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ABSTRACT

Split learning (splitNN) has emerged as a popular strategy for addressing the high
computational costs and low modeling efficiency in Vertical Federated Learning
(VFL). However, despite its popularity, vanilla splitNN lacks encryption protec-
tion, leaving it vulnerable to privacy leakage issues, especially Label Leakage
from Gradients (LLG). Motivated by the LLG issue resulting from the use of
labels during training, we propose the Generative Adversarial Federated Model
(GAFM), a novel method designed specifically to enhance label privacy protection
by integrating splitNN with Generative Adversarial Networks (GANs). GAFM
leverages GANs to indirectly utilize label information by learning the label dis-
tribution rather than relying on explicit labels, thereby mitigating LLG. GAFM
also employs an additional cross-entropy loss based on the noisy labels to fur-
ther improve the prediction accuracy. Our ablation experiment demonstrates that
the combination of GAN and the cross-entropy loss component is necessary to
enable GAFM to mitigate LLG without significantly compromising the model
utility. Empirical results on various datasets show that GAFM achieves a better
and more robust trade-off between model utility and privacy compared to all base-
lines. In addition, we provide experimental justification to substantiate GAFM’s
superiority over splitNN, demonstrating that it offers enhanced label protection
through gradient perturbation relative to splitNN. Codes of GAFM are available
at https://anonymous.4open.science/r/Generative-Adversarial-Federated-Model-
BFF7/.

1 INTRODUCTION

Federated learning trains algorithms across multiple decentralized remote devices or siloed data
centers without sharing sensitive data. There are three types of federated learning depending on
the data partitioning methods used: horizontal federated learning (HFL), vertical federated learning
(VFL), and federated transfer learning (Yang et al., 2019). VFL partitions the data vertically, where
local participants have datasets with the same sample IDs but different features (Hardy et al., 2017).
With stricter data privacy regulations like CCPA1 (Pardau, 2018) and GDPR3 (Voigt & Von dem
Bussche, 2017), VFL is a viable solution for enterprise-level data collaborations, as it facilitates
collaborative training and privacy protection. However, VFL faces challenges in terms of high
memory costs and processing time overheads, attributed to the complex cryptographic operations
employed to provide strong privacy guarantees (Zhang et al., 2020), including additive homomorphic
encryption (Hardy et al., 2017) and secure multi-party computation (Mohassel & Zhang, 2017),
which are computationally intensive. To address these issues, split learning (Gupta & Raskar, 2018;
Vepakomma et al., 2018; Abuadbba et al., 2020) has emerged as an efficient solution, allowing
multiple participants to jointly train federated models without encrypting intermediate results, thus
reducing computational costs. SplitNN (Ceballos et al., 2020), which applies the concept of split
learning to neural networks, has been used successfully in the analysis of medical data (Poirot et al.,
2019; Ha et al., 2021).

Split learning, while reducing computational costs, poses substantial privacy risks due to the absence
of encryption protection for model privacy. One specific privacy risk is Label Leakage from Gradients
(LLG) (Wainakh et al., 2022), in which gradients flowing from the label party to the non-label (only
data) party can expose the label information (Erdogan et al., 2021; Zhu et al., 2019; Wainakh et al.,
2021). LLG is susceptible to exploitation for stealing label information in binary classification and
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Figure 1: An illustration of Generative Adversarial Federated Model (GAFM) with P non-label
parties and one label party. Each non-label participant uses its local model fθp to extract features
fθp(xp) from its local data xp, where θp is denoted as the local model parameter of the pth non-label
participant. The label party aggregates all feature information in the cut layer to obtain intermediate
results f(x), which are then used as input to the generator Gθg with θg being the generator model
parameter. The label party then trains the generator Gθg and discriminator Dθd adversarially using the
true label y and the prediction ŷ (the output of Gθg ), where θd is the discriminator model parameter.
To incorporate additional true label information for improving the prediction accuracy, an additional
cross-entropy loss LCE is introduced. Section 3 provides more details on GAFM.

has limited proposed solutions to address it. Recent work by Li et al. (Li et al., 2021) indicates that in
binary classification, the gradient norm of positive instances is generally larger than negative ones,
which could potentially enable attackers to easily infer sample labels from intermediate gradients in
splitNN. Despite the fact that binary classification is widely used in various federated scenarios, such
as healthcare, finance, credit risk, and smart cities (Crowson et al., 2022; Byrd & Polychroniadou,
2020; Cheng et al., 2021; Zheng et al., 2022), and is vulnerable to LLG, limited research has been
conducted on addressing the LLG issue in binary classification. Previous studies (Ceballos et al.,
2020; Erdogan et al., 2021; Titcombe et al., 2021; Pereteanu et al., 2022) have focused mainly on
securing the data information of non-label parties, while ignoring the risk of leaking highly sensitive
label information of the label party. Therefore, it is critical to address how splitNN can resist LLG in
binary classification tasks.

In this work, in order to prevent inferring sample labels from the gradient calculation, we introduce a
novel Generative Adversarial Federated Model (GAFM), which synergistically combines the vanilla
splitNN architecture with Generative Adversarial Networks (GANs) to indirectly incorporate labels
into the model training process. Specifically, the GAN discriminator within GAFM allows federated
participants to learn a prediction distribution that closely aligns with the label distribution, effectively
circumventing the direct use of labels inherent in the vanilla SplitNN approach. Moreover, to
counteract the potential degradation of model utility induced by GANs, we enhance our method by
incorporating additional label information via an additional randomized cross-entropy loss, which
encourages the intermediate results generated by the non-label party and the labels with added noise
provided by the label party to perform similarly. The entire framework of the proposed GAFM and
the training procedures is displayed in Figure 1. Our contributions are highlighted as follows.

• We propose a novel GAN-based approach, called GAFM, which combines vanilla splitNN
with GAN to mitigate LLG in binary classification (section 3.2). Our analysis in section
3.4 demonstrates that GAFM protects label privacy by generating more mixed intermediate
gradients through the mutual gradient perturbation of both the GAN and cross-entropy
components.

• We enrich the existing gradient-based label stealing attacks by identifying two additional
simple yet practical attack methods, namely mean attack and median attack in section 3.5.
The experimental results in section 4.2.1 demonstrate that our new attacks are more effective
in inferring labels than the existing ones.
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• We evaluate the effectiveness of GAFM on various datasets. Empirical results in section
4 show that GAFM mitigates LLG without significant model utility degradation and the
performance of GAFM across different random seeds is more stable compared to baselines.
We also provide additional insights based on the ablation experiment (section 4.2.2) to
demonstrate the benefit of combining both the GAN and cross-entropy components in
GAFM.

2 RELATED WORK

SplitNN-driven Vertical Partitioning. SplitNN enables multiple participants to train a distributed
model without sharing their data and encrypting intermediate results (Gupta & Raskar, 2018;
Vepakomma et al., 2018; Ceballos et al., 2020). In SplitNN, each passive participant trains a
partial neural network locally, and the layer at which the label and non-label participants share
information is called the cut layer. At the cut layer of SplitNN, each non-label party trains a fixed
portion of the neural network locally and shares intermediate results with the label party. The label
party then aggregates these intermediate results and implements backward propagation to update
the local parameters of each non-label party. There are several methods of aggregation, such as
element-wise average, element-wise maximum, element-wise sum, element-wise multiplication,
concatenation, and non-linear transformation (Ceballos et al., 2020).

