
Replicable Clustering∗

Hossein Esfandiari
Google Research

esfandiari@google.com

Amin Karbasi
Yale University, Google Research

amin.karbasi@yale.edu

Vahab Mirrokni
Google Research

mirrokni@google.com

Grigoris Velegkas
Yale University

grigoris.velegkas@yale.edu

Felix Zhou
Yale University

felix.zhou@yale.edu

Abstract

We design replicable algorithms in the context of statistical clustering under the
recently introduced notion of replicability from Impagliazzo et al. [2022]. Accord-
ing to this definition, a clustering algorithm is replicable if, with high probability,
its output induces the exact same partition of the sample space after two exe-
cutions on different inputs drawn from the same distribution, when its internal
randomness is shared across the executions. We propose such algorithms for the
statistical k-medians, statistical k-means, and statistical k-centers problems by
utilizing approximation routines for their combinatorial counterparts in a black-box
manner. In particular, we demonstrate a replicable O(1)-approximation algo-
rithm for statistical Euclidean k-medians (k-means) with Õ(poly(k, d)klog log k)
sample complexity. We also describe an O(1)-approximation algorithm with
an additional O(1)-additive error for statistical Euclidean k-centers, albeit with
Õ(poly(k) exp(d)) sample complexity. In addition, we provide experiments on
synthetic distributions in 2D using the k-means++ implementation from sklearn as
a black-box that validate our theoretical results2.

1 Introduction

The unprecedented increase in the amount of data that is available to researchers across many
different scientific areas has led to the study and development of automated data analysis methods.
One fundamental category of such methods is unsupervised learning which aims to identify some
inherent structure in unlabeled data. Perhaps the most well-studied way to do that is by grouping
together data that share similar characteristics. As a result, clustering algorithms have become one
of the central objects of study in unsupervised learning. Despite a very long line of work studying
such algorithms, e.g. Jain and Dubes [1988], Hart et al. [2000], Anderberg [2014], there is not an
agreed-upon definition that quantifies the quality of a clustering solution. Kleinberg [2002] showed
that there is an inherent reason why this is the case: it is impossible to design a clustering function
that satisfies three natural properties, namely scale-invariance, richness of solutions, and consistency.
This means that the algorithm designer needs to balance several conflicting desiderata. As a result,
the radically different approaches that scientists use depending on their application domain can be
sensitive to several factors such as their random initialization, the measure of similarity of the data,
the presence of noise in the measurements, and the existence of outliers in the dataset. All these
issues give rise to algorithms whose results are not replicable, i.e., when we execute them on two
different samples of the same population, they output solutions that vary significantly. This begs the

∗Authors are listed alphabetically.
2https://anonymous.4open.science/r/replicable_clustering_experiments-E380

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://anonymous.4open.science/r/replicable_clustering_experiments-E380

following question. Since the goal of clustering algorithms is to reveal properties of the underlying
population, how can we trust and utilize their results when they fail to pass this simple test?

Replicability is imperative in making sure that scientific findings are both valid and reliable. Re-
searchers have an obligation to provide coherent results and conclusions across multiple repetitions
of the same experiment. Shockingly, a 2016 survey that appeared in Nature [Baker, 2016] revealed
that 70% of researchers tried, but were unable to, replicate the findings of another researcher and
more than 50% of them believe there is a significant crisis in replicability. Unsurprisingly, similar
worries have been echoed in the subfields of machine learning and data science [Pineau et al., 2019,
2021]. In this work, we initiate the study of replicability in clustering, which is one of the canonical
problems of unsupervised learning.

1.1 Related Works

Statistical Clustering. The most relevant previous results for (non-replicable) statistical clustering
was established by Ben-David [2007], who designed O(1)-approximation algorithms for statistical
k-medians (k-means) with O(k) sample complexity. However, their algorithm picks centers from
within the samples and is therefore non-replicable.

Combinatorial Clustering. The flavor of clustering most studied in the approximation algorithms
literature is the setting where we have a uniform distribution over finite points and the algorithm
has explicit access to the entire distribution. Our algorithms rely on having black-box access to a
combinatorial clustering oracle. See Byrka et al. [2017], Ahmadian et al. [2019] for the current
best polynomial-time approximation algorithms for combinatorial k-medians (k-means) in general
metrics with approximation ratio 2.675 (9). Also, see Cohen-Addad et al. [2022] for a 2.406 (5.912)
approximation algorithm for the combinatorial Euclidean k-medians (k-means).

Clustering Stability. Stability in clustering has been studied both from a practical and a theoretical
point of view [Ben-Hur et al., 2001, Lange et al., 2004, Von Luxburg and Ben-David, 2005, Ben-David
et al., 2006, Rakhlin and Caponnetto, 2006, Ben-David et al., 2007, Von Luxburg et al., 2010]. In
most applications, it is up to the algorithm designer to decide upon the value of k, i.e., the number of
different clusters. Thus, it was proposed that a necessary condition it should satisfy is that it leads to
solutions that are not very far apart under resampling of the input data [Ben-Hur et al., 2001, Lange
et al., 2004]. However, it was shown that this notion of stability for center-based clustering is heavily
based on symmetries within the data which may be unrelated to clustering parameters [Ben-David
et al., 2006]. Our results differ from this line of work in that we require the output across two separate
samples to be exactly the same with high probability, when the randomness is shared. Moreover, our
work reaffirms Ben-David et al. [2006] in that their notion of stability can be perfectly attained no
matter the choice of k.

Other notions of stability related to our work include robust hierarchical clustering [Balcan et al.,
2014], robust online clustering [Lattanzi et al., 2021], average sensitivity [Yoshida and Ito, 2022],
and differentially private (DP) clustering [Cohen et al., 2021, Ghazi et al., 2020]. The definition of
replicability we use is statistical and relies on an underlying data distribution while (DP) provides
a worst-case combinatorial guarantee for two runs of the algorithm on neighboring datasets. Bun
et al. [2023], Kalavasis et al. [2023] provide connections between DP and replicability for statistical
learning problems. However, these transformations are not computationally efficient. It would be
interesting to come up with computationally efficient reductions between replicable and DP clustering
algorithms.

Coresets for Clustering. A long line of work has focused on developing strong coresets for various
flavors of centroid-based clustering problems. See Sohler and Woodruff [2018] for an overview of this
rich line of work. The most relevant for our results include coresets for dynamic geometric streams
through hierarchical grids [Frahling and Sohler, 2005] and sampling based techniques [Ben-David,
2007, Feldman and Langberg, 2011, Bachem et al., 2018].

Dimensionality Reduction. Dimensionality reduction for clustering has been a popular area of
study as it reduces both the time and space complexity of existing algorithms. The line of work
on data-oblivious dimensionality reduction for k-means clustering was initiated by Boutsidis et al.
[2010]. The goal is to approximately preserve the cost of all clustering solutions after passing the
data through a dimensionality reduction map. This result was later improved and generalized to
(k, p)-clustering [Cohen et al., 2015, Becchetti et al., 2019], culminating in the work of Makarychev

2

et al. [2019], whose bound on the target dimension is sharp up to a factor of log 1/ε. While Charikar
and Waingarten [2022] overcome this factor, their result only preserves the cost across the optimal
solution.

Replicability in ML. Our results extend the recently initiated line of work on designing provably
replicable learning algorithms under the definition that was introduced by Impagliazzo et al. [2022].
Later, Esfandiari et al. [2022] considered a natural adaption of this definition to the setting of bandits
and designed replicable algorithms that have small regret. A slightly different notion of replicability
in optimization was studied in Ahn et al. [2022], where it is required that an optimization algorithm
that uses noisy operations during its execution, e.g., noisy gradient evaluations, outputs solutions that
are close when executed twice. Subsequently, Bun et al. [2023], Kalavasis et al. [2023] established
strong connections between replicability and other notions of algorithmic stability. Recently, Dixon
et al. [2023], Chase et al. [2023] proposed a weaker notion of replicability where the algorithm is not
required to output the same solution across two executions, but its output needs to fall into a small
list of solutions.

2 Setting & Notation

Let X ⊆ Rd be the instance space endowed with a metric κ : X × X → R+ and P be a distribution
on X which generates the i.i.d. samples that the learner observes.

For F ⊆ Rd and x ∈ X , we overload the notation and write F (x) := argminf∈F κ(x, f) to be the
closest point to x in F as well as κ(x, F) := κ(x, F (x)) to be the shortest distance from x to a point
in F .

We assume that X is a subset of Bd, the d-dimensional κ-ball of diameter 1 centered about the
origin3. We also assume that κ is induced by some norm ∥·∥ on Rd that is sign-invariant (invariant to
changing the sign of a coordinate) and normalized (the canonical basis has unit length). Under these
assumptions, the unit ball of κ is a subset of [−1, 1]d.

Our setting captures a large family of norms, including the ℓp-norms, Top-ℓ norms (sum of ℓ largest
coordinates in absolute value), and ordered norms (non-negative linear combinations of Top-ℓ norms)
[Chakrabarty and Swamy, 2019]. Our results hold for more general classes of norms but for the sake
of simplicity, we abide by these assumptions.

We define ∆ := sup{κ(x, y) : x, y ∈ [0, 1)d} to be the κ-diameter of the unit hypercube. Note that
1 ≤ ∆ ≤ d by assumption. Moreover, L∆ is the κ-diameter of a hypercube with side length L. For
example, if ∥·∥ = ∥·∥2 is the Euclidean norm, then ∆ =

√
d.

2.1 Clustering Methods and Generalizations

We now introduce the clustering objectives that we study in this work, which all fall in the category
of minimizing a cost function cost : F → R+, where F := {F ⊆ Bd : |F | = k}. We write cost(F)

to denote the objective in the statistical setting and ĉost(F) for the combinatorial setting in order to
distinguish the two.
Problem 2.1 (Statistical (k, p)-Clustering). Given i.i.d. samples from a distribution P on X ⊆ Bd,
minimize cost(F) := Ex∼Pκ(x, F)p.

In other words, we need to partition the points into k clusters so that the expected distance of a
point to the center of its cluster, measured by κ(·, ·)p, is minimized. This is closely related to the
well-studied combinatorial variant of the (k, p)-clustering problem.

Problem 2.2 ((k, p)-Clustering). Given some points x1, . . . , xn ∈ X , minimize ĉost(F) :=
1
n

∑n
i=1 κ(xi, F)p.

We note that (statistical) k-medians and (statistical) k-means is a special case of Problem 2.2
(Problem 2.1) with p = 1, 2, respectively. We also consider a slight variant of the combinatorial
problem, i.e., Problem 2.2, where we allow different points xi to participate with different weights
wi in the objective. We refer to this problem as the weighted (k, p)-clustering problem.

3Our results can be generalized to κ-balls of diameter L with an arbitrary center through translation and
scaling.

3

We now shift our attention to the k-centers problem.
Problem 2.3 (Statistical k-Centers). Given i.i.d. samples from a distribution P on X ⊆ Bd, minimize
cost(F) := maxx∈X κ(x, F).

Notice that the ℓ∞ norm is the limit of the ℓp norm as p tends to infinity, hence k-centers is, in some
sense, the limit of (k, p)-clustering as p tends to infinity. Also, notice that this problem differs from
k-means and k-medians in the sense that it has a min-max flavor, whereas the other two are concerned
with minimizing some expected values. Due to this difference, we need to treat k-centers separately
from the other two problems, and we need to make some assumptions in order to be able to solve it
from samples (cf. Assumption F.1, Assumption F.2). We elaborate more on that later.

Let us also recall the combinatorial version of k-centers.
Problem 2.4 (k-Centers). Given some points x1, . . . , xn ∈ X , minimize ĉost(F) :=
maxi∈[n] κ(xi, F).

We remark that clustering has mainly been studied from the combinatorial point of view, where
the distribution is the uniform distribution over some finite points and we are provided the entire
distribution. The statistical clustering setting generalizes to arbitrary distributions with only sample
access. We emphasize that although we only have access to samples, our output should be a good
solution for the entire distribution and not just the observed data.

We write FOPT to denote an optimal solution for the entire distribution and OPT := cost(FOPT).
Similarly, we write F̂OPT to denote an optimal sample solution and ÔPT := ĉost(F̂OPT). Suppose
we solve Problem 2.4 given a sample of size n from Problem 2.3. Then ÔPT ≤ OPT since we are
optimizing over a subset of the points.

Recall that a β-approximate solution F is one which has cost cost(F) ≤ βOPT. Note this is with
respect to the statistical version of our problems. An algorithm that outputs β-approximate solutions
is known as a β-approximation algorithm. We also say that F is a (β,B)-approximate solution if
cost(F) ≤ βOPT+B.

2.1.1 Parameters p and κ

Here we clarify the difference between p and κ, which are two separate entities in the cost function
Ex [κ(x, F (x))p]. We denote by κ the distance metric used to measure the similarity between points.
The most commonly studied and applied option is the Euclidean distance for which our algorithms
are the most sample-efficient. On the other hand, p is the exponent to which we raise the distances
when computing the cost of a clustering. A smaller choice of p puts less emphasis on points that are
far away from centers and p = 1 seeks to control the average distance to the nearest center. A large
choice of p puts emphasis on points that are further away from centers and as p tends to infinity, the
objective is biased towards solutions minimizing the maximum distance to the nearest center. Thus
we can think of k-centers as (k, p)-clustering when p =∞. As a concrete example, when κ is the
Euclidean distance and p = 5, the cost function becomes Ex

[
∥x− F (x)∥52

]
.

2.2 Replicability

Throughout this work, we study replicability4 as an algorithmic property using the definition of
Impagliazzo et al. [2022].
Definition 2.5 (Replicable Algorithm; [Impagliazzo et al., 2022]). Let ρ ∈ (0, 1). A randomized
algorithm A is ρ-replicable if for two sequences of n i.i.d. samples X̄ , Ȳ generated from some
distribution Pn and a random binary string r̄ ∼ R(X),

PX̄,Ȳ∼Pn,r̄∼R(X){A(X̄; r̄) = A(Ȳ ; r̄)} ≥ 1− ρ, .

In the above definition, we treat A as a randomized mapping to solutions of the clustering problem.
Thus, even when X̄ is fixed, A(X̄) should be thought of as random variable, whereas A(X̄; r̄) is the
realization of this variable given the (fixed) X̄, r̄. We should think of r̄ as the shared randomness

4Originally this definition was called reproducibility [Impagliazzo et al., 2022] but it was later pointed out
that the correct term is replicability [Ahn et al., 2022].

4

between the two executions. In practice, it can be implemented as a shared random seed. We underline
that sharing the randomness across executions is crucial for the development of our algorithms. We
also note that by doing that we couple the two random variables A(X̄),A(Ȳ), whose realization
depends on r ∼ R(X). Thus, if their realizations are equal with high probability under this coupling,
it means that the distributions of A(X̄),A(Ȳ) are statistically close. This connection is discussed
further in Kalavasis et al. [2023].

In the context of a clustering algorithm A, we interpret the output A(X̄; r̄) as a clustering function
f : X → [k] which partitions the support of P. The definition of ρ-replicability demands that f is the
same with probability at least 1− ρ across two executions. We note that in the case of centroid-based
clustering such as k-medians and k-means, the induced partition is a function of the centers and
thus it is sufficient to output the exact same centers with probability 1 − ρ across two executions.
However, we also allow for algorithms that create partitions implicitly without computing their
centers explicitly.

Our goal is to develop replicable clustering algorithms for k-medians, k-means, and k-centers, which
necessitates that the centers we choose are arbitrary points within Rd and not only points among the
samples. We underline that as in the case of differential privacy, it is trivial to design algorithms
that satisfy the replicability property, e.g. we can let A be the constant mapping. The catch is that
these algorithms do not achieve any utility. In this work, we are interested in designing replicable
clustering algorithms whose utility is competitive with their non-replicable counterparts.

