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ABSTRACT

The Wasserstein barycenter is defined as the mean of a set of probability measures
under the optimal transport metric, and has numerous applications spanning ma-
chine learning, statistics, and computer graphics. In practice these input measures
are empirical distributions built from sensitive datasets, motivating a differentially
private (DP) treatment. We present, to our knowledge, the first algorithms for
computing Wasserstein barycenters under differential privacy. We use the central
DP model for empirical distributions. We develop two complementary approaches
targeting different regimes. Firstly, we consider output perturbation. We show
that while this approach is competitive when the number of marginals is large, its
privacy guarantee does not improve with the size of the dataset n. As a result, we
propose as our primary contribution, private coreset reduction, where we construct
private measures that are provably close in Wasserstein distance to the originals
and run any Wasserstein barycenter on these. We also leverage dimensionality
reduction to improve the runtime. Empirically, on synthetic data, MNIST, and
large-scale U.S. population datasets, our methods produce high-quality private
barycenters with strong accuracy-privacy tradeoffs.

1 INTRODUCTION

In the era of big data and machine learning, users are increasingly concerned about their privacy.
Differential privacy (DP) (Dwork et al., 2006) has seen widespread adoption to provide guarantees
for user privacy. For example, government bureaus use DP when releasing census data (Abowd,
2018; Hod & Canetti, 2024), and companies such as Apple (Apple, 2017), Microsoft (Ding et al.,
2017), and LinkedIn (Rogers et al., 2020) extensively employ DP when releasing data — aiming to
protect user data from security threats.

Clustering, summarizing and reducing the size of datasets are fundamental tasks in unsupervised ma-
chine learning. Many of these unsupervised learning problems are NP-hard (Megiddo & Supowit,
1984; Altschuler & Boix-Adserà, 2022), leading to the development of polynomial-time approxi-
mation algorithms (Charikar et al., 1999; Charikar & Guha, 1999; Jain & Vazirani, 2001; Jain et al.,
2003; Charikar & Li, 2012; Cohen-Addad et al., 2022b). A long line of works (Gupta et al., 2010;
Balcan et al., 2017; Kaplan & Stemmer, 2018; Jones et al., 2021; Chaturvedi et al., 2020; Ghazi
et al., 2020) have further studied clustering under DP, providing polynomial time algorithms with
tight approximation bounds.

Defined as the mean of a set of probability measures under the optimal transport metric,1 the Wasser-
stein barycenter is a useful notion that contains many of these unsupervised tasks as special cases,
with applications to a much more general suite of problems. Specific instances of the Wasserstein
barycenter include centroids of probability measures (Zen & Ricci, 2011) and k-means clustering
(Canas & Rosasco, 2012). Consequently, Wasserstein barycenters have seen extensive applications
in domain adaptation (Montesuma & Mboula, 2021), computer graphics (Pele & Werman, 2009;
Solomon et al., 2015), and biology (Nadeem et al., 2020; Heinemann et al., 2022).

1Specifically, it is the distribution that minimizes the average Wasserstein distance between itself and each
distribution in the set, and generalizes the classical concept of the (Euclidean) mean from datapoints to entire
distributions.
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Similar to clustering and other unsupervised learning problems mentioned above, privatization of
Wasserstein barycenters becomes crucial when working with sensitive data. As one of many possible
examples, suppose a company wishes to train and deploy machine learning models for analysis of
sensitive data for each of many countries. Prior to actually training these models, to minimize the
risk of privacy breaches, a machine learning engineer must design the model architecture and tune
hyperparameters on a DP synthetic dataset (see (Ridgeway et al., 2021; McKenna et al., 2021; Xie
et al., 2018) for more details on this emerging practice), which by the post-processing property of
DP can be used and re-used ad infinitum without incurring any additional privacy loss. A private
Wasserstein barycenter of a (sub)set of country-level datasets would be a natural candidate for this
private synthetic dataset, as (1) it averages across many countries and hence should incur much
less privacy cost than maintaining separate private synthetic datasets for each country, and (2) it
approximately minimizes the Wasserstein distances to the true distributions, which should maximize
the chance that the designed model architecture will work well when applied to each countries’ data
at deployment time.

More classically, recall the Wasserstein barycenter minimizes the (weighted) average transport cost
from the barycenter to each marginal. This can be an interesting optimization problem in its own
right, e.g. choosing locations for distribution centers for multiple products each with its own geo-
graphic demand distribution, where each center has the same mix of products.

Motivated by these considerations, our work answers the following question in the affirmative:

Do there exist efficient2 algorithms for computing Wasserstein barycenters under DP?

Contributions To the best of our knowledge, we provide the first algorithms for computing
Wasserstein barycenters under the constraints of the central model (Dwork et al., 2006) of DP. We
work under the setting where each individual contributes one datapoint to one distribution.

Our main contributions are as follows.

• We provide a lightweight (ϵ, δ)-DP algorithm that works when the number of support points
is much smaller than the number of distributions; see Theorem 4.1. This method treats the
output barycenter as a vector and uses the Gaussian mechanism to privatize it.

• We provide an efficient ϵ-DP algorithm using a black-box reduction from private Wasser-
stein distance coresets (Definition 8); see Theorem 5.5. Here, we form a private version of
each distribution, and use these to solve the barycenter problem. Privacy is guaranteed by
parallel composition, and we use the Johnson-Lindenstrauss to improve runtime.

• We show the efficacy of our more general algorithm when applied to large-scale real-world
sensitive data; see Figure 3.

2 PRELIMINARIES

Notation In big-O notation, we use Õ to hide logarithmic factors and subscripts to hide depen-
dence in those variables. We use [t] to denote the set {1, . . . , t}. For a function T : X → Y and
a measure µ, we use T♯µ to denote the pushforward measure, e.g. T♯µ(B) = µ(T−1(B)) for a
measurable set B ⊆ Y . For a datapoint x, we use δx to denote a Dirac delta at x. We reserve the
Greek letter ξ to denote a failure probability. We use Bx(R) := {y | ∥x − y∥2 ≤ R} to denote the
closed Euclidean ball of radius R centered at point x. (OT) We use Greek letters µ for the dataset
and ν for barycenter, which are probability measures. (DP) We use the script fontA andD to denote
algorithms and datasets, respectively. We reserve Greek letter ϵ for privacy parameters for DP. (JL)
We use letters d to represent the dimension of the ambient space and d′ to represent the dimension
of the projected space from the JL transform. We use the Greek letter γ for the multiplicative factor
in the JL and Π for the projection matrix.

