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Abstract

The advent of powerful neural classifiers has increased interest in problems that
require both learning and reasoning. These problems are critical for understanding
important properties of models, such as trustworthiness, generalization, inter-
pretability, and compliance to safety and structural constraints. However, recent
research observed that tasks requiring both learning and reasoning on background
knowledge often suffer from reasoning shortcuts (RSs): predictors can solve the
downstream reasoning task without associating the correct concepts to the high-
dimensional data. To address this issue, we introduce rsbench, a comprehensive
benchmark suite designed to systematically evaluate the impact of RSs on models
by providing easy access to highly customizable tasks affected by RSs. Further-
more, rsbench implements common metrics for evaluating concept quality and
introduces novel formal verification procedures for assessing the presence of RSs in
learning tasks. Using rsbench, we highlight that obtaining high quality concepts
in both purely neural and neuro-symbolic models is a far-from-solved problem.
rsbench is available at: https://unitn-sml.github.io/rsbench. neuro symbolic is bool juice.

1 Introduction

Although the field of deep learning has made significant progress in developing accurate neural
classifiers, end-to-end neural networks struggle with tasks that also require symbolic reasoning on
low-level inputs like visual objects [1, 2]. Instead, Neuro-symbolic (NeSy) AI [2–5] promises to
improve the trustworthiness of AI systems by integrating perception with symbolic reasoning [6, 7].
This involves extracting high-level concepts from the input and reasoning over them with some prior
knowledge, e.g., safety constraints, to obtain a prediction. This setup can encourage [8–13] or even
ensure [14–16] the output complies with the knowledge.

Recent evidence suggests that, in some problems, NeSy models can achieve high accuracy on the
reasoning task by learning concepts with incorrect semantics. Such reasoning shortcuts (RSs)
[17] occur when the knowledge, which acts as a bridge between the given output labels and the
concepts [18], allows for inferring the right label using unintended concepts. This can seriously
undermine the original purpose of NeSy AI systems, especially in high-stakes scenarios. For instance,
in the BDD-OIA dataset [19], a model is given a set of traffic laws, and must predict what actions an
autonomous vehicle is allowed to perform (e.g., “go” or “stop”). It will believe it obeys these laws by
confusing pedestrians for red lights, as both entail the correct action (“stop”). Yet, if – when used
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(a) NeSy (DPL & LTN) (b) CBM (c) NN & CLIP

Figure 1: Role of concepts in deep learning models. (a) NeSy architectures like DeepProbLog (DPL)
and Logic Tensor Networks (LTN) map the input x to concepts c and reason over these according
to prior knowledge to obtain a label y. (b) CBMs are similar, except the prediction is computed by
a learned linear layer, making it easy to obtain concept-level explanations of all predictions. (c)
Black-box neural networks infer a label y directly from the input x; concepts c can be extracted
from their latent representation by applying techniques like TCAV [50]. Lighting bolts indicate what
variables are usually supervised.

in an out-of-distribution (OOD) task – the vehicle is allowed to cross over red lights in case of an
emergency, its preexisting confusion can lead to unfortunate scenarios [20]. RSs impact learnability
[18], interpretability of the learned concepts [21–24], and reliability in down-stream tasks [20, 25–28].
At the same time, they can affect most NeSy architectures, regardless of how they are implemented,
including approaches based on probabilistic logic [12–14, 16, 29–33], fuzzy logic [8, 34], reasoning
in embedding space [35], and abduction [36, 37]. Given their impact, researchers have proposed
several mitigation strategies [17, 20, 25, 38–43], yet how to deal with RSs remains an open problem.

Unfortunately, suitable data sets with known RSs are scarce and scattered throughout the literature,
hindering research on this challenging problem. Current benchmark suites for learning and reasoning
neglect RSs altogether [44] and lack OOD data suitable for investigating their impact, while others
are restricted to larger models [45–47]. Simultaneously, available data sets annotated with concept
supervision (e.g., CUB200 [48]), which is essential for evaluating concept quality, do not require
logical reasoning and do not supply prior knowledge.

Contributions. We fill this gap by introducing rsbench, an integrated benchmark suite providing all
the ingredients needed for systematic evaluation of the impact of RSs and the efficacy of mitigation
strategies. rsbench comprises: 1) A curated collection of tasks that require learning and reasoning
that are provably affected by RSs. rsbench comprises entirely new and already established tasks
with different flavors – arithmetical, logical, and high-stakes – along with associated data sets and
data generators for evaluating OOD scenarios.2 2) Python implementations of quality metrics
useful for assessing the impact of RSs on NeSy models and more generally the reliability of concepts
learned (explicitly or implicitly) by other concept-based architectures and end-to-end neural networks.
3) a novel algorithm, countrss, that exploits automated reasoning techniques [49] to verify a priori
whether a task is affected by RSs and to count them. We showcase rsbench by assessing the impact
of RSs on the quality of concepts acquired by several deep learning architectures, illustrated in Fig. 1.

2 Reasoning Shortcuts: Causes, Consequences, and Scope

We study tasks where models require both learning and reasoning (in short: L&R tasks) to accurately
predict a (vector) output y from low-level inputs x [20]. First, we assume there is a set of k high-level
concepts c∗ associated to the inputs x. Then, we assume the concepts c∗ and prior knowledge K
together infer the correct output y∗. The prior knowledge can encode known structural [11] or safety
constraints [15] in some formal language (e.g., logical connectives).

Example 1. The SDD-OIA dataset (detailed in Section 3.3) is a L&R task that contains images x of
3D traffic scenes, and the goal is to predict one or more allowed actions {stop, go, left, right}.
We assume the correct output depends on binary concepts cgrn, cred, cped encoding whether green
lights, red lights, and pedestrians are visible, respectively. The knowledge specifies that if the latter
are detected, the vehicle must stop: K = (cped ∨ cred ⇒ ystop).

2In Appendix C.6, we provide a how-to guide to the usage of rsbench.
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Table 1: List of L&R tasks in rsbench. All columns are described in Section 3.
TASK DATA PROPERTIES

GEN OOD CONL CPLX x CPLX K AMB K

A
R

IT
H

M
E

T
IC

MNMath (new) 3 3 3 7 3 7
MNAdd-Half [25] 7 33 7 7 7 –

MNAdd-EvenOdd [17] 7 33 33 7 7 –
L

O
G

IC MNLogic (new) 3 3 3 7 3 7
Kand-Logic [25] 3 3 3 7 3 3

CLE4EVR [17] 3 3 33 3 7 3

H
IG

H
S

TA
K

E
S

BDD-OIA [20] 7 7 7 3 3 3
SDD-OIA (new) 3 33 3 3 3 3

Reasoning Shortcuts (RSs) have primarily been studied in the context of NeSy models. They usually
consist of a perception module that predicts concepts c from input x and a reasoning module that
uses the prior knowledge K to compute an output, as shown in Fig. 1(a). Like most deep learning
architectures, NeSy models are trained via maximum likelihood on annotated examples (x,y∗),
while concept annotation is typically not available. This makes them susceptible to RSs, i.e., they can
learn concepts with improper or unclear semantics. For example, in BDD-OIA a model can mistake
a pedestrian for a red_light without affecting prediction quality, as both concepts entail the
correct stop action; more examples can be found in Section 3. Low-quality concepts compromise
performance in down-stream decision task [17, 20, 25] – e.g., those that hinge on pedestrians and
red_light being predicted correctly – and in tasks that depend on externally supplied concepts, such
as neuro-symbolic formal verification [26, 27], undermining trustworthiness. Moreover, since the
concepts’ meaning is muddled, concept-based explanations [50, 24] cannot be interpreted properly
by human stakeholders.

Among the root causes of RSs are [20] (1) the structure of the prior knowledge K; (2) the contents
of the training set; (3) the choice of loss function; and (4) if the concept extractor is guided by
appropriate architectural bias. Mitigation strategies possibly target one or more of these causes.
For instance, multitask learning [51] lowers the chance one can achieve high accuracy by confusing
concepts, reconstruction losses [52] help to disambiguate between visually distinct concepts, and
disentanglement [53] provides a useful architectural bias. Several other strategies have been proposed
[25, 38–40]. Existing solutions, however, are no silver bullet [20]: the only general, sure-proof way
of avoiding RSs is supervising concepts (e.g., [54]), which is seldom available and often neglected in
learning tasks involving reasoning [25]. By providing easy access to RS-heavy tasks and evaluation
protocols, rsbench aims to facilitate progress on this challenging open problem.

