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Abstract: A general-purpose service robot (GPSR), which can execute diverse1

tasks in various environments, requires a system with high generalizability and2

adaptability to tasks and environments. In this paper, we first developed a top-3

level GPSR system for worldwide competition (RoboCup@Home 2023) based4

on multiple foundation models. This system is both generalizable to varia-5

tions and adaptive by prompting each model. Then, by analyzing the perfor-6

mance of the developed system, we found three types of failure in more real-7

istic GPSR application settings: insufficient information, incorrect plan genera-8

tion, and plan execution failure. We then propose the self-recovery prompting9

pipeline, which explores the necessary information and modifies its prompts to10

recover from failure. We experimentally confirm that the system with the self-11

recovery mechanism can accomplish tasks by resolving various failure cases.12

https://sites.google.com/view/srgpsr-anon13

Keywords: Foundation Models, Service Robotics, Self-Recovery14

1 Introduction15

A general-purpose service robot (GPSR) is a concept aiming to develop a robot system that accom-16

plishes various types of human requests likely to happen in real-world environments [1]. As the17

system needs to handle various types of requests in various environments, it has to be generalized18

between them. Besides, to enhance usability, the system is required to handle ambiguous commands19

in natural interaction with humans, such as speech, which might have insufficient information to20

understand properly without communication or leveraging common sense knowledge.21

Recent progress in foundation models [2], a set of large pre-trained models with diverse datasets,22

has brought high generalization performances in perception and task planning from natural lan-23

guage to robotics. Furthermore, these models can be adapted to various tasks and environments24

with prompting [3], a technique to enhance the performance of the models by modifying the inputs25

without additional training. However, most of the robot learning studies utilize foundation models26

as modules, and there is a lack of discussions about the system design or integration and evaluation27

of complex environments such as household environments.28

This paper first presents a robot system that won the GPSR task in RoboCup Japan Open (RCJ) 202329

and second place in RoboCup (RC) 2023. The GPSR task held in RoboCup aims to benchmark30

the performance of entire generalized robotic systems based on the concept of GPSR mentioned31

above. To avoid confusion, we use GPSR to represent a task itself and GPSR to represent a concept32

throughout the paper. The competitions are held in a household environment, and robots are re-33

quired to perform various tasks asked by a human operator. Figure 1 shows an example of requests34

accompanied by the sequence of output of our system, which integrates multiple foundation models,35

including GPT-4 [4] for planning, Whisper [5] for speech recognition, and Detic [6] and CLIP [7] for36

object recognition (Figure 2). In short, our system uses GPT-4 as the core of the system to generate37

the plan and the other three models to convert human requests and environmental information into38

text information or recognize part of the environment specified in the text. Notably, our system can39
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① ② ③

④ ⑤ ⑥

Receive a command in English go_to_location(‘side table’)

Command : I’ll start studying at my desk in a moment. So, could you get 
a bottle of tea from the side table and leave it on my desk?

find_concrete_name_objects
(‘bottle of tea’)

pick(‘bottle of tea’) go_to_location(‘desk’) place(‘bottle of tea’, ‘desk’)

Figure 1: Example of GPSR task execution by our
system. The given commands are converted into
a sequence of skills that can be executed by the
robot and then executed one by one.
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Figure 2: Overview of our foundation-model-
based system. The foundation models collaborate
to process the environment and a natural language
command into an executable plan.

be entirely promptable, meaning we can easily tune the system only by specifying system prompts40

(without model training). In section 3, we describe more detailed integrations of each foundation41

model and provide evaluations at both the per-module and the whole system level.42

While the achievement of our system in the GPSR task supports the importance of foundation mod-43

els to realize the concept of general-purpose service robots from the point of generalization and44

adaptation, there are still several issues regarding its performance; the system still cannot perfectly45

execute complex requests due to the accumulation of errors in each module, and the entire system46

becomes difficult to tune as the system grows larger (or by using more foundation models). More47

critically, the current GPSR task abstracts some desiderata of the GPSR concept due to the nature48

of robot competition. For example, most of the information on objects (names, categories, and lo-49

cations) is given before the task starts, and thus, there is no need to judge whether the information50

is sufficient or not. In section 4.1, we categorize three types of failure modes of the current robot51

system to achieve GPSR systems, namely 1) insufficient information, 2) incorrect plan generation,52

and 3) plan execution failure, and discuss the requirements of the robot system.53