Differential privacy (DP) (Dwork et al., 2006) is a mathematical framework for establishing guaran-
tees on privacy loss of an algorithm, with nice properties such as degradation of privacy loss under
composition and robustness to post-processing. We provide a brief introduction and refer to (Dwork
& Roth, 2014) for a thorough treatment.

2Same (asymptotic) runtime as a non-private algorithm.
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Definition 1 (ϵ-DP). Algorithm A is said to satisfy ϵ-differential privacy if for all adjacent datasets
D,D′ (datasets differing in at most one element) and all S ⊆ rangeA, it holds

Pr[A(D) ∈ S] ≤ eϵ Pr[A(D′) ∈ S].

Let (X , ρ) be a metric space and let P(X ) be the set of Borel probability measures on X .

Definition 2 (Wasserstein distance). For p ∈ [1,∞), the p-Wasserstein distance between probability
measures µ, ν ∈ P(X ) is defined to be

Wp(µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
X×X

ρ(x, y)pdπ(x, y)

)1/p

,

where Π(µ, ν) := {π ∈ P(X × X ) | (Px)♯π = µ, (Py)♯π = ν} is the set of transport plans,
and Px(x, y) := x and Py(x, y) := y are the projections onto the first and second coordinates,
respectively.

We will be using the Euclidean metric for the cost function, e.g. ρ(x, y) := ∥x− y∥2.

In Appendix C, we recall some additional facts on differential privacy, optimal transport, and the
Johnson-Lindenstrauss transform.

3 PROBLEM STATEMENT

(Agueh & Carlier, 2011) introduced the notion of barycenters on Wasserstein space:

Definition 3 (Wasserstein barycenter). Given probability distributions µ1, . . . , µk ∈ P(X ) and
weights β1, . . . , βk > 0, the p-Wasserstein barycenter is any distribution ν∗ satisfying

ν∗ ∈ argmin
ν∈P(X )

k∑
i=1

βiW
p
p (µi, ν). (1)

We will be working with discrete distributions, where each distribution can be thought of as a sub-
population, and one individual contributes sensitive data to one of the distributions. For instance
each of these distributions could represent the data from one country.

Formally, we have k empirical distributions µi for i ∈ [k], each with n point masses, where

µi =
1

n

n∑
j=1

δxj
, (2)

Our goal is to compute a distribution ν consisting of exactly m ≤ n point masses and uniform
weights that minimizes the objective (1) under the constraints of DP. For any application of DP, a
definition of neighboring datasets is required. We use the following slight generalization of the most
standard definition.

Definition 4 (Neighboring datasets). Let the dataset be D := D̃ × [k], where D̃ := {x | x ∈
∪i∈[k] suppµi}. We say two datasets D,D′ are neighboring if they differ by exactly one row, e.g.
they differ by one point in one distribution.

Specifically, as is typical in DP, two datasets are neighbors if they differ in one row. This definition
of neighboring datasets is motivated by viewing each µi is a nonoverlapping subpopulation, i.e.
we are essentially assuming that individuals do not appear in multiple of the µi. Without loss of
generality, we can assume all of the points are distinct. We will also abuse notation and identify D
with {µ1, . . . , µk}.
In order to limit the influence of any individual, we require an assumption on the support. For
simplicity, without loss of generality we assume a support contained in a ball of radius of 1/2.

Assumption 1. It holds that ∪i∈[k] suppµi ⊆ B0(1/2).

3
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S1

ν(1)b1

c1 a2

a1

S2

ν(2)

b2

c2

Figure 1: Example of a solution. The input distributions are µa := 1
2δa1 + 1

2δa2 , µb := 1
2δb1 +

1
2δb2 , µc :=

1
2δc1 +

1
2δc2 and the candidate barycenter is ν := 1

2δν(1) + 1
2δν(2) . Observe that: S1 =

{a1, b1, c1}, S2 = {a2, b2, c2}, w1(a1) = w1(b1) = w1(c1) = w2(a2) = w2(b2) = w2(c2) = 1.

This is a standard assumption in private means and medians, e.g. see (Ghazi et al., 2020),3 and more
generally private convex optimization. This assumption is used to simplify the description of the
results as it is well known that the additive error of any DP algorithm scales proportionally with
respect to the radius of the support of the dataset, e.g. see (Altschuler et al., 2024).

(Izzo et al., 2021) utilizes the Johnson-Lindenstrauss transform to speed up algorithms for Wasser-
stein barycenters. We start with the following definition, adapted from Definition 2.1 of (Izzo et al.,
2021).4

Definition 5 (Solution). Fix a candidate barycenter ν supported on points ν(1), . . . , ν(m). Define
the solution (S,w) := (S1, . . . , Sm, w1, . . . , wm) as follows. wj(x) is defined to be the total weight
transported from x ∈ ∪ki=1 suppµi to point ν(j) based on the optimal transport plan. Define the set

Sj :=

{
x ∈ D

∣∣∣∣wj(x) > 0

}
.

We call (S,w) a solution because the following holds. For each j ∈ [m], ν(j) minimizes the
objective ∑

x∈Sj

wj(x)∥x− ν(j)∥p. (3)

See Figure 1 for intuition on the definition of this solution. Notice that if we are given the weights
wj , we can easily reconstruct the points ν(j) using convex optimization. We obtain these weights
by solving a corresponding Wasserstein barycenter in the reduced space using any approximation
algorithm. Note that by conservation of mass, it holds that

∑n
j=1 wj(x) = 1. We constrain the

optimization objective in (1) as follows.

Assumption 2. Assume that the objective (1) has an added constraint that the solution has m
equally weighted atoms, where m is specified. Specifically, the solution satisfies ν = 1

m

∑m
j=1 δν(j) ,

where m ≤ n, and βi =
1
k .5

For ease of analysis, we assume n is divisible by m, which ensures that the optimal transport plans
between µi and ν do not split mass. We make two remarks on the uniform weight assumption:

• From a interpretability perspective, uniform weights is a reasonable assumption so that
each datapoint can be considered as data representing one synthetic person.

