NNCodec: An Open Source Software Implementation
of the Neural Network Coding ISO/IEC Standard

Daniel Becking ! Paul Haase' Karsten Miiller! Heiner Kirchhoffer' Wojciech Samek !> Detlev Marpe !

Abstract

This paper presents NNCodec, the first open
source and standard-compliant implementation
of the Neural Network Coding (NNC) standard
(ISO/IEC 15938-17), and describes its software
architecture and main coding tools. For this, the
underlying distributions and information content
of neural network weight parameters is analyzed
and examined towards higher compression gains.
At the core of the coding engine is a context-
adaptive arithmetic coder that adapts its binary
probability models on-the-fly to weight statistics.
We show that NNCodec achieves higher compres-
sion than Huffman code, that is commonly used
for neural network compression, but also that the
average codeword length of NNCodec is often
below the Shannon entropy bound.

By introducing specifically trained local scal-
ing parameters, NNCodec can compensate
for quantization errors in the latent weight
space to a certain degree, which we show
experimentally for ResNets, EfficientNet,
and a Vision Transformer network topol-
ogy. The software and demo are available at
https://github.com/fraunhoferhhi/nncodec.

1. Introduction

The ubiquitous application of Al methods in many fields of
signal processing led to an increasing demand of efficient
distribution, training, inference and storage of the underly-
ing neural networks (NN). For this, also efficient compres-
sion methods are sought, which provide a minimal coding
rate, at which NN performance metrics, e.g., classification
accuracy, are not degrading. Similar to a number of multime-
dia compression methods, a signal theoretical and statistical

'Fraunhofer Heinrich Hertz Institute (HHI), 10587 Berlin, Ger-
many *Deptartment of Electrical Engineering and Computer Sci-
ence, Technical University of Berlin, 10623 Berlin, Germany. Cor-
respondence to: <nncodec @hhi.fraunhofer.de>, or
<firstname.lastname @hhi.fraunhofer.de>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

analysis of the respective source data provides insights for
designing an optimized NN codec. In information theory,
lossless compression describes coding algorithms that allow
the exact, i.e., uniquely decodable, reconstruction of the
original source data from the compressed data representa-
tion. Assuming data is generated by a probabilistic source,
information theory provides concepts to describe the min-
imum information contained in this data. In his landmark
paper (Shannon, 1948), Claude Shannon states that the min-
imum information required to fully represent a data element
w that has probability P(w) is of I = —log, P(w) bit,
where [is referred to as information content. Data elements
which occur frequently, i.e., have a high probability, have
a low information content, and vice versa for infrequently
occuring elements. Based on the information content, the en-
tropy is defined as Hp(W) = — > -\ P(w)logy P(w)
and denotes the minimum average number of bits required
to represent any element w € W C R”. In other words,
entropy is a lower bound of the average bit-length required
to compress data in a lossless manner.

Entropy coding can efficiently compress the original data,
if the data source contains dependencies or statistical prop-
erties to be exploited. It compresses input elements w into
output codewords of a length approximately proportional
to — log, P(w) bits. Thus, more frequently appearing ele-
ments are represented by fewer bits. This variable-length
coding scheme can be used to further compress an already
quantized NN. Huffman code (Huffman, 1952) is such a
variable-length entropy coding strategy. Experiments in
(Han et al., 2016) show that Huffman coding can save 20%
to 50% of NN storage. However, in practice Huffman code
can require large codeword tables, be computationally com-
plex and produce a bitstream with more redundancies than
principally needed (Wiegand et al., 2011). As an improved
entropy coding strategy, arithmetic coding can be applied.
It does not require the storage of a codeword table since
the arithmetic code for a sequence of input elements w is
iteratively constructed. The superiority of adaptive arith-
metic coding schemes for classical source signals like image
or video has been shown (Sullivan et al., 2012). More re-
cently, also its efficient applicability to NN source data has
been shown (Wiedemann et al., 2020). Accordingly, the
context-adaptive binary arithmetic coder of DeepCABAC
became the coding core of the recently published NNC stan-

https://github.com/fraunhoferhhi/nncodec

NNCodec: An Open Source Software Implementation of the Neural Network Coding ISO/IEC Standard

nnc framework
High-level functions: compress_model, decompress_model e+—e PyTorch, TensorFlow
Low-level functions: compress, decompress {3 pytorch tensorflow
T [[°_ model model
nnc_core i
his ImageNet ImageNet
Lo
—® approximator nnr_model ¢ ’> fy:l‘orch TeJnsIorFIow
* coder ModelExecute

Figure 1. NNCodec software architecture and packages.

dard (ISO, 2022), for which this paper presents an open
source software implementation. Main contributions are:

* High-level NNCodec architecture description.

e Fully standard-compliant implementation of the
ISO/IEC Neural Network Coding (NNC) standard.