Beyond NeSy models and RSs. While RSs arise naturally in NeSy models, RSs for purely neural
architectures are not well-defined as knowledge is not explicitly encoded in such architectures.
Nevertheless, several neural models learn concepts either explicitly or even implicitly, and determining
their quality is as important as evaluating RSs in NeSy models, since it provides an indication of
potential patterns that the network could end up learning, (e.g., a convolutional filter could learn to
detect both a red traffic light and a pedestrian, without disambiguating between the two). Additionally,
RSs corrupt the semantics of concept-based explanations extracted in a post-hoc fashion (for NNs)
and of model-provided explanations (for CBMs). To this end, we design rsbench to evaluate
also purely neural models, including gray-box models – such as concept-bottleneck models (CBMs)
[55] – as well as black-box neural networks (NNs) and neural models involving a pre-processing
step given by foundation models, e.g., CLIP [56]. CBMs natively output concept predictions for
their decisions, making it possible to directly evaluate their quality using our metrics, at the cost
of requiring a modicum of concept-level supervision during training, as shown in Fig. 1 (b). For
black-box networks, which only learn concepts implicitly, rsbench extracts concept predictions in a
post-hoc fashion using TCAV [50], see Fig. 1 (c).
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Figure 2: This figure illustrates inference and training
in regular NeSy architectures for one BDD-OIA example
[19]. The input x is a dashcam image. The model first
extracts concepts c = (cgrn, cred, cped) ∈ {0, 1}3 from
the image using a neural backbone (NN) and then uses
a (differentiable) reasoning layer to infer a vector label
y = (ygo, ystop, yleft, yright). While the model includes a
neural component, the labels depend solely on the extracted
concepts. The reasoning layer is aware of prior knowledge
K, which encodes constraints like “if a pedestrian or a red
light is detected, the prediction must be stop.”
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3 The rsbench Benchmark Suite

In the following, we outline the L&R tasks and metrics provided by rsbench. By construction,
RSs do not compromise in-distribution performance, and their worst effects are seen on OOD data.
rsbench facilitates constructing novel OOD data sets by providing a configurable data generator
for each of its tasks (except BDD-OIA, cf. Section 3.3). These enable fine-grained control over all
details of the training, validation and test splits (like number of examples and percentage allocated to
each split, in addition to task-specific settings discussed in the relevant subsection) and the creation
of OOD splits, all through a simple YAML configuration file. All tasks are available as Python
classes and their knowledge K is supplied in the widely used DIMACS CNF format [57], to support
interoperability with model implementations and reasoning packages. In Sections 3.1 to 3.3, for each
task, we illustrate a possible reasoning shortcut and its impact on an OOD input.

Table 1 provides an overview of the rsbench L&R tasks, breaking them down into relevant properties,
namely whether they: include a data generator (GEN); allow users to create (3) or provide ready-
made (33) out-of-distribution splits (OOD); allow users to create (3) or provide ready-made (33)
data suitable for continual learning (CONL) [17]; have complex inputs, making it difficult to extract
concepts (e.g., of different objects) separately (CPLX x); require complex reasoning when using
the default knowledge (CPLX K); by default use knowledge that is intrinsically ambiguous, i.e., it
yields RSs even if the training set contains all possible combinations of concepts and labels (AMB K).
A task involves complex inputs (CPLX x) when it requires processing semi-realistic visual scenes
with multiple objects for concept extraction (e.g, Kand-Logic, SDD-OIA). It involves complex
reasoning (CPLX K) when inference requires handling interrelated concepts or multi-step reasoning.
For instance, BDD-OIA and SDD-OIA require inferring 4 actions from 20 interrelated concepts (e.g.,
traffic lights of different colors, presence of pedestrians), where some concepts are mutually exclusive
(e.g., traffic lights can’t be green and red simultaneously).

Fig. 2 illustrates how a NeSy architecture (DPL) operates on a rsbench L&R task (BDD-OIA).

3.1 Arithmetical Tasks and Data Sets

TASK EXAMPLE DATA KNOWLEDGE K EXAMPLE RS IMPACT

MNMath
{
2 · + = 6

+ = 7
Equations must hold.


→ 2

→ 4

→ 3

+ = 5

MNAdd [14] is the quintessential benchmark for evaluating reasoning in NeSy AI [7, 12, 38, 58–62].
The goal is to infer the sum of k ≥ 2 MNIST [63] digits, provided knowledge encoding the rule
of summation, that is, K := (y =

∑k
j=1 cj). E.g., given x = the model should predict y = 7.

Despite its simplicity, MNAdd highlights a clear performance gap between pure neural baselines and
NeSy architectures [14, 38]. RSs arise when we can infer the correct sum using the wrong digits.
This can occur due to commutativity (e.g., and both sum to 4) or incomplete training data
(e.g., in absence of other training examples, knowing that sum to 5 is insufficient to discriminate
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the intended sum from 0 + 5, 1 + 4, 4 + 1, and 5 + 0). If the training set covers all sums in
{0, . . . , 18}, MNAdd only exhibits RSs of the first kind, which can be avoided by processing the two
input digits separately [20]. For a detailed break down of individual components (inputs, labels, etc.),
see Appendix C.7 and follow-up sections.

Task: We introduce MNMath, a novel multi-label extension of MNAdd in which the goal is to predict the
result of a system of equations of MNIST digits. E.g., given knowledge K = (y1 = 2c1+ c2)∧ (y2 =
c3 + c4) encoding a system of two equations and an input x = , a model trained to predict
y = (6, 7) can learn to systematically map to 4 and to 3, resulting in incorrect down-stream
decisions, as in the example above. In MNMath, the knowledge consists of a system of equations.
The input is a single 28k × 28 image, obtained by concatenating k MNIST images, each representing
a handwritten digit in the equations. The concepts are k categorical variables, one for each digit,
and the label encodes the result of the equation system. The key feature of MNMath is that, besides
requiring more complex reasoning, it comes with a data generator tailored for generating OOD splits
and challenging learning scenarios. It allows to change the number of equations and digits in each
equation, and to define additional operations.

Task: To facilitate comparison with existing mitigation algorithms, rsbench supplies also
MNAdd-Half and MNAdd-EvenOdd, two variants of MNAdd with guaranteed RSs that have been
used in the literature [25, 17]. Both restrict the digits available for training to a subset of combina-
tions – MNAdd-Half focuses on certain combinations of digits in {0, . . . , 4}, while MNAdd-EvenOdd
contains either only even or only odd digits – guaranteeing the model cannot avoid RSs even when
processing inputs separately. In contrast with MNAdd-Half, however, it naturally lends itself to OOD
evaluation, with the even digits in one domain and the odd digits the second one, and to multitask and
continual settings. For these datasets, the knowledge is based on the sum operation. The input is a
single 56× 28 image, created by concatenating 2 MNIST images, each representing an operand in the
sum. The concepts consist of 2 categorical variables, one for each digit, and the label represents the
sum of these digits.

3.2 Logical Tasks and Data Sets

TASK TRAINING SET KNOWLEDGE K EXAMPLE RS IMPACT

MNLogic ⊕ ⊕ ⊕ = 0 Formula must hold.
{

→ 1

→ 0
∧ = 1

Kand-Logic = 1 Pattern must hold.


� → red

4 → yel

© → blu

= 0

CLE4EVR = 0, = 1 Same color and shape?


� → �
� → �
© → �

= 1

Task: MNLogic. RSs arise whenever the knowledge K allows deducing the right label from multiple
configurations of concepts. This form of non-injectivity is a standard feature of most logic formulas,
and in fact formulas as simple as the XOR are riddled by RSs [20]. I.e., if K = (c1 ⊕ c2 ⇔ y), where
⊕ denotes the XOR operator, a model that maps to 1 and to 0 classifies all inputs perfectly.
To probe the pervasiveness of RSs, we introduce MNLogic, a logical analogue to MNAdd [14] in
which inference is driven by a random logic formula ϕ. Specifically, an input x is the concatenation
of k ≥ 2 images of zeros and ones sampled from MNIST [63] representing the truth value of k
bits c, and its ground-truth label y encodes whether it satisfies ϕ or not, i.e., K = (ϕ ⇔ y). The
formula ϕ is a random `-CNF, i.e., a conjunction of m clauses (disjunctions), each of which contains
` out of the k bits and their negations. For instance, x = encodes the bits c = (0, 1) and if
ϕ = (c1 ∨ c2) ∧ (c1 ∨ ¬c2) it is labeled as y = 0. In MNLogic, the knowledge consists of a logical
formula ϕ. The input is a single 28k × 28 image, created by concatenating k MNIST images, each
representing either a true atom ( ) or a false atom ( ) in the formula. The concepts are k categorical
variables, one for each atom, and the label encodes the outcome of the logical formula. The MNLogic
generator allows users to specify the number of digits k, the number of clauses m and their length `,
and to supply a custom formula, and takes care of constructing all training, validation, and test splits.
It also avoids trivial data by ensuring each clauses is neither a tautology nor a contradiction.
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Task: Kand-Logic [25] is a task – inspired by Wassily Kandinsky’s paintings and [64] – that requires
simple (but non-trivial) perceptual processing and relatively complex reasoning. In the simplest case,
each input x = (x1, x2) consists of two 64× 64 images, each depicting three geometric primitives
with different shapes (�, 4, ©) and colors (red, blue, yellow). The goal is to predict whether
x1 and x2 fit the same predefined logical pattern or not. Let each xi contain three primitives xi,1,
xi,2, xi,3 with two concepts each: shape sha(xij) and color col(xij). The pattern is built out of
predicates like “all primitives in the image have a different color”, “all primitives have the same
color”, and “exactly two primitives have the same shape”, formally:

diffcol(xi) =
∧

j 6=j′(col(xij) 6= col(xij′)), samecol(xi) =
∧

j 6=j′(col(xij) = col(xij′)),

and twosha(xi) = ¬samesha(xi) ∧ ¬diffsha(xi). For instance, the default pattern [25] patt(xi)
is “all images include either the same number of primitives with the same color, or the same number
of primitives with the same shape”, or equivalently:

(diffcol(x1) ∧ diffcol(x2)) ∨ (twocol(x1) ∧ twocol(x2)) ∨ (samecol(x1) ∧ samecol(x2))

∨ (diffsha(x1) ∧ diffsha(x2)) ∨ (twosha(x1) ∧ twosha(x2)) ∨ (samesha(x1) ∧ samesha(x2))

An input x is positive if and only if it satisfies the pattern, i.e., K = (Y ⇔ patt(x1, x2)). Unlike
MNLogic, in Kand-Logic each primitive has multiple attributes that cannot easily be processed
separately. This means that RSs can easily, e.g., confuse shape with color when either is sufficient
to entail the right prediction, as in the example above. rsbench provides the data set used in [25]
(3 images per input with 3 primitives each) and a generator that allows configuring the number of
images and primitives per input and the pattern itself.

Task: CLE4EVR [17] focuses on logical reasoning over three-dimensional scenes, inspired by CLEVR
[65] and CLEVR-HANS [66]. Among these, CLEVR is tailored for visual-question answering and
CLEVR-HANS to contain confounding factors at the input level, to make shortcuts arise [67]. Both of
them typically provide models with exhaustive concept-level supervision, obscuring whether RSs are
present without it. Our CLE4EVR constitutes a simplified version where RSs can be easily determined.
Each input image x, of size 240 × 320, contains a variable number of objects differing in size (3
possible values), shape (10), color (10), material (2), position (real), and rotation (real), and the goal
is to determine whether the objects satisfy a pre-specified condition ϕ that depends on all discrete
attributes of the objects in the scene. The default knowledge K is designed to induce RSs [17]: it
asserts that an image x is positive iff at least two objects xi and xj have the same color and shape,
i.e., ∃i 6= j . (sha(xi) = sha(xj))∧ (col(xi) = col(xj)). When all possible colors and shapes are
observed, the only RSs CLE4EVR is affected by are those in which the attributes of first object are
attributed to the second one. However, if the training set includes only some combinations – e.g., pink
rings and gray spheres are never observed together – the model can collapse different shapes and
colors [17]. Hence, even when objects are processed separately (e.g., via Faster-RCNN embeddings),
the model can confuse colors and shapes with one another, e.g., it can mistake blue cones for red
pyramids and vice versa. Occlusion further complicates the picture, complicating both perception
and reasoning. As above, the generator allows to customize the number of objects per image, the
knowledge, and whether occlusion is allowed.

3.3 High-stakes Tasks and Data Sets

TASK TRAINING SET KNOWLEDGE K EXAMPLE RS IMPACT

SDD-OIA = stop Traffic laws.


pedestrian →

red_light
green_light →

green_light

= go

BDD-OIA = stop Traffic laws.


pedestrian →

red_light
green_light →

green_light

= go

Task: BDD-OIA [19] is a multi-label autonomous driving task for studying RSs in real-world, high-
stakes scenarios. The goal is to infer what actions out of {forward, stop, left, right} are safe
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depending on what objects (e.g., cars, traffic signs) are present in an input dashcam image. The
knowledge K establishes that, e.g., it is not safe to move forward if there are pedestrians on the
road, based on a set of 21 binary concepts indicating the presence of different obstacles on the road.
The constraints specify conditions for being able to proceed (green_light ∨ follow ∨ clear ⇒
forward), stop (red_light ∨ stop_sign ∨ obstacle ⇒ stop), and for turning left and right, as
well as relationships between actions (e.g., stop ⇒ ¬forward). Input images, of size 720× 1280,
come with concept-level annotations, making it possible to assess the quality of the learned concepts.
The dataset comprises 16, 082 training examples, 2, 270 validation examples and 4, 572 test examples.
Common RSs allow to, e.g., confuse pedestrians with red_lights, as they both imply the correct
(stop) action for all training examples [20].

Task: SDD-OIA. BDD-OIA is not suitable for systematically evaluating RSs out-of-distribution, where
they show the highest impact. With rsbench, we fill this gap by introducing SDD-OIA, a synthetic
replacement for BDD-OIA that comes with a fully configurable data generator, enabling fine-grained
control over what labels, concepts, and images are observed and the creation of OOD splits. In short,
SDD-OIA shares the same classes, concepts and (by default) knowledge as BDD-OIA, but the images
are 3D traffic scenes modelled and rendered using Blender [68] as 469× 387 RGB images. Images
are generated by first sampling a desired label y, then picking concepts c that yield that label, and
then rendering an image x displaying those concepts. This allows to easily control what concepts and
labels should appear in all data splits, which in turn determine what kinds of RSs can be learned. The
complete data generation process is described in Appendix C.11.

In Section 4, we showcase SDD-OIA by implementing an OOD autonomous ambulance scenario
[20] in which the vehicle is allowed to cross red lights in case of an emergency. Formally,
this requires altering the prior knowledge by introducing a new emergency variable that condi-
tions the traffic rules, that is, (¬emergency =⇒ original rule for stop) ∧ (¬emergency =⇒
alternative rule for stop), and similarly for turn_left and turn_right. We specifically test this
scenario in Section 4. Naturally, other challenging OOD scenarios can be created.

3.4 Metrics for Reasoning Shortcuts

Model-level metrics. rsbench facilitates assessing learned models by implementing several metrics
for label and concept predictions – including accuracy and F1 score – as well as metrics for RSs.
First, rsbench provides concept-level confusion matrices, which show how well the predicted
concepts c = (c1, . . . , ck) recover the annotations c∗ = (c∗1, . . . , c

∗
k) and are essential for visualizing

and spotting RSs, as can be seen in Table 3. Second, it implements concept collapse Cls(C),
which measures to what extent the learned concepts mix distinct ground-truth concepts. Given
a concept confusion matrix C ∈ [0, 1]m×m, where m is the size of the confusion matrix (e.g.,
m = 2k when all ground-truth concepts are observed), it is defined as Cls(C) = 1 − p/m, where
p =

∑m
j=1 1{∃i . Cij > 0}. High collapse shows that the model tends to use fewer concepts to solve

the task, making it useful for diagnostics. Vice versa, a lower concept collapse may indicate that
the RS is densely activating all concepts. Concept collapse is not trivial to implement because not
all 2k ground-truth concept combinations may appear in the test set (especially when k is large, see
Appendix A for details), so rsbench provides ready-made implementations for all its tasks.

Task-level metrics. RSs arise due to a complex interaction between prior knowledge and training
data (cf. Section 2) making it difficult to assess a priori which L&R tasks they affect. Fortunately,
it is possible to count how many optimal (deterministic) RSs affect a L&R task [20, 25], as long as
this satisfies two technical assumptions.3 They also provide a closed-form expression for the count
that works only when the training set is exhaustive (that is, comprises all possible combinations of
concepts, like MNAdd) and the concepts are extracted jointly. This makes it possible to formally verify
whether a L&R task can be solved via RSs by checking that the count is larger than 1. This is crucial
for anticipating the occurrence of RSs in novel tasks and for iteratively improving task specifications
in the design stage. In practice, however, the training set is seldom exhaustive and concepts are often
processed separately. While the former issue can be overcome – and in fact, we provide a closed-form
solution in Appendix A.3 – the latter is more challenging.