• From a computational perspective, many papers on Wasserstein barycenters a priori solve
the problem under the uniform weight assumption, as optimizing weights for barycenters is
much more challenging than optimizing for supports, e.g. see the discussion in (Altschuler
& Boix-Adsera, 2021).

We will use the following cost function for Wasserstein barycenters.
3(Ghazi et al., 2020) considers the ball of radius 1, while we consider the ball with diameter 1.
4Their definition is slightly different. Our definition is simplified to work better with Assumption 2.
5We remark that our second algorithm (Theorem 5.5) does not require any assumption on βi.
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Algorithm 1 WassersteinBarycenterViaOutputPerturbationϵ,δ

Require: k discrete distributions µ1, . . . , µk supported on Rd, approximate Wasserstein barycenter
algorithm NonPrivateApprox, privacy parameter ϵ, δ

1: ν := (ν(1), . . . , ν(m))← NonPrivateApprox(µ1, . . . , µk)
2: (ν̃(1), . . . , ν̃(m))← (ν(1), . . . , ν(m)) +N (0, σ2 · Imd), where

σ2 :=
2m ln(1.25/δ)

(ϵk)
2 .

3: return ν̃ with uniform support on {ν̃(j)}j∈[m]

Definition 6 (Cost). For a solution (S,w), define its cost to be the value of (1) when ν is recon-
structed from (S,w):

cost(S) := min
ν

1

nk

n∑
j=1

∑
x∈Sj

wj(x)∥x− ν(j)∥p. (4)

Similarly, for a projection Π, define cost(Π♯S) to be the value of (1) when we first project each
distribution to Rd′

using Π, then compute ν̃ using the original weights wj:

cost(Π♯S) := min
ν

1

nk

n∑
j=1

∑
x∈Sj

wj(x)∥Πx− ν̃(j)∥p. (5)

Above, note that we suppress the dependence on p for the cost. We use the following definition for
approximate Wasserstein barycenters.

Definition 7 (Approximate Wasserstein barycenter). Let OPT be the minimum of (1). A (z, t)-
approximation for the p-Wasserstein barycenter is probability measure ν such that

cost(ν) ≤ z ·OPT(µ1,...,µk) + t,

where OPT is the cost of an optimal barycenter supported on n atoms with uniform weights. When
it’s clear, we suppress the dependence on the input barycenters.

4 A NATURAL OUTPUT PERTURBATION APPROACH

A natural approach to the problem is to consider output perturbation; however, we show that this
will only have good utility if md ≪ k2. The issue that inhibits an upper bound that benefits from
increasing n is that in a neighboring dataset, the couplings of all n points in the updated distribu-
tion could potentially change, so we only obtain an averaging effect due to the k distributions, as
opposed to nk

m (number of points that are mapped to each point in the support of the barycenter); see
Proposition D.3.

We provide the pseudocode in Algorithm 1. Its guarantees are as follows, and the proof is provided
in Appendix E. Note that privacy benefits are derived by increasing the number of marginals k.

Theorem 4.1 (Output perturbation method). For any p ≥ 1, suppose there exists a (not neces-
sarily private) (z, t)-approximation algorithm for the p-Wasserstein barycenter problem. Then for

every ϵ > 0, δ ∈ (0, 1), Algorithm 1 is (ϵ, δ)-DP, and yields a
(
(z, t+Op

((
md ln(1/δ)

(ϵk)2

)p/2))
-

approximation for the p-Wasserstein barycenter problem.

5 IMPROVING WITH n: A PRIVATE CORESET-BASED APPROACH

In this section, we achieve bounds that improve with data size n by first extracting private core-
sets from each full dataset that are close in Wasserstein distance to the sensitive distributions, yet
have desirable privacy guarantees. We use these coresets as input to the approximate Wasserstein
barycenter algorithm to obtain the private barycenter via data processing inequality.

5
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5.1 CORESET FOR WASSERSTEIN DISTANCE

We start by introducing the notion of coresets for Wasserstein distance.

Definition 8 (Coreset for Wasserstein distance). A measure µ′ is a (p, z, t)-coreset of µ for the p-
Wasserstein distance if for every π ∈ P(Rd), we have Wp(µ

′, π) ≤ z ·Wp(µ, π) + t. When p is
unambiguous, we drop the p.

The following proposition is a direct consequence of the triangle inequality.

Proposition 5.1. If Wp(µ, µ
′) ≤ t, then µ′ is a (p, 1, t)-coreset of µ for the p-Wasserstein distance

problem.

Now our goal is to find a coreset for the p-Wasserstein distance problem. We use the algorithm
from (He et al., 2023). Informally, the algorithm works as follows. First, obtain a hierarchical
binary partition over the space of log ϵn levels. Use the (discrete) Laplace mechanism on each cell
to compute the number of points in each cell, with noise calibrated to the level. Then, it suffices to
choose points in each cell totaling the number of counts independently of the data. The set of all of
these points becomes the private data. For a full description of the algorithm, see Algorithm 4 of
(He et al., 2023).

We remark that there exists a corresponding with high probability (w.h.p.) algorithm that has the
following guarantee.

Theorem 5.2. For every ϵ > 0 and ξ ∈ (0, 1), there exists an ϵ-DP algorithm running in

time Õ(ϵdn) that with probability 1 − ξ, outputs an
(
p, 1, Op

((
1

(ϵn)1/d
· poly log

(
1
ξ

))1/p))
-

approximate coreset of size O(n log ϵn) for the Wasserstein distance.

Proof. (He et al., 2023) provides an algorithm with guarantees in expectation for the W1 distance.
Due to Lemma C.5, this implies a similar guarantee for Wp distance. To obtain the w.h.p. algo-

rithm, we run O
(
log 1

ξ

)
trials of the algorithm and use the exponential mechanism (McSherry &

Talwar, 2007) to choose the best one, e.g. see Appendix D of (Bassily et al., 2014) for an analogous
argument.

Note that we can downsample back down to n points in the private coreset with a small loss in
approximation accuracy, e.g. see Figure 7 in the appendix.