Label privacy protection via random gradient perturbation. To address the issue of LLG through
intermediate gradients at the cut layer, one possible solution is to introduce randomness to the
intermediate gradients, which has been utilized in HFL (Abadi et al., 2016; Geyer et al., 2017; Hu
et al., 2020). Marvell (Li et al., 2021) is a random perturbation approach specifically designed for
binary classification tasks. Marvell protects label privacy by perturbing the intermediate gradients
and aims to find the optimal zero-centered Gaussian perturbations that minimize the sum of KL
divergences between two perturbed distributions, while adhering to a budget constraint on the amount
of perturbation added:

min
W (0),W (1)

KL(P̃1∥P̃0) + KL(P̃0∥P̃1)

s.t. ptr(Σ0) + (1− p)tr(Σ1) ≤ P,
(1)

where P̃k is the distribution of perturbed intermediate gradients from k after convolution with the
Gaussian noise W (k) = N (0,Σk), k = 0, 1, p is the weight and P is the budget for how much
random perturbation Marvell is allowed to add. As the intermediate gradients with different labels
become less distinguishable, it becomes more difficult for attackers to infer labels from gradients.

Max Norm (Li et al., 2021) is an improved heuristic approach of adding zero-mean Gaussian noise
with non-isotropic and example-dependent covariance. More concretely, for the intermediate gradient
gj of data point j, Max Norm adds the zero-mean Gaussian noise ηj to it with the covariance as:

σj =

√
∥gmax∥22
∥gj∥22

− 1, (2)

where ∥gmax∥22 is the largest squared 2-norm in a batch. Max Norm is a simple, straightforward, and
parameter-free perturbation method. But it does not have strong theoretical motivation and cannot
guarantee to defend unknown attacks (Li et al., 2021).

GAN in Federated Learning. Previously, researchers have combined GAN and HFL for various
purposes, including three directions in HFL: (1) generating malicious attacks (Hitaj et al., 2017; Wang
et al., 2019), (2) training high-quality GAN across distributed data under privacy constraints (Hardy
et al., 2019; Rasouli et al., 2020; Mugunthan et al., 2021), and (3) protecting client data privacy (Wu
et al., 2021), known as FedCG. In FedCG, each client train a classifier predicting the response y
using Z extracted from the original feature X , and a conditional GAN that learns the conditional
distribution of Z given y. The classifiers and generators (instead of the extracted Z) from different
clients are then passed to the server for updating the common model. FedCG has been shown to
effectively protect clients’ data privacy in HFL. The preceding studies have showcased the promising
utility of GANs in Horizontal Federated Learning (HFL). However, as far as our awareness extends,
there exists no prior investigation into the application of GAN models for label protection in Vertical
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Figure 2: Comparison of Prediction vs. Intermediate Gradients between vanilla splitNN
and GAFM on IMDB. The figure 2 displays, from left to right, the intermediate gradients of
vanilla splitNN, GAFM, the GAN loss gradient of GAFM, and the CE loss gradient of GAFM.
Our observations show that (1) GAFM has more mixed intermediate gradients compared to vanilla
splitNN; (2) the gradient class centers from the GAN loss gradient and the CE loss gradient differ
in opposite directions, leading to mutual perturbation in the final gradient for GAFM. Observations
from Spambase, Criteo, and ISIC in Appendix are consistent with those from the IMDB dataset.

Federated Learning (VFL), where multiple participating parties jointly learn label distributions to
mitigate the privacy risks arising from direct label usage.

3 GENERATIVE ADVERSARIAL FEDERATED MODEL (GAFM)

In this section, we first introduce the split learning problem for binary classification, including its
associated notations. We then provide a detailed description of the GAFM method, along with a
discussion on GAFM’s parameter selection. Additionally, we explain how GAFM offers better label
privacy protection than vanilla splitNN and propose new label stealing methods to evaluate GAFM’s
privacy protection ability in subsequent experiments.

3.1 PROBLEM SETTING AND NOTATION

We consider the joint training of one label party and P non-label parties for binary classification tasks
over the domain X × {0, 1}. Each non-label party p possesses one local model fθp : X → Rd where
θp is the local model parameter of non-label party p and the local data xp ∈ X . In vanilla splitNN,
the label party owns the transformation function F : Rd → Rd for feature aggregation in the cut
layer, the logit function h : Rd → R for prediction, and each example’s label y ∈ {0, 1}. In contrast,
in GAFM, the transformation function F for feature aggregation remains with the label party, while
the logit function h is replaced by the generator Gθg : Rd → R where θg is the generator model
parameter. Furthermore, GAFM includes an additional discriminator Dθd : R→ R where θd is the
discriminator model parameter.

3.2 GAFM FRAMEWORK

In this section, we provide a detailed description of the GAFM framework. As illustrated in Figure 1,
each non-label party p in GAFM utilizes its local model fθp to extract local feature information from
its local data xp and sends it to the label party. In the cut layer, the label party aggregates the feature
information from all non-label parties to obtain the intermediate result f(x) = F (

∑
p fθp(xp)),

where F (.) is a known transformation function, such as the identity function. The label party takes
the intermediate result f(x) as input to the generator Gθg , and the output of Gθg is treated as the
prediction ŷ. Then, the label party adversarially trains both the generator Gθg and the discriminator
Dθd with guidance from the true label y and the prediction ŷ. The GAN loss LGAN between Gθg and
Dθd is defined in equation 3, which quantifies the distance between the prediction ŷ and the ground
truth y distribution by employing the Wasserstein-1 distance (Kantorovich, 1960):

LGAN(θd, θg; ε) = Ey [Dθd(y + ε)]− Ex [Dθd(ŷ)] , (3)

where ŷ = Dθg (f(x)) and ε ∼ N(0, σ2) is a small additive Gaussian noise so that y + ε has a
continuous support. The Wasserstein loss, which encourages the predicted distribution to closely
align with the empirical response, is applicable to classification tasks (Frogner et al., 2015).
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To improve the prediction accuracy in GAFM, we introduce an additional cross-entropy (CE) loss,
which measures the distance between the intermediate result f(x) and the randomized response ỹ.
The randomized response ỹ is defined as:

ỹ =

{
0.5 + u; y = 1

0.5− u; y = 0,
(4)

where the random variable u ∼ Uniform(0,∆) and the hyperparameter ∆ ∈ [0, 0.5]. The randomized
response ỹ replaces the original response y, which enhances label protection against LLG. Setting
∆ = 0 removes any label information from the original data, while ∆ > 0 allows ỹ to guide the
classifier without excessive label leakage from CE loss. The use of a randomized response is a
departure from previous work, which used the true label y and encountered issues with label leakage.
Using the randomized response in equation 4, the CE loss is:

LCE(Θ;u) = −Exy[ỹ log(σ(f(x))) + (1− ỹ) log(σ(1− f(x))]. (5)

where Θ = {θ1, . . . , θP } is the local model parameter set and the function σ is the sigmoid function.
In particular, ỹ ∈ R and f(x) ∈ Rd, where d is an arbitrary dimension. When d ̸= 1, σ(f(x)) needs
to be averaged along the d-dimension to be consistent with the dimension of ỹ.

Combine the LGAN defined in equation 3 and the LCE defined in equation 5, we obtain the full loss
of GAFM, as given by equation (6):

min
θg,θp

max
θd

LGAFM(θd, θg,Θ; ε, u, γ) = γLGAN(θd, θg; ε) + LCE(Θ;u), (6)

where the loss weight hyperparameter γ > 0.

Following the parameter update sequence of Wasserstein-based GANs (Arjovsky et al., 2017a),
GAFM enables the label party to update the discriminator parameter θd first, followed by updating
the generator parameter θg . Then, the non-label parties update local model parameters Θ:

(1) Update θd to maximize the GAN loss: θd ← argmaxθd LGAN(θd, θg; ε), given θg , Θ.

