
Under review as a Tiny Paper at ICLR 2024

BAD PREDICTIVE CODING ACTIVATION FUNCTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

We investigate predictive coding networks (PCNs) by analyzing their performance
under different activation function choices. We expand a previous theoretical
discussion of a simple toy example of PCN in the training stage. Compared to
classic gradient-based empirical risk minimization, we observe differences for the
ReLU activation function. This leads us to carry out an empirical evaluation of
classification tasks on FashionMNIST, CIFAR-10. We show that while ReLU
might be a good baseline for classic machine learning, for predictive coding, it
performs worse than other activation functions while also leading to the largest
drop in performance compared to gradient-based empirical risk minimization.

1 INTRODUCTION

Consider the following setup: Let f : R → R be a (typically nonlinear) activation function, α, β ∈ R
weights and s, v, w are its three nodes, where we assume that the s node is fixed to an input value.
Using the notation from Frieder & Lukasiewicz (2022), our simple predictive coding network is:

We focus on this single, illustrative example (rather than the general case of a network composed of
an arbitrary number of nodes) to make the paper easily readable.1 Note that the predictive coding
literature defines the network nodes independently of input values and then fixes arbitrary nodes
as input nodes (the same holds true for output values when training the network); for brevity of
exposition, we directly assume s to be the input. We define the energy function associated to this
network class by

F(s, v, w, α, β) := 1
2(v − αf(s))2 + 1

2(w − βf(v))2, (1)

which governs both the inference as well as the training of the network, which, in predictive coding,
are two distinct stages.

For the inference stage, the weights are fixed to vales α := ξ, β := τ , for some ξ, τ ∈ R. Predictive
coding then aims to find

(v⋆, w⋆) = min
(v,w)

F(s, v, w, ξ, τ)

and w⋆ is called the output of the network.

For the training stage, where (s, q) ∈ R2 is our single training datum, predictive coding aims to
minimize

(v⋆, α⋆, β⋆) = min
(v,α,β)

F(s, v, q, α, β). (2)

It was shown in Frieder & Lukasiewicz (2022) that for the inference stage, executing convergence
numerically is unnecessary since the fixed point, to which the system would converge, is easy to
characterize: w⋆ is precisely the output of the network if it were to be interpreted to be a fully-
connected neural network, i.e. w⋆ = τf(ξf(s)). Hence, no further analysis specific to predictive
coding is necessary in this case, as results from classic machine learning hold. But investigating the
training stage has been left open.

1We advocate systematically using this example-first approach, adapted from Frieder & Lukasiewicz (2022),
once the general model equations exceed a certain threshold of complexity.

1



Under review as a Tiny Paper at ICLR 2024

Figure 1: (Left) The energy landscape at convergence for different choices of the activation function
over all the possible combinations of initial weights α and β in the chosen intervals. The plot shows
wide regions in the cases of ReLU and hard_tanh+ in which the energy does not converge. For
GELU and leaky_relu we only see some isolated picks that are due to numerical approximation
errors during the training process. (Right) Average best performance of predictive coding and
backpropagation over different activation functions. Confirming our observation, choosing ReLU as
activation function results in the lowest accuracy for the predictive coding network. The shaded area
around each line indicates the standard deviation of the accuracy across the different training seeds.

2 ANALYSIS

From Frieder & Lukasiewicz (2022), we know that under sufficient differentiability conditions of
F (and thus on f ) the critical points of F admit a characterization using derivatives. Now, those
conditions on f also mean we can characterize the critical points of the empirical risk, E, used as the
objective function in classic machine learning. In our toy-example framework of a single datapoint
(s, q) ∈ R2, E(s, α, β) := 1

2 (βf(αf(s)) − q)2, where, for consistency to the definition of F, we also
use the squared error loss per datapoint. Compare the resulting two systems of equations whose
solutions are the critical point:

v⋆ − α⋆f(s) − f ′(v⋆)β⋆[q − β⋆f(v⋆)] = 0,

f(s)(v⋆ − α⋆f(s)) = 0,

f(v⋆)(q − β⋆f(v⋆)) = 0,

and
{

[β⋆f(α⋆f(s)) − q]β⋆f ′(α⋆f(s))f(s) = 0,

[β⋆f(α⋆f(s)) − q]f(α⋆f(s)) = 0.

Note that the solutions to 2 are among the solutions of the left system, whereas to minima that
one obtains in classic machine learning are among the solutions of the right system, which has one
coordinate less, as the variable v⋆ is missing.

