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Abstract

Text-guided image inpainting aims at reconstructing the masked regions as per
text prompts, where the longstanding challenges lie in the preservation for un-
masked regions, while achieving the semantics consistency between unmasked and
inpainted masked regions. Previous arts failed to address both of them, always with
either of them to be remedied. Such facts, as we observed, stem from the entangle-
ment of the hybrid (e.g., mid-and-low) frequency bands that encode varied image
properties, which exhibit different robustness to text prompts during the denois-
ing process. In this paper, we propose a null-text-null frequency-aware diffusion
models, dubbed NTN-Diff, for text-guided image inpainting, by decomposing the
semantics consistency across masked and unmasked regions into the consistencies
as per each frequency band, while preserving the unmasked regions, to circumvent
two challenges in a row. Based on the diffusion process, we further divide the
denoising process into early (high-level noise) and late (low-level noise) stages,
where the mid-and-low frequency bands are disentangled during the denoising
process. As observed, the stable mid-frequency band is progressively denoised to
be semantically aligned during text-guided denoising process, which, meanwhile,
serves as the guidance to the null-text denoising process to denoise low-frequency
band for the masked regions, followed by a subsequent text-guided denoising pro-
cess at late stage, to achieve the semantics consistency for mid-and-low frequency
bands across masked and unmasked regions, while preserve the unmasked regions.
Extensive experiments validate the superiority of NTN-Diff over the state-of-the-art
diffusion models to text-guided diffusion models. Our code can be accessed from
https://github.com/htyjers/NTN-Diff.

1 Introduction

Traditional image inpainting methods [23, 24, 3, 41, 46, 16, 19] primarily rely on unmasked regions
as guidance to recover masked areas, which are widely applied to object removal [18, 45, 28] and
photo restoration [21, 2, 27]. Based on that, text-guided image inpainting [1, 35, 47, 4, 36, 17] has
achieved remarkable progress, offering a more flexible and diverse approach. These methods focus
on reconstructing user-specified objects within masked regions given text prompts.

The success of text-guided image inpainting is largely attributed to the powerful generative capabilities
of Denoising Diffusion Probabilistic Models (DDPMs) [9], e.g., Stable Diffusion [33]. As a critical
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Figure 1: (a-c) t-SNE visualization of CLIP latent space evolution during text-guided denoising.
At each step, the Euclidean distance between the text prompt and the denoised image (Denoised
Image-Text Distance) reflects semantic consistency across masked and unmasked regions—a smaller
value indicates better alignment. As a reference, we include the distance between the ground truth
and the text prompt (red dashed line). To assess unmasked region preservation, we also compute
the distance between the denoised image and ground truth (Denoised Image-GT Distance). (d)
Comparison between our NTN-Diff (Fig.3) and state-of-the-arts [1, 12] for text-guided inpainting;

subtask in the broader field of image editing [20, 8, 7, 11, 15, 22], text-guided image inpainting
distinguishes itself from other subtasks by requiring the masked regions to be generated as per text
prompt, while preserve the unmasked regions. Upon the alignment between the generated content
for masked regions and the text prompts, the longstanding challenges lie in the preservation for
unmasked regions, while achieving the semantics consistency between unmasked and masked regions
as inpainted.

To circumvent the above two challenges, a series of text-guided diffusion models [42, 25, 1, 35]
have been proposed for image inpainting. Specifically, BLD [1] implements a blending operation
during the denoising process at each step to preserve the unmasked regions, while Smartbrush [42]
adopts a multi-task based denoising process conditioned on both text and shape for each step, where
the denoised unmasked region is substituted by unmasked regions from ground-truth. Despite the
unmasked preservation, as illustrated in Fig.1(a), they still suffer from the semantics inconsistency
between with masked and unmasked regions, owing to the discrepancy from the diffusion process and
the inpainted maksed regions from the text-guided denoising process.

Orthogonally, great efforts have been spent [31, 47, 4, 17, 26, 49] on preserving the unmasked regions
while ensuring the semantics consistency between masked and unmasked regions. For instance, CAT
[4] utilizes the text prompts and unmasked regions in the CLIP latent space to form latent code-level
semantics consistency constraints for image inpainting, which, however, suffer from the information
loss for unmasked regions. BrushNet [12] generates dense texture feature map during the denoising
process with no cross-attention in UNet [34], to inpaint masked regions by unmasked information for
consistency. However, as illustrated in Fig.1(b), the unmasked regions fail to be preserved, which is
incurred by the other text-guided denoising process to inpaint masked regions.

So far, the prior arts still fail to simultaneously overcome the above two challenges. Such failure, as
investigated in Fig.2, stems from the following hurdle: as disclosed by [29], the low-frequency band
fluctuates more significantly during the early stage of the denoising process with high-level noise
than the mid-and-high frequency bands, since diffusion models typically recover the low-frequency
band first and progressively refine the mid-and-high frequency bands1(See more results in Sec.A of
the Appendix). Therefore, the low-frequency band for both masked and unmasked regions are easy
to be modulated by text prompts, as illustrated in Fig.2(a). To be contrary, as seen in Fig.2(b), the
mid-frequency band across all regions is robust to the text prompts while aligns well with text prompts,
which may better preserve the unmasked regions than low-frequency band upon text prompts. The
above observations further motivate us to decompose the semantics consistency across masked and
unmasked regions into the individual task of achieving that as per each frequency band across masked

1Compared to the mid-frequency band, the high-frequency band is sparser and more easy to be disrupted by
high-level noise in the early stages, resulting in much less contribution on guiding the low-frequency band than
mid-frequency band. Therefore, we focus on mid-and-low frequency bands.
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Figure 2: We investigate the text-guided denoising process for both the (a) low-frequency and (b)
mid-frequency bands. For each step, we employ the red bounding boxes to highlight the variations
for the low-frequency band during the late stage in (a) and the blue bounding boxes to visualize
the variations for layout information in (b). For DCT spectrum, the top-left region represents low
frequencies, with the bottom-right region corresponds to high frequencies. The dark red and yellow
indicate the highest and lowest value.

and unmasked regions, while preserving the unmasked regions, to tackle two challenges in a row.
To this end, we formally delve into the following questions: How to disentangle different frequency
bands, particularly the early stage of the denoising process with high-level noise? and How to exploit
the hybrid frequency bands for diffusion models to simultaneously achieve the above two goals?

Inspired by the recent progress on frequency-domain based diffusion models [39, 14, 10], we answer
the above questions by proposing a frequency-aware null-text-null diffusion models, named NTN-
Diff (see Fig.3), which comprises early and late stages for text-guided image inpainting. For the
early stage, 1) we first propose a null-text denoising process (Sec.2.3.1) to avoid the low-frequency
band is influenced by text prompts under the high-level noise, then replace its denoised result with
unmasked regions from the forward diffused results. In parallel, 2) we perform the second text-guided
denoising process (Sec.2.3.2) to denoise the masked regions, especially its mid-frequency band to be
aligned with text prompts across both masked and unmasked regions, while replace the low-frequency
band from the denoised output with that from the above null-text denoising process, so that the
low-frequency can be preserved without being disturbed by text prompts; 3) we further exploit the
above denoised mid-frequency to guide the last null-text denoising process (Sec.2.3.3), by substituting
mid-frequency band from this null-text denoising process, while denoising the low-frequency band
especially for masked regions, to attempt the complete alignment with text prompts.

