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Abstract

Conformal Prediction offers a powerful framework for quantifying uncertainty in
machine learning models, enabling the construction of prediction sets with finite-
sample validity guarantees. While easily adaptable to non-probabilistic models,
applying conformal prediction to probabilistic generative models, such as Nor-
malising Flows is not straightforward. This work proposes a novel method to
conformalise conditional normalising flows, specifically addressing the problem of
obtaining prediction regions for multi-step time series forecasting. Our approach
leverages the flexibility of normalising flows to generate potentially disjoint predic-
tion regions, leading to improved predictive efficiency in the presence of potential
multimodal predictive distributions.

1 Introduction

Recent advances in Conformal Prediction have seen its application extended to diverse domains,
including Gaussian Processes [Jaber et al., 2024] and Monte-Carlo methods [Bethell et al., 2024],
driven by the attractive finite-sample validity guarantees offered via conformal prediction [Vovk et al.,
2005, Angelopoulos and Bates, 2022]. However, direct application to generative models, such as
Normalising Flows [Kobyzev et al., 2021, Papamakarios et al., 2021] or Diffusion models [Song et al.,
2021, Luo, 2022], has been limited due to their primary focus on generation rather than prediction
tasks.

Notably, discrete-time normalising flows offer a unique advantage over other generative models:
simulation-free exact likelihood computation. This enables direct density evaluation at a given sample,
naturally extending to conditional density computation. In this work, we exploit this property of
normalising flows to derive prediction regions for multi-step time series forecasting.

A prediction region is defined as a volume in H-dimensional space, where H is the forecast horizon,
capturing the true forecast with probability 1 − ϵ. Constructing such regions for time series is
challenging due to temporal dependencies. Existing methods, such as Stankeviciute et al. [2021], rely
on Bonferroni corrections based on conditional independence assumptions on the errors, leading to
overly conservative predictions as H increases. Moreover, these approaches typically yield continuous
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band or rectangular regions, which may not be optimal for multimodal predictive distributions present
in irregular time series.

Traditional conformal methods often rely on univariate conformity scores, with residuals being
a natural choice in regression settings. However, this approach does not readily generalise to
multivariate prediction cases. We propose the use of conditional density as a conformity score,
capitalising on its adaptability to the historical context and its ability to quantify the plausibility of a
given prediction naturally.

In summary, our key contribution lies in extending conformal methods to conditional normalis-
ing flows, thereby enabling adaptive and efficient predictive inference for multi-step time series
forecasting (or more generally multivariate output).

2 Related works

Previous research has explored normalising flows for time series forecasting [Feng et al., 2023, Rasul
et al., 2021]. However, existing methods for uncertainty quantification in this context either lack
coverage guarantees or rely on unrealistic assumptions when dealing with multi-step or multivariate
forecasts. In the univariate case, conformalisation using residuals is straightforward. However, for
higher-dimensional predictions, mapping residuals to quantiles is not trivial.

Existing approaches attempt to address this issue through various means, such as transforming
multivariate residuals into Euclidean distances [Messoudi et al., 2021], using Chebyshev distance
after modulation [English et al., 2024, Zhou et al., 2024], or modelling interdependencies between
successive time steps using copulas [Sun and Yu, 2024]. Nevertheless, these methods often result
in large, continuous prediction regions that may be inefficient for capturing multimodal predictive
distributions in time series. Achieving predictive efficiency, where the volume of the prediction set is
minimised, becomes a crucial objective in such scenarios.

A recent work Colombo [2024] also combined Normalising Flows with Conformal Prediction.
However, they do not use Normalising Flows to obtain density estimates for conformal scores;
instead, they train the calibration process with Normalising Flows acting on the joint distribution of
the errors. To the best of our knowledge, no existing conformal method for time series forecasting
can produce multiple disjoint regions when the predictive distribution is multimodal. Building upon
prior work, we propose a novel approach applicable to scenarios with multiple independent time
series. Our method aims to overcome the limitations of previous approaches and provide a more
efficient and flexible way to quantify uncertainty in time series forecasting.

3 Preleminaries

3.1 Inductive Conformal Predictors

Inductive conformal predictors provide a computationally efficient alternative to Full conformal
predictors for constructing prediction intervals by training the model only once. Given a dataset
D = {(xi, yi)}ni=1 drawn from a distribution P , we divide it into a training set Dtrain of size m and a
calibration set Dcal of size l, where n = m+ l.