3Specifically, invertibility (A1) and determinism (A2), meaning that it is always possible to recover the unique
ground-truth concept vector underlying any input and that the knowledge K maps any concept configuration to a
unique label, respectively; see [20] for an in-depth discussion.
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Table 2: Results on MNAdd-EvenOdd
F1(Y )(↑) F1(C)(↑) Cls(C)(↓)

DPL 0.94 ± 0.04 0.06 ± 0.08 0.61 ± 0.08
LTN 0.66 ± 0.10 0.05 ± 0.06 0.70 ± 0.01

CBM† 0.89 ± 0.13 0.44 ± 0.07 0.09 ± 0.09
NN∗ 0.57 ± 0.38 0.07 ± 0.03 0.29 ± 0.34
CLIP∗ 0.62 ± 0.14 0.04 ± 0.01 0.48 ± 0.17

Table 3: (Left) DPL and (Right) NN concept confusion
matrices for MNAdd-EvenOdd.
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Table 4: Results on Kand-Logic
F1(Y ) (↑) F1(C) (↑) Cls(C) (↓)

DPL 0.87 ± 0.15 0.25 ± 0.09 0.69 ± 0.04
LTN 0.77 ± 0.09 0.35 ± 0.04 0.00 ± 0.01

CBM† 0.36 ± 0.04 0.59 ± 0.01 0.00 ± 0.01
NN∗ 0.72 ± 0.08 0.33 ± 0.01 0.17 ± 0.01
CLIP∗ 0.99 ± 0.01 0.32 ± 0.01 0.00 ± 0.01

Table 5: Performance on SDD-OIA
mF1(Y )(↑) mF1(C)(↑) mCls(C)(↓) OOD-mF1(Y )(↑)

DPL 0.80 ± 0.01 0.49 ± 0.03 0.86 ± 0.04 0.62 ± 0.09
LTN 0.82 ± 0.04 0.46 ± 0.04 0.81 ± 0.02 0.72 ± 0.06

CBM† 0.60 ± 0.12 0.61 ± 0.04 0.68 ± 0.06 0.45 ± 0.05
NN∗ 0.93 ± 0.18 0.44 ± 0.02 0.43 ± 0.28 0.47 ± 0.19
CLIP∗ 0.90 ± 0.09 0.43 ± 0.04 0.23 ± 0.02 0.81 ± 0.06

rsbench addresses it by implementing a practical counting algorithm, named countrss, that
leverages automated reasoning [49] techniques. In a nutshell, each optimal RS can be viewed as a
linear mapping c = Ac∗ that maps ground-truth to predicted concepts under the constraint that these
yield the correct label y∗ for all training examples. The problem thus boils down to counting how
many matrices A ∈ {0, 1}k×k, where k is the number of concepts,4 satisfy this constraint. Given
the exponential (in k) number of candidates, countrss relies on state-of-the-art model counting
solvers [49, 69] for efficiency. That is, we encode the above constraint as a propositional logic
formula (see Appendix A for the exact encoding), such that each model (solution) represents a distinct
RS. countrss, based on PyEda [70], works for all L&R tasks that satisfy the necessary technical
assumptions, including all those in rsbench except BDD-OIA, and supports both exact [71] and, for
the more complex tasks, approximate counting [72].

We showcase countrss by evaluating the impact of the amount of training examples on the RS count
for two instances of MNLogic: AND (with K = (y ⇔ c1∧c2∧c2)) and XOR (K = (y ⇔ c1⊕c2⊕c3)).
When the training set is exhaustive, AND admits 6 RSs and XOR 24, proving that symmetries in the
XOR function make it latter more ambiguous in this case, as stated in Section 3.2. The number of
RSs grows drastically when we only provide a single example, as it becomes easier to predict all
labels correctly while confusing concepts, with the XOR presenting 192 RSs. For the AND, the count
depends on whether the single ground truth label is positive or negative, the number of RSs growing
to 48 and 336, respectively. This highlights how even simple formulas can be affected by RSs and
that these depend crucially on the available data, as expected, and that countrss can anticipate the
occurrence of RSs in L&R tasks without the need for training any model.

4 Evaluating RSs and Concept Quality with rsbench

rsbench is meant to be a general framework for evaluating the impact of RSs and concept quality in
any machine learning model. We showcase this by evaluating five different architectures on three
L&R tasks, one per “flavor”, namely MNAdd-EvenOdd, Kand-Logic, and SDD-OIA.

We consider two state-of-the-art NeSy models: DeepProbLog (DPL) [14] and Logic Tensor Networks
(LTN) [34]. Both comprise a neural network module to extract concepts c for every input x, which
are later used to predict labels y according to the knowledge K (Fig. 1(a)). These predictions are
done according to a probabilistic logic semantic in DPL and by using fuzzy logic in LTN. As stated in
Section 2, we also experiment with purely neural models, evaluating the quality of the concepts they
learn on rsbench. Specifically, we employ CBMs (Fig. 1(b)), black-box NNs and CLIP (Fig. 1(c)). In
our analysis, we investigate directly the bottleneck layer for CBM, where concepts are expected to be
learned, and adopt TCAV for NN and CLIP.

4More precisely, k is the number of bits required for the one-hot encoding of the concept vector c.
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We evaluate macro F1 for predicted labels and concepts, denoted as F1(Y ) and F1(C), respectively,
and concept collapse Cls(C) (see Appendix A for the exact definition). We report the mean and
standard deviation over 10 random seeds. We train all models by maximum likelihood on the labels,
as customary in NeSy and for neural baselines. Notice that, CBM without annotated concepts would
be equivalent to NN, therefore we supervise a handful of concepts, as customary [55, 22, 23, 73].
Specifically, we supervise a total of 100 examples for MNAdd-EvenOdd (only for the digits 3, 4, 8 and
9); 20 examples for Kand-Logic (for red, �, and ©); and ∼ 700 examples for SDD-OIA on the high-
stakes concepts red_light, green_light, car, person, rider, other_obstacle, stop_sign,
right_green_light, and left_green_light. All details about the losses, architectures, metrics,
and model selection procedure we use are reported in Appendix B.

All tasks succeed in inducing RSs across all models. The results in Tables 2, 4 and 5 show
that all models attain medium-to-high F1(Y ) on the three benchmarks, meaning the labels can be
predicted accurately, with the following exceptions: On MNAdd-EvenOdd LTN, NN, and CLIP show
medium-to-high variance (10%, 38%, and 14%, respectively); On Kand-Logic, LTN, CBM, and NN
reach suboptimal performance on (around 77%, 36%, and 72%, respectively); On SDD-OIA, CBM
scores only 60% F1(Y ). We attribute the subpar F1(Y ) score of CBM to the fact that their top linear
layer is not expressive enough to accurately infer the label from the concept bottleneck in more
complex tasks like Kand-Logic and SDD-OIA. Despite these variations in prediction performance,
all models show overall low concept quality, as measured by F1(C). Even CBM, despite receiving
concept supervision, fare below 60%.

Understanding concept quality with rsbench. The high rate of Cls(C) in all tasks (except for LTN
in Kand-Logic) suggests that NeSy models tend mix concepts together [40]. The left-most confusion
matrix in Table 3 shows that in MNAdd-EvenOdd, DPL uses roughly half of the available digits to
solve the task with high F1(Y ). In contrast, CBM experiences less collapse due to concept supervision.
NN and CLIP also yield overall low collapse (an exception being CLIP in MNAdd-EvenOdd), and in
fact the right-most confusion matrix in Table 3 shows that NN in MNAdd-EvenOdd activates densely
most concepts. We point out that, however, lower collapse for NN and CLIP stems also from TCAV,
which can introduce noise in the extracted concepts. Due to space constraints, we report a detailed
analysis of this phenomenon in the supplementary material.

Generators enable measuring the OOD impact of RSs. For SDD-OIA we leverage the generator to
evaluate an OOD setting where the same concepts are used with a different knowledge KOOD (reported
in Section 3.3). We observe that all models suffer a visible drop in OOD mF1(Y ) performance, as
expected: DPL drops by 18%, LTN by 10%, and CBM by ∼ 15%. NN is the most affected, with average
46% difference, while CLIP is the most resilient with only 9% drop.

5 Discussion and Conclusion

We introduced rsbench, an integrated benchmark suite for systematic evaluation of RSs and concept
quality in tasks requiring learning and reasoning. While existing benchmark suites [44] neglect RSs
altogether, rsbench supplies datasets for various RS-heavy tasks and corresponding ready-made
data generators for evaluating OOD and continual learning scenarios. At the same time, rsbench
provides formal verification and evaluation routines for assessing how much RSs and concept quality
affect each task. Our experiments showcase how rsbench enables practitioners to easily investigate
the impact of RSs on several existing or future deep learning architectures.

RSs are also connected to the more general problem of learning high-level concepts from data, aka
symbol grounding [74, 75]. Interpretable concepts play an increasingly central role as a lingua franca
in explainable AI (XAI) [21, 76] for both post-hoc [50, 77–79] and ante-hoc [55, 73, 22, 80, 81, 24]
explanations of model decisions. As with RSs, a central question is whether the concepts encode the
intended semantics [82, 83]. rsbench can be used to benchmark precisely whether learned concepts
satisfy this condition. Furthermore, it can also benefit new research in mechanistic interpretability
[84–88], specifically for studying challenging scenarios in which deriving a high-level explanation of
neural networks behavior is complicated by poor concept semantics.

Another related topic is identifiability of latent concepts, which is studied in independent component
analysis [89] and causal representation learning [53, 90, 91]. rsbench can be readily used to
empirically assess identification of latent concepts with only label supervision [92–94].
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Broader Impact. Concepts confused by RSs can lead to poor down-stream decision making. With
rsbench, we hope to enable research on mitigation strategies for RSs to avoid such consequences.
At the same time, rsbench might be used to design adversarial attack that exploit or promote RSs
and therefore undermine the trustworthyness of ML systems.