Based on the above, during the late stage, we perform the text-guided denoising process (Sec.2.4),
together with the unmasked regions substitution from the early stage of the diffusion process for
unmasked regions preservations for each step, while achieve the semantics consistency between
mid-and-low frequency bands across both masked and unmasked regions conditioned on text prompts,
to well resolve the two challenges, leading to final inpainted output in Fig.1(c). Fig.1(d) further
validates the intuition of NTN-Diff, which not only can achieve better semantics consistency between
masked and unmasked regions than BLD [1], but also preserves the unmasked regions to outperform
BrushNet [12], upon the alignment with text prompts.

The above observations further validate the intuitions of NTN-Diff by resolving the above two
challenges, i.e., semantics consistency between masked and unmasked regions and unmasked regions
preservation, for the text-guided image inpainting via diffusion models. The extensive experimental
results validate its superiority over the state-of-the-arts for text-guided image inpainting.

2 Methodology

Central to our proposed NTN-Diff lies in the following aspects: 1) the motivation of hybrid frequency
aware diffusion models to text-guided image inpainting (Sec.2.2); 2) how to disentangle different
frequency bands and exploit the hybrid frequency bands for diffusion models in the early stage
(Sec.2.3); 3) how to achieve unmasked regions preservation and semantics consistency with masked
regions in the late stage (Sec.2.4); before shedding light on NTN-Diff, we elaborate the preliminaries
regarding DDPMs, which plays a pivotal role of text-guided image inpainting.
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Figure 3: Illustration of our proposed NTN-Diff pipeline, which comprises a (I) null-text denoising
process (Sec.2.3.1) to avoid being influenced by text prompts, and a (II) text-guided denoising process
(Sec.2.3.2) to denoise the masked regions, while replacing the low-frequency band from the denoised
output with that from the above null-text denoising process. Building on this, we further utilize the
denoised mid-frequency to guide another (III) null-text denoising process (Sec.2.3.3) by substituting
the mid-frequency band from this process. Additionally, a (IV) late-stage text-guided denoising
process (Sec.2.4) is performed, along with the substitution of unmasked regions from the early stage
of the diffusion process, to preserve unmasked regions at each step.

2.1 Preliminaries

Given a completed image Igt ∈ R3×H×W , a text prompt c, and a binary mask M ∈ {0, 1}1×H×W

such that 0 denotes masked regions and 1 denotes unmasked regions, The goal of text-guided image
inpainting is to restore the missing regions in a masked image Im = Igt⊙M , so that the reconstructed
content aligns with the text prompts to precisely indicate where and what to be inpainted. To this end,
state-of-the-arts predominantly leverage pre-trained text-to-image latent diffusion frameworks, mainly
for Stable Diffusion [33] (SD) as their foundation, where Variational Auto-Encoder (VAE) [13] is
employed via encoder E to transform the image Igt from pixel space to latent space zgt ∈ R4×H

8 ×W
8 ,

to reduce computational complexity without compromising visual quality. The model then performs
the forward diffusion process and denoising process in the latent space:

Forward Diffusion Process. In the forward diffusion process with T timesteps, following the
typical Denoising Diffusion Probabilistic Model (DDPM) [9], Stable Diffusion adds Gaussian noise
ϵ ∼ N (0, I) to convert the clean sample z0 = zgt into a noisy sample zT . For any timestep t ∈ [0, T ],
the forward process zt is then defined as:

zt(z0, ϵ) =
√
ᾱtz0 +

√
1− ᾱtϵ, (1)

where ᾱt denotes the corresponding noise level.

Reverse Denoising Process. During the reverse denoising process, Stable Diffusion is trained to
estimate the noise added to the noisy image, conditioned on c, and progressively removes it over
T timesteps. Given an input noise zT sampled from a random Gaussian distribution, the training
objective of the denoising network (UNet [34]) ϵθ at the t-th timestep is formulated as:

LLDM = Ez0,c,t∼U(0,T ),ϵ∼N (0,I) ∥ϵθ(zt, t, τθ(c))− ϵ∥22 , (2)

where τθ(·) is the CLIP [30] text encoder, and ∥ · ∥2 denotes the ℓ2 norm. After T timesteps, the
denoised latent representation z′0 is reconstructed into pixel space via the decoder D to generate the
final result Igen.

2.2 Motivation: Hybrid Frequency Aware Diffusion Models to Text-Guided Image Inpainting

Before shedding light on our pipeline, upon the diffusion process as per Eq.(1), we investigate the text-
guided denoising process for both the denoised low-frequency (dense texture [17]) and mid-frequency
(extracted from the Discrete Cosine Transform spectrum via mid-pass mask [5, 6]) information. The
compared results are shown in Fig.2, while observe the followings:

(1) As shown in Fig.2(a), the low-frequency band can be easily changed by text prompts,
especially the early stage with high-level noise, such trend keeps on even into nearly the
middle (e.g., 45-th step) of the late stage.
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(2) Fig.2(b) illustrates the text-guided denoising results for mid-frequency band. To validate
its stability, we visualize the layout information as bounding box for each step (2nd row),
which, as indicated by [5, 6, 43], is closely related to the mid-frequency band. Akin to
Fig.2(a), the denoised mid-frequency band (3rd row) also changes during the initial early
stage owing to text prompts with high-level noise, yet quickly converges by the end (e.g.,
65-th step) of the early stage, which further leads to the stable mid-frequency band with
nearly no influence by text prompt across the whole late stage with low-level noise.

Capitalizing on the discoveries, instead of low-frequency, we propose to exploit the mid-frequency
band during denoising process, which plays the pivotal role of achieving the semantics consistency
upon text prompts, while can better achieve the semantics consistency between masked and unmasked
regions, while preserve its own frequency band well, than low-frequency band, owing to its robustness
to the text prompt during the denoising process. The above observations further motivate us with
a novel frequency-aware null-text-null diffusion models, named NTN-Diff, for text-guided image
inpainting. Our pipeline is illustrated in Fig.3, where we discuss NTN-Diff within the early and
late stages, demarcated by the critical step λT with T as the total steps for diffusion models; the
detailed discussions for λ can be seen in Sec.3.3.2. (See more intuitions on hybrid frequency aware
diffusion models to text-guided image inpainting in Sec.B of the Appendix)

2.3 Early Stage for Null-Text-Null Frequency-Aware Diffusion Models

Based on the diffusion process regarding Eq.(1), we discuss the early stage of text-guided denoising
process. Unlike the typical models [42, 1] with text-guided denoising process, 1) we propose a
null-text denoising process (Sec.2.3.1) conditioned on null-text prompt at the t-th step to avoid being
influenced by text prompts even under the high-level noise, focusing primarily on low-frequency band,
we then replace its denoised result with the unmasked regions from the forward diffused results within
the (T − t)-th step. In parallel, 2) we perform the second text-guided denoising process (Sec.2.3.2)
for t-th step, to denoise the masked regions, while replace the low-frequency band (Fig.4(a)) from
the denoised output with that from the above null-text denoising process, so that low-frequency
band (e.g., color and illumination) especially for unmasked regions can be preserved even under text
prompts, while the mid-frequency band over both masked and unmasked regions varies owing to
text prompts, yet struggling to be semantically consistent to its low-frequency band across the whole
regions, resulting in semantic inconsistency between masked and unmasked regions (see Fig.6).