Based on the discussion, we then introduce a self-recovery mechanism on top of the above-54

mentioned GPSR system to further enhance the system’s versatility. Here, self-recovery means a55

system that retries to accomplish the original requests somehow when the system encounters some56

failure. While the notion of self-recovery is simple and has been implemented in various robot57

systems, we tailored it for promptable robot systems (i.e., systems that can improve performance58

only by adding or modifying their prompt). Specifically, we design a pipeline, called self-recovery59

prompting, which refines their prompts by past experiences and active communication with the op-60

erator. For the experiments, we handcraft seven types of commands that require retry associated61

with the aforementioned three failure modes of the original system and show that our system can62

recover from various types of failures.63

2 Preliminaries & Related Works64

2.1 General Purpose Service Robot (GPSR)65

The concept of GPSR is introduced in Walker et al. [1] wherein robots are expected to perform66

diverse tasks given by humans in a natural manner (e.g., verbal communication). According to67

the concept of GPSR, RoboCup@Home league [8] tests the performance of GPSR as GPSR task [9].68

The GPSR task is held in a real-world household environment, and the robots are expected to perform69

tasks given verbally by the operator (referee) as perfectly as they can within a time limit. The tasks70

are generated randomly with the command generator [10]. Since the rule is updated every year, we71

adapt the rule for RoboCup 20231 in this paper.72

2.2 Foundation Models for Robotics73

Foundation models are a set of models trained on broad datasets at scale and adaptable to a wide74

range of downstream tasks [2], such as large language models (LLMs) [11, 4, 12, 13], vision-75

language models (VLMs) [7, 6, 14, 15, 16], and audio-language models (ALMs) [5, 17, 18]. A76

1https://github.com/RoboCupAtHome/RuleBook/tree/706764626baf073d56ab2e61c1a3c5d3c339cfb4
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key characteristic of the foundation models is their generalization and adaptation ability, thanks to77

pre-training on massive and diverse datasets (often collected from the Internet). Especially, several78

foundation models, including Whisper [5], GPT [11, 4], CLIP [7], and Detic [6], are promptable;79

they can enhance the performance by adding text description to the input (called prompting) about80

the contexts such as detailed instruction [19] and environmental information [20].81

In the robotics community, foundation models are utilized as modules for perception and planning.82

As for the perception, VLMs such as CLIP [7], Detic [6], and SAM [15] are utilized in object83

and environmental perception [19]. Similarly, ALMs such as Whisper [5] and AudioCLIP [18] are84

used for speech [21] and sound [22] recognition. In addition, several robot systems use LLMs as85

task planners. LLMs are expected to handle the ambiguity of natural language and convert them to86

machine-interpretable representations, reasoning missing information in commands. For example,87

SayCan [23] utilizes LLMs to generate plans given from natural language instructions such as “I88

spilled my drink, can you help?”. As the variants, Code as Policies [24] generates Python codes89

(including calls of external perception modules) and executes them, and Obinata et al. [25] propose90

to generate state machine [26] using LLMs.91

The closest setting and systems to ours is Obinata et al. [25], which proposes a solution for GPSR92

task using foundation models in recognition and planning. While the usage of LLMs for planning93

and VLMs for object detection is similar to ours, we further utilize foundation-model-based mod-94

ules for speech recognition and semantic mapping and exceeded their performance in GPSR task in95

RoboCup@Home Japan Open 2023. In addition, we discuss the typical failure cases and introduce96

a novel self-recovery mechanism into the foundation-model-based robot system (section 4).97