(2) Update θg to minimize the GAN loss: θg ← argminθg LGAN(θd, θg; ε), given θd, Θ.

(3) Update Θ to minimize GAFM loss: Θ← argminΘ LGAFM(θd, θg,Θ; ε, u), given θd, θg .

We employ the Adam optimizer with learning rates αd, αg, and αp, respectively, to implement the
aforementioned procedures. To satisfy the Lipschitz constraint of the discriminator in Wasserstein-
based GANs (Arjovsky et al., 2017b; Gulrajani et al., 2017), we apply weight clipping to discriminator
parameters θd. This operation restricts the parameters θd to the interval [−c, c], where c is a hyperpa-
rameter. Further details regarding the algorithm can be found in Algorithm 1.

3.3 SELECTION OF GAFM HYPERPARAMETERS

GAFM incorporates three crucial parameters: σ, γ, and ∆. The parameter σ introduces Gaussian
noise ε ∼ N(0, σ2) into the ground truth y distribution to render it continuously supported. The
default value of σ can be set to 0.01, and the appendix D.1 shows that GAFM is insensitive to different
values of σ. Specifically, a broad range of σ ∈ [0.01, 1] yields comparable empirical results.

The tuning of the loss weight hyperparameter γ in GAFM can be challenging due to the vanishing
gradient issue of the unnormalized GAN loss gradients (Arjovsky et al., 2017b; Gulrajani et al., 2017).
To address this issue, we normalize the gradients of the GAN loss and the CE loss, respectively.
This normalization alleviates the vanishing gradient issue, making it more feasible to determine
the hyperparameter γ. Appendix D.2 provides details on training γ for different datasets where
experiments demonstrate that an effective approach to determine γ is to adjust it to balance the
magnitude between the average value of the GAN loss gradient and the average value of the CE loss
gradient.

We use a simple yet effective approach for determining the randomized response-related hyperpa-
rameter ∆. Specifically, we train GAFM with different values of ∆ on a 10% subset of the data and
select the optimal parameter based on its utility and privacy. The analysis in the appendix shows that
the ∆ selected based on the subset is very close to or even equal to the optimal parameter selected on
the full dataset. Additional details on the selection of ∆ are discussed in the appendix D.3.
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3.4 WHY DOES GAFM PROTECT AGAINST LLG?

In this section, we show that GAFM provides stronger privacy protection against LLG by generating
more mixed intermediate gradients compared to vanilla splitNN. Specifically, the proposition 3.1
from the work (Li et al., 2021) states that the KL divergence between the intermediate gradients of
two classes sets an upper bound on the amount of label information an attacker can obtain via any
LLG attacks.

Proposition 3.1. (Li et al., 2021) Let P̃1 and P̃0 be perturbed distributions for intermediate gradients
of classes 1 and 0, and be continuous with respect to each other. For ϵ ∈ [0, 4),

KL(P̃1∥P̃0) + KL(P̃0∥P̃1) ≤ ϵ

implies max
r

AUCr ≤
1

2
+

√
ϵ

2
− ϵ

8
,

(7)

where r is any LLG attack, and AUCr represents the achieved AUC using r.

The proposition 3.1 states that models with more mixed intermediate gradients (meaning a smaller
sum of KL divergences from the two classes) imply a smaller upper bound ϵ for worst case leak
AUC against LLG. We indirectly demonstrate GAFM’s superior label privacy protection ability by
showing that GAFM has more mixed intermediate gradients than vanilla splitNN. Figure 2 illustrates
the intermediate gradients of vanilla splitNN, GAFM, the GAN loss gradient of GAFM, and the CE
loss gradient of GAFM on the IMDB dataset from left to right. We observe that GAFM has more
mixed intermediate gradients compared to vanilla splitNN. Furthermore, the gradient class centers
of the GAN loss gradient and the CE loss gradient differ in opposite directions, leading to mutual
cancelation in the final gradient for GAFM. We further provide a justification in Appendix B to
explain the observed discrepancy in the directions of the GAN loss gradient class centers and the CE
loss gradient class centers shown in Figure 2.

3.5 LABEL STEALING ATTACKS

In this section, we introduce three gradient-based label stealing attacks which are applied in subse-
quent experiments to evaluate the effectiveness of GAFM in mitigating LLG.

Norm Attack. The norm attack (Li et al., 2021) is a simple heuristic for black-box attacks that can
be used for label inference in binary classification tasks. The attack is based on the observation that
the gradient norm ∥g∥2 of positive instances tends to differ from that of negative instances, especially
with unbalanced datasets. Thus, the gradient norm ∥g∥2 can be a strong predictor of labels.

Previous research indicates that vanilla SplitNN gradients tend to form two clusters based on the
cosine similarity sign, leading to the development of cosine attacks (Li et al., 2021). In the case
of GAFM, although the relationship between the sign and the cluster of gradients may not be as
straightforward, attackers can still attempt to make attacks based on proximity to a cluster. To achieve
this goal, we propose mean-based attacks and further enhance robustness against outliers in gradients
by introducing median-based attacks.

Mean Attack. We propose a mean-based attack as a heuristic for black-box attacks that exploits
clustering structures in gradients. Assuming that attackers know the gradient centers of class 0 and
class 1, denoted as µ0 and µ1, mean-based attacks assign a sample i to the cluster that its intermediate
gradient gj is closer to:

yi =

{
1, if ∥gi − µ1∥2 ≤ ∥gi − µ0∥2
0, otherwise.

(8)

Median Attack. We propose a median-based attack, which is similar to the mean-based attack but
more robust to outliers. Assuming that attackers know the gradient medians of class 0 and class 1,
denoted as m0 and m1, median-based attacks assign a sample i to the cluster that its intermediate
gradient gj is closer to:

yi =

{
1, if ∥gi −m1∥2 ≤ ∥gi −m0∥2
0, otherwise.

(9)
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Table 1: Dataset statistics and model architectures. Different local model architectures fΘ are
considered for different datasets. 1-layer DNNs are sufficient as the generator Gθg and discriminator
Dθd since their inputs are simple linear embeddings.

Dataset Positive Instance
Proportion fΘ

Spambase 39.90% 2-layer DNN
IMDB 50.00% 3-layer DNN
Criteo 22.66% WideDeep & Model
ISIC 1.76% 6-layer CNN

4 EXPERIMENTS

In this section, we first provide a comprehensive description of the experimental setup, including the
datasets, model architectures, baselines, and evaluation metrics. Then, we present the experimental
results that showcase the utility and privacy performance of GAFM . Furthermore, we conduct an
ablation study to elucidate the contribution of each component of GAFM.

4.1 EXPERIMENT SETUP

Datasets. Our approach is evaluated on four real-world binary classification datasets: Spambase
1, which is used for spam email discrimination; IMDB2, a binary sentiment classification dataset
consisting of 50,000 highly polar movie reviews; Criteo 3, an online advertising prediction dataset
with millions of examples; and ISIC 4, a healthcare image dataset for skin cancer prediction. Criteo
and ISIC are two datasets with severely imbalanced label distributions, which have been used in
the works of Max Norm and Marvell (Li et al., 2021). Furthermore, we consider another two class-
balanced datasets, Spambase and IMDB, to evaluate the performance of GAFM under different class
setting. Additional information regarding the datasets and data preprocessing can be found in Table 1
and the appendix part.