The denoised mid-frequency band well aligns with the text prompts especially for masked regions,
while also encodes the information related to low-frequency band from the above null-text denoising
process (Sec.2.3.3), which is further exploited to guide 3) the last null-text denoising process, to 3.1)
achieve semantics consistency between mid-and-low frequency bands across masked and unmasked
regions, by denoising the low-frequency band throughout the path to be semantically consistent to
mid-frequency band, with no influence from text prompts (see Fig.2(a)); 3.2) such intuition can
further restore low-frequency band especially for masked regions, to be aligned with text prompts,
while ready to preserve both mid-and-low frequency bands for unmasked regions, along with its
semantics consistency to masked regions via a late stage text-guided denoising process in Sec.2.4.

2.3.1 Null-Text Low-Frequency Aware Denoising Process

Formally, we initialize the denoising process with random Gaussian noise zunT ∈ R4×H
8 ×W

8 and
null-text c∅ as the input to the denoising network ϵθ(z

un
T , T, τθ(c∅)) for null-text denoising process.

To preserve the unmasked regions, at each step t, we replace the unmasked regions of denoising
result zunt with those from the diffusion result zgtT−t at the (T − t)-th step to yield ẑunt , as per the
following:

ẑunt = zgtT−t ⊙mz + zunt ⊙ (1−mz), (3)

where mz ∈ R1×H
8 ×W

8 is obtained by downsampling the mask M , we replicate it along four channels
for zgtT−t and zunt , ⊙ is the element-wise multiplication. Following the above, we reformulate the
self-attention mechanism of the denoising network by incorporating a mask to suppress the attention
scores of the masked regions, to ensure that the inpainting process primarily relies on the unmasked
regions. Given the denoised latent image feature Fl ∈ R(hl×wl)×dl at the l-th layer of denoising
UNet architecture ϵθ(z

un
t , t, τθ(c∅)) at the t-th timesteps, the modified self-attention mechanism is
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Figure 4: Illustration of (a) denoised low-frequency band layer and (b) mid-frequency band layer.

defined as follows:

Fl+1 = softmax

((
FlWQs

l

) (
Fl ⊙mlWKs

l

)T
√
dl

)
FlWV s

l
, (4)

where ml ∈ Rhl×wl is the downsampled result of the mask M , we replicate it along dl channels
for Fl, WQs

l
∈ Rdl×dl+1 , WKs

l
∈ Rdl×dl+1 and WV s

l
∈ Rdl×dl+1 are learnable linear projection

matrices, with dl representing the embedding dimensions.

2.3.2 Text-Guided Denoising Process

To inpaint the masked regions as per text prompts, we resort to the text-guided denoising process, to-
gether with low-frequency band substitution from null-text denoising process (Sec.2.3.1). Specifically,
we initialize the denoising process with random Gaussian noise ztextT ∈ R4×H

8 ×W
8 and text prompts

c as the input to the denoising network ϵθ(z
text
T , T, τθ(c)) for text-guided denoising process for

masked regions. As inspired by Fig.2, we preserve the unmasked regions as per their low-frequency
band, since, instead of mid-frequency or even high-frequency band, such information can be easily
modulated by text prompt. To this end, we propose a plug-and-play Denoised Low-Frequency Band
layer (Fig.4(a)) to substitute the latent representation ztextt within the text-guided denoising process,
by zunt from the null-text denoising process (see Sec.2.3.1) for the t-th step to yield z̃textt , which is
formulated as:

z̃textt = IDCT
(
DCT(zunt )⊙mlow + DCT(ztextt )⊙ (1−mlow)

)
, (5)

where DCT(·) represents 2D Discrete Cosine Transform, IDCT(·) represents 2D Inverse DCT, and
mlow denotes the low-pass mask to isolate low-frequency band, the denoised low-frequency band
layer employs a binary mask defined by the sum of the 2D coordinates as a threshold, as follows:

mlow(x, y) =

{
1, if x+ y ≤ thlp

0, otherwise
(6)

where thlp is the threshold for low-pass filtering. To adaptively extract the low-frequency band from
masked images, we set thlp as follows:

thlp = λf
lp + λr

lp · ∥M∥1
HW

, (7)

where λf
lp and λr

lp are hyper-parameters. The ℓ1 norm ∥M∥1 represents the number of entry with
value 1 in M . We set thlp to correlate with the ratio of unmasked regions, since the larger unmasked
regions require more low-frequency band from the null-text denoising process to substitute the
low-frequency band within the text-guided denoising process.
Remark 1. During this process, the low-frequency band across both masked and unmasked regions
are preserved even under text prompts owing to the substitutions from the null-text denoising process,
with only mid-frequency aligned with text prompts for both regions, hence still failed to achieve the
consistency between masked and unmasked regions. To address this, we propose another concurrent
null-text denoising process, guided by above denoised mid-level frequency, to help denoise the
low-frequency band for both regions, especially for masked regions.

2.3.3 Null-Text Mid-Frequency Aware Denoising Process

We resort to another null-text denoising process guided by the denoised mid-frequency band from the
second text-guided denoising process (Sec.2.3.2) for the t-th step of the early stage. Particularly, we
initialize the denoising process with random Gaussian noise zinT ∈ R4×H

8 ×W
8 and null-text c∅ as input

to the denoising network ϵθ(z
in
T , T, τθ(c∅)). We further exploit the denoised mid-frequency result

from ztextt , to substitute the denoised mid-frequency band of zint from the last null-text denoising
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process, throughout a plug-and-play Denoised Mid-Frequency Band layer (as illustrated in Fig.4(b))
to yield z̃int , which is formulated below:

z̃int = IDCT
(

DCT(ztextt )⊙mmid + DCT(zint )⊙ (1−mmid)
)
, (8)

where mmid denotes the mid-pass mask. Analogous to Eq. (6), we define:

mmid(x, y) =

{
1, if thmp1 < x+ y ≤ thmp2

0, otherwise
(9)

where thmp1 and thmp2 are the thresholds for mid-pass filtering to extract mid-frequency band. To
adaptively extract the mid-frequency band from masked images, we set thmp1 and thmp2 as follows:

thmp1 = λf
mp1 − λr

mp1 ·
∥M∥1
HW

, thmp2 = λf
mp2 + λr

mp2 ·
∥M∥1
HW

, (10)

where λf
mp1, λr

mp1, λf
mp2 and λr

mp2 are hyper-parameters, such that thmp2 > thmp1. Similar as
Eq. (7), we also set the thmp1 and thmp2 to correlate with the ratio of unmasked regions. Since
the larger unmasked regions require more mid-frequency band to encode the information from the
low-frequency band substituted from the first null-text denoising process.
Remark 2. The above null-text mid-frequency guided denoised process can denoise the low-frequency
band for the masked regions to be aligned with text prompt, owing to the denoised mid-frequency from
text-guided process; besides, the denoised mid-and-low frequency bands from unmasked regions also
help denoising process for masked regions, which, however, cannot be served as the final text-guided
inpainting output for masked regions, as the denoised mid-and-low frequency band is not semantically
strong as text prompt. To address that, a text-guided denoising process is performed as the late stage
of denoising process, as discussed below.