Our key technical lemma is the following result to bound the error using Wasserstein distance core-
sets instead of the true distributions:

Lemma 5.3. Let µ1, . . . , µk be discrete probability measures and suppose µ′
1, . . . , µ

′
k are (p, 1, t)-

coresets for each µi, respectively. Then,

OPT(µ′
1,...,µ

′
k)
≤ OPT(µ1,...,µk) +Op(t

p).

Proof (sketch). This follows from Definition 8 and (4). See Appendix E for the full proof.

5.2 MAIN RESULT

(Izzo et al., 2021) generalized the breakthrough work of (Makarychev et al., 2019) to show that
reducing to O(log n) dimension suffices to preserve the cost of p-Wasserstein distances for all solu-
tions supported on at most n data points. Their main result is the following:

Theorem 5.4. Let µ1, . . . , µk be discrete probability distributions on Rd such that |suppµi| ≤
poly(n) for all i ∈ [k]. Let d ≥ 1, γ, ξ ∈ (0, 1). Let Π : Rd → Rd′

be an i.i.d. Gaussian JL map

with d′ = O
(

p4

γ2 log
n
γξ

)
. Then, with probability 1− ξ, it holds that

cost(S) ≈1+γ cost(Π♯S)

for all solutions (S,w).

6
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Algorithm 2 WassersteinBarycenterϵ

Require: k discrete distributions µ1, . . . , µk supported on Rd, projection dimension d′, approxi-
mate Wasserstein barycenter algorithm NonPrivateApprox, privacy parameter ϵ

1: Sample a JL transform Π ∈ Rd×d′

2: for i ∈ [k] do
3: µ′

i ←WassersteinDistanceCoresetϵ(µi) ▷ Algorithm 4 of (He et al., 2023)
4: µ̂i ← Π♯µ

′
i

5: end for
6: ν̂ ← NonPrivateApprox(µ̂1, . . . , µ̂k) ▷ ν̂ ∈ Rd′

7: (S,w)← SolutionWeights(ν̂, µ̂1, . . . , µ̂k)
8: (ν(1), . . . , ν(m))← SupportPoints(µ′

1, . . . , µ
′
k, S,w) ▷ (ν(1), . . . , ν(n)) ∈ Rd

9: return ν with uniform support on {ν(j)}j∈[m]

Above, for γ ≥ 0, we use a ≈1+γ b to denote 1
1+γ ≤

a
b ≤ 1 + γ. We briefly remark that it is also

possible to use the fast JL transform using d′ = O
(

p6

γ2 log
n
γξ

)
; for details please refer to Appendix

B of (Izzo et al., 2021).

Our main result is the following, whose proof we provide in Appendix E.

Theorem 5.5 (Private coreset method). For any p ≥ 1, suppose that there exists a (not necessarily
private) (z, t)-approximation algorithm that runs in time 2O(d) · poly(n, k) for the p-Wasserstein
barycenter problem. Then, for every ϵ > 0 and γ, ξ ∈ (0, 1), there exists a polynomial-time ϵ-DP
algorithm that outputs an(

z(1 + γ), Op,γ,z

(
1

(ϵn)1/d
· poly log

(
k

ξ

)
+ t

))
-approximate p-Wasserstein barycenter, with probability 1− ξ.

Remark 1 (Privacy amplification). Note that we can amplify the privacy using subsampling (Balle
et al., 2018), which will improve the dependence on ϵ.

Remark 2 (Comparison to output perturbation). While the output perturbation approach of Section
4 focused on gaining privacy through larger k, the private coreset method obtains privacy through
reducing individual sensitivity as n increases. By dropping poly-log factors on k, ξ, δ, we see that if
k ≲ n

1
pd ϵ−1+ 1

pd

√
md, then the private coreset method yields lower error than the output perturba-

tion approach.

As a result, the private coreset approach should be the better choice in more (but not all) real world
settings.

Via dimensionality reduction, we can afford an algorithm that has an exponential dependence on the
dimension as d′ = O(log n). Unfortunately, many state of the art additive approximation algorithms

(a) n = 50, 100, . . . , 1600 (b) ϵ = 2−4, 2−2, . . . , 23 (c) d′ = 1, 2, . . . , 9

Figure 2: Synthetic experiments testing sample size n, privacy parameter ϵ, and projection dimen-
sion d′, averaged over 30 runs.
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(a) n = 200000 and ϵ = 1 for m = 48 and k = 1. Denoting ν, νϵ as the non-private and private barycen-
ters, respectively, we have cost(ν) = 15.92, cost(νϵ) = 21.62 (squared degrees longitude/latitude), and
W2(ν, νϵ) = 5.633 (degrees).

(b) n = 100000 and ϵ = 1 for m = 48 and k = 4 (self-reported White, Asian, Black, Hispanic).
Denoting ν, νϵ as the non-private and private barycenters, respectively, we have cost(ν) = 5058.416,
cost(νϵ) = 6842.462 (squared degrees) and W2(ν, νϵ) = 11.766 (degrees).

Figure 3: Barycenters on continental US populations.

still do not lend polynomial runtime when combined with dimensionality reduction. For instance,
the algorithm of (Altschuler & Boix-Adsera, 2021) runs in time (nk)O(d).

The weights (S,w) from Definition 5 are computed via optimal transport plans between µ̂i and ν̂,
e.g. the distributions in low dimension. Due to post-processing, the µ̂i are private, so the compu-
tation incurs no additional privacy loss. We provide pseudocode in Algorithm 3. To recover the
support points, we use empirical risk minimization (Algorithm 4).

6 EXPERIMENTS

We test our method from Section 5 on simple synthetic data, MNIST, and US population data. We
provide additional experiments (on MNIST) and additional discussion of all experiment setups in
Appendix F. All of our experiments use the Sinkhorn free support barycenter (Flamary et al., 2021)
with 50 iterations and 100 inner (Sinkhorn) iterations. In our experiments, we utilize subsampling
of the private coresets, which increases cost by a negligible amount, but significantly improves the
runtime (see Figure 7 on MNIST in Appendix F).

8
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Figure 4: n = 2000, 4000, . . . , 128000 and ϵ = 1 in the same experimental setup as Figure 3a,
averaged over 10 trials. On the left, we have cost in squared degrees. On the right, we plot the
2-Wasserstein distance between the private and non-private barycenters (in degrees).