Model Architecture. We consider the two-party split learning setting used by Marvell, where the
label party has access only to the label and the non-label party has access only to the data. In the
appendix section, we also present the utility and privacy protection results of all methods under a
multi-client scenario with three non-label parties. Table 1 lists the model architectures of local models
fΘ, generator Gθg , and discriminator Dθd used for each dataset. Similar to Marvel, we employ a
Wide & Deep model (Cheng et al., 2016) for Criteo and a 6-layer CNN for ISIC as the local models
fΘ. More details on model architectures and training can be found in appendices.

Baselines. We compare the utility and privacy of GAFM with Marvell (Li et al., 2021), Max Norm
(Li et al., 2021) and vanilla splitNN. Both Marvell and MaxNorm are novel approaches designed to
tackle the LLG challenge observed in binary classification within VFL.

Evaluation Metrics. We employ the Area Under Curve (AUC) metric to evaluate model utility and
the leak AUC to assess model privacy protection. Differential privacy is not considered as a leakage
measure, as it is not applicable to example-specific and example-aware settings like VFL (Li et al.,
2021). The leak AUC (Li et al., 2021; Yang et al., 2022; Sun et al., 2022) is defined as the AUC
achieved by using specific attacks. A high leak AUC value, closer to 1, indicates that the attacker
can accurately recover labels, while a low leak AUC value, around 0.5, suggests that the attacker has
less information for inferring labels. To prevent simple label flipping from resulting in a higher leak
AUC, we modify the leak AUC as shown in equation 10 for a predefined attack by flipping the label
assignment if doing so results in a higher AUC:

leakAUC← max(leakAUC, 1− leakAUC) (10)

1https://archive.ics.uci.edu/ml/datasets/spambase
2https://www.kaggle.com/datasets/uciml/default-of-credit-card-clients-dataset
3https://www.kaggle.com/c/criteo-display-ad-challenge
4https://www.kaggle.com/datasets/nodoubttome/skin-cancer9-classesisic
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Table 2: Comparison of utility (AUC) and privacy (leak AUC) between GAFM and baselines.
Compared to Vanilla and Max Norm, GAFM achieves lower leak AUC at similar AUC, demonstrating
its effectiveness in protecting label privacy. Compared to Marvell, GAFM demonstrates comparable
and even better utility and privacy protection on most datasets, while also exhibiting greater stability
across different random seeds. Table 2 illustrates that GAFM offers a better and more stable trade-off
between utility and privacy compared to all baselines.

Dataset Method Utility Privacy

Avg. Worst Best Norm Attack Mean Attack Median Attack

Spambase

GAFM 0.93 0.91 0.95 0.56±0.04 0.67±0.05 0.66±0.05
Marvell 0.71 0.59 0.82 0.53±0.02 0.70±0.01 0.70±0.01

Max Norm 0.95 0.95 0.95 0.83±0.11 1.00±0.00 0.91±0.00
Vanilla 0.95 0.95 0.96 0.85±0.07 1.00±0.00 0.91±0.00

IMDB

GAFM 0.88 0.88 0.89 0.52±0.01 0.60±0.01 0.60±0.01
Marvell 0.80 0.71 0.89 0.52±0.01 0.73±0.01 0.73±0.01

Max Norm 0.89 0.89 0.90 0.82±0.09 1.00±0.00 0.99±0.01
Vanilla 0.89 0.89 0.90 0.82±0.09 1.00±0.00 0.99±0.01

Criteo

GAFM 0.67 0.64 0.73 0.68±0.06 0.80±0.09 0.77±0.05
Marvell 0.70 0.65 0.76 0.76±0.08 0.86±0.08 0.78±0.04

Max Norm 0.69 0.65 0.72 0.92±0.01 0.83±0.09 0.82±0.00
Vanilla 0.72 0.69 0.77 0.92±0.06 0.91±0.11 0.82±0.00

ISIC

GAFM 0.68 0.66 0.69 0.62±0.09 0.66±0.15 0.68±0.11
Marvell 0.64 0.51 0.69 0.65±0.04 0.69±0.01 0.66±0.01

Max Norm 0.76 0.72 0.82 0.99±0.01 1.00±0.00 0.77±0.00
Vanilla 0.77 0.73 0.82 0.99±0.01 1.00±0.00 0.78±0.00

4.2 RESULTS

This section presents AUC and leak AUC to demonstrate the trade-off between privacy and utility of
GAFM. We also report the results of the ablation study, which illustrates the contribution of each
component of GAFM. Each method is executed 10 times with unique random seeds and train-test
splits. Further experiment details can be found in the appendix E.

4.2.1 EVALUATION OF UTILITY AND PRIVACY

Table 2 illustrates the average AUC and average leak AUC across four datasets. GAFM achieves
comparable classification AUC with Vanilla and Max Norm, but demonstrates lower leak AUC,
indicating its effectiveness in protecting label privacy and defending against LLG. Compared to
Marvell, GAFM achieves considerably higher average AUC on Spambase and IMDB, and comparable
AUC on Criteo and ISIC, while achieving comparable (slightly smaller) leak AUC. Importantly,
GAFM demonstrates more stable performance than Marvell, with reduced variance between the
worst and best AUC across different random seeds. This could be attributed to Marvell’s gradient
perturbation technique, which introduces Gaussian noise to intermediate gradients and can lead to
unstable performance, as evidenced by the highly fluctuating leak AUC of Criteo and ISIC shown
in the Marvell paper (Li et al., 2021). Additionally, we observe that our proposed mean attack and
median attack achieve higher leak AUC on all four datasets compared to the norm attack. This
indicates that mean attack and median attack are more effective gradient-based attacks for label
stealing compared to the existing norm attack.

4.2.2 ABLATION STUDY

Figure 3 compares GAFM with two ablated versions: GAFM with only GAN loss (GAN-only)
and GAFM with only CE loss (CE-only), under more severe mean and median attacks. The results
highlight GAFM’s superior balance between utility and privacy across diverse datasets. The CE-
only model fluctuates significantly in privacy protection, and the GAN-only model consistently
underperforms in terms of model utility. In particular, the CE-only model shows elevated leak AUCs
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Figure 3: Comparison of GAFM with two ablated versions: GAN-only (GAFM with only GAN
loss) and CE-only (GAFM with only CE loss). Figure 3 reveals that GAFM offers better trade-off
between utility and privacy compared to the GAN-only model and the CE-only model. The GAN-only
model achieves low leak AUC but has inferior classification AUC compared to GAFM. In contrast,
the CE-only model fails to provide label privacy protection on most datasets. Figure 3 demonstrates
the necessity of combining both the GAN and CE components.

Table 3: Comparison of GAFM with the CE-Only model in terms of the average ratio of AUC to
leak AUC under Median and Mean Attack. GAFM strikes a better utility-privacy balance than the
CE-Only model on most datasets, as evidenced by higher test AUC/leak AUC ratios.

Dataset Median Attack Mean Attack

GAFM CE only GAFM CE only
Spambase 1.39 1.39 1.50 1.47
IMDB 1.49 1.02 1.49 1.01
Criteo 0.87 0.89 0.84 0.83
ISIC 1.03 0.89 1.07 0.71

under both mean and median attacks on most datasets, notably reaching 0.7 or higher for IMDB
and ISIC datasets. While the GAN-only model achieves low leak AUCs across all datasets, its
classification AUC lags behind GAFM due to the guidance from the CE component. Table 3 presents
the test AUC to leak AUC ratios under median and mean attacks, further emphasizing GAFM’s
superiority over the CE-Only model. This ablation study underscores the importance of synergizing
GAN and CE components for robust LLG mitigation while preserving utility.