2.4 Late Stage of Text-Guided Denoising Process

Following the discussion above, for final late stage of denoising process, we perform the text-guided
denoising process based on the early null-text mid-frequency guided denoising process (Sec.2.3.3),
the low-frequency band within the masked regions is denoised throughout the path to text prompts
alignment, together with the stable mid-frequency band (see Fig.2(b)) from the early text-guided
denoising process (Sec.2.3.2), the masked regions are well inpainted. However, the low-frequency
band for unmasked regions biases a lot from the ground truth from the early null-text denoising
process (Sec.2.3.3), and augmented by the influence from the text prompts for late stage. To this
end, we substitute the unmasked regions from early stage of the diffusion process into the denoising
results zint for the t-th step during the late stage to yield ẑint , which is formulated as:

ẑint = zgtT−t ⊙mz + zint ⊙ (1−mz), (11)

where zgtT−t donates the forward diffused results with the (T − t)-th step. Building upon the noisy
sample ẑint , the text prompt c, along with the step t, we perform the denoising network ϵθ(ẑ

in
t , t, τθ(c))

to get the denoising result zint−1 in the latent space for the next (t− 1)-th step. After λT steps, the
denoised latent representation zin0 is reconstructed into the pixel space via the VAE decoder D to
generate the final image inpainting output. (See the pseudo algorithm in Sec.C of the Appendix)
Remark 3 : Last question on Semantics Consistency is answered! Although the alignment
between mid-and-low frequency bands from masked regions and text prompts, together with un-
masked regions preservation, can be achieved, one last question is how the denoised results within
this late stage can achieve semantics consistency between masked and unmasked regions? The
crucial intuition lies in the denoised mid-frequency band from the early text-guided denoising process
(Sec.2.3.2), which, based on Remark 2, also encodes the information from the low-frequency band
substituted from the null-text denoising process to match diffusion process (ground truth) including
both masked and unmasked regions, hence the low-frequency band under mid-frequency guidance for
masked regions also achieves the consistency to the substituted unmasked regions from the diffusion
process, since the mid-frequency band is stable during the late stage of the denosing process even
under text prompts (see Fig.2(b)).

With all frequency bands to be semantically consistent across all regions conditioned on text prompts,
the semantics consistency between masked and unmasked are well achieved, together with the success
of the preservation for unmasked regions!
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Table 1: Quantitative comparisons between NTN-Diff (*) and other diffusion-based inpainting models
over BrushBench for inpainting and outpainting are shown, where all models use Stable Diffusion
V1.5 as the baseline model. ↑: higher is better; ↓: lower is better; red and blue stand for the best and
second best result. * with blending operation of BrushNet. NTN-Diff (*) achieves the best result.

Metrics Image Quality Masked Region Preservation Text Align

Task Models Venue IR×10↑ HPS v2×102
↑ PSNR↑ MSE×103

↓ LPIPS×103
↓ CLIP Score↑

Inside
Inpainting

BLD[1] TOG’ 23 9.78 25.87 21.33 9.76 49.26 26.15
CNI[47] ICCV’ 23 9.9 26.02 12.39 78.78 243.62 26.47
PP[49] ECCV’ 24 11.46 27.35 21.43 32.73 48.43 26.48
BrushNet[12] ECCV’ 24 12.36 27.40 21.65 9.31 48.28 26.48
HDP[25] ICLR’ 25 11.68 26.90 22.61 9.95 43.50 26.37
NTN-Diff (Ours) - 12.45 27.57 23.51 6.50 40.79 26.54
CNI*[47] ICCV’ 23 11.21 26.92 22.73 24.58 43.49 26.22
BrushNet*[12] ECCV’ 24 12.64 27.78 31.94 0.80 18.67 26.39
NTN-Diff* (Ours) - 12.69 27.82 40.70 0.11 0.88 26.49

Outside
Inpainting

BLD[1] TOG’ 23 7.81 26.77 15.85 35.86 21.40 26.73
CNI[47] ICCV’ 23 9.26 27.68 11.91 83.03 58.16 27.29
PP[49] ECCV’ 24 7.45 28.01 18.04 31.78 15.13 26.72
BrushNet[12] ECCV’ 24 10.82 28.02 18.06 22.86 15.08 27.33
HDP[25] ICLR’ 25 9.66 27.79 18.03 22.99 15.22 26.96
NTN-Diff (Ours) - 11.54 28.22 18.47 20.44 14.46 27.54
CNI*[47] ICCV’ 23 9.57 27.76 17.50 37.72 19.95 26.92
BrushNet*[12] ECCV’ 24 10.88 28.09 27.82 2.25 4.63 27.22
NTN-Diff* (Ours) - 11.61 28.36 31.08 1.23 1.24 27.30

3 Experiments

3.1 Implementation Details

We evaluate NTN-Diff on two benchmarks tailored for text-guided image inpainting in diffusion
models: BrushBench [12] comprises 600 images with human-annotated masks and captions. The
dataset balances natural and artificial images (e.g., paintings) and equally distributes across categories
(humans, animals, indoor/outdoor scenarios), ensuring fair and equitable evaluation, BrushBench
refines the task by considering two specific scenarios: segmentation mask inside-inpainting and
segmentation mask outside-inpainting; EditBench [35] features 240 images with an equal split
between natural and generated images, each accompanied by mask and caption annotations. Following
[12], we utilize a fine-tuned version of Stable Diffusion v1.5 as the base model, configured with 100
sampling steps to ensure high-quality outputs. All experiments are implemented in PyTorch and run
on a single NVIDIA RTX 3090.

We evaluate inpainted results using six metrics across three aspects. For image generation quality, we
employ Image Reward (IR) [44] to model human preferences for image quality and HPS V2 [40] that
combines perceptual studies with deep learning for comprehensive visual and semantic assessment.
Both metrics measure the semantics consistency of the high-quality image generation aligned with
human standards; for masked region preservation, we use PSNR and MSE to measure pixel-wise
differences from ground truth, along with LPIPS [48] which evaluates perceptual similarity through
deep feature distances; finally, for text alignment, CLIP Score [38] quantifies text-image consistency
by comparing their embeddings in CLIP’s shared space.

3.2 Comparison with State-of-the-arts

To validate the superiority of NTN-Diff, we conduct a comprehensive comparison with state-of-the-art
text-guided image inpainting diffusion models, including HDP [25] and BLD [1] which implement
a blending operation during the denoising process at each step to preserve the unmasked regions,
while suffer from the semantics inconsistency between with masked and unmasked regions, owing to
the discrepancy between the diffusion process for unmasked regions substitution and the denoising
process for masked region alignment with text prompt. CNI [47], PP [49] and BrushNet [12] focus
on the ensuring the semantics consistency between masked and unmasked regions. Particularly,
BrushNet [12] generates dense texture feature map during the denoising process with no cross-
attention in UNet [34], to inpaint masked regions by unmasked information for consistency, while
unmasked regions are disrupted owing to another text-guided denoising process.