2.3 Robot System with Self-Recovery98

In the context of robotics, the importance of the notion of self-recovery has been emphasized and99

implemented in the motion planning of multi-legged robots [27] and in the mechanical design of100

aerial robots [28]. This paper aims to realize self-recoverable task planning in GPSR systems under101

the framework of prompting with foundation models.102

Some concurrent robot learning studies using foundation models provide solutions for managing103

failures in plan execution. For example, DoReMi [29] proposes to detect failures of skill execution104

via VLMs and replan if the skill fails. FindThis [30] proposes to resolve the ambiguation in object105

recognition through the dialogue between humans and robots. Ren et al. [31] presents a framework106

to ask humans for help in an interactive manner if the uncertainty of the appropriate plan is high. In107

contrast, this paper presents the entire GPSR system in real-world household environments, which108

is promptable and has functions to autonomously address multiple types of failures.109

3 Promptable System for GPSR Task110

In this section, we first introduce our promptable GPSR system with foundation models, which111

achieved second place in GPSR task and won third prize in RoboCup@Home 2023.112

For the realization of a GPSR system, multiple foundation models with high generalization and113

adaptability were leveraged for the system in this study. The following five models (four of which are114

foundation models, and one is a model that consists of an integration of foundation models) have the115

ability to enhance the system to be generalized and adaptive with prompting: Whisper [5] for speech116

recognition, GPT-4 [4] for task planning, Detic [6] for object detection and segmentation, CLIP [7]117

for object classification, and CLIP-Fields [32] for integration of environmental information. Figure 2118

shows an example of how the foundation models can be used in our proposed system.119

For all the experiments, we used HSR (Human Support Robot) developed by Toyota Motor Corpo-120

ration [33] in the real world. The experiments were conducted in a real-world simulated household121

environment with several rooms, such as a living room, a dining room, and a study room.122

3.1 Overview123

3.1.1 Speech Recognition124

Speech recognition consists of two modules: a voice activity detection (VAD) module and a tran-125

scription module. Silero VAD [34] is used for VAD, and Whisper [5] is used for transcription. Since126
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Whisper is promptable with natural language, transcription performance can be enhanced using prior127

knowledge about task settings, such as names of humans, objects, and locations.128

3.1.2 Object Recognition129

The object recognition module consists of an object detection module and an object classification130

module. Detic [6] and CLIP [7], both of which are promptable foundation models, were used for131

detecting and classifying detected objects, respectively. We leverage the feature that these models132

accept open-vocabulary text inputs as prompts for object detection and classification, while conven-133

tional pre-trained models usually have fixed classes. For object detection, we prompt information of134

objects of interest (e.g., object name, category, description) into Detic. Then, the images segmented135

by Detic are classified with CLIP based on similarities between the embeddings of text description136

of the target objects and the embeddings of the segmented images.137

3.1.3 Planning138

To convert a natural language command into an executable format, we leverage GPT-4 [4] in our139

system. We prepare 21 skill functions (Table 1) that can accomplish given commands if appropri-140

ately combined. The desired output is an array where skill functions, including their arguments, are141

correctly arranged in the order they are executed by the robot in JSON format [35].142

The task planning process is based on the Chain-of-Thought prompting [36, 37] and has a two-step143

structure. The first step is dividing the command into minimal steps and deciding the order for the144

robot to perform in natural language. For example, the command “bring me an apple from the dining145

table” is converted into an array of sentences such as “Move to the dining table,”“Find apple,” and146

similarly. The array continues in the order of execution. In the second step, skill functions to be147

used with their arguments (e.g., locations, object names) are decided for each sentence leveraging148

function calling of GPT-4. By providing examples of the commands and their desired responses as149

prompts, it is possible to specify the output format and improve task planning accuracy.150

3.1.4 Semantic Mapping151

We integrate environmental information into a 3D semantic map using CLIP-Fields [32], which152

utilize three foundation models: Detic for object recognition, CLIP for image encoding, and Sen-153

tence BERT [38] for image label encoding. The robot can refer to the environmental information in154