3 Main Results

In this section, we informally state our results for replicable statistical k-medians ((k, 1)-clustering),
k-means ((k, 2)-clustering), and k-centers under general distances. Unfortunately, generality comes
at the cost of exponential dependency on the dimension d. We also state our results for replicable
statistical k-medians and k-means specifically under the Euclidean distance, which has a polynomial
dependency on d. Two key ingredients is the uniform convergence of (k, p)-clustering costs (cf.
Theorem C.9) as well as a data-oblivious dimensionality reduction technique for (k, p)-clustering in
the distributional setting (cf. Theorem E.10). These results may be of independent interest.

We emphasize that the Euclidean k-median and k-means are the most studied and applied flavors of
clustering, thus the sample complexity for the general case and the restriction to p = 1, 2 does not
diminish the applicability of our approach.

The main bottleneck in reducing the sample complexity for general norms is the lack of a data-
oblivious dimensionality reduction scheme. This bottleneck is not unique to replicability and such a
scheme for general norms would be immediately useful for many distance-based problems including
clustering. It may be possible to extend our results to general (k, p)-clustering beyond p = 1, 2. The
main challenge is to develop an approximate triangle inequality for p-th powers of norms. Again, this
limitation is not due to replicability but rather the technique of hierarchical grids. It is a limitation
shared by Frahling and Sohler [2005].

Before stating our results, we reiterate that the support of our domainX is a subset of the unit-diameter
κ-ball Bd. In particular, we have that OPT ≤ 1.

Theorem 3.1 (Informal). Let ε, ρ ∈ (0, 1). Given black-box access to a β-approximation oracle
for weighted k-medians, respectively weighted k-means (cf. Problem 2.2), there is a ρ-replicable
algorithm for statistical k-medians, respectively k-means (cf. Problem 2.1), such that with probability
at least 0.99, it outputs a (1 + ε)β-approximation. Moreover, the algorithm has sample complexity

Õ

(
poly

(
k

ρOPT

)(
2∆

ε

)O(d)
)

.

When we are working in Euclidean space, we can get improved results for these problems.

Theorem 3.2 (Informal). Let ρ ∈ (0, 1). Suppose we are provided with black-box access to a
β-approximation oracle for weighted Euclidean k-medians (k-means). Then there is a ρ-replicable
algorithm that partitions the input space so with probability at least 0.99, the cost of the partition is

5

at most O(βOPT). Moreover, the algorithm has sample complexity

Õ

(
poly

(
d

OPT

)(
k

ρ

)O(log log(k/ρ))
)

.

We underline that in this setting we compute an implicit solution to Problem 2.1, since we do not
output k centers. Instead, we output a function f that takes as input a point x ∈ X and outputs the
label of the cluster it belongs to in polynomial time. The replicability guarantee states that, with
probability 1− ρ, the function will be the same across two executions.

The combinatorial k-medians (k-means) problem where the centers are restricted to be points
of the input is a well-studied problem from the perspective of polynomial-time constant-factor
approximation algorithms. See Byrka et al. [2017], Ahmadian et al. [2019] for the current best
polynomial-time approximation algorithms for combinatorial k-medians (k-means) in general metrics
with approximation ratio 2.675 (9). Also, see Cohen-Addad et al. [2022] for a 2.406 (5.912)
approximation algorithm for the combinatorial Euclidean k-medians (k-means).

As we alluded to before, in order to solve k-centers from samples, we need to make an additional
assumption. Essentially, Assumption F.2 states that there is a (β,B)-approximate solution F , such
that, with some constant probability, e.g. 0.99, when we draw n samples from P we will observe at
least one sample from each cluster of F .

Theorem 3.3 (Informal). Let c ∈ (0, 1). Given black-box access to a (β̂, B̂)-approximation oracle for
k-centers (cf. Problem 2.4) and under Assumption F.2, there is a ρ-replicable algorithm for statistical
k-centers (cf. Problem 2.3), that outputs a (O(β + β̂), O(B + B̂ + (β + β̂ + 1)c)∆)-approximate
solution with probability at least 0.99. Moreover, it has sample complexity

Õ

(
n2k (1/c)

3d

ρ2q2

)
.

Recall that there is a simple greedy 2-approximation for the sample k-center problem whose approxi-
mation ratio cannot be improved unless P = NP [Hochbaum and Shmoys, 1985].

We defer the discussion around k-centers to Appendix F. In particular, see Theorem F.8 in Appendix F
for the formal statement of Theorem 3.3.

4 Overview of (k, p)-Clustering

In this section, we present our approach to the (k, p)-clustering problem. First, we replicably
approximate the distribution with a finite set of points by extending the approach of Frahling and
Sohler [2005] to the distributional setting. Then, we solve the combinatorial (k, p)-clustering problem
on this coreset using an approximation oracle in a black-box manner. In the following subsections,
we give a more detailed overview for each step of our approach. For the full proofs and technical
details, we kindly refer the reader to Appendix D.4 - D.6. In summary:

1) Replicably build a variant of a quad tree [Finkel and Bentley, 1974] (cf. Section 4.2).
2) Replicably produce a weighted coreset using the quad tree (cf. Section 4.1).
3) Apply the optimization oracle for the combinatorial problem on the coreset.

For general norms, this approach leads to an exponential dependence on d. However, we are able to
handle the case of Euclidean distances by extending existing dimensionality reduction techniques for
sample Euclidean (k, p)-clustering [Makarychev et al., 2019] to the distributional case (cf. Section 5).
Thus, for the widely used Euclidean norm, our algorithm has poly(d) sample complexity.

4.1 Coresets

Definition 4.1 ((Strong) Coresets). For a distribution P with support X ⊆ Bd and ε ∈ (0, 1), a
(strong) ε-coreset for X is a distribution P′ on X ′ ⊆ Bd which satisfies

(1− ε) · Ex∼Pκ(x, F)p ≤ Ex′∼P′ [κ(x′, F)p] ≤ (1 + ε) · Ex∼Pκ(x, F)p

for every set of centers F ⊆ Bd, |F | = k.

6

Essentially, coresets help us approximate the true cost on the distribution P by considering another
distribution P′ whose support X ′ can be arbitrarily smaller than the support of P.

Inspired by Frahling and Sohler [2005], the idea is to replicably consolidate our distribution P through
some mapping R : X → X whose image has small cardinality |R(X)| <<∞ so that for any set of
centers F ,

(1− ε)Exκ(x, F)p ≤ Exκ(R(x), F)p ≤ (1 + ε)Exκ(x, F)p ,

where ε ∈ (0, 1) is some error parameter. In other words, (PR, R(X)) is an ε-coreset. Note that
given the function R, we can replicably estimate the probability mass at each point in R(X) and then
apply a weighted (k, p)-clustering algorithm.

4.2 Replicable Quad Tree

We now explain how to replicably obtain the mapping R : X → X by building upon the work of
Frahling and Sohler [2005]. The pseudocode of the approach is provided in Algorithm 4.1. While
Frahling and Sohler [2005] present their algorithm using hierarchical grids, we take an alternative
presentation using the quad tree [Finkel and Bentley, 1974], which could be of independent interest.

First, we recall the construction of a standard quad tree in dimension d. Suppose we have a set of n
points in [−1/2, 1/2]d. The quad tree is a tree whose nodes represent hypercubes containing points and
can be built recursively as follows: The root represents the cell [−1/2, 1/2]d and contains all points. If
a node contains more than one point, we split the cell it represents into 2d disjoint, equally sized cells.
For each non-empty cell, we add it as a child of the current node and recurse into it. The recursion
stops when a node contains only 1 point. In the distributional setting, the stopping criterion is either
when the diameter of a node is less than some length or when the node contains less than some mass,
where both quantities are a function of the depth of the node. See Algorithm 4.1.

A quad tree implicitly defines a function R : X → X as follows. Given a point x ∈ X and the root
node of our tree, while the current node has a child, go to the child containing x if such a child exists,
otherwise, go to any child. At a leaf node, output the center of the cell the leaf represents. Intuitively,
the quad tree consolidates regions of the sample space into single points. The construction can be
made replicable since the decision to continue the recursion or not is the only statistical operation
and is essentially a heavy-hitters operations which can be performed in a replicable fasion.

Let Gi denote the union of all 2id possible cells at the i-th level. We write Pi to denote the discretized
distribution to Gi. In other words, Pi = P|σ(Gi) is the restriction of P to the smallest σ-algebra
containing Gi. Moreover, we write Λ to denote a replicable estimate of OPT with relative error ε,
say 1/β(1+ε)OPT ≤ Λ ≤ (1 + ε)OPT for some absolute constant β ≥ 1. We demonstrate how to
obtain such a replicable estimate in Appendix D.5.

Algorithm 4.1 Replicable Quad Tree
1: rQuadTree(distribution P, accuracy ε, exponent p, replicability ρ, confidence δ):
2: Init the node on the first level Z[0]←

{
[−1/2, 1/2]d

}
.

3: for depth i← 1; Z[i− 1] ̸= ∅ AND (2−i+1∆)p > εΛ/5; i← i+ 1 do
4: {Pi is the discretized distribution over 2id cells on the i-th layer}
5: {γ is a parameter to be determined later.}
6: {t is an upper bound on the number of layers.}
7: ComputeH = rHeavyHitters

(
Pi, v = γ·Λ

2−pi ,
v
2 ,

ρ
t ,

δ
t

)
8: for node Z ∈ Z[i− 1] do
9: for heavy hitter cells H ∈ H such that H ⊆ Z do

10: children(Z)← children(Z) ∪ {H}
11: Z[i]← Z[i] ∪ {H}.
12: end for
13: end for
14: end for
15: Output root node.

Our technique differs from that of Frahling and Sohler [2005] in at least three ways. Firstly, they
performed their analysis for finite, uniform distributions with access to the entire distribution, while

7

our results hold assuming only sample access to a general bounded distribution5. Secondly, Frahling
and Sohler [2005] bound the number of layers as a function of the cardinality of the support. For
us, this necessitates the extra termination condition when the side lengths of our grids fall below
a fraction of Λ as our distribution may have infinite support. Finally, Frahling and Sohler [2005]
estimate OPT by enumerating powers of 2. This suffices for their setting since their distributions are
discrete and bounded. However, we require a more nuanced approach (cf. Appendix D.5) as we do
not have a lower bound for OPT. We tackle this by showing uniform convergence of the clustering
solution costs, which we establish via metric entropy and Rademacher complexity (cf. Appendix C).

4.3 Putting it Together

Once we have produced the function R implicitly through a quad tree, there is still the matter of
extracting a replicable solution from a finite distribution. We can accomplish this by replicably
estimating the probability mass at each point of R(X) and solving an instance of the weighted sample
k-medians (k-means). This leads to the following results. For details, see Appendix D.4 - D.6.
Theorem 4.2 (Theorem 3.1; Formal). Let ε, ρ ∈ (0, 1) and δ ∈ (0, ρ/3). Given black-box access to a
β-approximation oracle for weighted k-medians (cf. Problem 2.2), there is a ρ-replicable algorithm
for statistical k-medians (cf. Problem 2.1) such that, with probability at least 1 − δ, it outputs a
(1 + ε)β-approximation. Moreover, it has sample complexity

Õ

((
k2d2

ε12ρ6 ·OPT12 +
k3218d∆3d+3

ρ2ε3d+5 ·OPT3

)
log

1

δ

)
.

Theorem 4.3 (Theorem 3.1; Formal). Given black-box access to a β-approximation oracle for
weighted k-means (cf. Problem 2.2), there is a ρ-replicable algorithm for statistical k-means (cf.
Problem 2.1) such that, with probability at least 1− δ, it replicably outputs a (1+ ε)β-approximation.
Moreover, it has sample complexity

Õ

((
k2d2

ε12ρ6 ·OPT12 +
k3239d∆3d+6

ρ2ε6d+8 ·OPT3

)
log

1

δ

)
.

5 The Euclidean Metric, Dimensionality Reduction, and (k, p)-Clustering

In this section, we focus on the Euclidean metric κ(y, z) := ∥y − z∥2 and show how the sample
complexity for Euclidean (k, p)-clustering can be made polynomial in the ambient dimension d.
Note that results for dimensionality reduction exist for the combinatorial Euclidean (k, p)-clustering
problem [Charikar and Waingarten, 2022, Makarychev et al., 2019]. However, these do not extend
trivially to the distributional case. We remark that we require our dimensionality reduction maps to
be data-oblivious since we are constrained by replicability requirements.

The cornerstone result in dimensionality reduction for Euclidean distance is the Johnson-Lindenstrauss
lemma (cf. Theorem E.1), which states that there is a distribution over linear maps πd,m from
Rd → Rm that approximately preserves the norm of any x ∈ Rd with constant probability for
some target dimension m. In Makarychev et al. [2019], the authors prove Theorem E.4, which
roughly states that it suffices to take m = Õ(p

4
/ε2 log(1/δ)) in order to preserve (k, p)-clustering

costs when the domain is finite. Firstly, we extend Theorem E.4 to the distributional setting by
implicitly approximating the distribution with a weighted ε-net. Then, we implicitly map the ε-net
onto the low-dimensional space and solve the clustering problem there. An important complication
we need to overcome is that this mapping preserves the costs that correspond to partitions6 of the
data and not arbitrary solutions. Because of that, it is not clear how we can “lift” the solution from
the low-dimensional space to the original space. Thus, instead of outputting k points that correspond
to the centers of the clusters, our algorithm outputs a clustering function f : X → [k], which takes as
input a point x ∈ X and returns the label of the cluster it belongs to. The replicability guarantees of
the algorithm state that, with probability 1− ρ, it will output the same function across two executions.
In Appendix E.4, we describe this function. We emphasize that for each x ∈ X , the running time of
f is polynomial in k, d, p, 1/ε, log(1/δ). Essentially, this function maps x onto the low-dimensional

5Our results also generalize to unbounded distributions with sufficiently small tails
6Roughly speaking, a solution corresponds to a partition when the center of each cluster is its center of mass.

8

space using the same projection map π as our algorithm and then finds the nearest center of π(x) in
the low-dimensional space. For full details, we refer the reader to Appendix E.3. We are now ready
to state the result formally.

Theorem 5.1 (Theorem 3.2; Formal). Let ε, ρ ∈ (0, 1) and δ ∈ (0, ρ/3). Given a β-approximation
oracle for weighted Euclidean k-medians (k-means), there is a ρ-replicable algorithm that outputs
a clustering function such that with probability at least 1 − δ, the cost of the partition is at most
(1 + ε)βOPT. Moreover, the algorithm has sample complexity

Õ

(
poly

(
kd

ρOPT

)(
2
√
m

ε

)O(m)

log
1

δ

)
,

where m = O
(

1
ε2 log

k
δε

)
.

6 Running Time for (k, p)-Clustering

All of our algorithms terminate in O(poly(n)) time where n denotes the sample complexity. See
Table A.1 for more detailed time complexity of each stage of our approach. Moreover, we make
O(log(β/(εOPT))) calls to the β-approximation oracle for the combinatorial (k, p)-clustering problem
within our OPT estimation subroutine and then one more call to the oracle in order to output a
solution on the coreset.

7 Replicable k-Centers

Due to space limitations, we briefly sketch our approach for the k-centers problem and kindly refer
the reader to Appendix F. As explained before, the assumptions we make in this setting state that
there exists some “good” solution, so that when we draw n i.i.d. samples from P we observe at least
one sample from each cluster, with constant probability. We first take a fixed grid of side c in order
to cover the unit-diameter ball. Then, we sample sufficiently many points from P. Subsequently,
we “round” all the points of the sample to the centers of the cells of the grid that they fall into
and estimate the probability mass of every cell. In order to ensure replicability, we take a random
threshold from a predefined interval and discard the points from all the cells whose mass falls below
the threshold. Finally, we call the approximation oracle using the points that remain. Unlike the
(k, p)-clustering problem (cf. Problem 2.1), to the best of our knowledge, there does not exist any
dimensionality reduction techniques that apply to the k-centers problem. The main result is formally
stated in Theorem F.8.

8 Experiments

We now provide a practical demonstration7 of the replicability of our approach on synthetic data in
2D. In Figure 8.1, we leverage the sklearn [Pedregosa et al., 2011] implementation of the popular
k-means++ algorithm for k = 3 and compare the output across two executions on the two moons
distribution. In the first experiment, we do not perform any preprocessing and run k-means++ as
is, resulting in different centers across two executions. In the second experiment, we compute a
replicable coreset for the two moons distribution before running k-means++ on the coreset. This leads
to the same centers being outputted across the executions. Note that the computation for the coreset
is performed independently for each execution, albeit with a shared random seed for the internal
randomness. See also Figure 8.2 for the results of a similar experiment on a mixture of truncated
Gaussian distributions.