* Feature description of specific NNC tools, which ex-
ploit signal statistics for high compression gains.

 Signal statistical analysis of coding tool effects.

» Extensive coding results with full coding tool combina-
tion and comparison to other entropy coding methods.

2. NNCodec: Overview of the NNC Standard
Software Implementation and Architecture

NNCodec is the first publicly available implementation of
the NNC standard. It provides a clearly arranged user in-
terface (cp. nnc in Fig. 1) and thus aids the machine learn-
ing (ML) community to apply highly efficient compression
to NNs in various ML scenarios. Its built-in support for
common frameworks, such as TensorFlow© and PyTorch©
enables broad applicability to a wide range of NNs in vari-
ous applications. Additionally, NNCodec offers support for
data driven compression methods (see Sec. 3), e.g., local
scaling adaptation (LSA) (Kirchhoffer et al., 2022; Haase
et al., 2021), for classification models based on the Ima-
geNet dataset. However, its modular architecture design
allows for extensibility to arbitrary models and datasets.

The NNCodec software structure, depicted in Fig. 1, is a
python package that comprises three modules, nnc_core,
framework and nnc, and a fast C++ based DeepCABAC cod-
ing engine extension directly linked to it. Here, the nnc_core
module provides the core coding and compression features
for signaling the high level syntax (hls) for parameter ap-
proximation (quantization) and for entropy coding as well
as data structures (nnr_model) and interface specifications
(ModelExecute) for model processing and data driven meth-
ods. It implements the compression methods and processes
in a generic form in order to be agnostic from any external
framework. The PyTorch, TensorFlow and ImageNet sup-
port is handled by the framework module, which defines
framework specific data structures derived from the generic
ones (nnc_model and ModelExecute). This ensures correct
handling in the nnc_core module and enables framework

specific functionalities at a higher level at the same time.
The main coding tools are described in the next subsection.

3. NNC Technologies

The NNC coding pipeline consist of three stages, namely
preprocessing, quantization and entropy coding. First, the
two core coding stages quantization and entropy coding are
decribed in subsections 3.1 and 3.2, respectively. Classical
NN data reduction methods, like sparsification, pruning or
low-rank decomposition can be applied prior to the core
coding pipeline. Of specific interest for modifying signal
statistics are BatchNorm folding and local scaling adaptation
as part of the preprocessing stage, which are described in
subsections 3.3 and 3.4, respectively.

3.1. Quantization

Analogously to other coding standards, NNC has a parame-
ter quantization stage, which provides a) further compres-
sion and b) integer quantization indices that can be losslessly
entropy coded. For this, NNC specifies methods for scalar
quantization with a uniform reconstruction quantizer (URQ)
and for vector quantization using dependent quantization
(DQ) (Haase et al., 2020b) also known as Trellis-coded
quantization (TCQ), which usually achieves a higher com-
pression efficiency at the same model performance level.
The scalar quantization method uses a single URQ with
uniformly spaced reconstruction levels. In contrast, DQ em-
ploys two scalar quantizers with distinct sets of reconstruc-
tion levels and a procedure for switching between them. For
both methods, the reconstruction levels can be determined
by an integer quantization index and, for DQ, additionally,
by the applied quantizer. As a further method, NNC spec-
ifies transmission of an integer codebook, which can be
derived from the output of arbitrary quantization methods,
e.g., K-means clustering. In all cases, a quantization step
size A is derived from an integer quantization parameter gp
(cp. Eq. (2) in A.1), which provides a mechanism for con-
trolling the rate-performance trade-off (Kirchhoffer et al.,
2022). NNC allows to specify an individual gp value for
each model parameter (tensor). Implicitly, optimization of
the these gp values can significantly improve the compres-
sion efficiency. For this, NNCodec provides a data-free gp
optimization technique (enabled by the flag *—-opt_gp’),
that is based on the tensor statistics, such as standard devia-
tion or the number of weights (Haase et al., 2021).