Quantitative and Qualitative analysis. The quantitative results in Table.1 summarize our findings
below: NTN-Diff enjoys larger IR, HPS v2, PSNR and CLIP Score, together with smaller MSE and
LPIPS than the competitors. Notably, BrushNet remains the large performance margins (at most
0.73% for IR, 0.62% for HPS, 8.59% for PSNR, 30.18% for MSE, 15.51% for LPIPS and 0.23% for
CLIP Score) compared to NTN-Diff in Table.1. We also present the quantitative results of NTN-Diff
with the pixel-level blending operation of [12], named NTN-Diff*, to preserve the unmasked regions,
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PP [49]BLD [1] HDP [25] BrushNet [12] OursMasked Image

a pangolin on a dock with a few yachts in the background

the oil painting of square letter tiles on the bathroom floor

the oil painting of a dinosaur leaning on a coin machine next to a street

the painting of a massive monkey serving tea at a ceremony

PP [49]BLD [1] HDP [25] BrushNet [12] OursMasked Image

a woman with long brown hair posing for a portrait

a woman in a pink jacket and gloves is walking on a snowy path

a cartoon cat sitting on top of a rock looking up at the sky

a painting of a woman with a colorful head

(a) BrushBench (b) EditBench

Figure 5: Comparison of the text-guided inpainted results with the state-of-the-arts on BrushBench
[12] and EditBench [35]. NTN-Diff delivers the superior inpainted results over others.

Table 2: Ablation studies on three denoising pro-
cesses: Case A (Sec.2.3.1), Case B (Sec.2.3.2)
and Case C (Sec.2.3.3) for the early stage,
based on the same text-guided denoising pro-
cess (Sec.2.4) for the late stage. red and blue
stand for the best and second best result.

Metric EditBench BrushBench
Case A Case B Case C Ours Case A Case B Case C Ours

IR×10↑ 2.41 1.24 2.14 3.10 10.14 9.59 10.02 11.12
PSNR↑ 22.36 22.39 22.53 22.65 28.02 27.71 28.06 28.10

LPIPS×103 ↓ 26.60 24.82 25.24 24.21 44.54 47.08 44.92 44.09
CLIP Score↑ 28.62 28.53 28.60 28.95 25.95 25.78 26.03 26.09

Table 3: Ablation study about the hyperparame-
ter sensitivity analysis of λ. red and blue stand
for the best and second best result. With λ = 0.6
balancing early and late stage, the best perfor-
mance of image quality, unmasked region preser-
vation and text alignment are achieved.

Metric EditBench BrushBench
0.9 0.8 0.7 0.6 0.5 0.9 0.8 0.7 0.6 0.5

IR×10↑ 2.41 2.67 2.78 3.10 1.10 10.56 10.40 10.76 11.12 10.77
PSNR↑ 22.03 22.19 22.44 22.65 22.63 27.69 27.86 28.04 28.10 28.08

LPIPS×103↓ 30.10 29.28 26.95 24.21 23.16 49.26 46.85 44.88 44.09 43.44
CLIP Score↑ 28.89 28.76 29.20 28.95 28.81 25.87 26.01 25.93 26.09 25.91

which demonstrates the ability to tame the hybrid frequency issue, the results further verifies the
intuition in Sec.1 – NTN-Diff achieves the semantics consistency between mid-and-low frequency
bands across masked and unmasked regions, while preserving unmasked regions. We illustrate the
above intuitions in Fig.5. (See more analysis of computational efficiency in Sec.D of the Appendix,
along with more compared results for Editbench [35] can be seen in Sec.E of the Appendix)

3.3 Ablation Studies

3.3.1 Discussion on Different Denoising Processes of the Early Stage

To validate of our NTN-Diff (Sec.2.3), we perform the ablation study on BrushBench and EditBench
datasets with three variants: Case A: removing masked self-attention in the first null-text denoising
process (Sec.2.3.1); Case B: removing both null-text and text-guided denoising process (Sec.2.3.2).
Case C: removing the null-text denoising process (Sec.2.3.3); Table.2 reports the results for all three
cases, which suggests that NTN-Diff outperforms Case A, confirming that the null-text denoising
process conditioned on null-text prompt can avoid being influenced by text prompts even under the
high-level noise, focusing primarily on low-frequency band, which in line with Sec.2.3.1; Case B
exhibits a suboptimal performance degradation, despite the null-text denoising process in the early
stage, together with the text-guided denoising process, which verifies that the null-text mid-frequency
guided denoised process can denoise the low-frequency band for the masked regions to be aligned
with text prompt, owing to the denoised mid-frequency from text-guided process, hence validating the
important of text-guided process (Sec.2.3.2); NTN-Diff maintains achieves the large performance
gain over Case C (at most 44.8%), implying that only mid-frequency aligned with text prompts for
masked and unmasked regions, still failed to achieve the consistency across the whole regions, which
is in line with Sec.2.3.3 and illustrated in Fig.6. (See more generation results for the impact of the
text and null-text prompts on low-and-mid frequency bands in Sec.F of the Appendix).

3.3.2 Hyperparameter Sensitivity Analysis of λ for the Length of the Early and Late Stage

We analyze the parameter λ (Sec.2.2) that divides the denoising process into early and late stages
at step λT , we set the λ values to {0.9; 0.8; 0.7; 0.6; 0.5}. As reported in Table.3, when λ = 0.9,
the performance is the worst with the shortest early stage. When λ = 0.6 with the balance of early
and late stage, the best performance are achieved, confirming that the desirable length of early stage
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the oil painting of a yellow dog next to a table with a cat under it.

the sketch of a blue dog on a stage singing, standing on its back paws.a rabbit with a white and brown face sitting on the ground

a close up of a cat looking to the side

OursCase A Case BMasked Image Case COursCase A Case BMasked Image Case C

Figure 6: The inpainted output about the different denoising process for the early stage, NTN-Diff
delivers the better inpainted results (marked as the red box) than others. Case A fails to preserve the
unmasked region in the null-text denoising process (Sec.2.3.1), such as the background of dog (4th
row); without text-guided denoising process (Sec.2.3.2), Case B cannot inpaint the masked region
as per the text prompts, such as the disappeared dog in the 3rd row of Case B; specifically, Case
C cannot achieve the semantics consistency between masked and unmasked region, owing to the
null-text denoising process (Sec.2.3.3), such as the tiny rabbit within the rabbit head-shaped mask.

Case Ⅰ Case ⅡMasked 
Image

Ours
(NTN-Diff)

a bowl of strawberries and blueberries on a striped table

Case Ⅲ

a cat with a big smile on its face

two tents in the desert with a car parked in the background

a cute owl sitting on a branch with leaves

Case Ⅰ Case ⅡMasked 
Image

Ours
(NTN-Diff)Case Ⅲ

Figure 7: The inpainted output about the impact of adaptively extracting the low-and-mid frequency
bands, NTN-Diff can achieve the better inpainted results (marked as the box) than others.

can make the low-frequency band under the mid-frequency guidance for masked regions achieve the
consistency to the substituted unmasked regions for ground truth, which is consistent to Sec.2.4. (See
more generation results in Sec.G of the Appendix).

3.3.3 More Ablation Studies on the Impact of Adaptively Extracting the Low-and-Mid
Frequency Bands

As mentioned in Sec.2.3.2 and Sec.2.3.3, we set thlp in Eq.(5), and thmp1 and thmp2 in Eq.(8
to correlate with the ratio of unmasked regions. We provide ablation studies on the impact of
adaptively extracting low-and-mid frequency bands on the BrushBench and EditBench datasets using
three variants: Case I adopts fixed thresholds to extract both mid-and-low frequency bands for
different images; Case II adaptively extracts low-frequency band while using fixed thresholds for
mid-frequency bands; Case III adaptively extracts mid-frequency band while using a fixed threshold
for low-frequency extraction. As shown in Fig.7, due to the use of fixed thresholds for extracting
mid-frequency band, Case I and Case II inevitably generate inconsistent content between masked
and unmasked regions (e.g., the smiling cat in the second row of Fig. 7), which can be attributed to
the fact that the larger unmasked regions require more mid-frequency band to encode the information
from the low-frequency band substituted from the first null-text denoising process, as explained in
Sec. 2.4. In contrast, Case III shows substantial performance degradation (e.g., the light yellow color
blocks in the bowl in the first row of Fig.7), confirming that larger unmasked regions demand more
low-frequency information from the null-text denoising process to replace the low-frequency bands in
the text-guided denoising process, which is consistent with the findings in Sec.2.3.2.