5 DISCUSSION

We propose GAFM, a novel method for binary classification tasks in VFL. Empirical experiments on
four datasets demonstrate that GAFM is a promising method for effectively mitigating LLG. Unlike
Marvell and Max Norm, which employ noisy intermediate gradients to enhance gradient mixing,
GAFM adopts a unique approach. Incorporating GAN and CE losses, GAFM shows improved
gradient mixing compared to vanilla splitNN. Our analysis indicates that GAFM’s defense against
LLG stems from mutual gradient perturbation of GAN and CE losses.

Limitation and future work. While heuristic explanations and extra experiments clarify how GAFM
leverages mutually perturbing gradients from GAN and CE components for privacy protection,
GAFM lacks the rigor of Marvell’s upper bound on gradient-based label leakage. GAFM and Marvell
are not exclusive; GAFM can integrate optimized noise from Marvell to enhance privacy. An example
in the Appendix F highlights the combined benefits of GAFM and Marvell, outperforming individual
methods in mitigating LLG at a slight utility cost. Additionally, extending these findings to multi-class
settings and investigating unique features in such tasks is a promising avenue for future research.
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A GAFM ALGORITHM DESCRIPTION AND ANONYMOUS CODE

The details of GAFM are outlined in Algorithm 1. We also provide an anonymized link that includes
the GAFM code implementation.

Algorithm 1 Generative Adversarial Federated Model
Input :Training data x1,x2, ...,xp, training labels y, sample u ∼ Uniform(0,∆), ε ∼ N(0, σ2),

epoch T , weight γ, learning rates αd, αg, αL and clip value c.
1 Initialize model parameters θ0d,θ0g and θ0p and calculate the initialized intermediate result f(x).

2 while Not converge do
3 Label party

/* Step 1: Update the discriminator */
4 The label party computes the prediction ŷ ← Gθg (f(x)) and updates the discriminator by

θd ← θd + αd∇θdLGAN and clip θd ← clip(θd,−c, c).
/* Step 2: Update the generator */

5 Then the label party updates the generator by θg ← θg − αg∇θgLGAN.
/* Step 3: Back-propagation */

6 The label party back propagates normalized gradients with respect to f(x) to the passive parties
gradf(x) = γ

∇f(x)LGAN

∥∇f(x)LGAN∥
2

+
∇f(x)LCE

∥∇f(x)LCE∥
2

7 Non-label parties
for p = 1, . . . , P do

8 /* Step 4: Update local models */
9 Based on the locally model and gradf(x), passive party p updates θp.

10 in parallel
/* Step 5: Forward-propagation */

11 Update intermediate results f(x)←
∑P

p=1 fθp(xp).

12 end

B HEURISTIC JUSTIFICATION FOR IMPROVED GRADIENTS MIXING

Recall that ỹ = 0.5 + 2(y − 1
2 )u is the randomized response, ŷ = Gθg (f(x)) is the encoded value,

and f(x) is the link function value at x when predicting ỹ via a sigmoid transformation. Here, we
provide heuristic justification for why the GAN and penalty component in GAFM tends to have
opposite direction.

• We assume that f(x) to be increase with y since it tries to match ỹ, which tends to increase
with y itself.

To optimize the equation (6), for the sample i , the intermediate gradient is:

∂LGAFM

∂f(xi)
= γ

∂LGAN

∂f(xi)
+

∂LCE

∂f(xi)
. (11)

For the first term of equation (11):

∂LGAN

∂f(xi)
= −

∂Dθd(Gθg (f(xi)))

N∂f(xi)
= −∂Dθd(ŷi)

N∂ŷi

∂ŷi
∂f(xi)

. (12)
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• Consider the original GAN loss LGAN and approximate it roughly with Taylor expansion:

LGAN(θd, θg; ε) = E [Dθd(y + ε)]− E
[
Dθd(Gθg (f(x)))

]
=Ey=1[Dθd(1 + ε)−Dθd(Gθg (f(x)))] + Ey=0[Dθdε−Dθd(f(x))]

≈Ey=1[∇Dθd(1)(1 + ε− ŷ)] + Ey=0[∇Dθd(0)(ε− ŷ)]

≈Ey=1[∇Dθd(1)(1− ŷ)]− Ey=0[∇Dθd(0)ŷ]

=∇Dθd(1)(1− Ey=1[ŷ])−∇Dθd(0)Ey=0[ŷ].

We consider a under-training scenario where ŷ tends to be in (0, 1), with Ey=1[ŷ] < 1 and
Ey=0[ŷ] > 0.
In this case, in order to maximize the GAN loss, ∇Dθd(1) tends to large and positive, and
∇Dθd(0) tends to be small and negative. As a consequence, heuristically,∇Dθd(ŷ) tends
to be positive and large if ŷ is large, whereas∇Dθd(ŷ) tends to be small and negative if ŷ is
small. From now on, we assume this to be true.

• Let x0, x1 be samples from class 0 and class 1, and ŷ0, ŷ1 be their corresponding encoder
value respectively. Given that ∇Dθd(ŷ) is monotonely non-decreasing in ŷ and f(x) is
monotonely increasing with y, we have:

1. When ŷ is increasing with f(x): since f(x1) ≳ f(x0), we have ŷ1 ≳ ŷ0 and, con-
sequently, ∇Dθd(ŷ1) ≳ ∇Dθd(ŷ0), where ≳ represents the concept of ”tends to be
greater”. In this case, plug them into eq. (12), we have ∂LGAN

∂f(x0)
≳ ∂LGAN

∂f(x1)
.

2. When ŷ is decreasing with f(x): since f(x1) ≳ f(x0), we have ŷ0 ≳ ŷ1 and,
consequently, ∇Dθd(ŷ0) ≳ ∇Dθd(ŷ1). In this case, plug them into eq. (12), we still
have ∂LGAN

∂f(x0)
≳ ∂LGAN

∂f(x1)
.

Combining them together, the distribution of GAN gradients at y = 1 tends to be left of the
distribution at y = 0.

For the second term of equation (11):

∂LCE

∂f(xi)
=

1

N
(− ỹ

σ(f(xi))
+

1− ỹ

1− σ(f(xi))
) =

1

N

σ(f(xi))− ỹ

σ(f(xi))(1− σ(f(xi)))
. (13)

Without the GAN loss part, in a perfectly fitted model, we tend to have,

{
E(σ(f(xi))|yi = 1) = E(ỹi|yi = 1) = 0.5 + ∆

2
E(σ(f(xi))|yi = 0) = E(ỹi|yi = 0) = 0.5− ∆

2

(14)

In practice, an imperfect fit tends to have E(σ(f(xi))|yi = 1) < E(ỹi|yi = 1) and E(σ(f(xi))|yi =
0) > E(ỹi|yi = 0). In addition, with the GAN loss part, the larger gradient (usually) for y = 0 from
the GAN loss drives σ(f(xi)) to decrease more at y = 0 compared to that from y = 1. Combining
them together, heuristically, we tend to have,

∂LCE

∂σ(f(xi))
=


σ(f(xi))−ỹ

Nσ(f(xi))(1−σ(f(xi)))
> 0 yi = 1

σ(f(xi))−ỹ
Nσ(f(xi))(1−σ(f(xi)))

< 0 yi = 0

. (15)

Penalty gradients at y = 1 tend to be the right of the distribution at y = 0.