CLIP-Fields for task planning.155

3.2 Experiments of Each Module156

3.2.1 Speech Recognition157

We first compared the speech recognition performance with and without prompts. The prompt158

includes object names, human names, and location names (i.e., room and furniture) that may ap-159

pear in commands. 12 commands were used for the experiments. The commands were generated160

by the command generator used in the Enhanced General Purpose Service Robot (EGPSR) task of161

RoboCup@Home 2023. 14 people participated in this study. For each command, the examinees162

were asked to read it aloud once to reduce misread cases. Then, they were asked to read the same163

command twice, and their voices were recognized by the robot. The typical cases from the obtained164

results are indicated in Table 2. The use of location names in advance shows a reduced likelihood of165

variations in interpreting location names. This suggests that pre-defined location names as prompts166

are an effective technique for improving transcription performance.167

3.2.2 Task Planning168

The planning performance between using tuned prompts and minimal prompts was examined in169

comparison. To test the effect of providing a prompt on the LLM’s reasoning ability of translation170

from given commands into the sequence of execution steps, we compared the result of the first step171

of the task planning (described in section 3.1.3.)172

The tuned prompt was adjusted so that most of the generated commands from the command gen-173

erator [10] used in the EGPSR task are correctly converted into arrays of sentences. This prompt174

consisted of the settings of the environment, the situation the robot was in, and the iteration of ex-175

ample commands and their ideal responses. Since it was impossible to align the LLM output (i.e.,176

4



an array of the sentences) without any prompt, the minimal prompt (shown below) was designed177

with minimum sufficient content for eliciting the output format.178

You are a helpful assistant for a robot. The robot is in a house. Your mission is to convert natural language
command into a list of sentences. The robot will execute the sentences in order to complete the task.

The commands used in this experiment were the same as in section 3.2.1. The success or failure179

of planning for each output was judged by whether the command was completed when the robot180

performed each skill function perfectly.181

As a result, in many cases, the plan generated with the minimal prompt was inappropriate, while182

the plan with the tuned prompt was executable. Some commands and their outputs of each prompt183

are shown in Table 3. The outputs of the minimal prompt lacked necessary preliminary action or184

contained sentences that could not be related to any skill function. Therefore, it can be said that185

providing instructions as a prompt is effective in eliciting LLM to generate executable plans.186

3.2.3 Object Recognition187

Object recognition performance was evaluated in comparison between setting Detic for open-188

vocabulary mode with prompts, and closed-vocabulary mode without prompts. Experiments were189

conducted using images with the same member of objects throughout the experiment.190

CLIP was used consistently with prompts, and for both open-vocabulary Detic and CLIP, prompts191

were tuned using images of the same objects placed in different locations and orientations. For192

instance, the prompts for “white rope” and “jump rope” were set as follows.193

Prompts of a white rope and a jump rope for Detic
“rope”: “a photo of a tangled white rope”,
“jump rope”: “a photo of a green jump rope, a type of toy”

Prompts of a white rope and a jump rope for CLIP
“white rope”: “a photo of a white rope”,
“jump rope”: “a photo of a green jump rope”

Validation experiments were conducted using entirely new images. Every object detected by Detic194

was cropped by its bounding box and classified by CLIP.195

Figure 3 shows that when Detic was used in open-vocabulary mode with the prompts shown above,196

it correctly detected the white rope, which was present in the closed-vocabulary case but remained197

undetected. During the segmentation phase with Detic, the white rope was misidentified as a green198

jump rope. Nevertheless, by incorporating prompts, even for objects with similar shapes, segmen-199

tation accuracy improved, and when applied to CLIP, correct recognition, as demonstrated in this200

case, could be expected. The result suggests the potential for improved recognition accuracy.201

3.3 Results of RoboCup@Home GPSR task202

We participated in RoboCup@Home DSPL (Domestic Standard Platform League) of RoboCup203