4 Conclusion

In this paper, we propose a null-text-null frequency-aware diffusion models, named NTN-Diff,
for text-guided image inpainting, by decomposing the semantics consistency across masked and
unmasked regions into the consistencies as per each frequency band, while preserving the unmasked
regions, to simultaneously address two challenges of unmasked regions preservations, along with its
semantics consistency with inpainted masked regions. The extensive experimental results validate the
advantages of NTN-Diff over state-of-the-art diffusion models for text-guided image inpainting.
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• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper have conducted a discussion of limiations in the Appendix.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We did not include theoretical results in our paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have described the model details in the implementation details in Sec.3.1
and carefully described the experimental metrics in the experimental chapter. The informa-
tion we provide is sufficient and detailed for replication purposes.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We make a detailed description of the implementation details to ensure that
they are repeatable and use publicly available text-guided image inpainting datasets. We
provide our code in the Appendix.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have carried out a detailed narration in the implementation details in
Sec.3.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA] .
Justification: Based on our experimental experience, the reproducibility of the experiments
involved in this work is high, with results that are replicable and stable, rather than simply
reporting the highest outcomes. Additionally, previous related work [12, 49, 47, 1, 25] has
also not reported error bars. We thus do not run the statistical significance test.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We state this detailed information of computer resources in Sec.3.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm that the research involved in the article complies with the NeurIPS
Code of Ethics in all respects.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper have conducted a discussion of broader impacts in the Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We utilize the publicly available text-guided image inpainting dataset [12, 35]
and the pretrained generation models Stable Diffusion V1.5, there is no relevant description
we will set up safeguards when we release the code of NTN-Diff.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We utilize the publicly available text-guided image inpainting dataset [12, 35]
and the pretrained generation models Stable Diffusion V1.5, both of them state the dataset
and model license.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not introduce new assets in the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not involve LLM as any important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix Overview

Due to page limitation of the mainbody, as indicated by our submission, the supplementary material
offers further discussion on the motivation of mid-frequency band and more visual results with higher
resolution, which are summarized below:

• More analysis of the high-and-low frequency components in the denoising process, as
mentioned in Sec.1 of the mainbody (Sec.A)

• More intuitions on hybrid frequency aware diffusion models to text-guided image inpainting,
as mentioned in Sec.2.2 of the mainbody (Sec.B)

• The algorithm of NTN-Diff, as mentioned in Sec.2.4 of the mainbody (Sec.C)

• More analysis of computational efficiency for the comparison with state-of-the-arts, as
mentioned in Sec.3.2 of the mainbody (Sec.D).

• Additional quantitative results and qualitative analysis with higher resolution for the com-
parison with state-of-the-arts, as mentioned in Sec.3.2 of the mainbody (Sec.E).

• More ablation studies on the impact of text and null-text prompts on low-and-mid frequency
bands during denoising process, as mentioned in Sec.3.3.1 of the mainbody (Sec.F).

• Additional generation results for the ablation study about hyperparameter sensitivity analysis
of λ for the length of the early and late stage, as mentioned in Sec.3.3.2 of the mainbody
(Sec.G).

• We list the limitations and broader impacts (Sec.H).

A More Analysis of the High-and-Low Frequency Components in the
Denoising Process

Due to the page limitation, we further conduct experiments to verify the conclusion stated in Sec. 1
of the mainbody: “the low-frequency band fluctuates more significantly during the early stage of the
denoising process with high-level noise than the mid- and high-frequency bands.” This observation
aligns with the common understanding that diffusion models first recover low-frequency components
and progressively refine mid- and high-frequency details. Motivated by this, we experimentally
validate the denoising process using several metrics to measure variations in the low-and-high
frequency bands at different timesteps, as reported in Table. 4.

We adopt two groups of metrics to analyze the frequency behavior during the denoising process:

• Low-frequency information: We adopt Mean Gray, Mean HSV-V, and Mean Luma, which
primarily capture the global brightness and luminance structure of the denoised image.
These metrics evaluate how well the low-frequency bands are maintained throughout the
denoising process.

• High-frequency information: We use Average Gradient, Variance, and LBP Variance,
which are sensitive to edge sharpness, local contrast, and texture complexity, respectively.
These metrics reflect the preservation and recovery of fine details during denoising.

The results show that low-frequency metrics (Mean Gray, HSV-V, Luma) remain nearly unchanged
from the beginning, indicating early stabilization. In contrast, high-frequency metrics (Avg Gradient,
Variance, LBP Variance) increase steadily in the later timesteps, confirming that high-frequency
details are refined gradually during denoising, which is consistent with the statement in Sec. 1 of
the mainbody.

B More Intuition on Hybrid Frequency Aware Diffusion Models to
Text-Guided Image Inpainting

Due to page limitation, we offer more visual results of the mid-frequency band of the denoising
process. Fig.8(a) illustrates the text-guided denoising results for mid-frequency band. To validate
its stability, we visualize the layout information as bounding box for each step, which, as indicated
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Table 4: Metrics measuring the low-and-high frequency band variations during the denoising process,
confirming that diffusion models typically recover the low-frequency band first and progressively
refine the mid-and-high frequency bands.

Timesteps Mean Gray Mean HSV-V Mean Luma Avg Gradient Variance LBP Variance
0 120.9 136.0 120.9 59.01 3955.0 4.45
5 120.8 134.6 120.8 75.07 4098.3 3.71

10 120.7 133.5 120.7 101.58 4378.9 3.25
15 120.7 133.7 120.7 133.26 4790.8 3.07
20 120.9 135.1 120.9 164.23 5274.8 3.07
25 121.2 137.3 121.2 190.49 5743.9 3.15
30 121.4 139.2 121.4 209.84 6099.5 3.25
35 121.1 140.0 121.1 222.03 6291.1 3.32
40 120.5 140.1 120.5 228.75 6363.9 3.35
45 119.9 139.8 119.9 232.19 6394.8 3.38
50 119.5 139.5 119.5 233.88 6419.5 3.40
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(a) Visualization of Mid-frequency Band for NTN-Diff During the Denoising Process
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(b) More Results on Mid-frequency Band for NTN-Diff During the Denoising Process

Figure 8: We investigate the text-guided denoising process for the mid-frequency bands. For each
step, we employ the bounding boxes to visualize the variations for layout information in (a) and the
changes of layout information for the same image based on three similar text prompts. the denoised
mid-frequency band changes during the initial early stage owing to text prompts with high-level
noise, yet quickly converges by the end of the early stage, which further leads to the stable states with
nearly no influence by text prompt across the whole late stage.

by [5, 6, 43], is closely related to the mid-frequency band. The denoised mid-frequency band
also changes during the initial early stage owing to text prompts with high-level noise, yet quickly
converges by the end of the early stage e.g., 60-th step, which further leads to the stable mid-frequency
band with nearly no influence by text prompt across the whole late stage with low-level noise. We
further exhibit additional visual results by performing the experiments on the same image based
on three similar text prompts. Despite the different text prompts, the mid-frequency can quickly
converge by the end of the early stage, e.g., 60-th. Following the above, we propose to exploit the
mid-frequency band during denoising process, which plays the pivotal role of achieving the semantics
consistency upon text prompts, while can better achieve the semantics consistency between masked
and unmasked regions, to further preserve its own frequency band well, owing to its robustness to the
text prompt during the denoising process.