We make the surprising observation that for some activation functions, such as hard_tanh, the
critical points of both systems coincide, which leads us to believe that (modulo difference of the
optimizer used to attain, and the local geometry around the minima), the training could result in
similar outcomes. For commonly used activation functions in classic machine learning on the other
hand, such as ReLU the critical points differ, which shows that there may be a principal barrier in
terms of achieving identical results whether we train the network using PC or using classic gradient
descent. This observation prompts us to investigate empirically the properties of networks trained
with predictive coding and classical gradient descent for varying activation functions, see Figure 1
and Appendix B.

3 CONCLUSION

We shown how we cannot rely on pre-existing knowledge developed for classical machine learning,
where we use backpropagation-based gradient descent to minimize empirical risk. When it comes to
predictive coding, new analyses are necessary as known baselines (regarding the efficacy of ReLU)
do not seem to carry over. We call for further study of this phenomenon to investigate whether our
preliminary observation is confirmed in more systematic investigations.

2



Under review as a Tiny Paper at ICLR 2024

URM STATEMENT

The authors acknowledge that at least one of the key authors (first/last) of this work meets the URM
criteria of ICLR 2024 Tiny Papers Track.

REFERENCES

Nick Alonso, Jeff Krichmar, and Emre Neftci. Understanding and improving optimization in
predictive coding networks. arXiv preprint arXiv:2305.13562, 2023.

Billy Byiringiro, Tommaso Salvatori, and Thomas Lukasiewicz. Robust graph representation learning
via predictive coding. arXiv:2212.04656, 2022.

Simon Frieder and Thomas Lukasiewicz. (Non-)Convergence results for predictive coding networks.
In International Conference on Machine Learning, pp. 6793–6810. PMLR, 2022.

Kuan Han, Haiguang Wen, Yizhen Zhang, Di Fu, Eugenio Culurciello, and Zhongming Liu. Deep
predictive coding network with local recurrent processing for object recognition. Advances in
Neural Information Processing Systems, 31, 2018.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification with deep
convolutional neural networks. Advances in neural information processing systems, 25, 2012.

Beren Millidge, Alexander Tschantz, and Christopher L. Buckley. Predictive coding approximates
backprop along arbitrary computation graphs. arXiv:2006.04182, 2020.

Luca Pinchetti, Tommaso Salvatori, Yordan Yordanov, Beren Millidge, Yuhang Song, and Thomas
Lukasiewicz. Predictive coding beyond Gaussian distributions. In Advances in Neural Information
Processing Systems, volume 35, 2022.

Tommaso Salvatori, Yuhang Song, Yujian Hong, Lei Sha, Simon Frieder, Zhenghua Xu, Rafal Bogacz,
and Thomas Lukasiewicz. Associative memories via predictive coding. In Advances in Neural
Information Processing Systems, volume 34, 2021.

Tommaso Salvatori, Luca Pinchetti, Beren Millidge, Yuhang Song, Tianyi Bao, Rafal Bogacz,
and Thomas Lukasiewicz. Learning on arbitrary graph topologies via predictive coding.
arXiv:2201.13180, 2022.

Tommaso Salvatori, Ankur Mali, Christopher L Buckley, Thomas Lukasiewicz, Rajesh PN Rao, Karl
Friston, and Alexander Ororbia. Brain-inspired computational intelligence via predictive coding.
arXiv preprint arXiv:2308.07870, 2023.

Yuhang Song, Thomas Lukasiewicz, Zhenghua Xu, and Rafal Bogacz. Can the brain do
backpropagation?—Exact implementation of backpropagation in predictive coding networks.
In Advances in Neural Information Processing Systems, volume 33, pp. 22566–22579, 2020.

Yuhang Song, Beren Millidge, Tommaso Salvatori, Thomas Lukasiewicz, Zhenghua Xu, and
Rafal Bogacz. Inferring neural activity before plasticity as a foundation for learning beyond
backpropagation. Nature Neuroscience, pp. 1–11, 2024.

James C. R. Whittington and Rafal Bogacz. An approximation of the error backpropagation algorithm
in a predictive coding network with local Hebbian synaptic plasticity. Neural Computation, 29(5):
1229–1262, 2017.

3



Under review as a Tiny Paper at ICLR 2024

A RELATED WORK

In recent years, predictive coding has become an influential biologically inspired learning algorithm,
proving that alternatives to gradient descent and backpropagation can exist. In particular, predictive
coding has been shown to have competitive performances in feed-forward models, convolutional
networks, graph neural networks, and transformer models (Whittington & Bogacz, 2017; Han et al.,
2018; Byiringiro et al., 2022; Pinchetti et al., 2022). This can be attributed to its similarities with
gradient descent and backpropagation Song et al. (2020); Millidge et al. (2020). Another “branch” of
works has been focusing on the differences between the two algorithms, highlighting, for example,
different architectures obtainable with predictive coding (Salvatori et al., 2022), exciting novel
applications of neural networks (Salvatori et al., 2021), and the need for new optimizers (Alonso
et al., 2023). Most of the research is focused on empirical methods, while few works (e.g., Frieder &
Lukasiewicz (2022)) take a theoretical approach to the analyses of these networks (Salvatori et al.,
2023).

