ \sum_{i \in \mathcal{V}} \theta_i(x_i, y_i) + \sum_{(i,j) \in \mathcal{E}} \theta_{ij}(x_i, x_j) \right\}. \quad (48)$$

here y_i is the observation of the node i which is deterministic value and $y_i, i \in \mathcal{V}$ has the same value range as the $x_i, i \in \mathcal{V}$.

To comprehensively evaluate the performance of our Spanning Tree algorithm and the Tree Sampling algorithm, we conducted experiments using grid graphs of varying sizes: 10×10 grids with 100 nodes, 20×20 grids with 400 nodes, and 30×30 grids with 900 nodes. Each node in these grids was assigned one of 10 possible labels. The pairwise energy and the energy between variables and their observations were defined using a squared label difference function. Observations were generated randomly for each instances.

For each grid size, we repeated the experiment across 10 different random instances to ensure robustness and reliability of the results. Each of these two algorithms run for 20 iterations. The number of spanning trees used

972 by SPT is 10. As illustrated in Fig. 4, our algorithm consistently outperformed the Tree Sampling algorithm
 973 across all grid sizes. Importantly, the performance gap between the two algorithms remained consistent as the
 974 grid size increased.

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010 Figure 4: Results of SPT and TS on synthetic grid problems with squared label difference. The
 1011 horizontal and vertical axes in the figure correspond to #number of iterations and average value of
 1012 energy $E(x|\hat{\theta}, y)$, respectively. From top to bottom, the grid sizes are 10×10 , 20×20 , 30×30 .

1013

1014

1015

1016 H GENERATION OF DIFFERENT SUB-GRAPH STRUCTURES

1017

1018 In our previous discussions, we proposed using cycle-free structures to decompose the original graph, allowing
 1019 us to leverage problems that can be solved exactly as approximations for the original problem. In addition to the
 1020 advantages we outlined earlier, the spanning trees have demonstrated an extraordinary ability to provide more
 1021 accurate approximations. We have also explored other structural alternatives, including chains, random trees
 1022 (not necessarily spanning trees), and **random structures** generated using random walks. To obtain the **chains**,
 1023 we used the following procedure: we would start at a randomly selected node and then perform a depth-first
 1024 search to traverse the graph and collect the subsequent nodes. When sampling **random trees**, we would stop
 1025 the sampling procedure once the number of nodes in the generated tree reached our target threshold. In this
 1026 process, we allowed an agent to walk along the edges of the graph for a certain number of steps. After the agent
 1027 stopped, the nodes it had visited and the edges it had traversed were extracted to form the sub-graph.

1026 Table 3: SPT inference optimality gaps with different number of trees on trivial MRF instances.
 1027 Numbers are obtained optimality gaps.

GRAPH	#NODES/#EDGES	10 TREES	20 TREES	30 TREES	40 TREES	50 TREES	60 TREES	70 TREES	80 TREES	90 TREES	100 TREES	OPT ENERGY
INSTANCE_1	64/143	5	6	3	2	2	3	2	2	3	2	94
INSTANCE_2	64/156	7	5	5	5	5	5	5	5	5	5	134
INSTANCE_3	64/124	1	2	2	2	2	2	2	1	1	1	104
INSTANCE_4	64/116	3	4	5	6	5	3	3	3	3	2	131
INSTANCE_5	64/133	1	1	2	2	2	1	2	2	2	1	117

I ERROR GAP ON TRIVIAL MRFs

We conducted additional experiments on MRFs with 64 nodes and increased the number of trees used to 100. We use the optimality gap as the evaluation standard. The results are listed in the Table 3. You can see that as more trees are sampled, the inference results converge to a point with only occasional fluctuations, and the absolute fluctuation is 1. This could be caused by the problem structure where some variable values offer similar energies that are difficult to distinguish, which is a characteristic of BP-based methods. Since our method is also based on BP, it is inevitable that we encounter the same issue. The calculation of Optimality gap is shown in Eq. 49 which could be found in the user manual of Mosek (ApS, 2025).

$$\text{Optimality Gap} = |\tilde{E}(X) - E^*(X)| \quad (49)$$

J EXAMPLE OF ENERGY WEIGHT ADJUSTMENT

In this section we use a toy example to show the importance of weight adjustment when using uniform spanning trees to decompose the original problem. In Fig. 5, we show a graph with four nodes and four edges, and we show all of the three spanning trees of it. Except edge (1, 3), the probabilities of the other edges appear in a uniform spanning tree are all $\frac{2}{3}$, which means the weights of the pairwise energies on these edges are all $\frac{3}{2}$. The probability of each of the trees being sampled is $\frac{1}{3}$. In Fig. 5 we using color red to denote the edges that have probability of $\frac{1}{3}$ being selected and the color blue to denote the edge that appear in all the uniform spanning trees.