C The Algorithm of NTN-Diff

Our proposed NTN-Diff pipeline consists of a null-text denoising process (Sec. 2.3.1) that avoids
the influence of text prompts, and a text-guided denoising process (Sec. 2.3.2) that reconstructs the
masked regions while replacing the low-frequency band of its denoised output with that from the
null-text denoising process. Building upon this design, we further utilize the denoised mid-frequency
information to guide another null-text denoising process (Sec. 2.3.3) by substituting the mid-frequency
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band accordingly. In addition, a late-stage text-guided denoising process (Sec. 2.4) is conducted,
during which the unmasked regions from the early stage of the diffusion process are progressively
substituted to preserve structural consistency. Based on the above, we summarize the complete
algorithm of our proposed null-text-null frequency-aware diffusion model in Algorithm 1 below:

Algorithm 1 NTN-Diff
Input: masked image I , binary mask M , text prompt C, null-text prompt C∅
Output: inpainted image I ′

I. Diffusion Process for Unmasked Regions
1: Extract the initial latent feature of the unmasked region zgt0 = E(I).
2: for t = 0 to Tinv − 1 do
3: Compute zgtt+1 from zgtt ;
4: end for{DDIM inversion}

II. Early Stage
1: Initialize zunT , ztextT , zinT ∼ N (0, 1).
2: for t = T to λT + 1 do
3: Substitute the unmasked regions of zunt with the corresponding counterpart of zgtt via Eq.3;
4: Compute zunt−1 from zunt , conditioned on C∅ via Eq.4;
5: Substitute low-frequency band of ztextt with the corresponding counterpart of zunt via

Eq.5–7;
6: Compute ztextt−1 from ztextt , conditioned on C;
7: Substitute mid-frequency band of zint with the corresponding counterpart of ztextt via

Eq.8–10;
8: Compute zint−1 from zint , conditioned on C∅;
9: end for

III. Late Stage
1: for t = λT to 1 do
2: Substitute unmasked regions of zint with the corresponding counterpart of zgtt via Eq.11;
3: Compute zint−1 from zint , conditioned on C;
4: end for
5: Output the final inpainted image I ′ = D(zin0 ).

D More Analysis of Computational Efficiency in the Sec.3.2 of the Mainbody

As indiacted in the mainbody, we further provide the inference time and VRAM consumption of our
proposed NTN-Diff model, and compared it with several representative baselines, which are reported
in Table. 5. Our inference time is comparable to BrushNet [12] and faster than recent methods such as
HDP [25] and PP [49]. Moreover, our model consumes less VRAM than other text-guided inpainting
models, owing to the fact that our method performs low- and mid-frequency substitution
across different branches after each denoising step. The key idea is that, being decoupled from
the resource-intensive denoising process itself, our approach introduces only negligible additional
memory cost compared to the single denoising process in BLD [1].

Table 5: Inference time and VRAM consumption comparison among different models. NTN-Diff
achieves a comparable inference time while exhibiting the lowest memory cost among all methods.

Methods (Venue) Inference Time (s) ↓ VRAM Consumption (GB) ↓
BLD [1] (TOG’23) 4.78 2.11
PP [49] (ECCV’24) 7.24 4.09
BrushNet [12] (ECCV’24) 6.59 3.19
HDP [25] (ICLR’25) 10.57 11.75
NTN-Diff (Ours) 6.96 2.11
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Table 6: Quantitative comparisons between NTN-Diff* and other diffusion-based inpainting models
over EditBench for inpainting are shown, where all models use Stable Diffusion V1.5 as the baseline
model. red and blue stand for the best and second best result. NTN-Diff* achieves the best result.

Metrics Masked Region Preservation Text Alignment

Models Venue PSNR↑ MSE×103 ↓ LPIPS×103 ↓ SSIM×102 ↑ CLIP Score↑

SDI [32] CVPR’ 22 23.25 6.94 24.30 90.13 28.00
BLD [1] TOG’ 23 20.89 10.93 31.90 85.09 28.62
CNI [47] ICCV’ 23 12.71 69.42 159.71 79.16 28.16
CNI* [47] ICCV’ 23 22.61 35.93 26.14 94.05 27.74
PP [49] ECCV’ 24 23.34 20.12 24.12 91.49 27.80
BrushNet* [12] ECCV’ 24 33.66 0.63 10.12 98.13 28.87
BrushEdit* [17] ArXiv’ 24 32.97 0.70 7.24 98.60 29.62
HDP [25] ICLR’ 25 23.07 6.70 24.32 92.56 28.34
NTN-Diff* (Ours) - 36.83 0.28 5.39 99.46 29.72
* with blending operation of BrushNet

E Additional Quantitative and Qualitative analysis in the Sec.3.2 of the
Mainbody

Evaluation metric. We adopt five metrics to evaluate the inpainted results below: Peak Signal-to-
Noise Ratio (PSNR), structural similarity index (SSIM) [37] and Mean Squared Error (MSE) evaluate
low-level pixel-wise differences between generated images and their ground truth counterparts.
Additionally, Learned Perceptual Image Patch Similarity (LPIPS) [48] measures perceptual similarity
by computing the distance between deep features extracted from a pre-trained neural network, offering
a robust metric for assessing perceptual alignment; CLIP Similarity (CLIP Score) [38] measures
text-image consistency by projecting both the generated images and their corresponding text prompts
into a shared embedding space using the CLIP model. It then evaluates the similarity between their
embeddings.

As indiacted in the mainbody, we further exhibit additional quantitative results by performing the
experiments on the EditBench [35]; see Table.6. It is observed that NTN-Diff enjoys larger PSNR,
SSIM and CLIP Score, together with smaller MSE and LPIPS than the competitors. Notably,
BrushEdit[17] remains the large performance margins (at most, 3.86% for PSNR, 0.42% for MSE
1.85% for LPIPS, 0.86% for SSIM, and 0.1% for CLIP Score) compared to NTN-Diff in Table.6.
We also present the quantitative results of NTN-Diff with the pixel-level blending operation of [12],
named NTN-Diff*, to preserve the unmasked regions, which demonstrates the ability to tame the
hybrid frequency issue, the results further verifies the intuition in Sec.1 of the mainbody – NTN-Diff
can achieve the semantics consistency between mid-and-low frequency bands across masked and
unmasked regions, while preserving unmasked regions.