3.2. Entropy Coding

For entropy coding, NNC employs an adapted version of the
context-based adaptive binary arithmetic coding (CABAC)
scheme (Marpe et al., 2003). It consists of three stages: Bi-
narization, context modeling, and binary arithmetic coding.
The binarization stage maps each symbol to be encoded
(e.g., a quantized weight) to a sequence of binary symbols

NNCodec: An Open Source Software Implementation of the Neural Network Coding ISO/IEC Standard

(bins). The context modeling stage associates each bin with
a so-called context model, which associates a probability
estimate with the bin. The binary arithmetic coding stage
encodes (or decodes) the binary symbol by using this proba-
bility estimate, provided by the context model. Each context
model implements a backward-adaptive state-based proba-
bility estimator as in (Haase et al., 2020a) which maintains
an internal state that represents the probability estimate. Af-
ter encoding (or decoding) of a bin, the state is updated. If
a bin of value 1 was processed, the probability estimate for
bin = 1 increases and if a 0 was processed, the probability
for bin = 1 decreases. The degree of increasing or decreas-
ing the probability estimate can be controled by so-called
adaptation rate parameters.

NNC supports a forward-signaling of the adaptation rate
settings for each context model, i.e., an encoder can decide
to optimize the adaptation rate (and the initial probabilies)
of each context model and transmit these optimized param-
eters in the bitstream. For the binarization of a (quantized
integer) weight, a truncated unary code is combined with
a sign flag and an exponential Golomb Code. This ensures
that weights with a smaller magnitude are represented by
fewer bins. Furthermore, a sophisticated context modeling
ensures that DeepCABAC is able to adapt to a wide range
of differently shaped weight distributions. A more detailed
description can be found in (Kirchhoffer et al., 2022).

3.3. BatchNorm Folding

Batch Normalization (BN) (loffe & Szegedy, 2015) is a
technique to normalize the input activations of an NN layer
per data batch for more stable training. Especially in mod-
ern architectures, BatchNorm parameters are ubiquitous. To
recap, a BatchNorm module consists of a set of four vector
parameters: running mean £, running variance Var, and two
learnable scale- and shift- vectors « and 5. The output y of
an input x of a BatchNorm layer is defined as

Y= 7\/@ ~ + B with € < 0.001 for stability.

BatchNorm folding (BNF) (Jacob et al., 2018) is a technique
which ”folds” the multiplicative BN parts « into the preced-
ing NN layer’s weights W, i.e., Wioa = oWV, and replaces
the layer’s bias term b with ¢, where

a=~/y/Var(z)+¢ and §=p8+alb— E(z)). (1)
At the decoder, the § parameter can be loaded into the weight
module’s bias buffer b (which allows for removing the asso-
ciated BN module from the computational graph for model
speed-ups), or be loaded into the BN module’s S-buffer with
the remaining BN parameters set to default, i.e., £ = 0,
Var= 1, and v = 1.

3.4. Local Scaling Adaptation

Local scaling adaptation (LSA) equips NN layers with ad-
ditional trainable scaling factors s at each output element.

1qp s 1 2 P

- . wl e, il W

original block
distributions

quantized integer decoded, reconstructed

distributions distributions.

Figure 2. NN parameter distributions throughout coding.

Specifically, one scaling factor is assigned per tensor row,
which in turn can represent a convolutional filter or a single
output neuron. After quantization, all model parameters
except the scaling factors are fixed. Then only the scaling
factors are trained, which allows the NNCodec encoder to
compensate for the potentially resulting quantization error to
some extent and consequently support higher compression
through coarser quantization. Subsequently, the scaling fac-
tors can be merged with a by element-wise multiplication,
i.e., o := «s, so that LSA does not introduce additional
parameters to be encoded when used in conjunction with
BNF. Finally, the decoder of NNCodec multiplies the entries
of the v vector with the associated rows of W.

4. Neural Network Parameter Statistics

Analyzing an NN’s weight statistics often reveals asym-
metric, monotonically decreasing distributions with a mean
value near zero (Gauss- or Laplace-like). In appendix A.3,
we demonstrate this sort of distribution for all weight param-
eters within a ResNet-56 (original Fig. 8, quantized Fig. 9
and reconstructed Fig. 10). To take advantage of the large
quantity of zero values, DeepCABAC determines in a first
binarization step whether the weight element is a signifi-
cant” non-zero element or whether it is quantized to 0. The
context model for this SigFlag is initially set to a probability
of 50%, but automatically adapts to the statistics.

In Fig. 2, we demonstrate the distributions of a coded data
unit (a block consisting of a convolution layer and its associ-
ated BatchNorm module). The original BatchNorm param-
eters on the left hand side are folded into their respective
multiplicative («)) and additive (6) compounds according
to Eq. (1). Then «, § and the weights W are quantized
uniformly (cp. Fig. 2 center). Optionally, LSA is applied
which trains scaling factors s that are multiplied into o and
be encoded together with 5 and W in one coding unit. At
the decoder, the parameters are reconstructed by multiplying
the integer representations with their associated gp value,
by merging « with W and by loading ¢ into the BatchNorm
module’s B parameter; the remaining BN parameters are set
to default (cp. Fig. 2 right).