A point predictor h is trained on Dtrain, and a conformity measure A is used to assess the conformity
of an example relative to the calibration set. We compute conformity scores (denoted by α) for both
the calibration set and a test point x∗ with a postulated label y ∈ Y , the label space:

◦ αi = A(h,Dtrain, (xm+i, ym+i)), for i = 1, . . . , l

◦ α∗ = A(h,Dtrain, (x
∗, y))

The prediction set (Γϵ) at significance level ϵ is then defined as:

Γϵ(x∗) =

{
y :

|{i : αi ≤ α∗}|+ 1

l + 1
> ϵ

}
. (1)

This set represents the values of y that are deemed conforming compared to the calibration set, with
a probability of at least 1 − ϵ. Instead of comparing all the conformity scores, one can invert the
quantile function of the conformity scores on the calibration set to get a threshold conformity score.
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3.2 Conditional Normalising Flows

Conditional normalising flows (CNFs) are normalising flows that incorporate additional conditioning
information, c, into the transformation. This allows the learned distribution to be adapted based on
the context provided by c. Formally, a CNF is a function f : RD × RM → RD, where M is the
dimensionality of the conditioning variable.

Given a dataset D = {(x1, c1), . . . , (xn, cn)}, we aim to maximise the conditional log-likelihood:

max
f

n∑
i=1

log pX|C(xi|ci),

where pX|C is the conditional probability density function of the data given the conditioning variable,
c. Using the change of variables formula, we express the conditional density as:

pX|C(x|c) = pZ|C(f
−1(x, c)|c)

∣∣det Jf−1(x, c)
∣∣ . (2)

Here, J refers to the Jacobian of the transformation and det refers to the determinant. Then, the
maximum log-likelihood optimisation objective can be stated as:

max
f

n∑
i=1

[
log pZ|C(f

−1(xi, ci)|ci) + log
∣∣det Jf−1(xi, ci)

∣∣] .
Similar to standard normalising flows, the first term can be computed analytically by assuming a
simple form for pZ|C (e.g., a Gaussian distribution with mean and variance dependent on c). The
second term, involving the Jacobian determinant, requires careful architectural choices for efficient
computation.

CNFs are typically constructed as a composition of simpler invertible transformations, each of which
can be conditioned on c. Various techniques, such as affine coupling layers or autoregressive flows,
are easily adaptable to the conditional setting. The choice of transformations and their conditioning
mechanism influences the expressivity and flexibility of the CNF model.

4 Conformalised Conditional Normalising Flow for Joint Prediction Region
in time series (CCN-JPR)

We consider the problem of probabilistic forecasting for a collection of n independent multivariate
time series, each denoted by x(i) ∈ RD×(T+H), where T is the length of the context provided to the
model and H is the forecast horizon. We partition the time series’ into a training set proper of m
series and a calibration set of l series, such that n = m+ l.

Let x(i)
t ∈ RD×(T+H) represent the i-th time series at time step t. Given the context window x

(i)
1:T ,

the conditional distribution of future values x(i)
T+1:T+H over the entire dataset x = {x(i)

1:T+H}mi=1 is
modeled as:

p(xT+1:T+H |x1:T ; θ) =

m∏
i=1

p(x
(i)
T+1:T+H |h(i)

T ; θ),

where h
(i)
T is temporal summarisation for the i-th time series at time step T , and θ represents the

model parameters.

Similar to Rasul et al. [2021], it is possible to use an RNN-based architecture or a transformer to
summarise the temporal history instead of flow transformation to incorporate it. For RNNs, h(i)

T
could be the hidden state of the RNN for the i-th time series at time step T . For any arbitrary time
step t, the hidden state is updated recursively:

h
(i)
t = RNN(x

(i)
t−1,h

(i)
t−1),

To capture the potentially complex, high-dimensional distribution of x(i)
T+1:T+H , we use a flow to

model the emission distribution p(x
(i)
T+1:T+H |h(i)

T ; θ):

x
(i)
T+1:T+H = gθ(z

(i)
T+1:T+H ;h

(i)
T ),
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where gθ is an invertible transformation parameterized by θ, and z
(i)
T+1:T+H is a latent variable drawn

from a simple base distribution (e.g., standard Gaussian).