Finally, combining equations (12) and (15), the normalized final gradient for LGAFM is

∂LGAFM

∂f(xi)
=

{
γfNorm(−∇Dθd(ŷi)

∂ŷi

∂f(xi)
) ↓ +fNorm(

σ(f(xi))−ỹi

Nσ(f(xi))(1−σ(f(xi)))
) ↑ yi = 1

γfNorm(−∇Dθd(ŷi)
∂ŷi

∂f(xi)
) ↑ +fNorm(

σ(f(xi))−ỹi

Nσ(f(xi))(1−σ(f(xi)))
) ↓ yi = 0

,

(16)
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where the normalization operation is fNorm(x) =
x

||x||2 which does not change the order of gradients.
This heuristic analysis suggests that the gradients from the GAN component and the penalty compo-
nent tends to have opposite direction. Equation (16) demonstrates GAN loss gradient and penalty
loss gradient help the total gradient to mix better by mutual perturbation.

C COMPLETE EXPERIMENTAL RESULTS

C.1 INTERMEDIATE GRADIENTS ON ADDITIONAL DATASETS

Figures 4, 5, and 6 show the intermediate gradients of Spambase, Criteo, and ISIC datasets, respec-
tively. Consistent with the results on the IMDB dataset, we observe that GAFM has more mixed
gradients compared to Vanilla on these three datasets. These observation support the analysis in
Appendix B that the mixed gradients of GAFM can be attributed to the mutual cancellation between
GAN loss gradients and CE loss gradients.
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Figure 4: Comparison of Prediction vs. Intermediate Gradients between vanilla SplitNN and GAFM
on Spambase. The figure displays, from left to right, the intermediate gradients of vanilla SplitNN,
GAFM, the GAN loss gradient of GAFM, and the CE loss gradient of GAFM. We observe that the
mutual perturbation between the GAN loss gradient and the CE loss gradient generate intermediate
gradients that are more mixed compared to vanilla SplitNN.
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Figure 5: Comparison of Prediction vs. Intermediate Gradients between vanilla SplitNN and GAFM
on Criteo. The figure displays, from left to right, the intermediate gradients of vanilla SplitNN,
GAFM, the GAN loss gradient of GAFM, and the CE loss gradient of GAFM. We observe that the
mutual perturbation between the GAN loss gradient and the CE loss gradient generate intermediate
gradients that are more mixed compared to vanilla SplitNN.
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Figure 6: Comparison of Prediction vs. Intermediate Gradients between vanilla SplitNN and GAFM
on ISIC. The figure displays, from left to right, the intermediate gradients of vanilla SplitNN, GAFM,
the GAN loss gradient of GAFM, and the CE loss gradient of GAFM. We observe that the mutual
perturbation between the GAN loss gradient and the CE loss gradient generate intermediate gradients
that are more mixed compared to vanilla SplitNN.

C.2 EVALUATION IN THE MULTI-PARTY SETTING

In this section, we extend the two-party split learning setting to the multi-party split learning setting,
where three non-label parties and one label party collaborate to train GAFM. We evaluate two
scenarios for local feature assignment: balanced and imbalanced. For Spambase and Criteo datasets,
the local feature assignment ratio among the three participants is set to client1 : client2 : client3 =
1 : 1 : 1, while for IMDB dataset, it is set to client1 : client2 : client3 = 2 : 2 : 1. Since ISIC
image dataset is not suitable for multi-party scenarios, we exclude it from our experiments. The
experimental setup is consistent with that of section 4.1, with the exception of the transformation
function F (.). In this case, F (.) is an averaging function rather than the identity function I(.).

f(x) = F (f(x1), f(x2), f(x3)) =
f(x1) + f(x2) + f(x3)

3
. (17)

where f(xi) is the intermediate results from the ith non-label party.

Table 4: Comparison of utility and privacy on multi-party setting over 10 repetitions. In the multi-
party setting, GAFM still outperforms Vanilla and Max Norm in terms of privacy preservation, and
Marvell in terms of utility.

dataset Method Training
AUC

Testing
AUC

Norm
Attack

Mean
Attack

Median
Attack

Spambase

GAFM 0.87±0.15 0.86±0.15 0.60±0.07 0.69±0.06 0.68±0.07
Marvell 0.70±0.05 0.68±0.06 0.53±0.03 0.70±0.02 0.70±0.02

Max Norm 0.95±0.00 0.95±0.00 0.83±0.11 0.99±0.02 0.99±0.04
Vanilla 0.95±0.00 0.95±0.00 0.84±0.13 1.00±0.00 1.00±0.00

IMDB

GAFM 0.97±0.01 0.82±0.00 0.54±0.02 0.65±0.04 0.54±0.02
Marvell 0.82±0.01 0.78±0.01 0.51±0.01 0.71±0.02 0.71±0.02

Max Norm 0.97±0.00 0.88±0.00 0.54±0.03 0.99±0.01 1.00±0.00
Vanilla 0.97±0.00 0.88±0.00 0.54±0.02 0.99±0.01 1.00±0.00

Criteo

GAFM 0.80±0.01 0.65±0.02 0.63±0.01 0.86±0.01 0.80±0.00
Marvell 0.83±0.03 0.70±0.04 0.75±0.08 0.85±0.09 0.78±0.04

Max Norm 0.83±0.02 0.71±0.02 0.91±0.03 0.95±0.09 0.82±0.00
Vanilla 0.83±0.02 0.71±0.02 0.91±0.03 0.95±0.09 0.82±0.00

The leak AUC in Tabel 4 measures not only the overall leakage, but also the leakage of each non-label
party, as the ỹ1, ỹ2, and ỹ3 are equally weighted at the cut layer. We observe that the utility of both
GAFM and Marvell slightly decreases in the multi-party setting compared to the two-party setting,
possibly due to the increased difficulty of jointly training with multiple participants. However, in the
multi-client setting, GAFM still achieves a better trade-off between utility and privacy compared to
all baselines.
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D DISCUSSION ON HYPERPARAMETERS

In this section, we present the methods for selecting the key hyperparameters σ, γ, and ∆ in GAFM.
Table 5 presents the hyperparameters of GAFM that are utilized in our experiments on four datasets.

Table 5: Hyperparameters of GAFM on four datasets.The following section discusses the selection of
three crucial parameters in GAFM: σ (section D.1), γ (section D.2), and ∆ (section D.3), respectively.

Dataset σ ∆ γ
Spambase 0.01 0.05 1

IMDB 0.01 0.1 1
Criteo 0.01 0.5 1
ISIC 0.01 0.05 20

D.1 DISCUSSION ON σ

We conducted a comparison of GAFM with varying values of σ over 10 repetitions, as shown in
Table 6. Our results indicate that a moderately large σ does not significantly compromise prediction
accuracy and can still offer robust protection against label stealing attacks. Thus, we have chosen to
fix σ at 0.01 for all datasets.