NNCodec: An Open Source Software Implementation of the Neural Network Coding ISO/IEC Standard

Bitstream Sizes [MB]
0 J0769 0723 0.692 0.647 0617 0572 0539 0.493 0439 0.412 0.257
140719 0.684 0.644 0.610 0573 0.546 0.505 0.468 0.426 [0389 -mn
240695 0651 0.620 0.575 0.542 0.497 0463 0.417 [OEEGH| 0
340,647 0.612 0.571 0.535 0498 0.470 0.430 [0:394) [BEES]
+J0.747 0702 0671 0.627 0596 0.552 0519 0.473 0.440 0,393
5]0.695 0.663 0.623 0.590 0.553 0.526 0455 0449 0.407 [05370
o Jo73 0629 0.599 0554 0.522 0476 0444’ 0395 [BEEE
7os2s 0591 0550 0515 0.478 0450 0410 [o57] ERA
8
3

0.787 0.741 0.710 0.666 0.635 0.591 0.558 0.512 0479 0.432 0.400 0.355 0323 0.280
940.737 0.702 0662 0.629 0.592 0.565 0.525 0.488 0.446 0.410 0369 0.339 0.30;
1010712 0.668 0.638 0.594 0.561 0.516 0.483 0.437 0406 0.363 0.335 0.295 [0.26'

120748 0.702 0.671 0.627 0.597 0.552 0.520 0.473 0.440 0.394 0.361 0316 240
130,698 0.663 0.623 0.590 0.553 0.526 0.486 0.449 0.407 0371 0.330 0.300 0.263 [0.227
140,673 0.629 0.599 0.555 0.522 0.477 0.444 0398 0367 0.32

1510626 0.591 0.550 0.515 0.478 0.450 0.411 0375 0336 0.30:

R S K

“base ap

5. Coding Results

Implementation aspects and details on the experimental
setup, data and models can be found in appendix A.1.

5.1. Analysis of Coding Tool Configurations

Fig. 3 depicts the coding results for ResNet-56, pre-trained
on CIFAR-100 to 66.79% top-1 accuracy. The left table
in Fig. 3 lists the 16 combinations of enabled tools. Then,
the left matrix shows — for each of this combinations —
the resulting bitstream sizes (as text) and the achieved ac-
curacies after reconstruction of the decoded NN (color-
coded). On the x-axes, the base gp spans a range of dif-
ferent quantization step sizes A from fine (gp = —36) to
coarse (qp = —10). The actual gp per parameter can devi-
ate from the base gp, e.g., for non-weight parameters (cp.
appendix A.3), or if opt_gp is enabled. The matrix on the
right shows inverted results, i.e., accuracies in text and bit-
stream sizes color-coded. The left matrix’s color codes are
scaled such that all coded NNs without accuracy degrada-
tion are highlighted in yellow. This color-based, row-wise
boundary allows for easier indentification of an appropriate
rate-distortion-result across all combinations, e.g., the NN
coded with tool combination 15 and gp = —16 (highlighted
by ared patch in Fig. 3). In appendix A.2, we present further
coding details and results (including tasks on ImageNet).

5.2. Comparative Results

The Shannon entropy marks a lower bound for the av-
erage number of bits required to represent one symbol
(here, the integer representation of a weight w). The en-
tropy of a quantized NN parameter W can be defined as
Hp(W) = — > wec P(w)logy P(w) where C is a set of
quantization levels and the probability value P(w) of w is
the number of its occurrences in W, divided by #WWV (the
count of all its elements).

We encoded the data payload of each unit separately, apply-
ing bzip2, Huffman code and NNCodec, and compared the
resulting bitstream sizes to the Shannon bound H p(W), as
shown in Fig. 4. Huffman code is an optimal entropy code,
however with long sequences of symbols, e.g., for NN layers
with large #WV, the codebook (Huffinan tree) becomes very
large which is relevant for ResNet’s deeper located layers

66.84 66.76 66.87 [66.78|66.60]
66.86 66.75 [66.85 [66.73 6697 (6695

67.80 67.81 [67.86
67.69 67.75 [67.83

Figure 3. Coding results for ResNet-56 on CIFAR-100 using different combmatlons of coding tools.