In Figure 2, we consider equally weighted mixtures of 4 Gaussians at (±0.25,±0.25, 0, · · · , 0) ∈
R10. We use m = 8 and 0.04 for the entropic regularization. For the synthetic experiments, we fix
n = 1000, ϵ = 1, and d′ = 5 (when they are not varied). We generally observe that using the JL
algorithm provides better utility (for small n or ϵ) under DP because without JL, the algorithm tends
to get stuck in local minima, e.g. all points centered at the origin.

In Figure 3, we consider the experiment setup from (Cuturi & Doucet, 2014) (m = 48, k = 1) and
use US population data from the American Community Survey (ACS) 2015.6 In Figure 3a, we take
k = 1, where the dataset is the whole US population. We take the (sensitive) data to be multisets of
the centers of census tracts (chosen with replacement) of size n = 200000. In Figure 3b, we take
the sensitive data to be each of n = 100000 (uniformly at randomly chosen) points corresponding
to the self-reported racial groups White, Asian, Black, Hispanic, where for privacy, we assume the
groups are disjoint.

In our private coreset construction, we only sample points that are inside the US border (which is
private by data independent post-processing). Our algorithms use ϵ = 1 on the full population (or
subpopulation), utilizing privacy amplification by subsampling (Balle et al., 2018). Each barycenter
computation only take a few minutes to run on CPU; however, the sampling of points inside the US
takes a few hours for the largest experiments. In this experiment, we use entropic regularization of
0.001 and do not utilize dimensionality reduction.

In our experiments on the US population, we observe that the cost of privacy is less pronounced
when k ≥ 2. In particular, we find that the costs for non-private and private versions of the k = 4
experiment to stay relatively stable across varying values of n. Thus, in Figure 4, we report results
for the k = 1 setting for the US population experiments.

7 CONCLUSION

We extended the study of private facility location problems from clustering to Wasserstein barycen-
ters. One limitation of Algorithm 2 is the curse of dimensionality, and future work can study the
setting where the data lies near a low dimensional subspace (Weed & Bach, 2019) and alleviate the
curse of dimensionality via privatized versions of entropic OT (Mena & Niles-Weed, 2019; Genevay
et al., 2019) or Gaussian-smoothed OT (Goldfeld et al., 2020; Goldfeld & Greenewald, 2020; Nietert
et al., 2021; Zhang et al., 2021).

In this work, we studied Wasserstein barycenters under the central model of differential privacy, for
future work it would also be interesting to obtain results under the local (Kasiviswanathan et al.,
2011) and shuffle (Bittau et al., 2017; Erlingsson et al., 2019; Cheu et al., 2019) models. Further-
more, we focused on the setting where one individual contributes a single datapoint out of the k
distributions. An interesting direction would be to consider the setting where one person contributes
a whole probability measure, as this would allow practitioners to consider continuous distributions
as input data.

6https://www.census.gov/acs/www/data/data-tables-and-tools/data-profiles/2015/
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Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghunathan, David Lie,
Mitch Rudominer, Ushasree Kode, Julien Tinnes, and Bernhard Seefeld. Prochlo: Strong privacy
for analytics in the crowd. In Proceedings of the 26th symposium on operating systems principles,
pp. 441–459, 2017.

10

https://epubs.siam.org/doi/abs/10.1137/1.9781611977912.159
https://epubs.siam.org/doi/abs/10.1137/1.9781611977912.159
https://epubs.siam.org/doi/abs/10.1137/1.9781611978322.163
https://epubs.siam.org/doi/abs/10.1137/1.9781611978322.163
https://arxiv.org/abs/1705.09634
https://arxiv.org/abs/1705.09634
http://jmlr.org/papers/v22/20-588.html
http://jmlr.org/papers/v22/20-588.html
https://doi.org/10.1137/21M1390062
https://doi.org/10.1137/21M1390062
https://doi.org/10.1137/23M1556538
https://machinelearning.apple.com/research/learning-with-privacy-at-scale
https://machinelearning.apple.com/research/learning-with-privacy-at-scale
https://proceedings.neurips.cc/paper_files/paper/2018/file/3b5020bb891119b9f5130f1fea9bd773-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/3b5020bb891119b9f5130f1fea9bd773-Paper.pdf
https://doi.org/10.1137/141000439


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. The Johnson-Lindenstrauss trans-
form itself preserves differential privacy, 2012. URL https://arxiv.org/abs/1204.
2136.

March Boedihardjo, Thomas Strohmer, and Roman Vershynin. Private measures, random walks,
and synthetic data. Probability theory and related fields, pp. 1–43, 2024.
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A RELATED WORK

In the theoretical computer science community, the Wasserstein barycenter falls under the category
of facility location problems. This class of problem is concerned with placing points, or “facili-
ties,” to minimize some objective given a set of input data. Note that clustering also falls under this
category. Clustering (Lloyd, 1982) has seen many non-private approximation algorithms. Over the
past few decades, a line of works (Charikar et al., 1999; Charikar & Guha, 1999; Jain & Vazirani,
2001; Jain et al., 2003; Charikar & Li, 2012; Cohen-Addad et al., 2022b) have pushed multiplica-
tive approximation factors to 2.406 and 5.912 for Euclidean k-medians and k-means, respectively
(Cohen-Addad et al., 2022a).

(Gupta et al., 2010) initiated the study of facility location algorithms under DP, and provided an
inefficient algorithm based on the exponential mechanism (McSherry & Talwar, 2007) that gave
constant factor multiplicative approximation. Then a series of works (Balcan et al., 2017; Kaplan
& Stemmer, 2018; Jones et al., 2021; Chaturvedi et al., 2020; Ghazi et al., 2020) culminated in
polynomial time algorithms for private clustering with the optimal multiplicative approximation
ratio and small additive errors.