Limitations and Future Work. While rsbench already provides a variety tasks offering different
learning and reasoning challenges, we plan to extend it to include variants of other popular reasoning
datasets such as Visual Sudoku [95], Raven matrices [96], KANDY [97], CLEVR-HANS [66], and
ROAD-R [98] which in their current status do not allow a systematic study of RSs. Implementations of
NeSy architectures make use of distinct formalisms and file formats, making it especially challenging
to ensure data interoperability. rsbench partially addresses this by supplying both Python APIs
and CNF specifications – the standard file format for logic formulas in formal verification – for all
L&R tasks. In the future, we will build on initiatives like ULLER [99], which promise to provide
a unified interface for NeSy architectures. We also plan to improve the scalability of the formal
verification algorithm to larger L&R tasks and to leverage as a guide for active learning-based
mitigation strategies.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our key claims are stated in the abstract and introduction, see the contributions
paragraph. Summarizing, the main claim is that existing benchmark for learning and
reasoning are insufficient to evaluate reasoning shortcuts and mitigation strategies, and we
aim to fill this gap.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the key limitations of rsbench in Section 5 and potential issues
with TCAV-based concept extraction in Appendix A.2.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [N/A]

Justification: We make no theoretical claims.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The data and code of rsbench, as well as the code used for our evaluation, are
readily available at the link provided in the abstract. All experimental details are supplied in
the appendix.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The full benchmark suite, available at the provided URL, comes with docu-
mentation.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 4 and Appendix B. Additional details can be found in the source
code.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All tables come with error bars reporting the standard deviations.
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In . In short, the experiments were conducted on an A5000 GPU, and Blender
rendering on a K40 GPU.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All authors read and followed the code of conduct. Our work does rely on
experiments with human subjects or crowd-workers. All data sets we provide are freely
available for research purposes and suitable for evaluating the impact reasoning shortcuts.
The BDD-OIA data set is also available for research under its own license, see Appendix C.1.
We believe our tasks and data sets pose no immediate harmful consequences. We discuss
potential issues in Section 5.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We briefly discuss broader impact in Section 5.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [N/A]

Justification: We believe our tasks and data sets pose no such risk.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets are properly credited, see Appendix C.11.1 and Appendix C.1.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All new assets – tasks, data sets, data generators, code – are documented on
the online website.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [N/A]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [N/A]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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A Metrics: Additional Details

A.1 Model-level Metrics

Label and Concept Evaluation. For all datasets, we evaluate the predictions on the labels by
measuring the F1-score with macro average. We followed these specifics for MNAdd-EvenOdd and
Kand-Logic.

In BDD-OIA and SDD-OIA, there are 4 labels and 21 concepts, and to measure the F1 score we adopt
a softened metric [19, 100], namely, the mean-F1 score and a mean accuracy. Specifically, we first
compute the binary F1-score and accuracy for each concept Ci and then average them:

mF1(Y ) =
F1(forward) + F1(stop) + F1(left) + F1(right)

4
(1)

Similarly, for the concepts, we perform the following:

mF1(C) =
F1(green_light) + · · ·+ F1(right_follow)

21
(2)

Concept Collapse. For all datasets, to measure the Concept collapse Cls(C), we first compute the
confusion matrix. Here, we provide additional details when not all ground-truth concepts C∗ appear
in the test set. To this end, it is desirable to mention how the confusion matrix is extracted.

Let C∗ ⊆ {0, 1}k be the subset of concepts vectors appearing in the test set, and C be the subset
of concepts vectors predicted by the model for inputs in the test set, e.g., taking the MAP estimate.
Notice that both |C| and |C∗| are below or equal to 2k. To evaluate the confusion matrix in this
multilabel setting, the set of labels is determined by first converting each binary string to its integer
value, e.g., (0, 1, 1) 7→ 3. Let F(C) and F(C∗) be the two subsets converted to categorical values
from C and C∗, respectively. From F(C) and F(C∗) we obtain the confusion matrix C using the
scikit-learn library [101]. In this case, the output would be a matrix C ∈ [0, 1]m×m, where
m = |F(C) ∪ F(C∗)|, where categorical values not appearing in F(C∗) will give empty rows, i.e.,
Ci,: = (0, . . . , 0)>, for all i 6∈ F(C∗). Following the previous definition, we obtain that:

p =

m∑
j=1

1{∃i . Cij > 0} = |F(C)| (3)

Then, collapse can be evaluated as before:

Cls(C) = 1− p

m
(4)

Notice that when m = 2k the form reduces to the one discussed in the main text.

For Kand-Logic, we took the concept for each geometric figure, using a 6-dimensional one-hot
encoding for shape (3) and color (3), and computed the collapse after converting this base 3 repre-
sentation to a base 10 integer. rsbench provides a way to compute the collapse for shape and color
separately. In this case, we compute the confusion matrix as is without the need for a conversion. We
threat the digits predictions in MNAdd-EvenOdd, in the same way.

To compute the Cls(C) for BDD-OIA and SDD-OIA, we convert the binary 21-concept prediction to
an integer and compute the collapse. rsbench also allows computing the collapse for each concept
associated with corresponding categories (e.g., move_forward, stop, turn_left, turn_right) in
the same manner.

A.2 The Impact of TCAV

We extract concepts from neural networks by leveraging the TCAV post-hoc explainer [50]. In
essence, TCAV acts as a linear probe: for each concept, it trains a binary linear classifier using the
network’s embeddings (typically from the second-to-last layer) as inputs and the concept’s annotations
as targets, distinguishing between when a concept is present (xc) and when it is absent (x¬c). From
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this classifier, we extract the Concept Activation Vector (CAV), which corresponds to the weights of
the linear decision boundary, denoted as vCAV.

To assess whether a concept is present, we use the TCAV score, which checks whether the model’s
prediction aligns positively with the CAV by computing:

∂f(xi)

∂h(xi)
· vCAV, (5)

where ∂f(xi)
∂h(xi)

represents the gradient of the model’s output with respect to the embedding space h(xi),
and · denotes the dot product. A positive score suggests that the concept is contributing to the model’s
prediction.

We employed the TCAV score to determine the presence of concepts in both NN and CLIP, as discussed
in Section 4.

One issue is that TCAV is not always reliable, depending on the task at hand, meaning that it might
mis-predict the concepts learned by the model, simply because these concepts may not be linearly
separable in the embedding space. This occurs even when the linear classifiers perform well on
held-out data.

This can lead to overestimating concept collapse, as noted in Section 4, and to underestimating
the quality of implicitly learned concepts. Possible remedies, which we plan to implement as we
develop rsbench further, include replacing TCAV with more advanced techniques from mechanistic
interpretability [78, 85].

A.3 Task-level Metrics

To properly understand how the countrss works and how it is possible to count the number of
RSs we need to introduce technical details on what assumptions and conditions are required. We
report in this section an overview of the theoretical material in [20, 25], precisely meant to explain
comprehensively the counting of RSs. Additional details about derivations and proofs for RSs
characterization can be found in the references above.

To this end, we need to (i) introduce the functional form of NeSy predictors along with their training
objective and the optimality condition, and (ii) the data generation process and the notion of intended
semantics. (iii) By leveraging two simplifying assumptions, it is possible to derive a formula for
counting the number of optimal solutions (including RSs).

Neuro-Symbolic models and Learning Objective. Without loss of generality, we analyze Neuro-
Symbolic models leveraging Probabilistic Logic approaces [16, 14, 9] of the form:

pθ(y | x;K) =
∑

c∈{0,1}k

p(y | c;K)pθ(c | x) (6)

The perception step is performed via pθ(c | x), computing a high-level conceptual description of a
low-level input, usually implemented as a neural network; and the reasoning step is performed by
p(y | c;K), which infers a prediction y based on the high-level description c and prior knowledge K.

The learning objective for models of this form is given by the maximization of the likelihood on data
a set D = {(x,y)}. We denote with (D1) the condition to which NeSy models attain the optimum of
likelihood that is θ∗ ∈ argmaxθ

∑
(x,y)∈D log pθ(y | x;K).

Data Generation Process and Intended Semantics. Similar to [20], we assume data are distributed
according to a ground-truth distribution p∗(x,y;K). There exist k latent, ground-truth concepts
c∗ ∈ {0, 1}k drawn from an unobserved distribution p(c∗), where input variables x ∈ Rn are
distributed according to the conditional p(x | c∗). Latent concepts also generate the label y according
to distributions p(x | c∗;K). The overall distribution on the observed inputs and output labels is given
by p(x,y;K) = Ec∗∼p∗(c∗)p(x | c∗)p(y | c;K). The conditional distribution p(c∗ | x) describes
how concepts are distributed according to the input.