Bitstream Size [Byte]
20000

B NNCodec
== Shannon
15000 - bzip2 I

= Huffman

B
g2
88
88

o
3
S

1.conv.
conv.

ayer2
ayer2

la
la
la;

ayer’
ayer’
ayer’
ayer’
ayer
ayer’
ayer’
ayer’
ayer’
ayer’
ayer’
ayer’
ayer
ayer’
ayer’
ayer:
ayer:
ayer:

layer2.dwn

Figure 4. Comparison of resulting bitstream sizes when coding the
quantized (gp = —14) ResNet-56 tensor-wise using NNCodec vs.
Huffman vs. bzip2, compared to the Shannon entropy bound.

(cp. Fig. 4). bzip2 also deploys Huffman code, however,
it uses additional run-length (delta) encodings and trans-
forms on top. bzip2 is often close to the Shannon entropy
bound but always above. Fig. 4 confirms that NNCodec bit-
stream lenghts are mostly below the Shannon bound, which
is achieved via adjusting various probability estimators of
the context models during codestreaming. Only bitstreams
containing a very small number of weight elements can be
above the bound, because they do not provide sequences
long enough to sufficiently adapt the context models to the
distribution of the coded bins.

6. Conclusion

We presented NNCodec, the first open source software im-
plementation of the recently published ISO/IEC NNC stan-
dard. The paper gives an overview of the software architec-
ture and tools.We analyzed NN data distributions through-
out the coding process and showed that NNCodec’s average
codeword length is often below the Shannon entropy bound
and thus outperforms other common NN coding strategies
used for NN compression. We explored NNCodec’s hyper-
parameter space and the resulting compression ratios for
varying NN architectures. An NNCodec demo will be pre-
pared for the ICML Neural Compression Workshop.

With this work we want to encourage the Machine Learning
community to use this ISO/IEC standard-compliant com-
pression software in their Al pipelines. The 2™ edition of
the NNC standard is in progress and additionally targets
coding of differential NN updates in distributed scenarios.

NNCodec: An Open Source Software Implementation of the Neural Network Coding ISO/IEC Standard

References

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In Proc. of the IEEE/CVF Conf. on Computer Vision and
Pattern Recognition, pp. 248-255, 2009.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Haase, P., Matlage, S., Kirchhoffer, H., Bartnik, C.,
Schwarz, H., Marpe, D., and Wiegand, T. State-based
multi-parameter probability estimation for context-based
adaptive binary arithmetic coding. In 2020 Data Com-
pression Conf. (DCC), pp. 163172, 2020a.

Haase, P., Schwarz, H., Kirchhoffer, H., Wiedemann, S.,
Marinc, T., Marban, A., Miiller, K., Samek, W., Marpe,
D., and Wiegand, T. Dependent scalar quantization for
neural network compression. In 2020 IEEE Int. Conf. on
Image Processing (ICIP), pp. 3640, 2020b.

Haase, P., Becking, D., Kirchhoffer, H., Miiller, K., Schwarz,
H., Samek, W., Marpe, D., and Wiegand, T. Encoder op-
timizations for the nnr standard on neural network com-
pression. In 2021 IEEE Int. Conf. on Image Processing
(ICIP), pp. 3522-3526, 2021.

Han, S., Mao, H., and Dally, W. J. Deep compression:
Compressing deep neural network with pruning, trained
quantization and huffman coding. In Bengio, Y. and Le-
Cun, Y. (eds.), 4th Int. Conf. on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conf.
Track Proc., 2016.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In Proc. of the IEEE/CVF

Conf. on Computer Vision and Pattern Recognition, pp.
770-778, 2016.

Huffman, D. A. A method for the construction of minimum-
redundancy codes. Proc. of the IRE, 40(9):1098-1101,
1952.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In Int. Conf. on Machine Learning, pp. 448—456. pmlr,
2015.

ISO. Information technology — Multimedia content de-
scription interface — Part 17: Compression of neural
networks for multimedia content description and analy-
sis. Standard ISO/IEC 15938-17:2022, Int. Organization
for Standardization, Geneva, CH, 2022. URL https:
//www.iso.org/standard/78480.html.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard,
A., Adam, H., and Kalenichenko, D. Quantization
and training of neural networks for efficient integer-
arithmetic-only inference. In Proc. of the IEEE/CVF
Conf. on Computer Vision and Pattern Recognition, June
2018.

Kingma, D. P. and Ba, J. Adam: A method for stochastic op-
timization. In 3rd Int. Conf. on Learning Representations,
2015.

Kirchhoffer, H., Haase, P, Samek, W., Miiller, K.,
Rezazadegan-Tavakoli, H., Cricri, F., Aksu, E. B., Han-
nuksela, M. M., Jiang, W., Wang, W., Liu, S., Jain, S.,
Hamidi-Rad, S., Racapé, F., and Bailer, W. Overview of
the neural network compression and representation (nnr)
standard. IEEE Trans. on Circuits and Systems for Video
Technology, 32(5):3203-3216, 2022.