Japan Open (RCJ) 2022 and 2023 and RoboCup (RC) 2023 (worldwide). The proposed system204

was evaluated in RoboCup Japan Open 2023 and RoboCup 2023. In the competitions, the scores of205

the GPSR task were respectively given when speaking the transcribed command and accomplishing206

the task. It should be noted that the case where the robot autonomously requested human help and207

continued the command execution was also regarded as a success, with a reduction of scores after-208

ward. Conspicuously, in our trial of RoboCup Japan Open 2023, all the commands were completed209

within the time limit. The team scored 170 points, the perfect score for the second to the most210

challenging category (Category 2). The team’s place in the GPSR task and overall are indicated211

in Table 4. Figure 4 illustrates scores of GPSR task in RoboCup Japan Open (2022 and 2023). Our212

team marked more than 180 % of the second-placed team in 2023.213

4 Self-Recovery Mechanism for Promptable Robot System214

In the previous section, we proposed the entire system for GPSR task in RoboCup@Home, which can215

achieve top-level performance. However, owing to the nature of robot competition, some desiderata216

of GPSR are abstracted in GPSR task. For instance, the majority of information regarding objects217

(names, categories, and locations) is provided prior to the task, removing the necessity to assess218

whether the command contains sufficient information. Besides, since the time is limited, skipping219
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Figure 3: Image recognition results depending on open and
closed vocabulary modes of Detic. With prompts added
for open-vocabulary mode case, as shown in section 3.2.3,
“white rope,” undetected with closed-vocabulary mode, is
successfully detected in the end with open-vocabulary mode.
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Figure 4: GPSR score results in recent
years. The figure shows that the sys-
tem developed by us (indicated in red)
marked more than 180% of the second-
placed team in RCJ 2023.
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Figure 5: Example of three failure modes of GPSR systems and prompt-based self-recovery mechanisms. M1:
Location information is lacking. The robotic system asks for a human or LLM and adds obtained informa-
tion into their prompt. M2: On the realization of the wrong performance, the system re-plans. M3: On the
realization of execution failure, the per-skill recovery function is activated.

the task has been a better approach for achieving higher scores instead of finding a recovery plan220

when the robots once failed to execute the commands. Therefore, achieving a higher score or win-221

ning in GPSR task is not sufficient to achieve genuine GPSR systems.222

In this section, we first classify challenges for attaining authentic GPSR. Ideally, GPSR can be223

achieved with complete information about the environment, the ability to generate correct plans224

(skill sequences), and the perfect execution of the skills in each plan. However, in general, these225

three assumptions are often violated and challenges to realizing the authentic GPSR concept. Here226

we analyze issues that often occur in GPSR systems and organize the failure modes of GPSR systems227

into three patterns, namely, insufficient information, incorrect plan generation, and plan execution228

failure. Then, we propose to add a self-recovery mechanism into the system and evaluate the perfor-229

mance under the settings of the aforementioned three failure modes.230

4.1 Three Failure Modes of GPSR Systems231

(M1) Insufficient Information232

In a domestic environment, robots have to perform in a dynamic environment; for example, the233

locations of objects and humans are ever-changing. Moreover, registering all the information about234

the environment (e.g., object or human names, categories, and locations) to the system beforehand is235

not feasible. Even if the system has enough reasoning or recognition ability of human intent, lacking236

information about the environment prohibits the system from generating the correct plan at once.237

For example, the information necessary to plan can be lacking in many ways, such as “I lost my238

watch. Could you find it for me?” (a situation where even humans do not know the location of the239

objects), or “Could you bring me a cup?” (a situation that humans have assumed where it should240

be but not clarified in the command).241

(M2) Incorrect Plan Generation242

Even when the system has information sufficient to accomplish the task (i.e., no insufficient infor-243

mation problem), the current system in section 3 cannot perfectly accomplish the task. For example,244
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find_person(‘Ashley’) ask_location(‘apple’)
Ashley did not answer the 

location of the apple.

go_to_location(‘dining table’)

Robot recovered the plan 
assuming that the location of the 

apple was the dining table.

pick(‘apple’)find_concrete_name_objects(‘apple’)

M1 failure
Robot could not get 

sufficient information.

① ②② ③

④ ⑤ ⑥

command 5
Could you help me find the apple that I
bought the other day? Ashley might know
where it is, so maybe you can ask her if
she knows where it is. When you find it,
please bring it to me.