7https://anonymous.4open.science/r/replicable_clustering_experiments-E380

9

https://anonymous.4open.science/r/replicable_clustering_experiments-E380

Figure 8.1: The results of running vanilla vs replicable k-Means++ on the two moons distribution for
k = 3.

Figure 8.2: The results of running vanilla vs replicable k-Means++ on a mixture of truncated
Gaussians distributions for k = 3.

9 Conclusion & Future Work

In this work, we designed replicable algorithms with strong performance guarantees using black-box
access to approximation oracles for their combinatorial counterparts. There are many follow-up
research directions that this work can lead to. For instance, our coreset algorithm adapts the coreset
algorithm of Frahling and Sohler [2005] by viewing their algorithm as a series of heavy hitter
estimations that can be made replicable. it may be possible to interpret more recent approaches for
coreset estimation as a series of statistical operations to be made replicable in order to get replicable
algorithms in the statistical (k, p)-clustering setting [Hu et al., 2018]. It would also be interesting
to examine the sensitivity of (replicable) clustering algorithms to the choice of parameters such as
the choice of exponent in the cost function or the measure of similarity of the data. Another relevant
direction is to explore sample complexity lower ounds for statistical clustering, where little is known
even in the non-replicable setting.

Acknowledgments and Disclosure of Funding

Amin Karbasi acknowledges funding in direct support of this work from NSF (IIS-1845032), ONR
(N00014-19-1-2406), and the AI Institute for Learning-Enabled Optimization at Scale (TILOS).
Grigoris Velegkas is supported by TILOS, the Onassis Foundation, and the Bodossaki Foundation.
Felix Zhou is supported by TILOS.

10

References
Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees for k-

means and euclidean k-median by primal-dual algorithms. SIAM Journal on Computing, 49(4):
FOCS17–97, 2019.

Kwangjun Ahn, Prateek Jain, Ziwei Ji, Satyen Kale, Praneeth Netrapalli, and Gil I Shamir. Repro-
ducibility in optimization: Theoretical framework and limits. arXiv preprint arXiv:2202.04598,
2022.

Michael R Anderberg. Cluster analysis for applications: probability and mathematical statistics: a
series of monographs and textbooks, volume 19. Academic press, 2014.

Olivier Bachem, Mario Lucic, and Andreas Krause. Scalable k-means clustering via lightweight
coresets. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1119–1127, 2018.

Monya Baker. 1,500 scientists lift the lid on reproducibility. Nature, 533(7604), 2016.

Maria-Florina Balcan, Yingyu Liang, and Pramod Gupta. Robust hierarchical clustering. The Journal
of Machine Learning Research, 15(1):3831–3871, 2014.

Luca Becchetti, Marc Bury, Vincent Cohen-Addad, Fabrizio Grandoni, and Chris Schwiegelshohn.
Oblivious dimension reduction for k-means: beyond subspaces and the johnson-lindenstrauss
lemma. In Proceedings of the 51st annual ACM SIGACT symposium on theory of computing, pages
1039–1050, 2019.

Shai Ben-David. A framework for statistical clustering with constant time approximation algorithms
for k-median and k-means clustering. Machine Learning, 66(2):243–257, 2007.

Shai Ben-David, Ulrike Von Luxburg, and Dávid Pál. A sober look at clustering stability. In
International conference on computational learning theory, pages 5–19. Springer, 2006.

Shai Ben-David, Dávid Pál, and Hans Ulrich Simon. Stability of k-means clustering. In International
conference on computational learning theory, pages 20–34. Springer, 2007.

Asa Ben-Hur, Andre Elisseeff, and Isabelle Guyon. A stability based method for discovering structure
in clustered data. In Biocomputing 2002, pages 6–17. World Scientific, 2001.

Christos Boutsidis, Anastasios Zouzias, and Petros Drineas. Random projections for k-means
clustering. Advances in neural information processing systems, 23, 2010.

Mark Bun, Marco Gaboardi, Max Hopkins, Russell Impagliazzo, Rex Lei, Toniann Pitassi, Jessica
Sorrell, and Satchit Sivakumar. Stability is stable: Connections between replicability, privacy, and
adaptive generalization. arXiv preprint arXiv:2303.12921, 2023.

Jarosław Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh. An improved
approximation for k-median and positive correlation in budgeted optimization. ACM Transactions
on Algorithms (TALG), 13(2):1–31, 2017.

Bernd Carl and Irmtraud Stephani. Entropy, compactness and the approximation of operators.
Cambridge University Press, 1990.

Deeparnab Chakrabarty and Chaitanya Swamy. Approximation algorithms for minimum norm and
ordered optimization problems. In Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, pages 126–137, 2019.

Moses Charikar and Erik Waingarten. The johnson-lindenstrauss lemma for clustering and subspace
approximation: From coresets to dimension reduction. arXiv preprint arXiv:2205.00371, 2022.

Zachary Chase, Shay Moran, and Amir Yehudayoff. Replicability and stability in learning. arXiv
preprint arXiv:2304.03757, 2023.

Edith Cohen, Haim Kaplan, Yishay Mansour, Uri Stemmer, and Eliad Tsfadia. Differentially-private
clustering of easy instances. In International Conference on Machine Learning, pages 2049–2059.
PMLR, 2021.

11

Michael B Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina Persu. Dimen-
sionality reduction for k-means clustering and low rank approximation. In Proceedings of the
forty-seventh annual ACM symposium on Theory of computing, pages 163–172, 2015.

Vincent Cohen-Addad, Hossein Esfandiari, Vahab Mirrokni, and Shyam Narayanan. Improved
approximations for euclidean k-means and k-median, via nested quasi-independent sets. arXiv
preprint arXiv:2204.04828, 2022.

Ronald A DeVore and George G Lorentz. Constructive approximation, volume 303. Springer Science
& Business Media, 1993.

Peter Dixon, A Pavan, Jason Vander Woude, and NV Vinodchandran. List and certificate complexities
in replicable learning. arXiv preprint arXiv:2304.02240, 2023.

Hossein Esfandiari, Alkis Kalavasis, Amin Karbasi, Andreas Krause, Vahab Mirrokni, and Grigoris
Velegkas. Reproducible bandits. arXiv preprint arXiv:2210.01898, 2022.

Dan Feldman and Michael Langberg. A unified framework for approximating and clustering data. In
Proceedings of the forty-third annual ACM symposium on Theory of computing, pages 569–578,
2011.

Raphael A Finkel and Jon Louis Bentley. Quad trees a data structure for retrieval on composite keys.
Acta informatica, 4:1–9, 1974.

Gereon Frahling and Christian Sohler. Coresets in dynamic geometric data streams. In Proceedings
of the thirty-seventh annual ACM symposium on Theory of computing, pages 209–217, 2005.

Badih Ghazi, Ravi Kumar, and Pasin Manurangsi. Differentially private clustering: Tight approxima-
tion ratios. Advances in Neural Information Processing Systems, 33:4040–4054, 2020.

Peter E Hart, David G Stork, and Richard O Duda. Pattern classification. Wiley Hoboken, 2000.

Dorit S Hochbaum and David B Shmoys. A best possible heuristic for the k-center problem.
Mathematics of operations research, 10(2):180–184, 1985.

Wei Hu, Zhao Song, Lin F Yang, and Peilin Zhong. Nearly optimal dynamic k-means clustering for
high-dimensional data. arXiv preprint arXiv:1802.00459, 2018.

Russell Impagliazzo, Rex Lei, Toniann Pitassi, and Jessica Sorrell. Reproducibility in learning. arXiv
preprint arXiv:2201.08430, 2022.

Anil K Jain and Richard C Dubes. Algorithms for clustering data. Prentice-Hall, Inc., 1988.

Svante Janson. Tail bounds for sums of geometric and exponential variables. Statistics & Probability
Letters, 135:1–6, 2018.

William B Johnson. Extensions of lipschitz mappings into a hilbert space. Contemp. Math., 26:
189–206, 1984.

Alkis Kalavasis, Amin Karbasi, Shay Moran, and Grigoris Velegkas. Statistical indistinguishability
of learning algorithms. arXiv preprint arXiv:2305.14311, 2023.

Michael Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM (JACM),
45(6):983–1006, 1998.

Jon Kleinberg. An impossibility theorem for clustering. Advances in neural information processing
systems, 15, 2002.

Tilman Lange, Volker Roth, Mikio L Braun, and Joachim M Buhmann. Stability-based validation of
clustering solutions. Neural computation, 16(6):1299–1323, 2004.

Silvio Lattanzi, Benjamin Moseley, Sergei Vassilvitskii, Yuyan Wang, and Rudy Zhou. Robust online
correlation clustering. Advances in Neural Information Processing Systems, 34:4688–4698, 2021.

Michel Ledoux and Michel Talagrand. Probability in Banach Spaces: isoperimetry and processes,
volume 23. Springer Science & Business Media, 1991.

12

Konstantin Makarychev, Yury Makarychev, and Ilya Razenshteyn. Performance of johnson-
lindenstrauss transform for k-means and k-medians clustering. In Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, pages 1027–1038, 2019.

Vitali D Milman and Gideon Schechtman. Asymptotic Theory of Finite Dimensional Normed Spaced,
volume 1200. Springer Berlin, 1986.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Joelle Pineau, Koustuv Sinha, Genevieve Fried, Rosemary Nan Ke, and Hugo Larochelle. Iclr
reproducibility challenge 2019. ReScience C, 5(2):5, 2019.

Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Larivière, Alina Beygelzimer,
Florence d’Alché Buc, Emily Fox, and Hugo Larochelle. Improving reproducibility in machine
learning research: a report from the neurips 2019 reproducibility program. Journal of Machine
Learning Research, 22, 2021.

Gilles Pisier. The volume of convex bodies and Banach space geometry, volume 94. Cambridge
University Press, 1999.

Alexander Rakhlin and Andrea Caponnetto. Stability of k-means clustering. Advances in neural
information processing systems, 19, 2006.

Christian Sohler and David P Woodruff. Strong coresets for k-median and subspace approximation:
Goodbye dimension. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science
(FOCS), pages 802–813. IEEE, 2018.

AW van der Vaart and Jon A Wellner. Weak convergence and empirical processes with applications
to statistics. Journal of the Royal Statistical Society-Series A Statistics in Society, 160(3):596–608,
1997.

Ulrike Von Luxburg and Shai Ben-David. Towards a statistical theory of clustering. In Pascal
workshop on statistics and optimization of clustering, pages 20–26. London, UK, 2005.

Ulrike Von Luxburg et al. Clustering stability: an overview. Foundations and Trends® in Machine
Learning, 2(3):235–274, 2010.

Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cam-
bridge University Press, 2019.

Yuichi Yoshida and Shinji Ito. Average sensitivity of euclidean k-clustering. In Advances in Neural
Information Processing Systems, 2022.

13

A Tables

We present the running times required for our sub-routines in order to ensure each stage is ρ-replicable
and succeeds with probability at least 0.99. The overall output is a constant ratio approximation for
Euclidean k-medians (k-means).

Table A.1: Running Time Overview for Euclidean k-Medians (k-Means)

ALGORITHM RUNNING TIME

OPT ESTIMATION Õ(poly(kd/OPT ρ))

DIMENSIONALITY REDUCTION Õ(poly(d/OPT)(k/ρ)O(log log(k/ρ)))

CORESET Õ(poly(d/OPT)(k/ρ)O(log log(k/ρ)))

PROBABILITY MASS ESTIMATION Õ(poly(d/OPT)(k/ρ)O(log log(k/ρ)))

B Useful Facts

Proposition B.1 (Bretagnolle-Huber-Carol Inequality; [Vaart and Wellner, 1997]). Suppose the
random vector (Z(1), . . . , Z(N)) is multinomially distributed with parameters (p(1), . . . , p(N)) and
n. Let p̂(j) := 1

nZ
(j). Then

P


N∑
j=1

|p̂(j) − p(j)| ≥ 2ε

 ≤ 2N exp
(
−2ε2n

)
.

In particular, for any ε, ρ ∈ (0, 1), sampling

n ≥
ln 1

ρ +N ln 2

2ε2

points from a finite distribution implies that
∑N

j=1|p̂(j) − p(j)| < 2ε with probability at least 1− ρ.

Remark B.2 (Weighted k-Means/Medians). We remark that if we have access to a β-approximation
oracle for unweighted k-means/medians, we can implement a weighted one by considering multiple
copies of the points. In particular, in our applications, we get weights that are polynomials in the
parameters of concern so this will not affect the stated runtime guarantees.

C Uniform Convergence of (k, p)-Clustering Costs

We would like to estimate OPT for statistical k-medians and statistical k-means by solving the
combinatorial problem on a sufficiently large sample size. However, while the convergence of cost
for a particular set of centers is guaranteed by standard arguments, e.g. Chernoff bounds, we require
the stronger statement that convergence holds simultaneously for all possible choices of centers.

Similar results can be found [Ben-David, 2007], with the limitation that centers are either chosen
from the sample points, or chosen as centers of mass of the clusters they induce. While this suffices
to achieve constant ratio approximations, we would like to choose our centers anywhere in Bd. One
reason for doing so is for replicability as we have no control over the location of samples from two
independent executions so we need to output centers that are not overly reliant on its specific input.
Another is for dimensionality reduction, which we will see later.

C.1 History of Uniform Laws of Large Numbers

Uniform laws of large numbers generalize convergence results for a finite number of random variables
to possibly uncountable classes of random variables. The Rademacher complexity and related
Gaussian complexity are canonical techniques in developing these laws and also have a lengthy history
in the study of Banach spaces using probabilistic methods [Pisier, 1999, Milman and Schechtman,

14

1986, Ledoux and Talagrand, 1991]. Metric entropy, along with related notions of expressivity of
various function classes, can be used to control the Rademacher complexity and are also central
objects of study in the field of approximation theory [DeVore and Lorentz, 1993, Carl and Stephani,
1990].

C.2 Rademacher Complexity

Let F denote a class of functions from Rd → R. For any fixed collection of n points xn
1 :=

(x1, . . . , xn), we write

f(xn
1) := (f(x1), . . . , f(xn))

F (xn
1) := {f(xn

1) : f ∈ F},
i.e, the restriction of F onto the sample. Let s ∈ {−1, 1}n be a Rademacher random vector. That is,
si takes on values −1, 1 with equal probability independently of other components. Recall that the
Rademacher complexity of F is given by

Rn(F) := EX,s

[
sup
f∈F

1

n
⟨s, f(Xn

1)⟩

]
.

Theorem C.1 ([Wainwright, 2019]). For any b-uniformly bounded class of functions F , integer
n ≥ 1, and error ε ≥ 0,

sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

f(Xi)− E[f(X)]

∣∣∣∣∣ ≤ 2Rn(F) + ε

with probability at least 1− exp
(
−nε2

2b2

)
.

In particular, as long asRn(F) = o(1), we have uniform convergence of the sample mean.

C.3 Metric Entropy

We write B(x, r;µ) to denote the ball of radius r about a point x with respect to a metric µ. Recall
that an ε-cover of a set T with respect to a metric µ is a subset θ1, . . . , θN ⊆ T such that

T ⊆
⋃

i∈[N]

B(θi, ε;µ).

The covering number N(ε;T, µ) is the cardinality of the smallest ε-cover.
Proposition C.2 ([Wainwright, 2019]). Fix ε ∈ (0, 1). Let B(R; ∥·∥) denote the d-dimensional ball
of radius R with respect to ∥·∥. Then

N(ε,B(R; ∥·∥), ∥·∥) ≤
(
1 +

2R

ε

)d

≤
(
3R

ε

)d

.