B NUMERICAL EXPERIMENTS

Energy landscape: We perform a grid search over the possible initial value of parameters α and β
over the interval [−1.5, 1.5] and show how the energy function might not converge to a value that
minimizes the empirical risk. We used a node learning rate γ = 0.01 and a weight learning rate
γ̄ = 0.001 to simulate the dynamical system described in Eq. (10) in Frieder & Lukasiewicz (2022),
on which the current work also focuses. As initial values for s and q, we randomly sampled from
the uniform distribution within the intervals of, respectively, (0, 1) and (−1, 1) (we avoided negative
values for s as it would trivially prevent the network from learning when using the ReLU activation
function. Furthermore, v was initialized with a forward pass (i.e., v = αf(s)), which is the most
common initialization for predictive coding networks and allows us to plot the energy in a 3D space,
having only two free variables, α and β (Whittington & Bogacz (2017), Alonso et al. (2023)). To
guarantee convergence, we used a high value of steps T = 100000. In Fig. 3, we report two more
sets of energy landscapes for new random input/output (s, q) pairs.

Figure 2: (left) Test error over the training epochs of AlexNet trained with predictive coding
when using leaky_relu against ReLU. (right) Average best performance of predictive coding and
backpropagation over different activation functions with AlexNet. The two graphs highlight the
performance impact caused by using the ReLU activation function.

Classification: We tested our findings in classification tasks on the FashionMNIST and CIFAR10
datasets. We have used squared loss for classification, since traditionally, in predictive coding, square
loss is used for all tasks, including classification (see, e.g., Whittington & Bogacz (2017), equation
(2.2) and algorithm 1, or Song et al. (2024), equation (6)).

4



Under review as a Tiny Paper at ICLR 2024

The classification experiments reported in this work were conducted using the variation of predictive
coding called Inference Learning (IL) algorithm as described in Song et al. (2020). IL requires a
fixed amount of inference steps T to approximate the convergence of the node values. Here, we
used T = 16, which is a common value found in literature (e.g., Whittington & Bogacz (2017)).
In order to guarantee the validity of our results, we perform a hyperparameter search on the node
learning rate γ ∈ {0.005, 0.01, 0.05, 0.1} (only for predictive coding) and weight learning rate
γ̄ ∈ {10−4, 5 · 10−4, 101−3} (for both backpropagation and predictive coding). We reported the
best average test accuracy (over 5 seeds, the light area represents the standard deviation) for each
activation function and training algorithm. We use Stochastic Gradient Descent as an optimizer for
the nodes and Adam for the weights. We trained for e = 16 epochs using a batch size of b = 128 and
early stopping. Results in Fig. 1 are obtained with a feed-forward fully-connected network composed
of L = 3 hidden layers of w = 128 hidden neurons each. In Fig. 2, we report the accuracy achieved
with AlexNet (Krizhevsky et al., 2012) on the CIFAR10 dataset. The performance difference between
backpropagation and predictive coding reflects our previous findings. Furthermore, we report the
test accuracy for the predictive coding network over the training epochs to highlight the difference
between the leaky_relu and ReLU activation functions: with ReLU, not only is the best accuracy is
lower, but the training also results unstable, and the network consistently diverges to almost random
choice. Due to computing limitations, experiments on AlexNet were conducted on three different
random seeds.

We find that 1) for predictive coding, the ReLU activation function performs the worst among the five
possibilities (i.e., ReLU, tanh, hard_tanh, GELU, and leaky_relu), and 2) the ReLU activation
function results in a much larger drop in performance compared to classic gradient-descent based
machine learning. This confirms the expected behavior derived from our theoretical observation
regarding differences of critical points. leaky_relu highlights how a small modification of the used
activation function can result in significant accuracy gains. We report the average best-achieved test
accuracy in Fig. 1, which shows how gradient descent does not incur the same performance loss as
predictive coding when using ReLU.

To strengthen our claims by providing a direct comparison, we define hard_tanh+, a scaled version
of hard_tanh := 1

2 (hard_tanh +1) with values in the interval [0, 1], which, similarly to ReLU has
a line of zeros (none of the other activation functions have such a property). Fig. 1 shows how, as
expected, ReLU and hard_tanh+ prevent the network to find the energy minimum for the training
task.

5



Under review as a Tiny Paper at ICLR 2024

(a)

(b)

Figure 3: More energy landscapes for new input/output pairs (s, q) that confirm the undesirable
network behavior when using activation functions with many zeros.

6