Give me instructions in the 
order I should perform.

M2 failure
robot failed to make a plan 

M2 failure
operator changed the command but 

robot failed to make a plan again

robot requested operator to 
change the wording

operator changed the command 
again and robot could make a plan

robot requested operator to 
change the wording again

① ②

③ ④ ⑤

command 6
Could you bring me the apple from the
stair-like shelf?

go_to_location(‘dining room’) find_person(‘Ashley’) M3 failure
Robot could not execute 

the skill “find_person”  

go_to_location(‘living room’) find_person(‘Ashley’)
ask_question(‘Ashley’,  
‘Do you want dinner?’)

go_to_location(‘instruction 
point’)

tell_information(‘Ashley’s 
answer’, ‘operator’)

① ② ③

④ ⑤ ⑥

⑦ ⑧

command 7
Could you look for Ashley in the dining
room and ask her if she wants dinner at
home tonight?

Figure 6: Example of three failure modes and execution of our system with self-recovery prompting. Com-
mands 5, 6, and 7 in Table 5 correspond to left, middle, and right, respectively. The red box highlighted areas
indicate failure patterns at each command. The green arrow indicates a normal plan transition, and the red
arrow indicates that a recovery plan has been triggered.

the robot can catch noises along with spoken commands and mistranscribe them, which leads to the245

generation of a wrong plan. Moreover, wrong plans can be generated due to a lack of reasoning per-246

formance or common sense of the planner. Suppose a simple case where the planner is just to extract247

verbs in the order of appearance in the commands and make them into executable skill sequences,248

and the command is “Could you fetch me an apple?”, the plan may start with “Bring the apple to249

the operator,” which is a mistake. Instead, the ideal plan is to “go to the location where the apple is250

(estimate if necessary before that)”, “find it”, “grab it”, and then “bring it back to the operator”.251

(M3) Plan Execution Failure252

Even if the plan is generated correctly with sufficient information on the environment, the robot253

system may fail to execute skills in the environment. This failure mode is due to the imperfection of254

the skill execution and is inevitable in the nature of real-world systems. For example, the robots may255

compute the wrong manipulation poses of objects and fail to grasp objects. The inability to find an256

object or false positives is also considered an execution failure. It is important to note that execution257

failure not only occurs because of such hardware execution errors but can also be attributed to the258

environment of service (i.e., the object does not exist in the house).259

4.2 Self-Recovery Prompting Pipeline260

In order to deal with the three failure modes for realizing GPSR systems, we introduce a self-261

recovery mechanism from the failure modes with prompting, called self-recovery prompting262

pipeline, as illustrated in Figure 5. In concrete, we developed a self-recoverable GPSR system263

as an entire system by adding functions of replanning and human-robot interaction based on the264

foundation-model-based system described in section 3.265

4.2.1 Recovery for Insufficient Information (M1)266

In the case of insufficient information (M1), the missing information necessary for planning is sup-267

plemented with common sense that the planning module has (e.g., food is likely to be in the kitchen268

or dining room) and additional information obtained by talking with humans (e.g., asking where the269

apple is). In concrete, we implement two recovery functions into our GPSR system. For the case that270

the location name (e.g., dining table) is not included in the command (or dialogue with humans), the271

system first infers the candidates of location from the command leveraging an LLM-based planner272

and plans to visit them. In the case that an operator or the LLM output refers to a location name not273

defined in the robot system, the robot asks the operator to rephrase the location name and extract it274

using LLM from the operator’s response.275

4.2.2 Recovery for Incorrect Plan Generation (M2)276

In the case of incorrect plan generation (M2), we develop solutions for it regarding command recog-277

nition and plan generation. As for the command recognition, the promptable speech recognition278

7



module (e.g., Whisper) can be improved by updating the prompts as described in section 3. For plan279

generation, the prompts for the LLM-based planner are updated reflecting human feedback given to280

the system after finishing the original plan to confirm task completion. If the task is not evaluated as281

completed, another plan is regenerated with the planner with updated prompts.282

4.2.3 Recovery for Plan Execution Failure (M3)283

In the case of plan execution failure (M3), the failure can be recovered per-skill and per-plan. For284

per-skill recovery, we develop two functions; one is to retry skill execution in the plan (e.g., retry285

navigation skill), and the other is to replan alternative skill sequence using the following prompt286

template instead of executing the original skill.287

The robot is supposed to {task content} . The robot tried to {failed action} {robot at}, but failed.
What should the robot do next?