Without loss of generality, we could assume the unary energies are all zero. Then we define the pairwise energies as follows. Each random variable has 2 possible states $\{0, 1\}$.

	x_1	0	1
x_0	0	1	0
0	1	0	0
1	0	0	0

	x_2	0	1
x_0	0	2	0
0	1	0	0
1	0	0	0

	x_2	0	1
x_1	0	3	0
0	1	0	0
1	0	0	0

	x_3	0	1
x_1	0	4	0
0	1	0	0
1	0	0	0

Now we calculate the energy when all the variables are at state 0. The original energy is $E(0, 0, 0, 0) = 1 + 2 + 3 + 4 = 10$. If without weight, the energies on these trees would be $E_{T_1}(0, 0, 0, 0) = 8$, $E_{T_2}(0, 0, 0, 0) = 7$, $E_{T_3}(0, 0, 0, 0) = 8$.

Then merging them together by

$$\tilde{E}(x) = \sum_{k \in \mathcal{K}} \rho_{T_k} \sum_{(i, j) \in T_k} \theta_{ij}(x_i, x_j) \quad (50)$$

$$(51)$$

we can get the approximation value is $\frac{23}{3}$, which deviates from the original energy.

If we we adjust the pairwise energy using $1/\rho_{ij}$. the energies on these trees would be $E_{T_1}(0, 0, 0, 0) = \frac{3}{2}(1 + 3) + 4 = 10$, $E_{T_2}(0, 0, 0, 0) = \frac{3}{2}(1 + 2) + 4 = 8.5$, $E_{T_3}(0, 0, 0, 0) = \frac{3}{2}(2 + 3) + 4 = 11.5$. Then merging by Eq .equation 9, the approximation is $\frac{1}{3}(10 + 8.5 + 11.5) = 30$ which is exactly the original energy.

Figure 5: Schematic diagrams of spanning trees of a graph with cycle.

Table 4: Inference time on PCI instances.

GRAPH	#VAR/#CON	#NODES/#EDGES	LBP	TRBP	SPT
PCLINSTANCE_1	955/2496	30/165	0.359283s	0.441703s	0.405572s
PCLINSTANCE_2	1588/4409	40/311	0.39226s	0.652174s	0.43437s
PCLINSTANCE_3	17684/52673	80/1522	0.853267s	0.91823s	0.770843s
PCLINSTANCE_4	65713/193287	286/10565	2.14694s	6.211s	3.609s

K INference time on PCI instances

In Table 4, we present the inference times of LBP, TRBP, and our SPT algorithm on the real PCI instances used in Section 5.3. Notably, despite SPT’s $O(N^3)$ time complexity, its inference times on these instances fall between those of LBP and TRBP.

L TRANSFORMING MIP PROBLEMS OF PCI INTO MRF PROBLEMS

The Mixed Integer Programming(MIP) format of PCI problems is as follows:

$$\min_{z, L} \sum_{(i,j) \in \mathcal{E}} a_{ij} L_{ij} \quad (52)$$

$$\text{s.t. } z_{np} \in \{0, 1\}, \quad \forall n \in N, p \in P \quad (53)$$

$$\sum_{p \in P} z_{np} = 1, \quad \forall n \in N. \quad (54)$$

$$\sum_{p \in M_{ih}} z_{n_ip} + \sum_{p \in M_{jh}} z_{n_jp} - 1 \leq L_{ij}, \forall (i, j) \in \mathcal{E}, \forall h \in \{0, 1, 2\}. \quad (55)$$

where n is the index for devices, and N is the set of these indices. P stands for the possible states of each device. M_{ih} stands for the possible states set for node n_i . L_{ij} is the cost when given a certain choices of the states of device i and device j , a_{ij} is the coefficient of the cost in the objective function. There is an $(i, j) \in \mathcal{E}$ means there exists interference between these two devices. In the MIP formulation of the PCI problems, there are three types of constraints. Combining equation 53 and equation 54 together implies that each device must select one state, and only one state can be chosen at a given time. The constraint equation 55 indicates that interference occurs between two devices only if they choose specific states. The impact on the entire system is determined by the corresponding value of L_{ij} and its coefficient. Since interference always exists, the objective is to minimize its degree.

To transform these problems into MRF problems, we can use equation 54 to represent nodes, where each equation 53 corresponds to the discrete states of a given node. Since only one state can be chosen at a time, the constraints equation 53 and equation 54 are naturally satisfied. By processing equation 55, we identify the edges and their associated energies. If we find z_{n_ip} and z_{n_jp} in the same constraint from equation 55, we can formulate an edge (i, j) . By selecting different values for z_{n_ip} and z_{n_jp} , we can determine the minimum value of L_{ij} that satisfies the constraint. The product of L_{ij} and a_{ij} represents the energy for the edge (i, j) under the combination of these two states. When all the states of the nodes are fixed, the values of the edge costs become fixed as well. This implies that the objective function is the summation of all the edge energies. Since the PCI problems do not include unary terms, we will neglect them during the transformation process.