Our specific implementation utilises a stack of K conditional affine coupling layers for gθ, each
conditioned on the hidden state h

(i)
T (identity transformation on x

(i)
1:T for the experiments) to ac-

commodate the temporal dynamics. The model is trained via maximum likelihood estimation using
stochastic gradient descent, and forecasts are generated by sampling from the conditional distribution.

Once a model is trained using the training set proper, we can use the calibration set to calculate the
conditional density around the true prediction given the historical context by using the change of the
variable formula as stated in Equation 2. We consider this as our conformity score and can apply
Equation 1 for any postulated label to know if it is a part of the prediction set. Additionally, the
regions formed are adaptive to the historical context by using conditional density as a conformity
score.

We can also sort all the conformity scores and obtain the desired quantile qϵ of the sorted scores. To
construct a region that contains the true prediction with the desired significance level ϵ, we can, then,
sample points from the multi-variate label space either through a grid or through other methods such
as Monte-Carlo sampling, the sampled points with a conditional density larger than qϵ form cluster(s)
which can be several if there are multiple modes of the predictive distribution. Unlike other baselines,
a region formed like this has no geometrical restrictions.

5 Empirical Results

We assess the coverage of our model on two synthetic time-series datasets and one real-world dataset
(COVID-UK) from Kipf et al. [2018], following the experimental protocol of Sun and Yu [2024].

For both synthetic datasets, we forecast 24 steps ahead (H = 24) using a history of 35 steps (T = 35),
Each time step consists of two-dimensional data (R2). The datasets differ in the magnitude of the
added Gaussian noise: σ = 0.01 and σ = 0.05, respectively. For the COVID-UK dataset, which is a
difficult time series due to irregularity, we predict daily cases for the upcoming 10 days based on the
preceding 100 days.

Table 1: Comparison of the coverages (nominal) on the test set for ϵ = 0.1. The coverage values
closer to 0.9 are highlighted in bold on each dataset. Our method achieves values close to 0.9 whereas
CopulaCPTS always undercovers, MC-dropout severely undercover, and CRNN often overcovers
(except on the COVID-UK dataset).

Method Particle1 Particle5 COVID-UK
MC-Dropout 0.79 0.43 0.00
CRNN 0.99 0.93 0.87
CopulaCPTS 0.86 0.86 0.78
CCNF-JPR 0.91 0.89 0.87

We computed the coverages by checking if the true value is accepted by the conditional density
threshold used as a conformity score by our method. Table 1 presents results for all the datasets:
(σ = 0.01) particle1 and (σ = 0.05) particle5 dataset. Our proposed method demonstrates coverage
closest to the nominal 0.9 level (ϵ = 0.1). CRNN overcovers(except on the COVID-UK dataset), and
other methods, notably MC-dropout, exhibit severe undercoverage.

6 Discussion and Future Work

In this work, we introduced a novel approach to conformalise conditional normalising flows for
multi-step time series forecasting, enabling the construction of prediction regions without assuming
specific geometric shapes like spheres, bands, or ellipses [Cleaveland et al., 2024, Xu et al., 2024].
By conditioning the conformity scores on the time series history, our method also yields adaptive
prediction regions, a feature not commonly found in existing approaches (English et al. [2023],
Zhou et al. [2024] being notable exceptions, but can only have rectangular regions). Although our
work focussed on time series forecasting, the idea is trivially applicable to multivariate regression as
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multivariate regression can be considered a special case where the time steps/indices are independent.
One bottleneck is that exhaustive sampling might be computationally expensive if the label space is
high-dimensional. Efficient sampling schemes can be explored for computational feasibility.

While normalising flows are often employed with neural networks, this might not always be desirable
when using classical statistical methods such as ARMA models. Future research could explore ex-
tending existing kernel-based flow approaches [Meng et al., 2020, English et al., 2023] to conditional
normalising flows (conditioned on prediction from the classical methods), potentially mitigating these
challenges.

A further limitation is the lack of standard datasets exhibiting multimodal predictive distributions in
time series, which are necessary to showcase the full potential of our approach. Future work will
focus on addressing these limitations and conducting comprehensive empirical evaluations.
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