Per-plan recovery is performed when the task is considered a failure in the human feedback after the288

execution of the entire plan, similar to the solution of the 2nd failure mode (M2). In this case, the289

prompts of the LLM-based planner are updated with the feedback, and the entire plan is regenerated290

and executed. For example, this occurs when a wrong object from the specified object is recognized291

in object recognition skill. After completing the plan, the system asks the operator to provide more292

information about the objects, especially the name and color. Prompts for the object recognition293

module are updated, and the task plan is regenerated.294

4.3 Experiments295

4.3.1 Experiment Setup296

Experiments were conducted to examine whether the system can recover from each of the failure297

modes by leveraging the proposed system. The system is tested in a domestic environment similar298

to that of section 3. The difference from the setting in the previous section is that object and human299

names and their locations are not given in advance of the task (the map with the location names is300

given). Following the experimental purposes, the commands used for the tests are created manually301

instead of generated with the command generator, and all commands are expected to be too challeng-302

ing to complete with the original system in section 3. Table 5 represents the prepared commands.303

The checkmark (✓) in the table indicates that the command and its setups have characteristics of the304

corresponding failure modes.305

4.3.2 Results306

For all tested commands, our self-recovery prompting mechanism successfully resolved failures.307

Three of the seven results, which represent examples of recovery functions in accordance with M1,308

M2, and M3 are explained in detail below and illustrated in Figure 6.309

For the case of the 5th command, the robot asked Ashely for the location of the apple but received310

no response, thus potentially causing the system to stop due to lack of information. However, the311

developed system overcame this potential failure point by seeking general knowledge of LLM (ask312

the location of “apple”) in this phase. For the case of the 6th command, since the instruction313

contained a phrase that was difficult to transcribe (”apple from the stair-like shelf”), it was difficult314

for the robot to generate a plan. Our system overcame this failing point by requesting the operator315

rephrase the command. For the case of the 7th command, execution failure at the finding person316

phase was a possible failing point. The system recovered from it by re-planning.317

5 Discussion and Conclusion318

In this paper, we first developed promptable GPSR systems utilizing multiple foundation models,319

which can achieve top-level performance in the worldwide competition (RoboCup@Home 2023).320

By analyzing the performance of the developed system, we organized three failure modes in more321

realistic GPSR applications: insufficient information, incorrect plan generation, and plan execution322

failure. We then proposed the self-recovery prompting pipeline, which leverages the prompting of323

the system to overcome each failure mode, and evaluated the entire system using seven handcrafted324

commands. To enhance further studies in GPSR systems with self-recovery, benchmarks equipped325

with adaptive human-robot interaction will be essential to standardize the performance, which may326

also be realized with LLMs and VLMs.327
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A Appendix458

A.1 Skill Functions Prepared in the System459

Table 1 shows the 21 skill functions we have prepared for the system in this paper. See section 3.1.3460

for detailed explanations.

Table 1: 21 Skill Functions.