We say a collection of zero-mean random variables {Yθ : θ ∈ T} is a sub-Gaussian process with
respect to a metric µ on T if

E exp [λ(Yθ − Yθ′)] ≤ exp

[
λ2µ2(θ, θ′)

2

]
for all θ, θ′ ∈ T and λ ∈ R.
Proposition C.3. The canonical Rademacher process

Yθ := ⟨s, θ⟩
is a zero-mean sub-Gaussian process with respect to the Euclidean norm on T ⊆ Rn.

Proof. Recall that a Rademacher variable is sub-Gaussian with parameter 1. Moreover, the sum
of sub-Gaussian variables is sub-Gaussian with parameter equal to the Euclidean norm of the
parameters. It follows that Yθ − Yθ′ = ⟨s, θ − θ′⟩ is sub-Gaussian with parameter ∥θ − θ′∥2. The
result follows.

15

Theorem C.4 (One-Step Discretization; [Wainwright, 2019]). Let Yθ, θ ∈ T be a zero-mean sub-
Gaussian process with respect to the metric µ. Fix any ε ∈ [0, D] where D = diam(T ;µ) such that
N(ε;T, µ) ≥ 10. Then

E
[
sup
θ∈T

Yθ

]
≤ E

[
sup

θ,θ′∈T
Yθ − Yθ′

]

≤ 2E

[
sup

θ,θ′∈T :µ(θ,θ′)≤ε

Yθ − Yθ′

]
+ 4D

√
logN(ε;T, µ).

In general, it may be possible to improve the bound in Theorem C.4 using more sophisticated
techniques such as Dudley’s entropy integral bound [Wainwright, 2019]. However, the simple
inequality from Theorem C.4 suffices for our setting.

Corollary C.5. Fix any ε ∈ [0, D] where D = diam(T ;µ) such that N(ε;T, µ) ≥ 10. The
canonical Rademacher process Yθ = ⟨s, θ⟩ for θ ∈ T ⊆ Rn satisfies

E
[
sup
θ

Yθ

]
≤ 2ε

√
n+ 4D

√
logN(ε;T, ∥·∥2).

Proof. By Proposition C.3, Yθ is a zero-mean sub-Gaussian process and we can apply Theorem C.4
to conclude that

E

[
sup

∥θ−θ′∥2≤ε

Yθ − Y ′
θ

]
= 2E

[
sup

∥v∥2≤ε

⟨v, s⟩

]
≤ 2E [∥s∥2 · ∥v∥2]
≤ 2ε

√
n.

Corollary C.5 gives us a way to control the Rademacher complexity of a function class whose
co-domain is well-behaved. We make this notion rigorous in the next section.

C.4 Uniform Convergence of (k, p)-Clustering Cost

For a fixed set of centers F , let κp
F : Rd → R be given by

κp
F (x) := κ(x, F)p.

Define F := {F ⊆ Bd : |F | = k}. We take our function class to be

F := {κp
F : F ∈ F}.

Let µ : F × F → R be given by

µ(A,B) := max
a∈A,b∈B

κ(a, b).

Proposition C.6. µ is a metric on F .

Proof. It is clear that µ is symmetric and positive definite. We need only show that the triangle
inequality holds. Fix A,B,C ∈ F and suppose a ∈ A, c ∈ C are such that κ(a, c) = µ(A,C). Then

µ(A,C) = κ(a, c)

≤ κ(a, b) + κ(b, c) ∀b ∈ B

≤ µ(A,B) + µ(B,C)

as desired.

Proposition C.7. F is p-Lipschitz parameterized with respect to the metric µ.

16

Proof. We have

|κ1
F (x)− κ1

F ′(x)| = |κ(x, F (x))− κ(x, F ′(x))|
≤ |κ(x, F ′(x)) + κ(F ′(x), F (x))− κ(x, F ′(x))|
= κ(F ′(x), F (x))

≤ µ(F, F ′).

Now, the function g(x) : [0, 1]→ R given by x 7→ xp is p-Lipschitz by the mean value theorem:

|g(x)− g(y)| ≤ sup
ξ∈[0,1]

g′(ξ)|x− y| ≤ p|x− y|.

The result follows by the fact that the composition of Lipschitz functions is Lipschitz with a constant
equal to the product of constants from the composed functions.

Theorem C.8. For any ε ∈ [0, D =
√
n] such that N(ε;F (xn

1), ∥·∥2) ≥ 10,

Rn(F) ≤ 2ε√
n
+ 4

√
kd log 3

√
np
ε

n
= o(1).

Proof. Remark that κp
F (x

n
1) is

√
np-Lipschitz with respect to the metric µ. Indeed,

n∑
i=1

|κp
F (xi)− κp

F ′(xi)|2 ≤ np2µ(F, F ′)2.

Now, D := diam(F (xn
1); ∥·∥2) =

√
n. We can apply Corollary C.5 with T = F (xn

1) to see that

Rn(F) =
1

n
E
[
sup
θ

Yθ

]
≤ 2ε√

n
+ 4

√
logN(ε;F (xn

1), ∥·∥2)
n

.

Now, since κp
F (x

n
1) is

√
np-Lipschitz, a ε√

np
-cover for F yields an ε-cover of F (xn

1). Hence

N(ε;F (xn
1), ∥·∥2) ≤ N

(
ε√
np

;F , µ
)
.

Note that the cross product of k ε-covers of B is an ε-cover of F . Hence

N

(
ε√
np

;F , µ
)
≤ N

(
ε√
np

;Bd, κ
)k

≤
(
3
√
np

ε

)kd

. Proposition C.2

Substituting this bound on the covering number of F (xn
1) concludes the proof.

Note that the Lipschitz property was crucial to ensure that the exponent in the covering number does
not contain n.
Theorem C.9. Fix ε, δ ∈ (0, 1). Then with

O

(
k2d2

ε4
log

p

δ

)
i.i.d. samples from P, ∣∣∣ĉost(F)− cost(F)

∣∣∣ ≤ ε

with probability at least 1− δ for any set of centers F ⊆ Bd.

17

Proof. Choose ε := 3 ≤ D =
√
n. By Theorem C.8,

Rn(F)

≤ 2 · 3√
n

+ 4

√
kd log 3

√
np
3

n

≤ 6√
n
+ 4

√
kd log

√
np

n

≤ 6√
n
+ 4

√
kd log p

n
+ 4

√
kd log

√
n

n

√
a+ b ≤

√
a+
√
b

≤ 6√
n
+ 4

√
kd log p

n
+ 4

√
kd√
n
. log

√
n ≤
√
n

Fix some ε1 ∈ (0, 1). We have

6√
n
≤ ε1

⇐⇒ n ≥ 36

ε21
.

Similarly, we have

4

√
kd log p

n
≤ ε1

⇐⇒ n ≥ 16kd log p

ε21
.

Finally,

4

√
kd√
n
≤ ε1

⇐⇒ n ≥ 256k2d2

ε41
.

By taking the maximum of the three lower bounds, we conclude that

n ≥ 256k2d2

ε41
log p =⇒ Rn(F) ≤ 3ε1.

Fix δ ∈ (0, 1). Observe that F is 1-uniformly bounded. Thus by Theorem C.1, we require

max

(
2

ε21
log

1

δ
,
256k2d2

ε41
log p

)
≤ 256k2d2

ε41
log

p

δ

samples in order to guarantee that

sup
κp
F∈F

∣∣∣∣∣ 1n
n∑

i=1

κp
F (Xi)− Eκp

F (X)

∣∣∣∣∣ ≤ 2Rn(F) + ε1

≤ 7ε1

with probability at least 1− δ.

Choosing ε1 = ε
7 concludes the proof.

D (k, p)-Clustering

In this section, we provide the full proofs for Theorem 4.2 and Theorem 4.3, which state the
guarantees for the replicable k-medians and k-means algorithms, respectively. First, we describe a

18

useful subroutine for replicable heavy hitters estimation in Appendix D.2. This subroutine is crucial
to the replicable coreset algorithm (cf. Algorithm D.3), which we analyze in Appendix D.3. Once
we have a coreset, it remains to solve the statistical (k, p)-clustering problem on a finite distribution.
We describe a replicable algorithm for this in Appendix D.4. Our coreset algorithm assumes the
knowledge of some constant ratio estimate of OPT. In Appendix D.5, we show how to output such an
estimate replicably. Finally, we summarize our findings in Appendix D.6.

D.1 Warm-Up: Replicable SQ Oracle and ε-Covers

In order to give some intuition to the reader, we first show how we can use a subroutine that was
developed in Impagliazzo et al. [2022] in order to derive some results in the setting we are studying.
We first need to define the statistical query model that was introduced in Kearns [1998]

Definition D.1 (Statistical Query Oracle; [Kearns, 1998]). Let D be a distribution over the domain
X and ϕ : Xn → R be a statistical query with true value

v⋆ := lim
n→∞

ϕ(X1, . . . , Xn) ∈ R.

Here Xi ∼i.i.d. D and the convergence is understood in probability or distribution. Let ε, δ ∈ (0, 1)2.
A statistical query (SQ) oracle outputs a value v such that |v − v⋆| ≤ ε with probability at least 1− δ.

The simplest example of a statistical query is the sample mean

ϕ(X1, . . . , Xn) =
1

n

n∑
i=1

Xi.

The idea is that by using a sufficiently large number of samples, an SQ oracle returns an estimate of
the expected value of a statistical query whose range is bounded. Impagliazzo et al. [2022] provide a
replicable implementation of an SQ oracle with a mild blow-up in the sample complexity which we
state below.

Theorem D.2 (Replicable SQ Oracle; [Impagliazzo et al., 2022]). Let ε, ρ ∈ (0, 1) and δ ∈ (0, ρ/3).
Suppose ϕ is a statistical query with co-domain [0, 1]. There is a ρ-replicable SQ oracle to estimate
its true value with tolerance ε and failure rate δ. Moreover, the oracle has sample complexity

Õ

(
1

ε2ρ2
log

1

δ

)
.

The interpretation of the previous theorem is that we can replicably estimate statistical queries whose
range is bounded.

We now explain how we can use this result for the statistical k-means problem under the Euclidean
metric, but it is not hard to extend the approach to more general (k, p)-clustering problems. Consider
a fixed set of centers F. Then, we can replicably estimate the cost of this solution using Theorem D.2
within an additive accuracy ε and confidence δ using O

(
ε−2ρ−2 log(1/δ)

)
samples. Thus, a natural

approach is to consider an ε-cover of the unit-diameter ball and then exhaustively search among
solutions whose centers coincide with elements of the ε-cover. This is outlined in Algorithm D.1. We
are now ready to state our results.

Algorithm D.1 Replicable k-Means with ε-Cover
rKMeansCover: distribution P, error ε, replicability ρ, confidence δ
G← ε/3-cover over the d-dimensional unit-diameter ball
F ← {F ⊆ G : |F | = k} {We restrict the solutions to the ε-cover.}
Output argminF∈F rSQ-Oracle(cost(F), ε/3, ρ/|F|, δ/|F|)

Lemma D.3. For any ε, δ, ρ ∈ (0, 1), δ < ρ/3, Algorithm D.1 is ρ-replicable and outputs a solution
F whose cost is at most OPT+ε with probability 1− δ. Moreover, it has sample complexity

Õ

(
(9/ε)2kd

ρ2ε2
log

1

δ

)
.

19

Proof (Lemma D.3). We first argue about the replicability of Algorithm D.1. Since we make |F|
calls to the replicable SQ subroutine with parameter ρ/|F|, the overall replicability of the algorithm
follows by taking a union bound.

Let us now focus on the correctness of the algorithm. Let F ∗ be the optimal solution. Consider the
solution that we get when we move the centers of F ∗ to the closest point of G and let us denote it by
F̂ ∗. Notice that the cost of F̂ ∗ is at most OPT+ε/3. Furthermore, by a union bound, all the calls to
the SQ oracle will return an estimate that is within an additive ε/3-error of the true cost. This happens
with probability at least 1 − δ and we condition on this event for the rest of the proof. Thus the
estimated cost of the solution F̂ ∗ will be at most OPT+2ε/3. Let F̃ be the solution that we output.
Its estimated cost is at most that of F̂ ∗ and so its true cost will be at most OPT+ε. This concludes
the proof of correctness.

Lastly, we argue about the sample complexity of the algorithm. By Proposition C.2,

|F| ≤ O
(
(9/ε)kd

)
.

By plugging this value into the sample complexity from Theorem D.2, we get

O

(
(9/ε)2kd

ρ2ε2
log

(9/ε)kd

δ

)
.

Although Algorithm D.1 provides some basic guarantees, there are several caveats with this approach.
Namely, we can only get additive approximations and the dependence of the sample and time
complexity on both k, d is exponential.

In the following sections, we will explain how we can overcome these issues. As we alluded to before,
our approach combines ideas from coresets estimation through hierarchical grids [Frahling and
Sohler, 2005], uniform convergence through metric entropy [Wainwright, 2019], and dimensionality
reduction techniques [Makarychev et al., 2019].

D.2 Replicable Heavy-Hitters

In this section, we present a replicable heavy hitters algorithm which is inspired by Impagliazzo et al.
[2022] and has an improved sample complexity by a factor of O(1/(v−ε)). We believe that this result
could be of independent interest since the replicable heavy hitters algorithm has many applications as
a subroutine in more complicated algorithms [Impagliazzo et al., 2022]. Intuitively, this algorithm
consists of two phases. In the first phase, we estimate all the candidate heavy hitters and reduce the
size of the domain. In the second phase, we estimate the mass of these candidates. We present a new
analysis of the second phase using Proposition B.1.

Algorithm D.2 Replicable Heavy Hitters
rHeavyHitters:distribution P, target v, error ε, replicability ρ, confidence δ

if |X | <
ln 2

δ(v−ε)

v−ε then
X̂ ← X

else
X̂ ←

{
ln 2

δ(v−ε)

v−ε samples ∼ P
}

end if
S ←

{
648 ln 2/δ+648(|X̂ |+1) ln 2

ρ2ε2 samples ∼ P
}

Choose v′ ∈ [v − 2/3ε, v − 1/3ε] uniformly randomly
Output all x ∈ X̂ such that P̂S(x) ≥ v′ {empirical distribution}

Theorem D.4. Fix v, ρ ∈ (0, 1) and ε ∈ (0, v), δ ∈ (0, ρ/3). Then Algorithm D.2 is ρ-replicable and
returns a list L of elements x such that with probability at least 1− δ:

(a) If P(x) ≤ v − ε, then x /∈ L.

(b) If P(x) ≥ v, then x ∈ L.

20

Moreover, it has sample complexity

Õ

(
min

(
|X |, 1

(v − ε)

)
1

ρ2ε2
log

1

δ

)
.

Proof. First, we wish to capture all v − ε heavy hitters in X̂ . If X is sufficiently small, this is easy.
Otherwise, we fail to observe each (v − ε) heavy hitter with probability at most (1− v + ε)|X̂ |. By a
union bound over all (v − ε)−1 possible heavy hitters, we fail to capture all v − ε heavy hitters with
probability at most

(1− v + ε)|X̂ |

v − ε
≤ 1

v − ε
exp

[
−(v − ε) ·

ln 2
δ(v−ε)

v − ε

]

≤ δ

2
.

Moving forward, we condition on this step succeeding.

Next, consider p̂1, p̂2, the mass estimates over the course of two runs supported on the candidate sets
X̂1, X̂2. both follow (possibly different) multinomial distributions of dimension at most |X̂ |+ 1 with
unknown mean parameters p1(x) for x ∈ X̂1 ∪ {y1}, p2(x) for x ∈ X̂2 ∪ {y2}, respectively, and |S|.
Here y1, y2 are dummy elements for observations beyond X̂1, X̂2. Suppose we draw

ln 2/δ+(|X̂ |+1) ln 2

2ε′2

samples over each of two runs to yield estimates p̂1, p̂2. By Proposition B.1,∑
x∈X̂1∪{y1}

|p̂1(x)− p1(x)| < 2ε′

∑
x∈X̂2∪{y2}

|p̂2(x)− p2(x)| < 2ε′

each with probability at least 1− δ/2. Moving forward, we condition on this step succeeding.

Now, consider choosing v′ ∈ [v − 2ε/3, v − ε/3] uniformly at random.