Krizhevsky, A. Learning Multiple Layers of Features from
Tiny Images. April 2009.

Marpe, D., Schwarz, H., and Wiegand, T. Context-based
adaptive binary arithmetic coding in the h.264/avc video
compression standard. IEEE Trans. on Circuits and Sys-
tems for Video Technology, 13(7):620-636, 2003.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance

deep learning library. Advances in Neural Inf. Processing
Syst., 32, 2019.

Shannon, C. E. A Mathematical Theory of Communication.
The Bell System Technical Journal, 27(3):379-423, 1948.

Sullivan, G. J., Ohm, J.-R., Han, W.-J., and Wiegand, T.
Overview of the high efficiency video coding (hevc) stan-
dard. IEEE Trans. on Circuits and Systems for Video
Technology, 22(12):1649-1668, 2012.

Tan, M. and Le, Q. Efficientnet: Rethinking model scal-
ing for convolutional neural networks. In Int. Conf. on
Machine Learning, pp. 6105-6114. PMLR, 2019.

Wiedemann, S., Kirchhoffer, H., Matlage, S., Haase, P., Mar-
ban, A., Mariné, T., Neumann, D., Nguyen, T., Schwarz,
H., Wiegand, T., Marpe, D., and Samek, W. Deepcabac:
A universal compression algorithm for deep neural net-
works. IEEE Journal of Selected Topics in Signal Pro-
cessing, 14(4):700-714, 2020.

Wiegand, T., Schwarz, H., et al. Source coding: Part i of
fundamentals of source and video coding. Foundations
and Trends® in Signal Processing, 4(1-2):1-222, 2011.

https://www.iso.org/standard/78480.html
https://www.iso.org/standard/78480.html

NNCodec: An Open Source Software Implementation of the Neural Network Coding ISO/IEC Standard

A. Appendix
A.1. Implementation Aspects and Experimental Setup
A.1.1. DATASETS AND MODELS

We perform experiments using CIFAR-100 (Krizhevsky, 2009) and ImageNet-1k (Deng et al., 2009) datasets. Standard data
pre-processing is used, i.e., normalization and cropping. For CIFAR-100, we additionally use random horizontal flipping
for the training data splits. Furthermore, we use 50.000 and 10.000 of the ImageNet and CIFAR training data samples as
validation dataset to optimize local scaling parameters (during LSA). The batch size was set to 64 in all experiments.

For the ImageNet task, we used models from the torchvision model zoo !. For the CIFAR-100 task, we adapted a
ResNet-56 (He et al., 2016) PyTorch implementation by Yerlan Idelbayev > and trained it via Adam (Kingma & Ba, 2015)
optimization for 150 epochs.

A.1.2. ENVIRONMENT

We deployed the PyTorch (Paszke et al., 2019) deep learning framework, version 1.13.1 and torchvision version 0.14.1,
accordingly. All experiments were conducted on a homogeneous GPU cluster equipped with NVIDIA Ampere A100 GPUs
(40 GB RAM) using CUDA Version 11.7.

A.1.3. HYPERPARAMETER SETTINGS AND OTHER IMPLEMENTATION ASPECTS

For data-driven compression with LSA, the scaling parameters s are optimized using Adam (Kingma & Ba, 2015)
optimization with an initial learning rate of 1e — 3. For ImageNet, 10 epochs of LSA were applied, for CIFAR-100 30
epochs.

Coding: For the Huffman code implementation, we used the dippykit digital image processing library?, licensed under the
GNU General Public License v3.0. Since the tool does not compute the size of the Huffman tree, we used an approximation
by accounting each symbol (i.e., integer weight) with 32 bits and accounting its binary code representation with the number
of bits as long as the codeword. In reality, storing such a code table on common hardware requires considerably more
memory. bzip2* is an open source, patent free data compressor. We used the tool out of the box, as is.

For converting the integer ¢p value into a floating point step size A, the formula
A =4+ (gpmod4) - 212)

can be used. Note that it only applies if NNCodec’s hyperparameter gp_density= 2, which is the default value that does not
need to be changed for the vast majority of applications.