Functions Arguments Descriptions

go to location location navigate the robot to {location}
ask location object get location name of {object} by asking human

using VAD and Whisper, if unsuccessful, by ask-
ing LLM

find concrete name objects object
(opt:room)

find {object} using Detic and CLIP in the
{room}

find category name objects category
(opt:room)

find {category} objects using Detic and CLIP in
the {room}

count concrete name objects objects count the number of {objects} using Detic and
CLIP

count category name objects category count the number of {category} objects using
Detic and CLIP

find person person find {person} using Keypoint R-CNN [39]
detect person pose person detect {person} ’s pose using Keypoint R-CNN
find specific pose person person

pose
find {person} with {pose} using Keypoint R-
CNN

count specific pose person person
pose

count the number of {person} with {pose} using
Keypoint R-CNN

count person count the number of person using Keypoint R-
CNN

follow person person
(opt:location)

follow {person} to {location} using
YOLOv8 [40]

guide person
location

guide {person} to {location}

pick object
location

pick {object} at {location}

hand over object
person

hand over {object} to {person}

ask person to hand over object
person
query

ask{person} to hand over {object} by saying
{query}

place object
location

place {object} on {location}

ask question person
question

say {question} to {person} and get answer us-
ing VAD, Whisper, and LLM

answer question (opt:person) answer to {person}’s question using VAD, Whis-
per, and LLM

tell information information
person

tell {information} to {person} using LLM

operate door location
operation

{operation} (open/close) the door at
{location}

461
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A.2 Experiment Results of Each Module462

Table 2 shows the results of the speech recognition module in our system comparing with and463

without prompts. See section 3.2.1 for the experiment conditions. Table 3 shows the results of464

the LLM-based task planner in our system, comparing the tuned prompts and minimal prompts.465

See section 3.2.2 for the experiment settings.466

Table 2: Comparison of transcription results (without and with prompts) for speech recognition with Whisper.
Command: Go after the person at the bed please.

w/o Prompts w/ Prompts

person of the band, please person at the bed please
person at the bat place person at the bed please

Command: Offer something to drink to all the people dressed in white in the bedroom.
w/o Prompts w/ Prompts

dressed in white in the bathroom dressed in white in the bedroom

Table 3: Comparison of generated plans (with minimal prompts and with tuned prompts) with GPT-4. “Suc-
cess” indicates that a plan that would satisfy the command if each skill function was performed perfectly was
generated.

Command: Describe the objects on the kitchen table to me please
Minimal Tuned

Try to find the object before going to the kitchen table Success

Command: Robot please retrieve the tropical juice from the side table, grasp the apple
from the end table, and speak

Minimal Tuned

Try to grasp the tropical juice before detecting
Try to grasp the apple before releasing tropical juice
Ambiguous sentence (“Activate speech function.”)

Success

A.3 Results in RoboCup@Home467

Table 4 shows the competition results with our system in RoboCup@Home Japan Open (RCJ) 2023468

and RoboCup@Home (RC) 2023. See section 3.3 for detailed explanations.469

Table 4: RoboCup@Home DSPL Results of our team. In our trial in RCJ 2023, the team scored 170 points, the
perfect score for the second to the most challenging category (Category 2). This led the team to win the first
prize both in GPSR task and overall in RCJ 2023.

GPSR Overall

RCJ 2023 1st 1st
RC 2023 2nd 3rd

13



A.4 Experimented Commands in section 4.3470

Table 5 is a list of commands used in experiments described in section 4.3. The checkmark (✓) in471

the table indicates that the command and its setups have characteristics of the corresponding failure472

modes in section 4.1.

Table 5: Commands tested in section 4.3. Blue text indicates the information to navigate is sufficient, and
red text indicates the information to navigate is insufficient. Our self-recovery prompting pipeline successfully
recovered from all failure cases.

Command Failure Modes
M1 M2 M3

1 Could you bring me an apple from the side table? ✓ ✓

2 Hi HSR, I am starting to feel hungry so could you grab an
apple from dining table and put it on my desk? I will be
there in a moment.

✓ ✓

3 I lost my mug so could you find it for me? ✓

4 Thank you, HSR. I am getting tired. Could you prepare a
fruit for me on the side table? I will have some rest at the
sofa in a moment.

✓ ✓

5 Could you help me find the apple that I bought the other
day? Ashley might know where it is, so maybe you can ask
her if she knows where it is. When you find it, please bring
it to me.

✓

6 Could you bring me the apple from the stair-like shelf? ✓

7 Could you look for Ashley in the dining room and ask her if
she wants dinner at home tonight?

✓

473
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