On the other hand, the Wasserstein barycenter is a much more nascent problem. Initial works pro-
vide approximations using methods such as entropic regularization (Cuturi, 2013; Cuturi & Doucet,
2014), iterative Bregman projections (Benamou et al., 2015), or stochastic optimization (Claici et al.,
2018); however, these lack worst-case guarantees on the approximations, for instance to the non-
entropic setting. Even theoretical guarantees for fast approximations of Wasserstein distances are
recent (Altschuler et al., 2018; Agarwal et al., 2024). More recently, some works have provided
theoretical guarantees for Wasserstein barycenters in the p = 2 setting: (Altschuler & Boix-Adsera,
2021; Agarwal et al., 2025) showed that additive and multiplicative (respectively) approximations
for Wasserstein barycenters can be computed in polynomial time for constant dimension. Recently
(Boedihardjo et al., 2024; He et al., 2023) provided constructions for private measures that are close
to input empirical measures over [0, 1]d in 1-Wasserstein distance and (Feldman et al., 2024) pro-
vided instance-optimal constructions for finite metric spaces.

The Johnson-Lindenstrauss (JL) lemma (Johnson & Lindenstrauss, 1984) is a dimensionality re-
duction method that provides worst-case guarantees on preserving pairwise distances between a
collection of points. It has been applied to numerous problems in many areas of computer science,
including streaming algorithms (Alon et al., 1999; Muthukrishnan et al., 2005) and DP (Blocki et al.,
2012; Nikolov, 2022). The (lower) bound on the dimension required to approximately preserve so-
lutions varies from problem to problem, e.g. see (Narayanan et al., 2021; Charikar & Waingarten,
2025) for a discussion. For facility location problems, (Makarychev et al., 2019) showed that di-
mension d′ = O(log k) suffices for preserving the cost of solutions to k-means clustering, and (Izzo
et al., 2021) showed that dimension d′ = O(log n) suffices for Wasserstein barycenters supported
on ≤ n points.

B DEFERRED ALGORITHMS

Algorithm 3 SolutionWeights

Require: barycenter ν, k input distributions µ1, . . . , µk supported on m1, . . . ,mk points, respec-
tively

1: Obtain (S,w) based on (T1, . . . , Tk) as follows:
2: for i ∈ [k] do
3: Ti ← OT(µi, ν)
4: for (ℓ, j) ∈ [mi]× [m] do
5: if Ti[ℓ, j] > 0 then
6: Sj ← Sj ∪ {µi[ℓ]}
7: wj(µi[ℓ])← Ti[ℓ, j]
8: end if
9: end for

10: end for
11: return (S,w)
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Algorithm 4 SupportPoints

Require: k discrete distributions µ1, . . . , µk supported on Rd, partition (S,w) as described in Def-
inition 5

1: for Sj ∈ S do
2: ν(j) ← argmin

∑
x∈Sj

wj(x)∥x− ν(j)∥p
3: end for
4: return (ν(1), . . . , ν(m))

C ADDITIONAL PRELIMINARIES AND LEMMATA

C.1 DIFFERENTIAL PRIVACY

Lemma C.1 (Parallel composition). Let A1, . . . ,Ak be ϵ-DP algorithms. Suppose D = S1 ∪ · · · ∪
Sk, where Si ∩ Sj = ∅ for every i ̸= j. Then (A1(S1), . . . ,Ak(Sk)) is ϵ-DP.

A nice property of differential privacy is the post-processing property, which informally says that
transforming private output does not incur additional privacy loss. Formally, we have the following:

Lemma C.2 (Post-processing). Let A be an ϵ-DP algorithm. Then for any (possibly randomized
algorithm) g, g ◦ A(D) is ϵ-DP.

Definition 9 (ℓp-sensitivity). We define the ℓp-sensitivity of a function f to be

∆pf := max
D,D′
∥f(D)− f(D′)∥p,

where D,D′ are adjacent datasets.

Lemma C.3 (Gaussian mechanism). Let f be a function, ϵ, δ ∈ (0, 1), and σ2 ≥ (∆2f)
2 ·

2 ln(1.25/δ)
ϵ2 . The Gaussian mechanism f(D) +N (0, σ2) is (ϵ, δ)-DP.

C.2 OPTIMAL TRANSPORT

It can easily be checked that indeed the Wasserstein distance is a metric: in particular, the triangle
inequality holds.

Lemma C.4 ((Santambrogio, 2015), Lemma 5.4). For any p ≥ 1, µ, ν, π ∈ Pp(X ), we have
Wp(µ, π) ≤Wp(µ, ν) +Wp(ν, π).

For bounded spaces, we can bound the p-Wasserstein distance by the 1-Wasserstein distance:

Lemma C.5 ((Santambrogio, 2015)). Let X be bounded. Then for any p ≥ 1, µ, ν ∈ Pp(X ), we
have Wp(µ, ν) ≤ diam(X )(p−1)/pW1(µ, ν)

1/p.

C.3 JL TRANSFORM

A JL transform is any (linear) map that satisfies the JL lemma:

Theorem C.6 (Johnson-Lindenstrauss lemma, (Johnson & Lindenstrauss, 1984)). Given an ac-
curacy parameter 0 < γ < 1, a set of n points X in Rd, and the projection dimension
d′ = O(log n/γ2), there exists a linear map Π : Rd → Rd′

such that all pairwise distances
are preserved within factor (1± γ), i.e., it holds

1

1 + γ
∥x− y∥ ≤ ∥Πx−Πy∥ ≤ (1 + γ)∥x− y∥

for every x, y ∈ X , with probability 1− 1/poly(n).

In other words, the JL transform reduces the dimensionality of the data from d to d′ while approx-
imately preserving all pairwise distances (whp). Note that this worst-case guarantee is the main
strength of the JL approach, other dimensionality reduction techniques such as principal component
analysis typically do not have this guarantee.
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C.4 USEFUL LEMMATA

Lemma C.7. Let µ ∈ Pp(Rd) and µσ := µ ∗ N (0, σ2Id). Then

Wp(µ, µσ) ≲ σ
(√

d+
√
2p
)
.

Proof. By definition of Wasserstein distance, we have

Wp(µ, µσ) ≤ (E[X − (X + σZ)]p)
1/p

= σ (E∥Z∥p)1/p ,

where X ∼ µ and Z ∼ N (0, Id). We have

E∥Z∥p = E
(
∥Z∥2

)p/2
= E[Y p/2],

where Y := ∥Z∥2 ∼ χ2
d (chi-squared with d degrees of freedom). Using (Laurent & Massart, 2000),

it holds

Pr[Y − d ≥ 2
√
dt+ 2t] ≤ exp(−t)

Pr[d− Y ≥ 2
√
dt] ≤ exp(−t),

so we can apply Theorem 2.3 of (Boucheron et al., 2003), which yields the desired result.