A.2. Additional Results

Table 1. Comparison of resulting bitstream sizes using different codes for full NN coding.

model ‘ data ‘ orig. acc. [%] ‘ orig. size ‘ config ‘ base qp ‘ acc.| [%] ‘ NNCodec ‘ Shannon ‘ bzip2 ‘ Huffman
ResNet-56 CIFAR-100 66.79 2.51 MB 14 -14 -0.39 255.71 kB | 298.91 kB | 389.63 kB | 354.68 kB
ResNet-50 ImageNet 80.34 102.55 MB 15 -30 -1.01 7.62MB | 10.11 MB | 10.77 MB | 10.55 MB
EfficientNet-BO | ImageNet 77.67 21.45 MB 15 -30 -0.89 2.41 MB 2.87 MB 3.43 MB 3.26 MB
ViT-B/16 ImageNet 81.07 346.27 MB 3 -32 -1.12 32.87MB | 41.63 MB | 47.22 MB | 42.60 MB

We can find in all experiments a coding tool combination which is lossless in terms of not degrading the original accuracy at
all. Sometimes the reconstructed model even achieves a little higher accuracy, which can be due to regularizing effects of
compression but also due to the local scaling adaptation. However, for higher compression gains it might be plausible to
sacrifice some model performance. The ImageNet results are depicted in Fig. 5 for ResNet50 (He et al., 2016), Fig. 6 for
EfficientNet-BO (Tan & Le, 2019) and Fig. 7 for ViT-B/16 (Dosovitskiy et al., 2020).

'nttps://pytorch.org/vision/stable/models.html
https://github.com/akamaster/pytorch_resnet_cifarl0
Shttps://github.com/dippykit/dippykit
*https://sourceware.orqg/bzip2

https://pytorch.org/vision/stable/models.html
https://github.com/akamaster/pytorch_resnet_cifar10
https://github.com/dippykit/dippykit
https://sourceware.org/bzip2

NNCodec: An Open Source Software Implementation of the Neural Network Coding ISO/IEC Standard

Table 1 compares the different coding methods in terms of resulting bitstream sizes. We chose the coding tool configuration
and gp value of the exemplary NNs in Table 1 such that the compression is high and the performance degradation of the
model is in the range of 1% at most.

As a Vision Transformer, we used the ViT-B/16 model, which makes use of Layer Normalization instead of Batch
Normalization. Consequently, our BNF tool has no effect. For the EfficientNet (Tan & Le, 2019) experiments, only
fully-connected layers are equipped with trainable scaling parameters, since PyTorch has a custom class object for their
EfficientNet convolution layers ("Conv2dNormActivation™) and our LSA implementation only seeks for torch.nn.Conv2d
and torch.nn.Linear modules to be replaced with our so-called ScaledConv2d and ScaledLinear objects.

Bitstream Sizes [MB]

‘Top-1 Accuracy [%]

configuration

Top-1 Accuracies [%]

S
base qp

ResNet-50 on ImageNet

i

2
Top-1 Accuracy [%]

3

70

configuration

Top-1 Accuracies [%]

77.68 77.65 77.65 |77.58

Figure 6. Coding results for EfficientNet-BO on ImageNet

configuration

Shttps://pytorch.org/vision/main/generated/torchvision.ops.Conv2dNormActivation.html

51.84

41.54 36.50
41.90 36.16 32.23

32.87 2852

0]1998 1861 1666 1528 1335 11.99 10.13
141531 1394 1244 1128 9.80
2{1678 1544 1360 12.32 10.59 ST | 672 |
3]1236 1113 982 881 [755
111087 1850 1656 1518 1325
511546 1397 1281 1127 988
g 611668 1535 1351 1223 1050 932 [EEQ 664 |
§ 7]1250 1115 1013 880 762
é' 8420.07 18.70 16.76 15.38 13.45 10.23
5§ 0]1566 1417 1301 1147 10.08 7.48
1011687 1554 1370 1242 1069 951 790 6.83
1111260 1134 1032 899 7.81 | 672 570
1211988 1851 1656 1519 1325 11.90 10.04 874
131547 13.97 1281 1127 989 857 728
14 16.69 1535 13.51 1223 10.50 9.32
151250 1115 1013 880 762 | 653
- R R - S S,
base qp
Figure 5. Coding results for
Bitstream Sizes [MB]
05251 4.980 4.581 4.297 3.896 3.610 3.212 2.935
144.103 3.842 3493 3.299 3.016
244589 4307 3911 3.630 3.241
3]3454 3202 2878 2700 2444 [2:162|
415177 4907 4510 4227 3828
5]4.063 3788 3511 3255 2958
S 614519 4238 3.843 3564 3176
£ 713417 3152 2891 2658 2.389
£ 5]5350 5080 4684 4400 4001 3716 3.320 3.044 2.660
§ ola2ss 3962 3684 3420 3131 2849 2582 2349|2075
104 4.686 4.405 4.010 3.731 3.343 3.078 2.719 2473 2.140
1113584 3319 3058 2825 2556
1215202 4932 4536 4252 3853
13]4.088 3813 3536 3281 2983
1114543 4262 3868 3588 3201
1513442 3176 2916 2683 2414 2163 1936
I . S S N
base qp
Bitstream Sizes [MB]
6757 6292 5637 5173 4530 |40.82