Correctness: By choosing 2ε′ < ε/3, any element x with true mass at least v will have empirical mass
strictly more than v − ε/3 ≥ v′. Similarly, any element x with true mass at most v − ε will have
empirical mass strictly less than v − 2ε/3 ≤ v′. Thus we satisfy the correctness guarantees. Note that
we satisfy this guarantee with probability at least 1− δ.

Replicability: v′ lands in between some p̂1(x), p̂2(x) for x ∈ X̂1 ∩ X̂2 with total probability at most∑
x∈X̂1∩X̂2

|p̂1(x)− p̂2(x)|
ε/3

≤
∑

x∈X̂1∩X̂2
|p̂1(x)− p1(x)|
ε/3

+

∑
x∈X̂1∩X̂2

|p̂2(x)− p2(x)|
ε/3

In addition, we wish for v′ to avoid landing “below” any p̂1(x), p̂2(x) where x /∈ X̂1 ∩ X̂2. This
happens with probability at most∑

x∈X̂1∪{y1}\X̂2
|p̂1(x)− p1(x)|

ε/3
+

∑
x∈X̂2∪{y2}\X̂1

|p̂2(x)− p2(x)|
ε/3

.

The sum of the two expressions above is at most 4ε′

ε/3 . Thus we set

4ε′

ε/3
≤ ρ

3

ε′ ≤ ρε

36
.

The probability of failing to be replicable is then at most 1− ρ/3− 2δ ≥ 1− ρ.

Sample Complexity: Recall that we set

ε′ = min
(ρε
36

,
ε

6

)
=

ρε

36
.

21

If |X | is sufficiently small, the sample complexity becomes

ln 2
δ + (|X |+ 1) ln 2

2ε′2
=

648 ln 2
δ + 648 (|X |+ 1) ln 2

ρ2ε2

Otherwise, the sample complexity is

ln 2
δ(v−ε)

v − ε
+

648 ln 2
δ

ρ2ε2
+

648
(
ln 2

δ(v−ε) + 1
)
ln 2

ρ2ε2(v − ε)
.

D.3 Replicable Coreset

We now prove that Algorithm 4.1 replicably yields an ε-coreset. In Appendix D.3.1, we state
Algorithm D.3, an equivalent description of Algorithm 4.1. Then, we show that it is indeed replicable
in Appendix D.3.2. Following this, we prove that the cost of any set of centers F ⊆ Bd is preserved
up to an ε-multiplicative error in Appendix D.3.3. In Appendix D.3.4, we show that the outputted
coreset is of modest size. Last but not least, we summarize our findings in Appendix D.3.5.

D.3.1 Pseudocode

Before presenting the analysis, we state an equivalent algorithm to Algorithm 4.1 which uses precise
notation that is more suitable for analysis.

Starting with the grid that consists of a single cell [−1/2, 1/2]d at layer 0, we recursively subdivide
each cell into 2d smaller cells of length 2−i at layer i. Each subdivided cell is a child of the larger
cell, the containing cell is the parent of a child cell, and cells sharing the same parent are siblings. Let
Gi denote the union of cells at the i-th level. We write Pi to denote the discretized distribution to Gi.
In other words, Pi = P

∣∣
σ(Gi)

is the restriction of P to the smallest σ-algebra containing Gi. We say a
cell on the i-th level is heavy if the replicable heavy hitters algorithm (cf. Algorithm D.2) returns it
with input distribution Pi, heavy hitter threshold v = γ·Λ

2−pi , and error v/2 for some parameter γ to be
determined later. A cell that is not heavy is light. The recursion terminates either when there are no
more heavy cells on the previous layer, or the current grid length is a sufficiently small fraction of
OPT. In the second case, we say the last layer consists of special cells.

If no child cell of a heavy parent is heavy, we mark the parent. Otherwise, we recurse on its heavy
children so that one of its descendants will eventually be marked. The recursion must stop, either
when there are no more heavy children or when the side length is no more than a fraction of Λ. Note
that the light cells with heavy parents and special cells partition [−1/2, 1/2]d.

Then, we build R in reverse as follows. For a marked heavy cell Z, we set R(x) to be an arbitrary (but
replicable) point in Z, e.g. its center, for all x ∈ Z. This covers all light cells with no heavy siblings
as well as special cells. Otherwise, a cell Z is light with heavy siblings, and its parent is heavy but
unmarked. Thus, the parent has some marked heavy descendent Z ′, and we choose R(x) = R(x′)
for all x ∈ Z and x′ ∈ Z ′.

D.3.2 Replicability

Proposition D.5. Algorithm D.3 terminates after at most

t :=

⌈
1

p
log

10β∆p

ε ·OPT
+ 1

⌉
layers.

22

Algorithm D.3 Replicable Coreset; Algorithm 4.1 Equivalent
1: rCoreset(distribution P, accuracy ε, exponent p, replicability ρ, confidence δ):
2: InitH[i]← ∅ for all i
3: Init L[i]← ∅ for all i
4: Init S[i]← ∅ for all i
5:
6: H(0)←

{
[−1/2, 1/2]

d
}

7: for i← 1;H[i− 1] ̸= ∅; i← i+ 1 do
8: if (2−i+1∆)p ≤ εΛ/5 then
9: S[i]← children(H[i− 1])

10: else
11: H[i] ← children(H[i − 1]) ∩ rHeavyHitters

(
Pi, v = γ·Λ

2−pi , v/2, ρ/t, δ/t
)
{t is an upper

bound on the number of layers.}
12: L[i]← children(H[i− 1]) \ H[i]
13: end if
14: end for
15:
16: for j ← i− 1; j ≥ 0; j ← j − 1 do
17: for Z ∈ H[j] do
18: if children(Z) ∩H[j + 1] = ∅ then
19: R′(Z)← rChoice(Z)
20: else
21: R′(Z)← R′(rChoice(children(Z) ∩H[j + 1]))
22: end if
23: end for
24: for Z ∈ L[j + 1] do
25: R(Z)← R′(parent(Z))
26: end for
27: for Z ∈ S[j + 1] do
28: R(Z)← R′(parent(Z))
29: end for
30: end for
31:
32: Output R

Proof. We have

(2−i+1∆)p ≤ εΛ

5

⇐⇒ 2p(−i+1) ≤ εΛ

5∆p

⇐⇒ p(−i+ 1) ≤ log
εΛ

5∆p

⇐⇒ i ≥ 1

p
log

5∆p

ε · Λ
+ 1.

But 1/Λ ≤ β(1+ε)/OPT, concluding the proof.

Corollary D.6. Algorithm D.3 is ρ-replicable and succeeds with probability at least 1− δ. Moreover,
it has sample complexity

Õ

(
t2

ρ2γ3 ·OPT3 log
1

δ

)
.

Proof. The only non-trivial random components of Algorithm D.3 is the heavy hitter estimation. By
Theorem D.4, the heavy hitters subroutine call on the i-th layer is ρ/t-replicable and succeeds with

23

probability at least 1− δ/t. Also, it has sample complexity

Õ

(
t2 · 23(−pi+1)

ρ2γ3 · Λ3
log

1

δ

)
.

Now,

t∑
i=0

2−3pi ≤
∞∑
i=0

2−3pi

= O(1).

Thus all in all, Algorithm D.3 is ρ-replicable and succeeds with probability at least 1− δ. It also has
sample complexity

Õ

(
t2

ρ2γ3 · Λ3
log

1

δ

)
.

Since 1/Λ ≤ β(1+ε)/OPT, we conclude the proof.

D.3.3 Expected Shift

Proposition D.7. For any x ∈ Z ∈ L[i] ∪ S[i] outputted by Algorithm D.3,

κ(x,R(x)) ≤ (2−i+1∆).

Proof. x is represented by some point within its parent.

Proposition D.8. The output S[t] of Algorithm D.3 satisfies∫
S[t]

κ(x,R(x))pdP(x) ≤ εΛ

5
.

Proof. By computation,∫
S[t]

κ(x,R(x))pdP(x) ≤
∫
S[t]

(2−i+1∆)pdP(x) Proposition D.7

≤
∫
S[t]

εΛ

5
dP(x) definition of t

≤
∫
X

εΛ

5
dP(x)

=
εΛ

5
.

Let F be an arbitrary set of k centers. Partition L[i] into

Lnear[i] :=

{
Z ∈ L[i] : min

x∈Z
κ(x, F)p ≤ 5

ε
(2−i+1∆)p

}
Lfar[i] :=

{
Z ∈ L[i] : min

x∈Z
κ(x, F)p >

5

ε
(2−i+1∆)p

}
.

Proposition D.9. The output Lfar of Algorithm D.3 satisfies

t∑
i=0

∫
Lfar[i]

κ(x,R(x))pdP(x) ≤ ε

5
cost(F).

24

Proof. Any x ∈ Z ∈ Lfar[i] contributes a cost of at least 5
ε (2

−i+1∆)p. Hence
t∑

i=0

∫
Lfar[i]

κ(x,R(x))pdP(x) ≤
t∑

i=0

∫
Lfar[i]

(2−i+1∆)pdP(x)

=
ε

5

t∑
i=0

∫
Lfar[i]

5

ε
(2−i+1∆)pdP(x)

≤ ε

5

t∑
i=0

∫
Lfar[i]

κ(x, F)pdP(x)

≤ ε

5
cost(F).

Proposition D.10. The output Lnear of Algorithm D.3 satisfies |Lnear[i]| ≤ kM where

M :=

[
25

ε
∆

]d
Proof. The furthest point x in a cell in Lnear[i] can have a distance of at most

2−i∆+
p

√
5

ε
(2−i+1∆) ≤

(
1 +

10

ε

)
(2−i∆)

to the nearest center. Thus the points belonging to a particular center live in an ℓ∞ ball of that radius.
Not including the cell containing the center, we can walk past at most

1

2−i
·
(
1 +

10

ε

)
(2−i∆) =

(
1 +

10

ε

)
∆

cells if we walk in the directions of the canonical basis of Rd. It follows that there can be at most[
1 + 2

(
1 +

10

ε

)
∆

]d
≤
[
32

ε
∆

]d
cells in Lnear[i] close to each center of F , and thus there are at most kM cells in total.

Proposition D.11. By choosing
γ :=

ε

5tkM(2∆)p
,

The output Lnear of Algorithm D.3 satisfies
t∑

i=0

∫
Lnear[i]

κ(x,R(x))p ≤ εΛ

5
.

Proof. Each light cell has measure at most γ·Λ
2−pi . By computation,

t∑
i=0

∫
Lnear[i]

κ(x,R(x))pdP(x) ≤
t∑

i=1

∫
Lnear[i]

(2−i+1∆)pdP(x)

≤
t∑

i=1

kM · γ · Λ
2−pi

2−pi(2∆)p

= t · kM · γ · Λ · (2∆)p

≤ εΛ

5
.

Corollary D.12. Set
γ :=

ε

5tkM(2∆)p
.

Then for any set F of k-centers, the output R of Algorithm D.3 satisfies∫
X
κ(x,R(x))pdP(x) ≤ ε cost(F).

25

Proof. X is contained in the union of all L[i]’s and S[t]. Hence∫
X
κ(x,R(x))pdP(x) ≤ 2εΛ

5
+

ε

5
cost(F)

≤ 2ε(1 + ε)OPT

5
+

ε

5
cost(F)

≤ 4ε

5
OPT+

ε

5
cost(F)

≤ ε cost(F).

D.3.4 Coreset Size

To determine the size of our coreset, we bound the number of marked heavy cells, as all our
representative points are in marked heavy cells.

Fix FOPT to be a set of optimal centers for the (k, p)-clustering problem. WriteM[i] to denote the
set of marked heavy cells on the i-th layer and partitionM[i] as

Mclose[i] :=

{
Z ∈M[i] : min

x∈Z
κ(x, F) ≤ 2−pi+1

}
Mdist[i] :=

{
Z ∈M[i] : min

x∈Z
κ(x, F) > 2−pi+1

}
.

Proposition D.13. The marked heavy cellsMdist outputted by Algorithm D.3 satisfy∣∣∣∣∣∣
⋃

0≤i≤t

Mdist[i]

∣∣∣∣∣∣ ≤ 2β

γ
.

Proof. Each cell inMdist[i] has mass at least γ·Λ
2−pi+1 and each x ∈ Z ∈ Mdist[i] is of distance at

least 2−pi+1 to its closest center. Thus each cell contributes at least
γ · Λ
2−pi+1

· 2−pi+1 = γ · Λ

to the objective. If follows that there are at most

OPT

γΛ
≤ 1

γ
β (1 + ε) ≤ 2β

γ
.

such cells.

Proposition D.14. The marked heavy cellsMclose outputted by Algorithm D.3 satisfy

|Mclose[i]| ≤ k(7∆)d.

Proof. The furthest point x in a cellMclose[i] to its nearest center is

2−pi+1 + 2−i∆.

In other words, not including the cell containing the center, we can walk past at most

2i(1−p)+1 +∆ ≤ 2 + ∆

cells by walking along the direction of the canonical basis of Rd. Thus there are at most

k [1 + 2 (2 + ∆)]
d ≤ k [7∆]

d

such cells on the i-th layer.

Proposition D.15. The image of the map R outputted by Algorithm D.3 satisfies

N := |R(X)| ≤ 2β

γ
+ tk(7∆)d.

26

In particular, for
γ :=

ε

5tkM(2∆)p
,

we have

N := |R(X)| ≤ 3β

γ
= 3β · 5tkM(2∆)p

ε
.

Proof. The image is contained in the marked heavy cells.

D.3.5 k-Medians & k-Means

We now derive results for the case of p = 1.
Theorem D.16. Algorithm D.3 is ρ-replicable and outputs an ε-coreset of size

O

(
k25d∆d+1

εd+1
log

∆

ε ·OPT

)
for statistical k-medians with probability at least 1− δ. Moreover, it has sample complexity

Õ

(
k3215d∆3d+3

ρ2ε3d+3 ·OPT3 log
1

δ

)
.

Proof (Theorem D.16). By Corollary D.12, Algorithm D.3 outputs an ε-coreset. By Corollary D.6,
Algorithm D.3 is ρ-replicable with sample complexity

Õ

(
t2

ρ2γ3 ·OPT3 log
1

δ

)
.

We have

3β

γ
= O

(
k
[
25∆/ε

]d
(2∆)

ε
· log ∆

ε ·OPT

)
= O

(
k25d∆d+1

εd+1
log

∆

ε ·OPT

)
By Proposition D.15, the coreset has size at most this value.

Substituting the value of γ above and remarking that t is a polylogarithmic factor of the other terms,
we thus conclude that the final sample complexity is

Õ

(
k3215d∆3d+3

ε3d+3
· 1

ρ2 ·OPT3 log
1

δ

)
= Õ

(
k3215d∆3d+3

ρ2ε3d+3 ·OPT3

1

δ

)
.

Now consider the case of p = 2. We can perform our analysis with the help of a standard inequality.
Proposition D.17. For any set of centers F ,

Exκ(R(x), F)2 ≤ Exκ(x, F)2 + 2
√
Ex [κ(x, F)2] · Ex [κ(x,R(x))2] + Exκ(x,R(x))2

Exκ(x, F)2 ≤ Exκ(R(x), F)2 + 2
√
Ex [κ(R(x), F)2] · Ex [κ(x,R(x))2] + Exκ(x,R(x))2.

Thus if Exκ(x,R(x))2 ≤ ε2

26Exκ(x, F)2,

Exκ(R(x), F)2 ≤ Exκ(x, F)2 + 2 · 1
23

εEx

[
κ(x, F)2

]
+

1

26
ε2Ex

[
κ(x, F)2

]
≤
(
1 +

ε

4

)
Exκ(x, F)2

Exκ(x, F)2 ≤ Exκ(R(x), F)2 + 2

√
(1 + ε)Ex [κ(x, F)2] · 1

26
ε2Ex [κ(x, F)2] +

1

26
ε2Exκ(x, F)2

≤ Exκ(R(x), F)2 +
1

2
εEx

[
κ(x, F)2

]
+

1

26
ε2Exκ(x, F)2

≤ Exκ(R(x), F)2 + εExκ(x, F)2.