Table 6: Average AUC and Leak AUC of GAFM with different σ. We observe that GAFM is
insensitive to σ in terms of both utility and privacy.

dataset σ
Training

AUC
Test
AUC

Norm
Attack

Mean
Attack

Median
Attack

Spambase
0.01 0.94±0.01 0.93±0.02 0.56±0.04 0.67±0.05 0.66±0.05
0.25 0.94±0.01 0.93±0.01 0.60±0.06 0.67±0.03 0.67±0.03

1 0.94±0.01 0.94±0.01 0.57±0.05 0.68±0.04 0.68±0.04

IMDB
0.01 0.95±0.01 0.88±0.00 0.52±0.01 0.60±0.01 0.60±0.01
0.25 0.92±0.14 0.85±0.11 0.52±0.02 0.60±0.03 0.61±0.03

1 0.87±0.18 0.81±0.15 0.54±0.03 0.60±0.06 0.61±0.05

Criteo
0.01 0.82±0.07 0.67±0.03 0.68±0.06 0.80±0.09 0.77±0.05
0.25 0.80±0.00 0.69±0.03 0.74±0.07 0.82±0.03 0.82±0.00

1 0.81±0.02 0.66±0.03 0.71±0.08 0.82±0.02 0.82±0.00

ISIC
0.01 0.68±0.01 0.68±0.01 0.62±0.09 0.66±0.15 0.68±0.11
0.25 0.68±0.01 0.67±0.01 0.63±0.06 0.69±0.13 0.69±0.09

1 0.68±0.01 0.67±0.01 0.63±0.06 0.69±0.13 0.69±0.09

D.2 DISCUSSION ON γ

We use the loss weight parameter γ to balance the GAN and CE loss gradients in GAFM, allowing
them to effectively perturb each other. Table 7 shows the average gradients of the GAN and CE losses
for the GAFM model on four datasets, with γ = 1 and other hyperparameters consistent with the
section 4.1. The results indicate that the mean gradients of the GAN and CE losses are similar in
magnitude for the Spambase, IMDB, and Criteo datasets, but the CE loss gradient is over 10 times
larger than the GAN loss gradient for the ISIC dataset. This explains why Spambase, IMDB, and
Criteo can achieve satisfactory utility-privacy trade-offs with γ = 1, while ISIC requires a higher
value of γ.
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Table 7: Results of the average GAN loss gradient and average CE loss gradient on the four datasets.
It is observed that only for the ISIC dataset, the CE loss gradient mean and GAN loss gradient
mean are not on the same scale. To better achieve gradient perturbation, an increase in γ for ISIC is
necessary.

dataset (∆, γ, σ) GAN Gradient
Avg.

CE Gradient
Avg.

Comparable
Magnitude

Spambase (0.05,1,0.01) 0.054 -0.049 ✓
IMDB (0.05,1,0.01) 0.006 -0.006 ✓
Criteo (0.05,1,0.01) -0.011 0.048 ✓
ISIC (0.05,1,0.01) 0.058 0.789 ×

We further discuss how to select the appropriate value of γ for the ISIC dataset. Based on the results
shown in Table 7, the value of γ should ideally be in the range of 10 to 20. We set the parameter
∆ to a minimum value of 0.05 to control its impact on privacy and utility while keeping all other
parameters and experimental settings unchanged. Table 8 reports the experimental results of GAFM’s
privacy and utility under different values of γ. GAFM achieves comparable average training AUC
and test AUC on the ISIC 10% subset across the range of γ values. However, at γ = 20, GAFM
achieves the minimum average leak AUC under three different attacks. Therefore, we conclude that
the optimal parameter for the ISIC subset is γ = 20.

Table 8: The impact of different γ values on the utility and privacy of GAFM on the 10% subset ISIC
data. Table 8 reports the experimental results of GAFM with various γ values, while maintaining all
other experimental settings consistent. Moreover, we set the parameter ∆ to a minimum value of
0.05 to control its effect on utility and privacy. Based on the overall assessment of utility and privacy,
we conclude that the optimal value for γ is 20.

γ (∆, σ) Training
AUC

Test
AUC

Norm
Attack

Mean
Attack

Median
Attack

1 (0.05,0.01) 0.65±0.06 0.65±0.06 0.77±0.04 0.99±0.01 0.78±0.00
10 (0.05,0.01) 0.67±0.03 0.66±0.05 0.77±0.04 0.98±0.02 0.78±0.00
15 (0.05,0.01) 0.67±0.03 0.66±0.05 0.76±0.04 0.96±0.04 0.77±0.00
20 (0.05,0.01) 0.67±0.03 0.66±0.05 0.76±0.04 0.93±0.05 0.76±0.00

To validate the effectiveness of the selected γ on the subset, we also report the experimental results on
the full ISIC dataset with different values of γ in Table 9. We find that γ = 20 is also an appropriate
value for the full dataset. The consistency of the selected γ for both the subset and the full dataset
demonstrates the validity of determining γ based on sampling.

Table 9: The impact of different γ values on the utility and privacy of GAFM on the full ISIC data.
Table 8 reports the experimental results of GAFM with various γ values, while maintaining all other
experimental settings consistent. Moreover, we set the parameter ∆ to a minimum value of 0.05 to
control its effect on utility and privacy. Based on the overall assessment of utility and privacy, we
conclude that the optimal value for γ is 20.

γ (∆, σ) Training
AUC

Test
AUC

Norm
Attack

Mean
Attack

Median
Attack

1 (0.05,0.01) 0.67±0.02 0.66±0.03 0.98±0.01 0.97±0.02 0.78±0.00
10 (0.05,0.01) 0.67±0.02 0.68±0.01 0.77±0.19 0.80±0.12 0.74±0.04
15 (0.05,0.01) 0.67±0.04 0.66±0.05 0.61±0.07 0.66±0.15 0.68±0.09
20 (0.05,0.01) 0.68±0.01 0.68±0.01 0.62±0.09 0.66±0.15 0.68±0.11
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D.3 DISCUSSION ON ∆

We now turn to the topic of determining the randomized response-related hyperparameter ∆ in
GAFM. In section 4.1, we chose ∆ based on the measure Ratio = leakAUC

trainAUC and the minimum
average ratio criterion. Specifically, we selected ∆ that yields the lowest average ratio across all three
attacks.

We follow the procedure outlined below. After fixing the other parameters, we only randomly sample
a small subset (10%) of the dataset without replacement to ensure privacy, which is shared between
the label and non-label parties. GAFM is trained on this small subset with different values of ∆, and
we repeat this process 5 times. We then compute the ratio of norm attack, mean attack, and median
attack for each value of ∆ and average these ratios across the repetitions. The results are presented in
Table 10. Based on these ratios, we select the optimal ∆ for each dataset subset. Specifically, the
optimal ∆ for the Spambase subset is 0.05, for the IMDB subset is 0.1, for the Criteo subset is 0.5,
and for the ISIC subset is 0.05.

To better demonstrate the effectiveness of the ratio-based strategy, we compare the detailed ratios
on both the full dataset and the small subset in Table 10. Our observation shows that the optimal
∆ selected based on the ratio results from the small subset is consistent with that selected based on
the full dataset experiment results for the ISIC dataset. For Spambase, IMDB, and Criteo datasets,
the optimal ∆ selected based on the ratio results from the small subset is very close to that selected
based on the full dataset in terms of the average ratio value. Figure 7 further visualizes this degree of
closeness, where the three colored blocks on the full dataset represent the three sets of parameters
with the smallest ratio. We find that the optimal parameter (red block) selected on the small subset is
always included in the three sets of parameters with the smallest ratio on the full dataset.

Table 10: Average ratio results on the full dataset and small subset. For the ISIC dataset, the optimal
∆ selected is consistent between the full dataset and 10% subset. Although for the Spambase, IMDB,
and Criteo datasets, the optimal ∆ selected differs between the full dataset and small subset, the
selected ratio values are very close.

dataset sampling ratio ∆ = 0.05 ∆ = 0.1 ∆ = 0.2 ∆ = 0.3 ∆ = 0.5

Spambase 1 0.727 0.733 0.722 0.723 0.746
0.1 0.849 0.856 0.968 0.992 1.043

IMDB 1 0.627 0.648 0.895 0.833 0.833
0.1 1.189 1.076 1.323 1.158 1.309

Criteo 1 1.061 0.941 1.226 0.993 1.011
0.1 1.359 1.342 1.331 1.328 1.306

ISIC 1 0.933 0.955 0.990 1.009 1.022
0.1 1.234 1.246 1.238 1.243 1.241
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Figure 7: The ratio distribution on the full dataset and small subset. In Figure 7, the green (smallest),
blue (second smallest), and orange (third smallest) blocks correspond to the three smallest ratio values
on the full dataset for different ∆, while the red block represents ∆ with the smallest average ratio
on the small subset. Notably, we observe that ∆ with the smallest average ratio on the small subset
always belongs to the three groups of ∆ with the smallest average ratio on the full dataset.