81

<
3
Top-1 Accuracy [%]

73

configuration

Top-1 Accuracies [%]
81.02 80.99 80.98 80.92

Figure 7. Coding results for ViT-B/16 on ImageNet

7

s
°
Bitstream Size [MB]

Bitstream Size [MB]

Bitstream Size [MB]

https://pytorch.org/vision/main/generated/torchvision.ops.Conv2dNormActivation.html

NNCodec: An Open Source Software Implementation of the Neural Network Coding ISO/IEC Standard

A.3. Weight Distributions of ResNet-56

This section shows histogram plots of all ResNet-56 parameters. Fig. 8, Fig. 9 and Fig. 10 depict the distributions of
the original (W), quantized (W) and reconstructed (Wa qp) weight parameters (i.e., convolutional and fully-connected
layers). Fig. 11, Fig. 12 and Fig. 13 show the distributions of the original (beta, F, v, Var), merged & quantized (4, o)) and
reconstructed (B) non-weight parameters, respectively. “Non-weight parameters™ here includes all BatchNorm parameters
(trainable parameters and statistics buffers), scaling parameters, bias parameters and merged (e.g., BN-fold) versions of the
previously mentioned.

Since a very fine quantization step size is used for the non-weight parameters (defaults to gp = —75 because they are much
more sensitive to compression), the elements are often assigned to a quantization level alone, meaning that the probability
P(1w) is identical for all elements in that case. However, the non-weight parameters in sum often account for less than 1% of
the total network parameters and therefore do not contribute much to the overall bitstream size, but can have a great impact
on model performance.

> > p
= >b

Sesaad

Figure 8. Original weight tensor distributions of ResNet-56.

NNCodec: An Open Source Software Implementation of the Neural Network Coding ISO/IEC Standard

nnnnnnnnnnn

daededs

g

Figure 9. Quantized weight tensor distributions of ResNet-56 using dependent quantization (DQ) with gp = —18 and opt_gp.

NNCodec: An Open Source Software Implementation of the Neural Network Coding ISO/IEC Standard

Jayort. 0 convt weight

orerhy

>2 b b
ey

Figure 10. Decoded and reconstructed weight tensor distributions of ResNet-56.

10

rk Coding ISO/IEC Standard

Software Implementation of the Neural Netwo

Source

NNCodec: An Open

bl ‘

EPYEPNERErErREFNErMErag

wer 3 bl seight

D] T] T3 B

Iyer2 L bnd.running mean layes2.Lba. var layerd b weit layer2 | budbias layec2.LbnZ running mean layer2 L b o layer2 b vight layord L butbins layar2.Lbnd running mean layer2.Lbnd. war bt weigh lyer2 2bnlbiss layer2.2bnl running mean layer2 2bnd var

L 0 T B Tudd Tl k] B C T] T)]]

ol D Wb] Bd ol T Thod Tl fad) Ul 27 L] TR o]]
bt) o o b) Lt) bl o o] L Lt e

]
e

TNErY

) T T)))) T] T G] Wl

], U]] T)) LA)] T T

[o g leubabe edibocmeg e et . sy esabe

Fgrs
TREN™

WWWWW

]] e Tl]] Gl) L]] Ak
W L) L])l) T)] T T]) Tl])

W)) T))) T e e

sNet-56.

of Re

Figure 11. Original weight vector and buffer (running statistics) distributions

11

NNCodec: An Open Source Software Implementation of the Neural Network Coding ISO/IEC Standard

convt weight scaing i 1 scaling layer.0.cone2 weght scaling L scaling lapert. sealing

Figure 12. Quantized weight vector and buffer (running statistics) distributions of ResNet-56 using dependent quantization (DQ) with
qp = —18 and opt_gp.

12

NNCodec: An Open Source Software Implementation of the Neural Network Coding ISO/IEC Standard

EReTEARERALRR hm SRLARLRALFAERRERAERALE TERN| ‘

IRV ERRENRERN VRN ERRERNY! ' ENAENRERNErITE

| I DI I @
)AL Ll L0 L) Ll T

Figure 13. Decoded and reconstructed weight vector and buffer (running statistics) distributions of ResNet-56.

13