27

Proof. By Hölder’s inequality,

Exκ(R(x), F)2 ≤ Ex [κ(x, F) + κ(x,R(x))]
2

= Exκ(x, F)2 + 2Ex[κ(x, F)κ(x,R(x))] + Exκ(x,R(x))2

≤ Exκ(x, F)2 + 2
√

Ex [κ(x, F)2]Ex [κ(x,R(x))2] + Exκ(x,R(x))2.

The other case is identical.

Theorem D.18. Algorithm D.3 is ρ-replicable and outputs an ε-coreset for statistical k-means of size

O

(
k211d∆d+2

ε2d+2
log

∆2

εOPT

)
with probability at least 1− δ. Moreover, it has sample complexity

Õ

(
k3233d∆3d+6

ρ2ε6d+6 ·OPT3 log
1

δ

)
.

Proof (Theorem D.18). Similar to k-medians, Algorithm D.3 outputs an ε-coreset with probability at
least 1− δ, is ρ-replicable, and has sample complexity

Õ

(
t2

ρ2γ3 ·OPT3 log
1

δ

)
.

However, we need to take ε′ := ε2/26.

We have
3

γ
= O

(
tk
[
25+6∆/ε2

]d
(2∆)2

ε2

)
= O

(
k211d∆d+2

ε2d+2
log

∆2

εOPT

)
.

By Proposition D.15, the coreset has size at most this value.

t is a polylogarithmic factor of the rest of the parameters, thus we thus conclude that the final sample
complexity is

Õ

(
k3233d∆3d+6

ε6d+6
· 1

ρ2 ·OPT3

)
= Õ

(
k3233d∆3d+6

ρ2ε6d+6 ·OPT3 log
1

δ

)
.

It is not clear how to compare our guarantees with that of Frahling and Sohler [2005] as we attempt
to minimize the number of samples required from a distribution assuming only sample access. On
the other hand, Frahling and Sohler [2005] attempted to minimize the running time of their algorithm
assuming access to the entire distribution.

D.4 Replicable Multinomial Parameter Estimation

Now that we have reduced the problem to a finite distribution (coreset), we can think of it as a
weighted instance of (k, p)-clustering where the weights are unknown but can be estimated using
data.

Proposition D.19. Enumerate the coreset R(X) = r(1), . . . , r(N) and let w(i) be the probability
mass at r(i). If we have estimates ŵ(i) satisfying

|ŵ(i) − w(i)| < ε

N
,

then ∣∣∣∣∣
N∑
i=1

w(i)κ(r(i), F)p −
N∑
i=1

ŵ(i)κ(r(i), F)p

∣∣∣∣∣ ≤ ε.

for all centers F .

28

Proof. Indeed,∣∣∣∣∣
N∑
i=1

w(i)κ(r(i), F)p −
N∑
i=1

ŵ(i)κ(r(i), F)p

∣∣∣∣∣ ≤
N∑
i=1

|w(i) − ŵ(i)|κ(r(i), F)p

≤
N∑
i=1

|w(i) − ŵ(i)| · 1

≤ ε.

Let us formulate this as a replicable multinomial parameter estimation problem. Consider a multino-
mial distribution Z = (Z(1), . . . , Z(N)) of dimension N with parameters p(1), . . . , p(N) and n. Note
that this can be cast as a more general statistical query problem which we illustrate below. We allow
simultaneous estimation of more general statistical queries g1, . . . , gN : (Xn,P)→ R compared to
Impagliazzo et al. [2022], assuming they can be estimated with high accuracy and confidence from
data, say each query gj(x1, . . . , xn) concentrates about its true value Gj ∈ R with high probability.

Algorithm D.4 Replicable Rounding
1: rRounding(statistical queries g1, . . . gN , distribution P, number of samples n, error ε, replicabil-

ity ρ, confidence δ):
2: Sample x1, . . . , xn ∼ P
3: α← 2ε

ρ+1−2δ

4: for j ← 1, . . . , N : do
5: α(j) ← uniform random sample [0, α]
6: Split R into intervals I(j) = {[α(j) + zα, α(j) + (z + 1)α) : z ∈ Z}
7: Output the midpoint Ĝj of the interval within I(i) that gj(x1, . . . , xn) falls into
8: end for

Theorem D.20 (Replicable Rounding). Suppose we have a finite class of statistical queries
g1, . . . , gN and sampling n independent points from P ensures that

N∑
j=1

|gj(x1, . . . , xn)−Gj | ≤ ε′ :=
ε(ρ− 2δ)

ρ+ 1− 2δ

with probability at least 1− δ.

Then Algorithm D.4 is ρ-replicable and outputs estimates Ĝj such that

|Ĝj −Gj | ≤ ε

with probability at least 1− δ for every j ∈ [N]. Moreover, it requires at most n samples.

Proof. Outputting the midpoint of the interval can offset each gj(x1, . . . , xn) by at most α
2 . Hence

|Ĝj −Gj | ≤
ε(ρ− 2δ)

ρ+ 1− 2δ
+

ε

ρ+ 1− 2δ
= ε.

Consider two executions of our algorithm yielding estimates Ĝ(1), Ĝ(2). The probability that any
of the estimates fail to satisfy ℓ1-tolerance ε′ is at most 2δ. The two executions output different
estimates only if some random offset “splits” some Ĝ(1)

j , Ĝ
(2)
j . Conditioning on the success to satisfy

ℓ1-tolerance, this occurs with probability at most
N∑
j=1

|Ĝ(1)
j − Ĝ

(2)
j |

α
≤

N∑
j=1

|Ĝ(1)
j −Gj |+ |Ĝ(2)

j −Gj |
α

≤ 2ε′

α
≤ ρ− 2δ.

Accounting for the probability of failure to satisfy the ℓ1-tolerance of 2δ, our algorithm is ρ-replicable.

29

We note that Theorem D.20 can be thought of as a generalization of the SQ oracle (cf. Theorem D.2)
from Impagliazzo et al. [2022]. Indeed, simply using Theorem D.2 yields an extra factor of N in the
sample complexity as we must take a union bound.

Corollary D.21. Let ε, ρ ∈ (0, 1) and δ ∈ (0, ρ/3). There is a ρ-replicable algorithm that outputs
parameter estimates p̄ for a multinomial distribution of dimension N such that

(a) |p̄(i) − p(i)| ≤ ε for every i ∈ [N] with probability at least 1− δ.

(b) p̄(i) ≥ 0 for all i ∈ [N].

(c)
∑

i p̄
(i) = 1.

Moreover, the algorithm has sample complexity

O

(
ln 1/δ +N

ε2(ρ− δ)2

)
= Õ

(
N

ε2ρ2
log

1

δ

)
.

Proof. Define

ε′ :=
ε(ρ− 2δ)

ρ+ 1− 2δ
.

By Proposition B.1, sampling

n =
2 ln 1/δ + 2N ln 2

ε′2

≤ 8 ln 1/δ + 8N ln 2

ε2(ρ− 2δ)2
.

points implies that
∑N

i=1|p̂(i) − p(i)| < ε′ with probability at least 1− δ.

Thus running Algorithm D.4 with functions

gj(x1, . . . , xN) :=
1

N

N∑
i=1

1{xi = j}

yields p̄(i)’s such that |p̄(i) − p(i)| ≤ ε for each i ∈ [N]. If there are any negative p̄(i)’s, we can only
improve the approximation by setting them to 0. If the sum of estimates is not equal to 1, we can
normalize by taking

p̄(i) ← p̄(i) − 1

N

[∑
i

p̄(i) − 1

]
.

This introduces an additional error of ε/N for each p̂(i) and a maximum error of 2ε. Choosing
ε1 := ε/2 concludes the proof.

D.5 Replicable OPT Estimation for (k, p)-Clustering

Our coreset algorithm assumes the knowledge of a constant ratio estimation of OPT. If this is not
provided to us, we show in this section that it is possible to replicably compute such an estimate using
a two-step approach. First, we are able to produce replicable estimates with additive error ε simply
by approximately solving the sample (k, p)-clustering problem on a sufficiently large sample thanks
to uniform convergence (cf. Theorem C.9). Then, we repeat this process with ε← ε/2 until ε is but a
small fraction of the outputted estimate.

Theorem D.22 (OPT Estimation with Additive Error). Let β ≥ 1 be an absolute constant and
ε, ρ ∈ (0, 1), δ ∈ (0, ρ/3). Suppose we are provided with an algorithm A that, given an instance of
sample (k, p)-clustering, outputs an estimate Ξ of the value ÔPT such that

Ξ ∈
[
1

β
ÔPT, ÔPT

]
.

30

Then there is a ρ-replicable algorithm which produces an estimate Λ of OPT such that

Λ ∈
[
OPT

β
− ε,OPT+ε

]
with probability at least 1− δ. Moreover, the algorithm has sample complexity

Õ

(
k2d2

ε6ρ6
log

p

δ

)
.

We note that the algorithm A can be taken to be any β-approximation algorithm with some postpro-
cessing, where we divide the value of the cost by β. Alternatively, we can take A to be some convex
relaxation of our problem with constant integral gap.

Proof. Let X1, . . . , XN ∼ P be i.i.d. random variables. The output Ξ = A(X1, . . . , XN) ∈ [0, 1] is
thus a bounded random variable. Suppose we repeat this experiment n times to produce estimates
Ξ1, . . . ,Ξn. By an Hoeffding bound,

P

{
1

n

n∑
i=1

(Ξi − E[Ξ]) > ε

}
≤ 2 exp

(
−2nε2

)
.

Thus with
n ≥ 1

2ε2
ln

2

δ
trials, the average estimate Ξ̄ := 1

n

∑n
i=1 Ξi satisfies

∣∣Ξ̄− E[Ξ]
∣∣ < ε with probability at least 1− δ.

Now, by Theorem C.9, choosing

N = O

(
k2d2

ε4
log

np

δ

)
i.i.d. samples from P ensures that

∣∣∣ÔPT−OPT
∣∣∣ ≤ ε for all n trial with probability at least 1− δ.

Thus conditioning on success, we have

Ξi ∈
[
OPT

β
− ε,OPT+ε

]
for every trial i ∈ [n]. But then the average Ξ̄ also falls into this interval as well.

We have shown that there is an algorithm that outputs an estimate

Ξ̄ ∈ [E[Ξ]− ε,E[Ξ] + ε] ∩
[
OPT

β
− ε,OPT+ε

]
with probability at least 1− δ. Moreover, it has sample complexity

nN = O

(
1

ε2
log

1

δ
· k

2d2

ε4
log

(
p

ε2δ
log

1

δ

))
= O

(
k2d2

ε6
log2

p

εδ

)
We can now apply the replicable rounding algorithm (cf. Algorithm D.4) to achieve the desired
outcome. Indeed, by Theorem D.20, the output Λ after the rounding procedure is ρ-reproducible and
offsets the average Ξ̄ by at most ε. Hence we have

Λ ∈
[
OPT

β
− 2ε,OPT+2ε.

]
with probability at least 1− δ. Finally, the algorithm has sample complexity

O

(
k2d2

ε6ρ6
log2

p

ερδ

)
Choosing ε′ = ε/2 completes the proof.

31

Theorem D.23 (OPT Estimation with Relative Error). Fix ε, ρ ∈ (0, 1) and δ ∈ (0, ρ/3). There is
a ρ-replicable algorithm such that with probability at least 1− δ, it outputs an estimate Λ of OPT
where

Λ ∈
[

1

β(1 + ε)
OPT, (1 + ε)OPT

]
.

Moreover, it has sample complexity

Õ

(
k2d2β12

ε12ρ6 ·OPT12 log
p

δ

)
.

Proof. We run the estimation algorithm with additive error with

εi := 2−i

ρi := 2−iρ

δi := 2−iδ

for i = 1, 2, 3, . . . until we obtain an estimate Λi such that εi ≤ εΛi/2.

Remark that

2−i ≤ 1

2
εΛi

⇐= 2−i ≤ 1

2
ε

(
OPT

β
− 2−i

)
⇐⇒ 2−i

(
1 +

1

2
ε

)
≤ εOPT

2β

⇐= −i ≤ log
εOPT

4β

⇐⇒ i = log
β

εOPT
+ 2.

Thus the algorithm certainly terminates.

Upon termination, we output some Λ such that Λ ∈ [OPT/β − εΛ/2,OPT+εΛ/2]. It follows that

Λ ≤ OPT+
1

2
εΛ(

1− 1

2
ε

)
Λ ≤ OPT

Λ ≤ 1

1− ε
2

OPT

≤ (1 + ε)OPT

and

Λ ≥ OPT

β
− 1

2
εΛ

β

(
1 +

1

2
ε

)
Λ ≥ OPT

Λ ≥ 1

β(1 + ε)
OPT .

The probability of not being replicable in each iteration is 2−iρ. Hence the total probability is at most
∞∑
i=1

2−iρ = ρ

and similarly for δ.

32

Finally, there are O
(
log β

εOPT

)
iterations and the sample complexity of each iteration is bounded

above by the sample complexity of the final iteration where

2−i = Ω

(
εOPT

β

)
.

Hence the total sample complexity is

Õ

log
β

εOPT
· k2d2(

εOPT
β

)6 (
εOPT

β · ρ
)6 log

p

δ

 = Õ

(
k2d2β12

ε12ρ6 ·OPT12 log
p

δ

)
.

D.6 Putting it Together

We are now ready to prove the results on statistical k-medians and statistical k-means, which we
restate below for convenience. Recall that β is an absolute constant and hence disappears under the
big-O notation.
Theorem 4.2 (Theorem 3.1; Formal). Let ε, ρ ∈ (0, 1) and δ ∈ (0, ρ/3). Given black-box access to a
β-approximation oracle for weighted k-medians (cf. Problem 2.2), there is a ρ-replicable algorithm
for statistical k-medians (cf. Problem 2.1) such that, with probability at least 1 − δ, it outputs a
(1 + ε)β-approximation. Moreover, it has sample complexity

Õ

((
k2d2

ε12ρ6 ·OPT12 +
k3218d∆3d+3

ρ2ε3d+5 ·OPT3

)
log

1

δ

)
.

Proof (Theorem 4.2). First, we compute Λ, an estimate of OPT with relative error ε, confidence δ/3,
and replicability parameter ρ/3. Then, we produce an ε/2-coreset for k-medians of cardinality N with
confidence and replicability parameters δ/3, ρ/3. Finally, we estimate the mass at each point of the
coreset with confidence and replicability parameters δ/3, ρ/3 to an accuracy of

εΛ

4N
≤ εOPT

2N
.

By Proposition D.19, running the approximation oracle on the coreset with the estimated weights
yields a β(1 + ε)-approximation.

By Theorem D.23, computing Λ requires

Õ

(
k2d2

ε12ρ6 ·OPT12 log
1

δ

)
samples.

By Theorem D.16, the coreset construction yields a coreset of cardinality

N = O

(
k25d∆d+1

εd+1
log

∆

ε ·OPT
· 2d
)

= O

(
k26d∆d+1

εd+1
log

∆

ε ·OPT

)
and incurs a sample cost of

Õ

(
k3215d∆3d+3

ρ2ε3d+3 ·OPT3 · 2
3d 1

δ

)
= Õ

(
k3218d∆3d+3

ρ2ε3d+3 ·OPT3

1

δ

)
.

Finally, Corollary D.21 states that the probability mass estimation incurs a sample cost of

Õ

(
N3

ε2ρ2 · Λ2
log

1

δ

)
= Õ

(
N3

ε2ρ2 ·OPT2 log
1

δ

)
= Õ

(
k3218d∆3d+3

ε3d+3
· 1

ε2ρ2 ·OPT2 log
1

δ

)
= Õ

(
k3218d∆3d+3

ρ2ε3d+5 ·OPT2 log
1

δ

)
.

33

Theorem 4.3 (Theorem 3.1; Formal). Given black-box access to a β-approximation oracle for
weighted k-means (cf. Problem 2.2), there is a ρ-replicable algorithm for statistical k-means (cf.
Problem 2.1) such that, with probability at least 1− δ, it replicably outputs a (1+ ε)β-approximation.
Moreover, it has sample complexity

Õ

((
k2d2

ε12ρ6 ·OPT12 +
k3239d∆3d+6

ρ2ε6d+8 ·OPT3

)
log

1

δ

)
.