To shed more light on the advantages of our method, we further perform the visual analysis on the
inpainted results with the higher resolution. Fig.9 delivers the following: due to the discrepancy
between the diffusion process for unmasked regions substitution and the denoising process for
masked region alignment upon text prompt. BLD [1] inevitably generate the content out of the
masked regions (the first column of the Fig.9(a)). Note that, PP [49] and BrushNet [12] often exhibits
the unreasonable inpainted result, e.g., The extra woman(the 4th row of PP in Fig.9(a)) and the
disappeared dinosaur (the 1st row of BrushNet in Fig.9(b)), owing to the unmasked regions are
disrupted, thus fails to reconstruct the masked region as per text prompt, which attributes to the fact
that the low-frequency bands for both masked and unmasked regions are easily to be changed by
text prompts, especially under the early stage of the text-guided denoising process with high-level
noise. As opposed to that, mid-frequency band can better achieve the semantics consistency between
masked and unmasked regions, while preserve its own frequency band well, than low-frequency band,
owing to its robustness to the text prompt during the denoising process, while the previous arts fail
to disentangle all frequency bands during the denoising process especially for its early stage with
high-level noise (see Sec.1 of the mainbody).
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PP [49]BLD [1] HDP [25] BrushNet [12] OursMasked Image

a pangolin on a dock with a few yachts in the background

the oil painting of square letter tiles on the bathroom floor

the oil painting of a dinosaur leaning on a coin machine next to a street

the painting of a massive monkey serving tea at a ceremony

PP [49]BLD [1] HDP [25] BrushNet [12] OursMasked Image

a woman with long brown hair posing for a portrait

a woman in a pink jacket and gloves is walking on a snowy path

a cartoon cat sitting on top of a rock looking up at the sky

a painting of a woman with a colorful head

(a) BrushBench (b) EditBench

Figure 9: Comparison of the text-guided inpainted results with the state-of-the-arts on BrushBench
[12] and EditBench [35]. NTN-Diff delivers the superior inpainted results over others, which can
simultaneously preserve the unmasked regions while achieve the semantics consistency between
unmasked and inpainted masked regions.

Table 7: Ablation studies on the impact of text and null-text prompts on low-and-mid frequency
bands during denoising process: TTN-Diff, NTT-Diff and TTT-Diff for the early stage, based on the
same text-guided denoising process (Sec.2.4 of the mainbody) for the late stage. red and blue stand
for the best and second best result.

Dataset Metric TTN-Diff NTT-Diff TTT-Diff Ours(NTN-Diff)

EditBench

IR×10↑ 1.57 2.12 1.34 3.10
PSNR↑ 22.57 22.58 22.51 22.65

LPIPS×103 ↓ 25.12 24.99 25.24 24.21
CLIP Score↑ 28.87 28.89 28.81 28.95

BrushBench

IR×10↑ 9.61 10.32 9.22 11.12
PSNR↑ 28.06 28.08 28.01 28.10

LPIPS×103 ↓ 44.63 44.55 44.88 44.09
CLIP Score↑ 25.94 25.97 25.89 26.09

F More Ablation Studies on the Impact of Text and Null-Text Prompts on
Low-and-Mid Frequency Bands during Denoising Process

As mentioned in Sec.3.3.1 of the mainbody, due to page limitation, we further provide more ablation
studies on the impact of text and null-text prompts on low-and-mid frequency bands during denoising
process on BrushBench and EditBench datasets with three variants: TTN-Diff: replacing the first
null-text denoising process with the text-guided denoising process; NTT-Diff: replacing the last
null-text denoising process with the text-guided denoising process; TTT-Diff: replacing both the
first and last null-text denoising processes with the text-guided denoising processes; Table.7 suggests
that our NTN-Diff outperforms NTT-Diff, despite the denoised mid-frequency band well aligns
with the text prompts especially for masked regions, while also encodes the information related to
low-frequency band from the first null-text denoising process, which verifies that the last null-text
denoising process can achieve semantics consistency between mid-and-low frequency bands across
masked and unmasked regions, by denoising the low-frequency band throughout the path to be
semantically consistent to mid-frequency band, with no influence from text prompts, which is in line
with Sec.2.3.3 of the mainbody; TTN-Diff exhibits a substantial performance degradation, confirming
that the null-text denoising process conditioned on null-text prompt can avoid being influenced by text
prompts even under the high-level noise, focusing primarily on low-frequency band, hence validating
the important the first null-text denoising process (Sec.2.3.1 of the mainbody). We illustrate the above
intuitions in Fig.10.
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a painting of fish swimming in a coral reef

a bird with a yellow and white face sitting on a tree branch

TTN-Diff NTT-DifMasked 
Image

Ours
(NTN-Diff)

a teacup and saucer with a spoon and a spoon

TTT-Dif

a bee is shown in this poster

Figure 10: The inpainted output about the impact of text and null-text prompts on low-and-mid
frequency bands during denoising process, with the first null-text denoising process (Sec.2.3.1 of
the mainbody), the second text-guided denoising process (Sec.2.3.2 of the mainbody) and the last
null-text denoising process (Sec.2.3.3 of the mainbody), NTN-Diff can achieve the better inpainted
results than others.

G Additional Generation Results for the Ablation Study in Sec.3.3.2 of the
mainbody

As mentioned in Sec.3.3.2 of the mainbody, due to page limitation, we further provide more visual
results to analyse the parameter λ in the denoising process (Sec.2.2 of the mainbody), which is
utilized to divide the denoising process into early and late stages, demarcated by the critical step
λT . see Fig.11. When λ = 0.9, the performance is the worst with the shortest early stage, such as
blue background in the 4th row. When λ = 0.6 with the balance of early and late stage, the best
performance of image quality, unmasked region preservation and text alignment are achieved, such
as the face of the cat in the first rows, confirming the rational that the denoised low-frequency band
for the masked regions is guided by the denoised mid-frequency band within the whole early stage,
which is guided by text prompts for a few number of steps from text-guided late denoising process
to avoid the large influence from text prompts to be inconsistent for unmasked regions, thus the
desirable length of early stage can make the low-frequency band under the mid-frequency guidance
for masked regions achieve the consistency to the substituted unmasked regions for ground truth,
which is consistent to Sec.2.4 of the mainbody.

H Limitations and Broader Impacts

Limitations. Unlike previous state-of-the-art methods that fine-tune Stable Diffusion (v1.5) on
large-scale datasets for text-guided image inpainting, which typically require extensive time and
computational resources for training, our method introduces a plug-and-play frequency-aware null-
text-null diffusion framework. This framework substitutes mid-and-low frequency bands during the
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λ=0.9 λ=0.8 λ=0.7Masked Image λ=0.5

the oil painting of a yellow dog next to a table with a cat under it.

the sketch of a blue dog on a stage singing, standing on its back paws.

a rabbit with a white and brown face sitting on the ground

a close up of a cat looking to the side

λ=0.6

Figure 11: The inpainted output about hyperparameter sensitivity analysis of λ for the length of the
early and late stage, when λ = 0.6 with the balance of early and late stage, NTN-Diff can achieve the
better inpainted results than others.

early stage of the denoising process and, as a result, involves three parallel null-text-null denoising
processes in the early stage, resulting in a larger computational cost than single process. Nevertheless,
it shares the same order of magnitude as the previous methods.

Broader Impacts. Our NTN-Diff can achieve the masked regions to be generated according to the
text prompt, while preserve the unmasked regions, our method may raise certain ethical concerns.
The inpainted image could potentially be misused in the creation of misleading information. We
strongly advocate for the establishment of clear accountability in the use of such technologies, along
with enhanced legal and technical oversight, to ensure they are applied responsibly.
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