Based on this, we denote with (D2) the condition for which the learned concepts possess the intended
semantics, that is pθ(c | x) ≡ p(c∗ | x).
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Reasoning Shortcuts are Optimal Solutions with Unintended Semantics. Having specified
the meaning of intended concepts (D2) and the optimality condition for NeSy models (D1), does
D1 =⇒ D2, even in the limit of infinite data? Attaining optimality with NeSy models is insufficient
to learn concepts with the intended semantics [20], making the implication not to hold in general.

It is possible to detect the presence of RSs before-hand, leveraging two technical assumptions:

A1 Invertibility, the ground-truth map from input to concept is given by a function f∗ : x 7→ c∗,
i.e., p(c∗ | x) = 1{c∗ = f∗(x)};

A2 Determinism, the labels are uniquely determined by the knowledge K and concepts by a
function βK : c 7→ y underlying the knowledge, i.e., p(y | c,K) = 1{y = βK(c)}.

Intuitively, A1 indicates that ground-truth concepts are determined uniquely from the input, i.e.,
ground-truth concepts can be read from the input variables. This means that D2 reduces to obtain the
function f∗ via the model pθ(c | ·). On the other hand, A2 subtends the fact that for knowledge K
there is only one y that complies with concepts c, that is (c,y) |= K and (c,y′) |= K, if and only
if y′ = y. This also means that given the concepts and the knowledge, only one label vector is
associated with them.

We indicate with supp(c∗) the support of the ground-truth concepts distribution p(c∗) and with A
the space of all maps α : {0, 1}k → {0, 1}k, mapping one concept vector to another. Based on this,
we can derive a count for optimal NeSy models of a particular form:
Theorem 1 (Misspecification of NeSy models [20]). Under A1 and A2, the number of models of the
form pθ(c | x) = 1{c = fθ(x)}, with fθ = (α ◦ f∗), attaining maximum likelihood amounts to:∑

α∈A 1

{∧
c∈supp(c∗)(βK ◦ α)(c) = βK(c)

}
(7)

In a nutshell, the theorem proves that the number of alternative solutions to the ground-truth one
f∗ is given by those maps α ∈ A that map ground-truth concepts to valid alternatives for label
predictions. When the number is above 1, RSs are present in the learning problem. The formula
offers a principled way to count RSs in practice and allows to design tasks where RSs are present and
we show a practical implementation with countrss.

Explicit count of optimal solutions. Marconato et al. [20] showed that it is possible to derive an
analytical expression for the total number of optimal solutions appearing in Eq. (7). This requires
making assumptions on how the count is performed:

C1) All possible maps α : {0, 1}k → {0, 1}k can be learned by the neural model, that is A is

complete and of cardinality |A| = (2k)
2k

C2) The support of p(c∗) is complete, that is supp(c∗) = 2k

Here, assumption (C1) allows to count the total number of maps by considering the limit case where
each α(c) can be predicted independently from α(c′), for c 6= c′. It is possible to derive the total
count of possible optimal α’s [20], given by:

#opt-α’s(C1,C2) =
∏

c∈{0,1}k

|E(c,K)||E(c,K)| (8)

where the set E(c,K) ⊂ {0, 1}k contains all concepts C that yield the same result under βK, and it is
defined as E(c,K) := {c′ : βK(c

′) = βK(c)}. In other terms, E(c,K) ⊂ {0, 1}k is the equivalence
class for c and logic K. It is possible to relax C2 by capturing a more general case and showing
that RSs can be even more. The underlying idea is that for all c′′ 6∈ supp(c∗), i.e., not appearing
in the training set, a map α can predict whatever element in {0, 1}k without affecting the training
likelihood. This gives an even bigger number of solutions provided by:

#opt-α’s(C1) =
∏

c∈supp(C∗)

|E(c,K)||E(c,K)|
∏

c6∈supp(C∗)

2k (9)

However, relaxing C1 makes finding an explicit expression for counting optimal solutions more
complicated. We then resort to formal methods to show that this can be done algorithmically.
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Algorithmic implementation with countrss. We detail the encoding of maps α and their counting
in propositional logic, under the previous assumptions A1 and A2. We denote with B = {0, 1} and
matrix element Li,j as L[i, j]. For ease of exposition, we additionally assume that all concepts ci, for
i ∈ {1, . . . , k}, have the same number of values b ∈ N+.

We introduce O ∈ Bk×k the boolean matrix encoding the mapping between the ground-truth concepts
c∗ and the predicted concepts c, where k ∈ N+ is the number of concepts. Intuitively, O determines
what learned concepts depend on the ground truth ones. For example, it may be the case that in
Kand-Logic, the concept cshape depends on c∗color and ccolor depends on c∗shape.

The full mapping from ground truth to predicted concept values is defined by the block matrix
A ∈ B(k·b)×(k·b). This mapping encodes how the values of the ground truth concepts are mapped
to the values of the predicted predicted. For example, in Kand-Logic it may be the case that
α : red 7→ � and α : � 7→ red, and so on for other colors and shapes. We require that this
assignment of A is consistent with the assignment of O. This means that the i, j-block of A has
non-zero entries if and only if the i-th ground truth concept is mapped onto the j-th predicted concept:

k∧
i=1

k∧
j=1

O[i, j] ⇔

i(b+1)−1∨
x=ib

j(b+1)−1∨
y=jb

A[x, y]

 . (10)

A also must have exactly one positive entry for each column, encoding the fact that a single ground-
truth value cannot be mapped to two or more values by the model. Again, multiple ground-truth
values can still end up collapsing into the same predicted value:

k·b∧
j=1

OHE(A[1, j], ...,A[k · b, j]). (11)

Out of every assignment to A satisfying the constraints above, only those that are consistent with the
supervision can achieve optimal predictive performance and therefore be potential RSs. Let c∗ ∈ Bk·b

denote the boolean vector encoding the ground truth concept values appearing in the support of p(c∗),
and let ĉ ∈ Bk·b denote the predicted concepts for the ground-truth concept, which is defined as the
boolean dot product (denoted as ⊗) of c∗ with A:∧

c∗∈supp(c∗)

(ĉ ⇔ A⊗ c∗) . (12)

Finally, by denoting with K and y∗ the logical encoding of the task and the ground-truth label for the
c∗ (corresponding to y∗ = βK(c

∗)) respectively, we constrain the model predictions to be correct,
which in turn forces the values of A to comply with condition (D1):∧

c∗∈supp(c∗)

(K(cd) ⇔ y∗). (13)

The full encoding is the conjunction of Eq. (10), Eq. (11), Eq. (12), and Eq. (13). This is fed to a
model counter, whose output equals the number of possible assignments to A that satisfy the formula.
When this number is above 1, RSs are present in the learning problem. This number indicates the
optimal maps α’s (according to the specifics of the constraints) that can be learned by the NeSy
model.

Notice that, without any additional constraint on O, the count would enumerate all RSs as done in
Eq. (9). We instead search for more specific RSs that relax condition C1. In our setup, we constrain
each ground-truth concept c∗i to be mapped to a single extracted concept ci. This condition is typically
referred to as completeness [102], that is there are no copies or repetitions of ground-truth concepts in
the learned ones. For example, we avoid counting solutions where the map α predicts two concepts,
say c1 and c2, only depending on one ground-truth concept, say c∗1. Notice that, however, multiple
concepts c∗i can still affect a single concept in cj . Formally, we achieve this by enforcing exactly one
(OHE) positive value in each column of O:

k∧
j=1

OHE(O[1, j], ...,O[k, j]) (14)

24



where OHE(a1, . . . , ak) is one if and only if there is only one ai = 1 and the remaining are zero,
otherwise zero. Basically, the matrix O encodes all maps of concept indices, a necessary element
whenever there is no clear notion of ordering among concepts (CPLX x).

Then, this additional constraint can be added to the previous conjunction and used to evaluate the
number of RSs. One perk of countrss is that many additional constraints can be added to the
conjunction of Eq. (10), Eq. (11), Eq. (12), and Eq. (13) and evaluate different situations depending
on the expected model architectural biases. By adding

k∧
j=1

OHE(O[j, 1], ...,O[j, k]) (15)

to Eq. (14), we then require that only permutation maps are considered, that is one ci only depends
on one c∗π(i), where π is a permutation of k elements. Further constraints can also be added to include
concept supervision.

B Experiments: Additional Details

All experiments were conducted using Python 3.8 and PyTorch 1.13, executed on a single A5000 GPU.
The implementation of DPL was taken from [25]. For LTN, NN, CBM, and CLIP, new implementations
were developed from scratch. LTN models were developed employing LTNtorch [103]. As for
CLIP, we leveraged the implementation of [104]. For all the datasets, we used the pre-trained (with
contrastive learning for image-caption matching, see [56]) visual transformer ViT-B/32 to this end,
passing all input images to first a rescaling transformation of the image to 224× 224× 3 to comply
with the backbone layer. Visual embeddings are then saved and made available in our supplementary
material for successive fine-tuning of neural predictors.