Proof (Theorem 4.3). Similar to k-median, we first compute Λ, an estimate of OPT with relative
error ε, confidence δ/3, and replicability parameter ρ/3. Then, we produce an ε/2-coreset for k-medians
of cardinality N with confidence and replicability parameters δ/3, ρ/3. Finally, we estimate the mass
at each point of the coreset with confidence and replicability parameters δ/3, ρ/3 to an accuracy of

εΛ

4N
≤ εOPT

2N
.

By Proposition D.19, running the approximation oracle on the coreset with the estimated weights
yields a β(1 + ε)-approximation.

By Theorem D.23, computing Λ requires

Õ

(
k2d2

ε12ρ6 ·OPT12 log
1

δ

)
samples.

By Theorem D.18, the coreset construction yields a coreset of cardinality

N = O

(
k211d∆d+2

ε2d+2
log

∆

εOPT
· 22d

)
= O

(
k213d∆d+2

ε2d+2
log

∆

εOPT

)
.

and incurs a sample cost of

Õ

(
k3233d∆3d+6

ρ2ε6d+6 ·OPT3 · 2
6d

)
= Õ

(
k3239d∆3d+6

ρ2ε6d+6 ·OPT3

1

δ

)
.

Finally, Corollary D.21 states that the probability mass estimation incurs a sample cost of

Õ

(
N3

ε2ρ2 · Λ2

1

δ

)
= Õ

(
N3

ε2ρ2 ·OPT2

1

δ

)
= Õ

(
k3239d∆3d+6

ε6d+6
· 1

ε2ρ2 ·OPT2

1

δ

)
= Õ

(
k3239d∆3d+6

ρ2ε6d+8 ·OPT2

1

δ

)
.

E The Euclidean Metric, Dimensionality Reduction, and (k, p)-Clustering

We now build towards a proof for Theorem 5.1, which states the formal guarantees of the replicable
k-medians and k-means algorithms under the Euclidean distance. Let us begin by recalling the
Johnson-Lindenstrauss lemma.
Theorem E.1 ([Johnson, 1984]). There exists a family of random linear maps πd,m from Rd → Rm

such that the following hold.

(i) For every d ≥ 1, ε, δ ∈ (0, 1/2), x ∈ Rd, and m = O (1/ε2 log 1/δ),
1

1 + ε
∥πx∥2 ≤ ∥x∥2 ≤ (1 + ε)∥πx∥2

with probability at least 1− δ.

(ii) πd,m is sub-Gaussian-tailed, thus for every unit vector x ∈ Rd and ε > 0,

∥πx∥2 ≥ 1 + ε

with probability at most exp
(
−Ω(ε2m)

)
.

34

Furthermore, we can take πd,m to be the set of random orthogonal projections Rd → Rm scaled by
a factor of

√
d/m.

We say that π ∈ πd,m is a standard random dimension-reduction map and write Pπ to denote the
projected distribution on Rm, i.e., Pπ(·) = P(π−1(·)).
As mentioned in Section 5, it is not entirely clear how to translate between sets of centers for high-
dimensional data and solutions sets for the compressed data. For this reason, our goal is to produce a
clustering function f : X → [k] which computes the label for any given point in polynomial time.
This also requires us to consider another notion of cost which is translated more easily.

Definition E.2 (Partition Cost). Define the cost of a k-partition C = (C(1), . . . , C(k)) of X as

cost(C) := min
u(j)∈Rd:j∈[k]

Ex

 k∑
j=1

1{x ∈ C(j)} · κ(x, u(j))p

 .

i.e., we consider the expected cost of picking the optimal centers w.r.t. the underlying data-generating
distribution. Similarly, we define the following sample partition cost.

Definition E.3 (Sample Partition Cost). We define the sample cost of a k-partition C of x1, . . . , xn as

ĉost(C, w) = min
u(j)∈Rd:j∈[k]

n∑
i=1

wi

k∑
j=1

1{xi ∈ C(j)}κ(xi, u
(j))p

where w ≥ 0,
∑

i wi = 1. i.e., we consider the cost that is induced by the distribution specified by w

on the samples. We write ĉost(C) to denote the cost with the uniform distribution on the samples.

Remark that if C is induced by F , then OPT ≤ cost(C) ≤ cost(F) and similarly for the sample
partition cost as well.

Theorem E.4 ([Makarychev et al., 2019]). Let x1, . . . , xn ∈ Rd be an instance of the Euclidean
(k, p)-clustering problem. Fix ε ∈ (0, 1/4), δ ∈ (0, 1) and suppose π : Rd → Rm is a standard
random dimension-reduction map with

m = O

(
p4

ε2
log

k

εδ

)
.

Then with probability at least 1− δ,

1

1 + ε
ĉost(C) ≤ ĉost(π(C)) ≤ (1 + ε)ĉost(C)

for every k-partition C of x1, . . . , xn.

In essence, this theorem tells us that if we let the centers of the clusters be the centers of the partition,
then the (sample) cost is preserved in the lower dimensional space. To the best of our knowledge,
this is the strongest result for dimensionality reduction in (sample) (k, p)-clustering which preserves
more than just the costs of optimal centers.

The rest of Appendix E serves to generalize Theorem E.4 for preserving partition costs in the
distributional setting. First, Appendix E.1 addresses the issue that a random orthogonal projection
can increase the diameter of our data in the worst case by scaling the original data by an appropriate
factor. Next, Appendix E.2 slightly generalizes Theorem E.4 to the weighted sample clustering
setting. Finally, Appendix E.3 extends Theorem E.4 to the distributional setting, culminating with
Theorem E.10, which may be of independent interest beyond replicability.

Recall that Pπ is the push-forward measure on π(X) induced by π. We write OPTπ to denote the
cost of an optimal solution to the statistical (k, p)-clustering problem on (π(X),Pπ) and ÔPTπ for
the (k, p)-clustering problem on π(x1), . . . , π(xn).

35

E.1 Scaling

We may assume that a standard dimension-reduction map π satisfies π =
√

d/mP for some orthogonal
projection P . Hence π has operator norm at most

√
d and

π(X) ⊆
√
dBm.

In order to apply our existing analysis, we first scale down the samples in the input space by a
factor of

√
d so that the projected space still lives in a κ-ball of diameter 1. This does not affect

our approximation guarantees as they are all multiplicative and hence scale-invariant. However, the
analysis we perform is on the scaled distribution with optimal cost OPT′ = d−p/2 OPT. This extra
term must be accounted for.

We proceed assuming now that X ⊆ 1√
d
Bd and π(X) ⊆ Bm.

E.2 Preserving Partition Costs

Let ĉost(C, w), ĉost(π(C), w) be the weighted cost of the partition and projected partition, respec-
tively. Recall this means that the points participate with weights w in the objective. Essentially, the
next result shows that since the projection guarantees do not depend on the number of points we are
projecting, we can simulate the weights by considering multiple copies of the points.
Proposition E.5. Let x1, . . . , xn ∈ Rd be an instance of the Euclidean (k, p)-clustering problem and
w1, . . . , wn ∈ R+ be weights which sum to 1. Fix ε ∈ (0, 1/4), δ ∈ (0, 1), and suppose π : Rd → Rm

is a standard random dimension-reduction map with

m = O

(
p4

ε2
log

k

εδ

)
.

Then with probability at least 1− δ,
1

1 + ε
ĉost(C, w) ≤ ĉost(π(C), w) ≤ (1 + ε)ĉost(C, w),

for every k-partition C of x1, . . . , xn.

Proof (Proposition E.5). First suppose that wi = ai/bi for ai, bi ∈ Z+ and consider
w′

i := lcm(b1, . . . , bn)wi ∈ Z+

obtained from wi by multiplying by the least common multiple of the denominators.

Let y1, . . . , yn′ be the multiset obtained from x1, . . . , xn by taking w′
i multiples of xi. The cost of

any partition of x1, . . . , xn with weights q1, . . . , qn is equal to the cost of the induced partition of
y1, . . . , yn′ with uniform weights. Thus we can apply Theorem E.4 on y1, . . . , yn′ to conclude the
proof.

Now, for general wi ∈ R+, we remark by the density of the rationals in R that there are some
q1, . . . , qn ∈ Q+ which sum to 1 and satisfy

n∑
i=1

|qi − wi| <
εmin(ÔPT, ÔPTπ)

2
.

Then for any k-partition C and u(1), . . . , u(k) ∈ Bd,∣∣∣∣∣∣
n∑

i=1

qi

k∑
j=1

1{xi ∈ C(j)}κ(xi, u
(j))p −

n∑
i=1

wi

k∑
j=1

1{xi ∈ C(j)}κ(xi, u
(j))p

∣∣∣∣∣∣
≤

n∑
i=1

|qi − wi|
k∑

j=1

1{xi ∈ C(j)}κ(xi, u
(j))p

≤
n∑

i=1

|qi − wi|

≤ ε

2
ÔPT.

36

In particular
1

1 + ε
cost(C, w) ≤ cost(C, q) ≤ (1 + ε) cost(C, w).

Similarly, for any v(1), . . . , v(k) ∈ Bm,∣∣∣∣∣∣
n∑

i=1

qi

k∑
j=1

1{xi ∈ C(j)}κ(π(xi), v
(j))p −

n∑
i=1

wi

k∑
j=1

1{xi ∈ C(j)}κ(π(xi), v
(j))p

∣∣∣∣∣∣
≤ ε

2
ÔPTπ,

which implies that
1

1 + ε
cost(π(C), w) ≤ cost(π(C), q) ≤ (1 + ε) cost(π(C), w).

Finally, we conclude that

cost(C, w) ≤ (1 + ε) cost(C, q)
≤ (1 + ε)2 cost(π(C), q)
≤ (1 + ε)3 cost(π(C), w)

cost(π(C), w) ≤ (1 + ε)3 cost(C, w).
Choosing ε′ to be a constant fraction of ε concludes the proof.

Corollary E.6. Let x1, . . . , xn ∈ Rd be an instance of the weighted Euclidean (k, p)-clustering
problem with non-negative weights w1, . . . , wn ∈ R+ which sum to 1. Fix ε ∈ (0, 1/4), δ ∈ (0, 1)
and suppose π : Rd → Rm is a standard random dimension-reduction map with

m = O

(
p4

ε2
log

k

εδ

)
.

Then with probability at least 1− δ,
1

1 + ε
ÔPT ≤ ÔPTπ ≤ (1 + ε)ÔPT.

Proof (Corollary E.6). The optimal clustering cost coincides with the cost of the partition induced
by the optimal centers.

E.3 Dimensionality Reduction

Let G = {g(1), . . . , g(k)} be a β-approximate solution to the statistical Euclidean (k, p)-clustering
problem on (π(X),Pπ). We would like to argue that the partition of X induced by G is a (1 + ε)β-
approximate partition with probability at least 1− δ. To do so, we first approximate X with a finite
set X̃ in a replicable fashion while preserving partition costs. This allows us to apply Proposition E.5.

Recall we write Λ to denote a replicable estimate of OPT such that Λ ∈ [OPT/β(1+ε), (1 + ε)OPT]
(cf. Theorem D.23). Consider a grid of length εΛ/(4p∆). for a point x ∈ X , we assign it to the center
of the cell that it belongs to, say x̃. Let X̃ := {x̃ : x ∈ X} denote this finite set and P̃ the distribution
induced by the discretization. Remark that κ(x, x̃) ≤ εΛ/(4p) for every x ∈ X .

Note that a partition of X induces a partition of X̃ and vice versa. We proceed without making any
distinction between the two.
Proposition E.7. For any point u ∈ Bd,

|κ(x, u)p − κ(x̃, u)p| ≤ p|κ(x, u)− κ(x̃, u)|.

Proof. By the mean value theorem, the function g : [0, 1]→ R given by z 7→ zp is p-Lipschitz:

|g(y)− g(z)| ≤ sup
ξ∈[0,1]

g′(ξ)|y − z|

≤ p|y − z|.

37

We write c̃ost(C) to denote the cost of the partition C of X̃ .
Proposition E.8. For any partition C of X

1

1 + ε
cost(C) ≤ c̃ost(C) ≤ (1 + ε) cost(C).

Proof. We have∣∣∣∣∣∣Ex

 k∑
j=1

1{x ∈ C(j)} · κ(x, u(j))p

− Ex

 k∑
j=1

1{x ∈ C(j)} · κ(x̃, u(j))p

∣∣∣∣∣∣
≤ Ex

 k∑
j=1

1{x ∈ C(j)} · |κ(x, u(j))p − κ(x̃, u(j))p|


≤ Ex

 k∑
j=1

1{x ∈ C(j)} · p|κ(x, u(j))− κ(x̃, u(j))|


≤ p · εΛ

4p

≤ ε

2
OPT .

Corollary E.9. Fix ε ∈ (0, 1/4), δ ∈ (0, 1) and suppose π : Rd → Rm is a standard random
dimension-reduction map with

d = O

(
p4

ε2
log

k

εδ

)
.

We have
1

(1 + ε)
OPT ≤ ÕPTπ ≤ (1 + ε)OPT ,

with probability at least 1− δ, where the probability is taken w.r.t. the choice of the random map.

Proof. The optimal clustering cost coincides with the cost of the partition induced by the optimal
centers. An application of Proposition E.8 yields the desired result.

Theorem E.10. Fix ε ∈ (0, 1/4), δ ∈ (0, 1) and suppose π ∈ πd,m is a standard random dimension-
reduction map with

m = O

(
p4

ε2
log

k

εδ

)
.

Let G = {g(1), . . . , g(k)} be a β-approximate solution to the statistical Euclidean (k, p)-clustering
problem on (π(X̃), P̃π). Then the partition of X induced by G is a (1 + ε)β-approximate partition
with probability at least 1− δ.

That is, for C = {C(1), . . . , C(k)} given by

C(j) :=
{
x ∈ X : g(j) = argming∈G κ(π(x̃), g(j))p

}
,

we have
cost(C) ≤ (1 + ε)βOPT .

Proof. We have

cost(C) ≤ (1 + ε)c̃ost(C) Proposition E.8

≤ (1 + ε)2c̃ost(π(C)) Proposition E.5

≤ (1 + ε)2c̃ost(G) G induces π(C)

≤ (1 + ε)2βÕPTπ G is β-approximate

≤ (1 + ε)3βOPT . Corollary E.9

Choosing ε′ to be a constant fraction of ε concludes the proof.

38

E.4 Summary of Dimensionality Reduction

Before proving Theorem 5.1, let us summarize the stages of our pipeline.

1) Scale the input data by 1/
√
d.

2) Estimate OPT of the scaled data within a multiplicative error.
3) Discretize the scaled data with a fine grid.
4) Project the scaled data with a random map π ∈ πd,m.
5) Compute a coreset on the projected data.
6) Estimate the probability mass at each point of the coreset.

7) Call the β-approximation oracle to produce k centers g(1), . . . , g(k).
8) Output the clustering function induced by the centers.

The clustering function proceeds as follows. Given a point x ∈ X ,

1) Scale x by 1/
√
d.

2) Discretize the scaled point with the same grid used in the algorithm.
3) Project the discretized point using the same π used in the algorithm.

4) Output the label of the closest center g(j) in the lower dimension for j ∈ [k].

We are now ready to prove Theorem 5.1, which we restate below for convenience.
Theorem 5.1 (Theorem 3.2; Formal). Let ε, ρ ∈ (0, 1) and δ ∈ (0, ρ/3). Given a β-approximation
oracle for weighted Euclidean k-medians (k-means), there is a ρ-replicable algorithm that outputs
a clustering function such that with probability at least 1 − δ, the cost of the partition is at most
(1 + ε)βOPT. Moreover, the algorithm has sample complexity

Õ

(
poly

(
kd

ρOPT

)(
2
√
m

ε

)O(m)

log
1

δ

)
,

where m = O
(

1
ε2 log

k
δε

)
.

Proof (Theorem 5.1). We randomly draw some π ∈ πd,m for

d = O

(
p4

ε2
log

k

εδ

)
.