1134

Example

1135

The original problem is

1136

1137

$$\begin{aligned}
 \min_{z, L} \quad & L_{1,2} + 2L_{2,3} \\
 \text{s.t.} \quad & z_{np} \in \{0, 1\}, \quad \forall n \in \{1, 2, 3\}, p \in \{1, 2, 3\} \\
 & \sum_{p \in P} z_{np} = 1, \quad \forall n \in \{1, 2, 3\}. \\
 & z_{11} + z_{21} - 1 \leq L_{1,2} \\
 & z_{13} + z_{22} - 1 \leq L_{1,2} \\
 & z_{12} + z_{23} - 1 \leq L_{1,2} \\
 & z_{21} + z_{31} - 1 \leq L_{2,3} \\
 & z_{22} + z_{32} - 1 \leq L_{2,3} \\
 & z_{23} + z_{33} - 1 \leq L_{2,3}
 \end{aligned}$$

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

Then the corresponding MRF problem is

1151

$$\min \theta_{1,2}(x_1, x_2) + \theta_{2,3}(x_2, x_3) \quad (57)$$

1152

1153

the energy on edge (x_1, x_2) and edge (x_2, x_3) are as follows:

1154

1155

1156

1157

1158

	x_2	z_{21}	z_{22}	z_{23}
x_1				
z_{11}	1	0	0	
z_{12}	0	0	1	
z_{13}	0	1	0	

	x_3	z_{31}	z_{32}	z_{33}
x_2				
z_{21}	2	0	0	
z_{22}	0	2	0	
z_{23}	0	0	2	

1159

M GENERATION OF LOCALLY AND SPARSELY CONNECTED MRFS

1160

1161

1162

1163

1164

1165

N PARALLELIZATION

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

When the size of the graph increases, our algorithms still function, but they become time-consuming. This is because the time complexity, as we have just analyzed, is highly dependent on both N and M (where M is related to the number of states n in the Markov chain). Evidently, acquiring comprehensive information about the entire graph would require more than one tree. Such a requirement could result in a notable slowdown of our algorithm due to the necessity of performing belief propagation on each tree. Nonetheless, the algorithm we have introduced can be seamlessly modified for parallel processing. Once the edge selection probabilities have been calculated, both the spanning tree sampling process and the subsequent belief propagation on each sampled tree can be performed independently and in parallel. This adaptability enables us to significantly improve efficiency.

1177

O ITERATION WITH DIFFERENT BATCHES OF SPANNING TREES

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Besides using fixed trees to perform the estimation, we could also generate another batch of trees to conduct the estimation in a new iteration, similar to what was done when using different subgraph structures for the estimation. However, this could be an expensive strategy to adopt. Note the analysis in **Appendix E**, where the time complexity of sampling a spanning tree is $O(MN^3 + N)$, which could incur a significant computational cost as the graph size increases.

1188

To get a comprehensive understanding of whether we could gain more by spending more time on sampling trees and how the two strategies would perform with a similar time budget, we experimented on 40x40 grid graphs with 1600 nodes. Each random node has 10 to 16 possible states to choose from, the pairwise energy is determined by a square function, and the unary energy is set to zero. For the SPT method using fixed trees, the number of trees is set to 20. For the SPT with tree resampling, the number of trees is varied as $\{1, 5, 10, 15, 20\}$. All the SPT variants are run for 20 iterations.

1188 As shown in Fig. 6, energy curves for each setting of the SPT methods reveal that both the SPT variants with 20
 1189 trees achieve the best and identical results. As the number of trees used per iteration increases, the gain on the
 1190 final energy decreases, and the improvement rate diminishes quickly. However, the actual time cost of the SPT
 1191 with fixed trees lies between the SPT with tree resampling using 1 tree and 5 trees and far less than re-sampling
 1192 20 trees at each iteration. This suggests that, although we could resample the trees during the iterative process,
 1193 the additional time spent on this may not be worthwhile.

1209 Figure 6: Energy curves of SPT using fixed trees or resample spanning trees at each iteration.
 1210

1212 P INSTANCE TOPOLOGY

1214 P.1 SYNTHETIC PROBLEMS

1216 Fig. 7 illustrates schematic diagrams of cellular ,cell graph and Erdős–Rényi graph structures. And in Fig. 8
 1217 illustrates two schematic diagrams of the locally and sparsely connected graphs we generated. Note they do not
 1218 correspond to any testing instances.

1238 Figure 7: Schematic diagrams of cell graph, cellular graph and Erdős–Rényi graph.
 1239

1240 P.2 UAI INFERENCE COMPETITION

1241 We visualize the topology of four instances from UAI competition in Fig. 9.