E DATA SETUP AND EXPERIMENT DETAILS

In this section, we provide a detailed overview of our experimental setup. We first describe the
pre-processing steps for the four public datasets in E.1. Next, we provide a description of the model
architecture used for each dataset in E.2. Finally, we present the training hyperparameters for each
dataset and model combination in E.3.

E.1 DATASET PROCESSING

Spambase Spambase data are classified as whether they are spam or not. The Spambase dataset
contains 4061 instances, each with 55 continuous real attributes and 2 continuous integer attributes. To
preprocess the data, we replace all NA values with 0 and normalize the features to reduce the impact
of magnitude differences. During each repetition, we split the dataset into a 70%-30% train-test split
at different random seed settings.

IMDB The IMDB data has been preprocessed and words are encoded as a sequence of word indexes
in the form of integers. We select the top 500 words and encode indexes with one-hot. The 50000
reviews are split into 25000 for training and 25000 for testing at different random seeds. And the
final training and test data are both 25000× 500 matrices filled with 0s and 1s.

Criteo The Criteo dataset consists of a portion of Criteo’s traffic over a period of 7 days. Each
row corresponds to a display ad served by Criteo. The dataset comprises 13 integer features and 26
categorical features, all of which have been hashed onto 32 bits. We followed the winner of the Criteo
Competition’s recommendations for data preprocessing5 and the code6 to process the entire dataset,
rather than just a 10% subset like the Marvell paper. Our preprocessing steps included removing
infrequent features that appeared in less than 10 instances, transforming numerical features (I1-I13)
into categorical features, and treating them as a single feature. Additionally, we discretized numerical
values using log2 transformation. For each iteration, we split the dataset into an 80%-20% train-test
split using different random seed settings.

5https://www.csie.ntu.edu.tw/˜r01922136/kaggle-2014-criteo.pdf
6https://github.com/rixwew/pytorch-fm/blob/master/torchfm/dataset/

criteo.py
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ISIC The official SIIM-ISIC Melanoma Classification dataset contains a total of 33126 skin lesion
images, with less than 2% positive examples. To preprocess the ISIC data, we followed the approach
outlined in this code7. During each iteration, we revise the image size 64 × 64 × 1 and randomly
split the dataset into an 80%-20% train-test split, using different random seed settings for each split.

E.2 MODEL ARCHITECTURE DETAILS

To maintain consistency across all datasets, we utilized a 1-layer DNN as the generator and discrim-
inator for our GAFM model. The intermediate results f(x) were already transformed into linear
embeddings, making them easily handled by the 1-layer DNN. For the generator and discriminator,
we used LeakyReLU as the activation function for all layers except for the generator’s output layer,
which used the Sigmoid activation function. In the following sections, we will discuss the specific
local model architectures used for feature extraction on each dataset.

Spambase For the Spambase dataset, the local model architecture consists of two linear layers with a
LeakyReLU activation function. The first layer transforms the input size to a hidden representation of
batchsize× 16, and the second layer maps the hidden representation to a one-dimensional output
using a sigmoid function.

IMDB The local model architecture for the IMDB datase is a fully connected model with 3 linear
layers. The model consists of two hidden layers with 256 and 128 units, respectively, followed by
ReLU activation functions and a dropout rate of 0.5. The output layer has a single unit after a sigmoid
function.

Criteo In the context of online advertising data from Criteo, we utilize a widely-used deep learning
model architecture called Wide&Deep model (Cheng et al., 2016). To implement Wide&Deep model,
we refer to the code8. The architecture of Wide&Deep model consists of three main components:
FeaturesLinear, FeaturesEmbedding, and MultiLayerPerceptron. The FeaturesLinear module is a
linear model that uses embedding layers and a bias term to model feature interactions. The embeddings
have a desired output dimension of 1. And the FeaturesEmbedding and MultiLayerPerceptron
components take embedding layers as input features and uses a series of fully connected layers to
learn complex feature interactions. In this implementation, the embedding dimension is set to 16 and
the MLP dimension is set to 16 × 16. These components are combined in the local model, which
adds a linear output layer with an output dimension of 1.

ISIC The local model for ISIC consists of 3 convolutional layers with 6, 16, and 32 output channels
respectively. Each convolutional layer uses a 3 × 3 filter with a stride of 1 × 1. Following each
convolutional layer is a ReLU activation function, and the output of each activation is max-pooled
with a 2 × 2 window and stride size of 2 × 2. The output of the third convolutional layer is then
flattened into size 32× 6× 6 and passed into 3 fully connected layers, with 120, 84, and 40 units
respectively.

E.3 MODEL TRAINING DETAILS

We set the transformation function F (.) to the identity function I(.), clip the value at c = 0.1, use
random seeds from 0 to 9. We employ PyTorch with CPU for Spambase and IMDB and employ
PyTorch with CUDA acceleration to conduct all experiments for Criteo and ISIC. The Spambase
dataset takes approximately 10 minutes per repetition, while the IMDB dataset requires around 0.5
hours. For the Criteo dataset, each repetition takes about 2.5 hours, and for the ISIC dataset, it takes
about 40 minutes per repetition.

Spambase, IMDB We use the Adam optimizer with a batch size of 1028 and a learning rate of 1e-4
throughout the entire training of 300 epochs.

Criteo We use the Adam optimizer with a batch size of 256 and a learning rate of 1e-4 throughout
the entire training of 100 epochs.

7https://github.com/OscarcarLi/label-protection/blob/main/preprocess_
ISIC.ipynb

8https://github.com/BrandonCXY/Pytorch_RecommenderSystem/blob/master/
DL%20Models%20Implementation%20in%20Recommender%20Sys%20with%20Pytorch.py
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ISIC We use the Adam optimizer with a batch size of 256 and a learning rate of 1e-6 throughout the
entire training of 250 epochs.

F THE COMBINATION OF GAFM AND MARVELL

In this section, we use the Criteo dataset as an example to demonstrate that combining GAFM and
Marvell can enhance the privacy protection of GAFM. Table 11 shows the utility and privacy of
GAFM, Marvell, and their combination (referred to as the G-M model) on the Criteo dataset, with the
same experiment setup as the section 4.1. We observe a significant decrease in the leak AUC of the
G-M model compared to Marvell and GAFM, demonstrating its improved ability to mitigate LLG.

Table 11: An example of the combination of GAFM and Marvell on Criteo. Table 11 demonstrates
that the G-M model outperforms GAFM and Marvell in terms of lower leak AUC, indicating a better
ability to protect label privacy, despite some utility degradation.

Method Utility Privacy

Avg.
AUC

Worst
AUC

Best
AUC

Norm
Attack

Mean
Attack

Median
Attack

GAFM 0.67 0.64 0.73 0.68±0.06 0.80±0.09 0.77±0.05
Marvell 0.70 0.65 0.76 0.76±0.08 0.86±0.08 0.78±0.04

G-M 0.64 0.62 0.65 0.60±0.02 0.66±0.01 0.65±0.01
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