D COMPARING CLUSTERING AND WASSERSTEIN BARYCENTERS

D.1 CLUSTERING

For completeness, we provide a brief discussion of the construction for private clusterings. We start
by formalizing the problem statement for clustering:

Definition 10 ((k, p)-clustering). Given k ∈ N and a dataset X = {x1, . . . , xn} in B0(1/2), we
want to find k centers c1, . . . , ck ∈ Rd that minimizes

costX(c1, . . . , ck) :=
∑
i∈[n]

(
min
j∈[k]
∥xi − cj∥

)p

. (6)

The optimal cost is denoted as OPT, where we suppress the dependence on k, p,X.

Definition 11 (Approximation for clustering). A (w, t)-approximation algorithm for (k, p)-
clustering outputs c1, . . . , ck such that cost(c1, . . . , ck) ≤ w ·OPT+ t.

(Ghazi et al., 2020) showed the following:

Theorem D.1. For any p ≥ 1, suppose that there exists a polynomial time (not necessarily pri-
vate) (w, 0)-approximation algorithm for the (k, p)-clustering problem. Then, for every ϵ > 0 and

δ, γ, ξ ∈ (0, 1), there exists an (ϵ, δ)-DP algorithm that runs in
(

k
ξ

)Op,γ(1)

· poly(nd) time and
outputs an (

w(1 + γ), Op,γ,w

(
k
√
d

ϵ
· poly log k

δγ
+

(k/γ)Op,γ(1)

ϵ
· poly log n

γ

))
-approximation for (k, p)-clustering, with probability 1− ξ.

The first term in the additive error comes from computing the centers in high dimension. The second
term comes from bounding the error in low dimension.

The construction of private (k, p)-clustering in low dimension works as follows. Under DP, we
start by finding a centroid set7 of size O(k log n) with small multiplicative error. Then, we create a
private coreset by “snapping” all the input data to their nearest point in the centroid set and use the
(discrete) Laplace mechanism to privatize the counts.

7A set that contains a good approximate solution.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D.2 STABILITY

The (k, p)-clustering objective is stable in the following sense: suppose we fix a dataset X and k
centers. If we move one datapoint and update the k centers, a large fraction of the points will remain
clustered together. This fact is key to the accuracy of private clustering algorithms.

Due to the stability of the clustering objective, the snapping procedure above incurs small additive
error and is easy to reason about. On the other hand, optimal transport plans are highly non-stable:

Proposition D.2. Let n ∈ N. Fix a distribution ν supported on n atoms with uniform weights. There
exists a distribution over R such that moving one datapoint by O

(
1
n

)
changes the mapping for every

datapoint.

Proof. We construct µn with support over
{

k
n

}
k∈[n]

. Recall that the optimal transport plan in one
dimension can be computed from the cumulative density function, e.g. see (Santambrogio, 2015).
In the setting of the proposition, this will just be based on the order of the datapoints. Thus moving
the particle on 1

n to 2+ϵ
n for any ϵ > 0 will yield the desired result.

Remark 3. The distribution in Proposition D.2 also shows that in order to use the private coreset
construction from k-means clustering for Wasserstein distances requires taking k = Ω̃(n) for small
snapping error, when we usually should think of k = Õ(1).

Proposition D.3. There exists a distribution over R2 such that changing one point by O(1) causes
all the points in the support of the output barycenter by Ω(1).8

Proof. See Figure 5.

(a) Non-optimal barycenter. (b) Optimal barycenter.

Figure 5: Unperturbed data is uniform over S1. Here, the averages of any of the two disjoint half-
arcs yield an optimal barycenter. However, with a bad initialization, each point in the support of the
output distribution can move Ω(1) as Ω(n) of the couplings change.

E DEFERRED PROOFS

E.1 PROOF OF THEOREM 4.1

Theorem E.1 (Theorem 4.1, restated). For any p ≥ 1, suppose there exists a (not necessarily
private) (z, t)-approximation algorithm for the p-Wasserstein barycenter problem. Then for ev-

ery ϵ > 0, δ ∈ (0, 1), Algorithm 1 is (ϵ, δ)-DP, and yields a
(
(z, t+Op

((
md ln(1/δ)

(ϵk)2

)p/2))
-

approximation for the p-Wasserstein barycenter problem.

Proof. We prove the privacy and utility separately.

8whereas the expected should be O
(
m
n

)
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(Privacy) Consider the ℓ2 sensitivity of the algorithm, which is a function Xnk → Rm×d. If we
change one datapoint, the couplings of up to n elements could potentially change, namely all of
those in the subpopulation. By normalization and Assumption 1, this implies the ℓ2 sensitivity of
∥ν(j) − ν′(j)∥2 is 1

k . Thus, the ℓ2 sensitivity of the output is

∥ν1 ◦ · · · ◦ νm − ν′1 ◦ · · · ◦ ν′m∥2 =

∑
j∈[m]

∥νj − ν′j∥2
1/2

≤

(
m

(
1

k

)2
)1/2

=

√
m

k
,

where ν1◦· · ·◦νm ∈ Rmd is vector-concatenation. Privacy follows by the guarantees of the Gaussian
mechanism (Lemma C.3).

(Utility) We have

costµ1,...,µk
(ν̃) =

1

k

k∑
i=1

W p
p (µi, ν̃)

≤ 1

k

k∑
i=1

(Wp(µi, ν) +Wp(ν, ν̃))
p (7)

≤ 1

k

k∑
i=1

W p
p (µi, ν) + p2p−1W p

p (ν, ν̃) (8)

= costµ1,...,µk
(ν) + p2p−1W p

p

(
ν, ν ∗ N

(
0,

2m ln(1.25/δ)

(ϵk)
2 Id

))

≤ costµ1,...,µk
(ν) + p2p−1

(
2m ln(1.25/δ)

(ϵk)

)p/2 (√
d+

√
2p
)p

(9)

≲ costµ1,...,µk
(ν) +Op

((
md ln(1/δ)

(ϵk)2

)p/2
)
,

where (7) follows from Lemma C.4, (8) follows from Lemma E.2, and (9) follows from Lemma C.7.
This concludes the proof.