For the dataset generation process of rsbench, we utilized Python 3.7 along with Blender 2.91,
leveraging the bpy Python package set to version 2.91a0. The methodology for generating CLE4EVR
variants and SDD-OIA was inspired by the work of Johnson et al. [65]. The images, which require
Blender rendering, were generated using a Tesla K40c GPU.

SDD-OIA was generated using seed 0, with random splits of 0.7 for train, 0.15 for validation, and 0.15
for test. The configuration was 0.9 in-distribution and 0.1 out-of-distribution. The dataset comprises
6820 training examples, 1464 validation examples, 1464 test examples, and 1000 OOD examples.
Kand-Logic and MNAdd-EvenOdd are the same datasets used in [25]. MNMath was generated using
seed 0 with random splits, maintaining an 80/20 ratio for in-distribution and out-of-distribution data.
It contains 1, 000 training samples, 200 validation samples, 300 test samples, and 200 OOD samples.
MNLogic was also generated using seed 0 and random splits, with an 80/20 ID/OOD ratio. It consists
of 1, 000 training samples, 200 validation samples, 300 test samples, and 300 OOD samples.

All models were trained using end-to-end training, providing supervision on the ground truth labels
and not on the concept labels, except for CBM where few concept supervision has been provided.

B.1 Additional experiments: MNMath and MNLogic

In this section, we discuss additional experiments conducted on MNMath and MNLogic datasets.

For MNMath, we chose a task involving two equations with 8 digits (4 per equation), where x =
(x1,x2,x3,x4,x5,x6,x7,x8). We designed a multi-task setup: one task predicts whether y1 =
1{x1 + x2 = x3 + x4}, and the other checks if y2 = 1{x5 · x6 = x7 · x8} holds.

This version of MNMath includes all possible digit values (0 to 9). We chose this setup because it is
particularly prone to reasoning shortcuts. Specifically, if all digits are mapped to a fixed value, e.g.,
, . . . , → 4, they solve the MNMath task.

We evaluated three models (DPL, NN, and CBM) on this benchmark. The setup mirrors previous
experiments (Section 4), where each model receives supervision only on the final labels so that the
concepts are treated as latent variables. As CBM require concept supervision, we gave supervision on
few concepts, specifically 0, 5 and 9. In this case the model predicts the concept (the digit value) for
each digit independently. Following that, the model produces two labels, representing whether the
two formulas are true, respectively.
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The results in Table 6 summarize the performance of all models, averaged across five different seeds.
The table highlights that all models struggle with reasoning shortcuts (RSs), reflected in the low
concept accuracy (AccC ) and concept fidelity (F1(C)) scores, particularly for NN and CBM. However,
despite these issues, the models still manage to achieve moderate to high performance on label
prediction metrics (AccY and F1(Y )).

Table 6: Results on MNMath
AccY (↑) F1(Y )(↑) AccC(↑) F1(C)(↑) Cls(C)(↓)

DPL 0.80 ± 0.10 0.73 ± 0.13 0.11 ± 0.01 0.03 ± 0.02 0.01 ± 0.01

CBM† 0.75 ± 0.01 0.67 ± 0.01 0.22 ± 0.04 0.11 ± 0.03 0.68 ± 0.15
NN∗ 0.75 ± 0.01 0.67 ± 0.01 0.10 ± 0.01 0.03 ± 0.01 0.80 ± 0.11

For MNLogic, we focused on evaluating the XOR operation on 4 bits. In this case, the input is
x = (x1,x2,x3,x4), and the task is to compute the output y = x1 ⊕ x2 ⊕ x3 ⊕ x4.

We chose the XOR operation for its inherent ambiguity, which can lead to reasoning shortcuts, as
discussed in previous work [20].

We evaluated the DPL, NN, and CBM models under the same setup as in MNMath, with the sole
exception that there is no weight sharing among the components processing each digit, which makes
the task more challenging. Unlike in MNMath, the CBM model did not receive concept supervision, as
supervision for either 0 or 1 would suffice for learning the concept correctly.

The results in Table 7 reflect averages across five seeds. While all models demonstrated high
performance on the task (as indicated by AccY and F1(Y )), they exploited unintended concepts,
evident from the AccC and F1(C) metrics. Interestingly, the 50% concept accuracy achieved by all
models indicates that there is no inherent preference for any model to favor one solution over another,
whether it be the identity or the reasoning shortcut ( illustrated in Fig. 3).

Table 7: Results on MNLogic
AccY (↑) F1(Y )(↑) AccC(↑) F1(C)(↑) Cls(C)(↓)

DPL 0.99 ± 0.01 0.99 ± 0.01 0.51 ± 0.06 0.47 ± 0.05 0.01 ± 0.01

CBM† 0.95 ± 0.10 0.89 ± 0.23 0.50 ± 0.05 0.48 ± 0.05 0.01 ± 0.01
NN∗ 0.98 ± 0.01 0.60 ± 0.20 0.46 ± 0.05 0.41 ± 0.10 0.10 ± 0.20

Figure 3: MNLogic reasoning shortcut

B.2 Loss Functions

For NN, CBM, DPL and CLIP, the loss function corresponding to log-likelihood maximization is given
by the cross-entropy loss, defined as:

LCE(x) = −
∑̀
i=1

yi log(ŷi) (16)
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where yi = 1 if i is the ground-truth label for input x, and ŷi is the predicted probability for class i
by the model when passed the input example x.

LTN is the only one that differs and utilizes the Logic Tensor Network loss [59]. In LTN, the
neural networks represent First-Order Logic predicates (e.g., the predicate Digit in the MNAdd task).
Formulas are constructed recursively by using fuzzy logic operators (e.g., fuzzy quantifiers and
logical connectives). The LTN loss imposes on learning the parameters of such predicates in such a
way the satisfaction of the knowledge base is maximized. Given a First-Order Logic knowledge base
K, the loss can be defined as:

Lltn(x) = 1− SatAggφ∈K Gθ(x;φ) (17)

where φ is a formula contained in K (like the addition for MNAdd), SatAgg is an aggregator function
that measures overall satisfaction of K, and Gθ(x;φ) is the LTN-grounding (i.e., evaluation) of φ
given x. This special operator is meant to map symbols from the logical domain (e.g., the symbolic
representation of the addition with “+”) to the real domain (e.g., its computational graph performing
the addition). Hence, Gθ(x;φ) can be seen as a fuzzy truth value resulting from the evaluation of
logical formula φ on input x. θ are the parameters of the learnable predicates contained in φ. In
the case of multi-label predictions, parameters θ of the neural network are shared among different
formulas φ ∈ K (e.g., like in MNMath where different equations appear in the system). Learning is
then performed by differentiating the above expression.

The value of the loss depends on the semantics of the fuzzy logic operators used to approximate each
logical connective (e.g., AND, OR, IMPLICATION) and quantifier (e.g., EXISTS, FORALL).

For CBM, we provided partial supervision by selecting only a few concept classes for supervision,
rather than supervising all concepts. The concept supervision was also implemented using cross-
entropy loss, specifically applied to the concepts. The cross-entropy loss for concepts is given
by:

Lconcept(x) = −1

k

k∑
i=1

mi

Bi∑
b=1

cib log(ĉib) (18)

where cib = 1 if i-th ground-truth concept has value b for input x, and ĉib is the predicted probability
for concept i with value b. Here, Bi denotes the cardinality of the i-th concept, and mi = 1 if the
concept i is supervised, otherwise being zero.

Entropy. To further explore the concept space, for LTN and DPL in MNAdd-EvenOdd, we applied an
entropy loss on the bottleneck of the concepts. The entropy loss encourages diversity in the concept
representations and is defined as:

Lentropy = −
k∑

i=1

ĉi log(ĉi)

log(k)
(19)

where ĉi is the average probability, evaluated over the batch elements.

Combined losses. In scenarios where both ground truth labels and concept labels were used, the total
loss is a weighted sum of the cross-entropy loss and the concept loss:

Ltotal(x) = LCE(x) + wcLconcept(x) + whLentropy (20)

where wc and wh are hyperparameters that controls the trade-off between the two losses. For LTN the
equivalent can be obtained by substituting LCE(x) with Lltn(x).

B.3 Model Selection

All experiments rely on the Adam optimizer [105]. Hyperparameters were selected through a
comprehensive grid search over predefined ranges, considering the macro f1 performance metric on
a validation set. All experiments were run for 40 epochs employing early stopping, by saving the
model which performs best in f1 score on the validation set. The experiments, aside from MNMath
and MNLogic, were conducted using 10 different seeds: 123, 456, 789, 1011, 1213, 1415, 1617, 1819,
2021, and 2122. In contrast, MNMath and MNLogic were tested across 5 different seeds: 1415, 1617,
1819, 2021, and 2223.
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For all experiments, the learning rate γ was fine-tuned within the range of 10−4 to 10−2. We found
that the best performing models tended to have learning rates around 10−3, striking a balance between
convergence speed and stability.