Then, we discretize a sufficiently large sample after scaling and push it through π. We then run
the corresponding algorithm (cf. Theorem 4.2, Theorem 4.3) to produce some centers G for the
compressed data. This allows us to partition X according to the closest member of G in the lower
dimension. An application of Theorem E.10 yields the performance guarantees of this algorithm.

The sample complexity guarantee from Theorem 4.2, Theorem 4.3 is for the scaled distribution and
the scaled optimal cost satisfies OPT′

π = d−p/2 OPTπ . Hence the sample complexity resolves to

Õ

(
poly

(
kd

ρOPT

)(
2
√
m

ε

)O(m)

log
1

δ

)

We conclude the proof by remarking that for the Euclidean metric, ∆ =
√
d and that

O(log n)O(logn) = nO(log logn).

F k-Centers

In this section, we will explain our approach to solving the statistical k-centers problem (cf. Prob-
lem 2.3). As we explained before, since this problem has a different flavor compared to (k, p)-
clustering, we introduce some extra assumptions in order to be able to solve it from samples. To
the best of our knowledge, this is the first work that considers a model of statistical flavor for the
k-centers problem.

39

F.1 Assumptions

First, we describe an assumption that is necessary to obtain good clustering solutions even if we do
not insist on using replicable algorithms.
Assumption F.1 (Clusterable). For some absolute constants β,B > 0, an i.i.d. sample S =
x1, . . . , xn of size n from P has the following property. With probability at least q, there exists some
(β,B)-approximate solution F∗ to Problem 2.3 such that, for every f ∈ F∗ there is some xf ∈ S
with F∗(xf) = f . Here q ∈ [0, 1].

Assumption F.1 is necessary to obtain good clustering solutions even in the non-replicable case.
Our distribution P must be sufficiently well-behaved so that solving the sample k-centers problem
translates to a good solution in the population case. Essentially, this assumption states that with high
probability, the sample will contain a point from every single cluster of some (β,B)-approximate
solution. In order to design replicable algorithms, we need to make a stronger assumption.
Assumption F.2 (Replicable). For some absolute constants β,B, there exists a (β,B)-approximate
solution F∗ to Problem 2.3 with the following property. With probability at least q, in an i.i.d. sample
S = x1, . . . , xn of size n from P, for every f ∈ F∗, there is some xf ∈ S with F∗(xf) = f . Here
q ∈ [0, 1].

Note that Assumption F.1 guarantees that, with high probability, every sample will help us identify
some good solution. However, these good solutions could be vastly different when we observe
different samples, thus this assumption is not sufficient to design a replicable algorithm with high
utility. Assumption F.2 is necessary to attain replicable solutions. Indeed, this assumption essentially
states that there is a fixed solution for which we will observe samples from every cluster with high
probability. If this does not hold and we observe points from clusters of solutions that vary signifi-
cantly, we cannot hope to replicably recover a fixed approximate solution. Note that Assumption F.2
is stronger than Assumption F.1, since we have flipped the order of the existential quantifiers. One
way to satisfy this assumption is to require that there is some (β,B)-approximate solution so that the
total mass that is assigned to every cluster of it is at least 1/n for some n ∈ N. Then, by observing
Õ(n) points, we will receive at least one from every cluster with high probability. This is made
formal in Proposition F.3.
Proposition F.3 ([Janson, 2018]). Let δ ∈ (0, 1). Under Assumption F.2, a sample of

O

(
nm

q
log

1

δ

)
points contains at least m points from each cluster of F∗ with probability at least 1− δ.

Proof (Proposition F.3). Let Yi be a geometric variable with success rate q, which denotes the
number of batches of n samples we draw until a point from each cluster of F∗ is observed. Then
Y :=

∑m
i=1 Yi upper bounds the number of batches until we obtain m points from each cluster.

As shown in Janson [2018],
P{Y ≥ λEY } ≤ exp(1− λ)

EY =
m

q
.

The result follows by picking λ = 1 + log(1/δ).

F.2 High-Level Overview of the Approach

We are now ready to provide a high-level overview of our approach to derive Theorem 3.3. We first
take a fixed grid of side c in order to cover the unit ball. Then, we sample sufficiently many points
from P. Subsequently, we round all the points of the sample to the centers of the cells of the grid that
they fall into. Using these points, we empirically estimate the density of the distribution on every cell
of the grid. Next, in order to ensure that our solution is replicable, we take a random threshold from a
predefined interval and discard the points from all the cells whose density falls below the threshold.
Finally, we call the approximation oracle that we have access to using the points that have survived
after the previous step. We remark that unlike the (k, p)-clustering problem (cf. Problem 2.1), to the
best of our knowledge, there does not exist any dimensionality reduction techniques that apply to the
k-centers problem. In the following subsections we explain our approach in more detail.

40

F.3 Oracle on Sample

As we explained before, we require black-box access to an oracle O for the combinatorial k-centers
problem on a sample which outputs (β̂, B̂)-approximate solutions F̂ for Problem 2.4. Thus, we need
to show that, with high probability, the output of this solution is a good approximation to Problem 2.3.
This is shown in Proposition F.4.

Proposition F.4. Suppose there is a (β,B)-approximate solution F∗ for Problem 2.3 and that we are
provided with a sample of size O(n log(1/δ)/q) containing an observation from each cluster of F∗,
with probability at least 1− δ. Then, the output F̂ of the oracle O on the sample satisfies

κ(x, F̂) ≤ (2β + β̂)OPT+2B + B̂.

for all x ∈ X , with probability at least 1− δ.

In the previous result (β,B), (β̂, B̂) are the approximation parameters that we inherit due to the fact
that we receive samples from P and that we solve the combinatorial problem approximately using O,
respectively.

Proof (Proposition F.4). Let F∗ denote the (β,B)-approximate solution from Assumption F.2. We
condition on the event that such a solution exists in the sample, which occurs with probability at least
1− δ.

Fix x ∈ X , which is not necessarily observed in the sample. We pay a cost of βOPT+B to travel to
the nearest center of F∗. Next, we pay another βOPT+B to travel to the observed sample from this
center. Finally, we pay a cost of

ĉost(F̂) ≤ β̂ÔPT + B̂

≤ β̂OPT+B̂.

to arrive at the closest center in F̂ .

F.4 Oracle with Grid

The issue with using directly the output ofO on a given sample is that the result will not be replicable,
since we have no control over its behavior. In a similar way as with the (k, p)-clustering problem,
the main tool that we have in our disposal to “stabilize” the output of O is to use a grid. Unlike
the other problems, we cannot use the hierarchical grid approach in this one. The reason is that,
due to the min-max nature of k-centers, we need to cover the whole space and not just the points
where the distribution is dense. Recall that so far we have established that the oracle O outputs
(2β + β̂, 2B + 2B̂)-approximate solutions F for Problem 2.3, given that Assumption F.2 holds.
Algorithm F.1 “discretizes” the points of the sample using a grid with side-length c before applying
the oracle. Proposition F.5 shows that by doing that, we have to pay an extra additive term that is of
the order O(c∆).

Algorithm F.1 Oracle with Grid
1: Oracle with Grid(oracle O, sample x1, . . . , xn, grid length c):
2: for i← 1, . . . , n do
3: Decompose xi = zi · c+ x′

i for some zi ∈ Zd, x′
i ∈ [0, c)d

4: x̃i ← zi · c+ (c/2, c/2, . . . , c/2) {x̃i is the center of the cell that contains xi.}
5: end for
6: Return O(x̃1, . . . , x̃n)

Proposition F.5. Suppose there is a (β,B)-approximate solution F∗ for Problem 2.3 and that we are
provided with a sample of size n containing an observation from each cluster of F∗. Let G̃ denote
the output of Algorithm F.1 using a (β̂, B̂)−approximation oracle O for Problem 2.4. Then, for any
x ∈ X ,

κ(x, G̃) ≤ (2β + β̂)OPT+2B + B̂ + (4β + 2β̂ + 1)c∆ .

41

Proof (Proposition F.5). For the sake of analysis, imagine we used the grid to discretize all points of
X 7→ X̃ . Then F∗ is a solution with cost βÕPT +B + c∆ and we observe a point from each of its
clusters in our discretized sample. Here ÕPT is the cost of a solution to Problem 2.3 on X̃ .

Proposition F.4 shows that the oracle returns a solution G̃ with cost at most

(2β + β̂)ÕPT + (2B + c∆) + B̂

on the discretized points.

Then for any x ∈ X ,

ÕPT = κ(x, G̃OPT)

≤ κ(x, x̃) + κ(x̃, G̃OPT)

≤ κ(x, x̃) + κ (x̃, FOPT)

≤ 2κ(x, x̃) + κ(x, FOPT)

≤ 2c∆+OPT .

The conclusion follows by combining the two inequalities.

F.5 Replicable Active Cells

At a first glance, we might be tempted to work towards replicability by arguing that, with high
probability, every grid cell is non-empty in one execution of the algorithm if and only if it is non-
empty in another execution. However, since we have no control over P, it is not clear how one can
prove such a statement. Our approach is to take more samples and ignore cells which do not have a
sufficient number of points using some random threshold. The idea is similar to the heavy-hitters
algorithm (cf. Algorithm D.2) originally conceived by Impagliazzo et al. [2022] and is presented in
Algorithm F.2. Then, we move all the points of active cells to the center of the cell. Notice that in the
k-center objective, unlike the (k, p)-clustering objective, we do not care about how much mass is
placed in a cell, just whether it is positive or not.

We first derive a bound on the number of cells that the distribution puts mass on. It is not hard to
see that since we are working in a bounded domain, the grid contains at most (1/c)d cells in total.
Thus there are at most M ≤ (1/c)d cells that have non-zero mass. Proposition F.6 shows how we can
obtain such a bound in the unbounded domain setting.
Proposition F.6. Let F∗ be a (β,B)-approximate solution for Problem 2.3. Let M denote the
maximum number of cells which intersect some cluster of F∗ and P̃ the discretized distribution that is
supported on centers of the cells of the grid of size c. Then, the support of P̃ is at most kM where

M ≤
(
c+ 2c∆+ 2(βOPT+B)

c

)d

.

Proof (Proposition F.6). Fix a center f and consider the cell Z containing the center. The farthest
point in the farthest cell in the cluster of f is of distance at most βOPT+B + c∆ and thus the cells
we are concerned with sit in an ℓ∞ ball of that radius. Not including Z, we walk past at most

βOPT+B + c∆

c

cells along the canonical basis of Rd, hence there are at most[
1 + 2c∆+

2

c
(βOPT+B)

]d
such cells.

Notice that the previous discussion and Proposition F.5 reveal a natural trade-off in the choice of the
parameter c: by reducing c, we decrease the additive error of our approximation algorithm but we
increase the number of samples at a rate (1/c)d. Since we have bounded the number of cells from
which we can observe a point, the next step is to use a sufficiently large number of samples so that
we can estimate replicably whether a cell is active or not. This is demonstrated in Algorithm F.2.

42

Algorithm F.2 Replicable Active Cells
1: rActiveCells(grid length c):
2: m← Õ

(
λknM2

/ρ2
)

3: N ← λnmM
4: Sample x1, . . . , xN ∼ P,
5: Lazy initialize counter Z = 0 for every cell of the grid with length c
6: for i← 1, . . . , N do
7: Gi ← cell that samples xi falls into
8: Increment Z(Gi)← Z(Gi) + 1
9: end for

10: Choose v ∈ [0,m/N] uniformly randomly
11: Output all Gi such that Z(Gi)/N ≥ v

Proposition F.7. Suppose Assumption F.2 holds and let F∗ be the (β,B)-approximate solution. Let
δ, ρ ∈ (0, 1). Then Algorithm F.2 is ρ-replicable and returns cells of the grid such that at least one
sample from each cluster of F∗ falls into these cells with probability at least 1− δ. Moreover, it has
sample complexity

Õ

(
n2kM3 log(1/δ)

q2ρ2

)
.

Proof (Proposition F.7). Enumerate the kM cells within the support of P and let the counter Z(j)

denote the number of samples at the j-th cell. Then Z = (Z(1), . . . , Z(kM)) follows a multinomial
distribution with parameters (p(1), . . . , p(kM)) and N, where p is unknown to us. Nevertheless, by
Proposition B.1, for any ε ∈ (0, 1), sampling

N ≥ ln 5/δ + kM ln 2

2ε2

points implies that
∑a

j=1|p̂(j) − p(j)| < 2ε with probability at least 1− δ/5. From the definition of
N , this is equivalent to

m ≥ ln 5/δ + kM ln 2

nMε2
.

By Proposition F.3, we observe at least mM points from each cluster of F∗ with probability at least
1− δ.

Let p̂(j)1 , p̂
(j)
2 be the empirical mean of Z(j) across two different executions of Algorithm F.2. Then

by the triangle inequality,
∑kM

j=1|p̂
(j)
1 − p̂

(j)
2 | ≤ 4ε.

Since we observe at least Mm points from each cluster of F∗, there is at least one point from each
cluster with at least m observations. Thus outputting the points j such that p̂(j) ≥ v for some
v ∈ [0,m/N] means we always output one point from each cluster.

Now, the outputs between two executions are not identical only if the point v “splits” some pair
p̂
(j)
1 , p̂

(j)
2 . This occurs with probability at most 4ε/(m/N) = 4Nε/m, To bound this value by ρ/5, set

ε ≤ ρm

20N

=
ρ

20λnM
.

Plugging this back yields

m ≥
400λnM ln 5

δ + 400λnkM2 ln 2

ρ2
.

All in all, Algorithm F.2 outputs the desired result with probability at least 1− δ and is ρ-replicable
given

Õ

(
n2kM3 log(1/δ)

q2ρ2

)
samples from P.

43

F.6 Putting it Together

We now have all the ingredients in place to prove Theorem 3.3. The proof follows directly by
combining Proposition F.5, and Proposition F.7. Essentially, we replicably estimate the active cells of
our grid and then move all the points of each active cell to its center.

For completeness, we also state the formal version of Theorem 3.3.
Theorem F.8 (Theorem 3.3; Formal). Let δ, ρ ∈ (0, 1). Suppose Assumption F.2 holds and let F∗ be
the (β,B)-approximate solution. Then, given black-box access to a (β̂, B̂)-approximation oracle for
Problem 2.4, Algorithm F.2 is ρ-replicable and returns a solution F̂ such that

κ(x, F̂) ≤ (2β + β̂)OPT+2B + B̂ + (4β + 2β̂ + 1)c∆

with probability at least 1− δ. Moreover, the algorithm requires at most

Õ

(
n2k (1/c)

3d
log(1/δ)

q2ρ2

)
samples from P.

44

	Introduction
	Related Works

	Setting & Notation
	Clustering Methods and Generalizations
	Parameters p and kappa

	Replicability

	Main Results
	Overview of (k, p)-Clustering
	Coresets
	Replicable Quad Tree
	Putting it Together

	The Euclidean Metric, Dimensionality Reduction, and (k, p)-Clustering
	Running Time for (k, p)-Clustering
	Replicable k-Centers
	Experiments
	Conclusion & Future Work
	Tables
	Useful Facts
	Uniform Convergence of (k, p)-Clustering Costs
	History of Uniform Laws of Large Numbers
	Rademacher Complexity
	Metric Entropy
	Uniform Convergence of (k, p)-Clustering Cost

	(k, p)-Clustering
	Warm-Up: Replicable SQ Oracle and Epsilon-Covers
	Replicable Heavy-Hitters
	Replicable Coreset
	Pseudocode
	Replicability
	Expected Shift
	Coreset Size
	k-Medians & k-Means

	Replicable Multinomial Parameter Estimation
	Replicable OPT Estimation for (k, p)-Clustering
	Putting it Together

	The Euclidean Metric, Dimensionality Reduction, and (k, p)-Clustering
	Scaling
	Preserving Partition Costs
	Dimensionality Reduction
	Summary of Dimensionality Reduction

	k-Centers
	Assumptions
	High-Level Overview of the Approach
	Oracle on Sample
	Oracle with Grid
	Replicable Active Cells
	Putting it Together