E.2 PROOF OF LEMMA 5.3

We will use the following lemma.

Lemma E.2. For every p ≥ 1, if 0 ≤ a, b ≤ 1, then it holds

(a+ b)p ≤ ap + p(a+ b)p−1b ≤ ap + p2p−1b.

Lemma E.3 (Lemma 5.3, restated). Let µ1, . . . , µk be discrete probability measures and suppose
µ′
1, . . . , µ

′
k are (p, 1, t)-coresets for each µi, respectively. Then,

OPT(µ′
1,...,µ

′
k)
≤ OPT(µ1,...,µk) +Op(t

p).

Proof. Consider a candidate barycenter ν. Using (1), we have

costµ′
1,...,µ

′
k
(ν) =

1

k

k∑
i=1

W p
p (µ

′
i, ν)

≤ 1

k

k∑
i=1

(Wp(µ
′
i, µi) +Wp(µi, ν))

p (10)

≤ 1

k

k∑
i=1

W p
p (µi, ν) +

p2p−1

k

k∑
i=1

W p
p (µ

′
i, µi) (11)

= costµ1,...,µk
(ν) +

p2p−1

k

k∑
i=1

W p
p (µ

′
i, µi) (12)
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≤ costµ1,...,µk
(ν) +

p2p−1

k

k∑
i=1

tp, (13)

= costµ1,...,µk
(ν) +Op(t

p)

where (10) follows from the triangle inequality, (11) follows from Lemma E.2, (12) follows from
(1), and (13) follows from Definition 8. Note that applying Lemma E.2 uses Assumption 1. The
claim follows.

E.3 PROOF OF THEOREM 5.5

Proof. Let d′ be as in Theorem 5.4.

(Runtime) It suffices to bound the runtime of computing the barycenter in low dimensions as it is
clear that the pre- and post-processing steps run in polynomial time. With the given d′, we have that
2O(d′) · poly(n, k) = poly(n) · poly(n, k) = poly(n, k), as desired.

(Privacy) The privacy follows from Lemmas C.1 and C.2 as the input distributions are disjoint.

(Utility) For each µi, we invoke Theorem 5.2 with failure probability ξ
2k . Then by a union bound,

with probability 1 − ξ
2 , µ′

i is a
(
1, Op

((
1

(ϵn)1/d
· poly log

(
k
ξ

))1/p))
-coreset for µi, for each

i ∈ [k]. Assuming this event holds, Lemma 5.3 implies

OPT(µ′
1,...,µ

′
k)
≤ OPT(µ1,...,µk) +Op

(
1

(ϵn)1/d
· poly log

(
k

ξ

))
. (14)

Let ν be the output of the algorithm. Now we apply Theorem 5.4, along with the guarantee of the
not necessarily private approximation algorithm, which implies with probability 1− ξ

2 ,

cost(µ′
1,...,µ

′
k)
(ν) ≤ z(1 + γ)OPT(µ′

1,...,µ
′
k)

+Op,γ,z(t) (15)

By a union bound, (14) and (15) both occur with probability 1− ξ. When this is the case, we deduce

cost(µ′
1,...,µ

′
k)
(ν) ≤ z(1 + γ)OPT(µ1,...,µk) +Op,γ,z

(
1

(ϵn)1/d
· poly log

(
k

ξ

)
+ t

)
,

which concludes the proof.

F EXPERIMENTS

F.1 ADDITIONAL EXPERIMENTS

We provide an example of the private coreset under uniform noise and scaled-down unifrom noise
on the MNIST dataset (as points over [−0.25, 0.25]2 in Figure 6. In particular, for visualization, we
treat one image as one distribution.

In the next experiment with MNIST, we follow the setup of (Izzo et al., 2021) and treat each image
as a point in Rn. We consider k = 10 (each digit is one distribution), d′ = 25, and m = 40. One
difference is that we pre-process the data onto B0.5(0). We consider the cost to be the Wasserstein
distance between the output and the Wasserstein barycenter over 5000 images from each class. Our
experiment parameters are 0.01 for entropic regularization, 50 iterations, and 100 inner (Sinkhorn)
iterations. In Figure 7, we show that subsampling on the private coresets to size n has a negligible
increase in cost for sufficiently large n. In Figure 8, we observe that the choice of how points are
sampled in each cell has a small effect on the cost for sufficiently large n.

In the US population experiment, we use GPT to implement the code for testing whether a point is
inside the US population.

F.2 ADDITIONAL DISCUSSION ON EXPERIMENT SETUP

In all the experiments, we scale the noise down by (240d)1/d, e.g. Figure 8. We do not use zero
noise as it usually is unstable.
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(a) Points chosen uniformly at random from the full cell.

(b) Points chosen uniformly at random from a scaled-down version of the cell.

Figure 6: Example of a MNIST 2 digit with privacy parameter ϵ = 1. On the left, we have the
sensitive data, upsampled to n = 10000. In the middle, we have the full private coreset (with
O(n log ϵn) points). On the right, we choose a subsample the private coreset down to n points.

Figure 7: MNIST experiments with n = 50, 100, . . . , 1600 and ϵ = 1, averaged over 10 runs. (left)
Cost of solutions. (right) Runtime in seconds.

Figure 8: Subsampled experiment in the same setup as Figure 7. Uniform corresponds to the setting
as Figure 6a and scaled uniform setup corresponds to the setting as Figure 6b.
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(a) n = 200000, m = 48, and k = 1. Denoting ν, νϵ as the non-private and private barycenters, respectively,
we have cost(ν) = 16.536, cost(νϵ) = 20.407 (squared degrees longitude/latitude), and W2(ν, νϵ) = 5.375
(degrees).

(b) n = 100000, m = 48, and k = 4 (self-reported White, Asian, Black, Hispanic). Denoting ν, νϵ as the non-
private and private barycenters, respectively, we have cost(ν) = 4451.297, cost(νϵ) = 6343.896 (squared
degrees) and W2(ν, νϵ) = 12.76 (degrees).

Figure 9: Same experimental setup as Figure 3, with ϵ = 5.

Figure 10: n = 2000, 4000, . . . , 128000 and ϵ = 5, similar to Figure 4, averaged over 10 trials.
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