The batch size ν varied between 32 and 512, while the weight decay ω spanned from 10−4 to 0. We
observed that smaller batch sizes generally resulted in more stable training dynamics, particularly for
complex models, while moderate weight decay values helped prevent overfitting.

For CBM, since it requires concept supervision, we tuned the weight of the concept supervision wc

among 1, 2, and 5.

When entropy was required to make the model converge, we tuned the weight of the entropy wh loss
among 0.2, 0.5, 0.8, 1, and 2.

Additionally, for LTN, the hyper-parameter p for quantifiers was adjusted within the range of 2 to
10 with a step size of 2. Moreover, we tuned different fuzzy logic semantics for the fuzzy operators,
specifically for AND, OR and IMPLICATION, such as Gödel, Product and ukasiewicz for AND and OR,
while Gödel, Product, ukasiewicz, Goguen and Kleene-Dienes for IMPLICATION.

We set the exponential decay rate β to 0.99 for all experiments, as we empirically observed that it
provides the best performance for our tasks.

Below, you find all the hyperparameters which performed the best on our datasets.

Hyperparameters for SDD-OIA:

• DPL, γ = 10−2, ν = 128, and ω = 10−4;
• LTN, γ = 10−3, ν = 32, ω = 0, and p = 2, AND, OR, IMPLICATION set to Product;
• NN, γ = 10−3, ν = 32, and ω = 10−4;
• CBM, γ = 10−2, ν = 512, ω = 10−4, and wc = 2;
• CLIP, γ = 10−3, ν = 32, and ω = 10−2.

Hyperparameters for Kand-Logic:

• DPL, γ = 10−4, ν = 32, and ω = 0;
• LTN, γ = 10−3, ν = 128, ω = 10−3, p = 8, and wh = 0.8 AND set to Godel, OR and

IMPLICATION set to Product;
• NN, γ = 10−3, ν = 256, and ω = 10−1;
• CBM, γ = 10−4, ν = 128, ω = 10−2, and wc = 2;
• CLIP, γ = 10−3, ν = 256, and ω = 10−1.

Hyperparameters for MNAdd-EvenOdd:

• DPL, γ = 10−3, ν = 32, ω = 10−4 and wh = 1;
• LTN, γ = 10−3, ν = 64, ω = 10−4, p = 6, wh = 10, AND set to Godel, OR and IMPLICATION

set to Product;
• NN, γ = 10−3, ν = 32, and ω = 10−1;
• CBM, γ = 10−3, ν = 32, ω = 0, and wc = 2;
• CLIP, γ = 10−2, ν = 128, and ω = 10−2.

Hyperparameters for MNMath:

• DPL, γ = 10−3, ν = 64, ω = 10−4 and wh = 0;
• NN, γ = 10−4, ν = 64, and ω = 10−4;
• CBM, γ = 10−3, ν = 64, ω = 10−4, and wc = 1;

Hyperparameters for MNLogic:

• DPL, γ = 10−3, ν = 64, ω = 10−4 and wh = 0;
• NN, γ = 10−3, ν = 64, and ω = 10−4;
• CBM, γ = 10−4, ν = 64, ω = 10−4, and wc = 1;
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B.4 Model Architectures

SDD-OIA: For SDD-OIA, concerning DPL, LTN and CBM, we adopted a pretrained ResNet-18 [106]
on ImageNet [107] as concept extractor as outlined in Table 8 and Table 10. In the tables, BasicBlock
consists of two convolutional layers with batch normalization and ReLU activation, followed by a
residual connection. Instead, we defined a convolutional architecture for NN as shown in Table 9.
While for processing CLIP embeddings we defined a multi-layer perceptron as depicted in Table 11.

Kand-Logic: As motivated in [25], for LTN, DPL, and CBM, we adopted a preprocessed version of
the dataset with rescaled objects extracted via bounding boxes. In this scenario, each dataset example
contains nine objects, with three objects per figure, ordered by their distance from the figure’s origin,
and the network processes one object at a time. For CLIP and NN, we employed the original dataset,
where the network processes the entire example at once. As far as the architectures are concerned,
we employed a convolutional neural network, specifically Table 16 for DPL and LTN, Table 18 for
CBM and Table 17 for NN, respectively. Conversely, for handling CLIP embeddings, we implemented
a multi-layer perceptron, as detailed in Table 19.

MNAdd-EvenOdd: In the case of MNAdd-EvenOdd, we utilized a convolutional neural network, with
architectures specified in Table 12 for DPL and LTN, in Table 13 for CBM, and in Table 14 for NN. For
processing CLIP embeddings, a multi-layer perceptron was employed, as described in Table 15.

MNMath: For MNMath, we used the same architectures as in MNAdd-EvenOdd, specifically a convo-
lutional neural network. The architectures for DPL are detailed in Table 12, while those for CBM are
listed in Table 13. For NN, we utilized the architecture described in Table 22.

MNLogic: For MNLogic, we also applied convolutional networks. The architectures for both DPL
and CBM are provided in Table 21, and the NN architecture is outlined in Table 20.

All the architectures process each digit individually, except for CLIP and NN. CLIP takes the full
image embeddings as input.

Table 8: DPL and LTN architecture for SDD-OIA
INPUT LAYER TYPE PARAMETER ACTIVATION

(3, 387, 469) Convolution depth=64, kernel=7, stride=2, padding=3
(64, 194, 235) BatchNorm2d dim=64 ReLU
(64, 194, 235) MaxPool2d kernel=3, stride=2, padding=1 ReLU
(64, 97, 118) 2xBasicBlock depth=64, kernel=(1, 1), stride=(1, 1), padding=(1, 1)
(64, 97, 118) 2xBasicBlock depth=128, kernel=(1, 1), stride=(1, 1), padding=(1, 1)
(128, 49, 59) 2xBasicBlock depth=256, kernel=(1, 1), stride=(1, 1), padding=(1, 1)
(256, 25, 30) 2xBasicBlock depth=512, kernel=(1, 1), stride=(1, 1), padding=(1, 1)
(512, 13, 15) AvgPool2d dim=(1, 1)
(512, 1, 1) Flatten dim=512

Table 9: NN architecture for SDD-OIA
INPUT LAYER TYPE PARAMETER ACTIVATION

(3, 387, 469) Convolution depth=16, kernel=3, stride=1, padding=1 ReLU
(16, 387, 469) MaxPool2d kernel=2
(16, 193, 234) Convolution depth=32, kernel=3, stride=1, padding=1 ReLU
(32, 193, 234) MaxPool2d kernel=2
(32, 96, 117) Convolution depth=64, kernel=3, stride=1, padding=1
(64, 96, 117) MaxPool2d kernel=2
(64, 48, 58) Convolution depth=128, kernel=3, stride=1, padding=1
(128, 48, 58) MaxPool2d kernel=2
(128, 24, 29) Convolution depth=256, kernel=3, stride=1, padding=1
(256, 24, 29) MaxPool2d kernel=2
(256, 12, 14) Convolution depth=512, kernel=3, stride=1, padding=1
(512, 12, 14) MaxPool2d kernel=2
(512, 6, 7) Flatten dim=21504
(21504) Linear dim=128 ReLU
(128) Linear dim=64 ReLU
(64) Linear dim=4 Sigmoid
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Table 10: CBM architecture for SDD-OIA
INPUT LAYER TYPE PARAMETER ACTIVATION

(3, 387, 469) Convolution depth=64, kernel=7, stride=2, padding=3
(64, 194, 235) BatchNorm2d dim=64 ReLU
(64, 194, 235) MaxPool2d kernel=3, stride=2, padding=1 ReLU
(64, 97, 118) 2xBasicBlock depth=64, kernel=(1, 1), stride=(1, 1), padding=(1, 1)
(64, 97, 118) 2xBasicBlock depth=128, kernel=(1, 1), stride=(1, 1), padding=(1, 1)
(128, 49, 59) 2xBasicBlock depth=256, kernel=(1, 1), stride=(1, 1), padding=(1, 1)
(256, 25, 30) 2xBasicBlock depth=512, kernel=(1, 1), stride=(1, 1), padding=(1, 1)
(512, 13, 15) AvgPool2d dim=(1, 1)
(512, 1, 1) Flatten dim=512

(512) Linear dim=4, bias=True Sigmoid

Table 11: CLIP architecture for SDD-OIA
INPUT LAYER TYPE PARAMETER ACTIVATION

(512, 1) Linear dim=128, bias=True ReLU
(128) Linear dim=64, bias=True ReLU
(64) Linear dim=4, bias=True Sigmoid

Table 12: DPL and LTN architecture for MNAdd-EvenOdd
INPUT LAYER TYPE PARAMETER ACTIVATION

(1, 28, 56) Convolution depth=32, kernel=4, stride=2, padding=1 ReLU
(32, 14, 28) Dropout p = 0.5
(32, 14, 28) Convolution depth=64, kernel=4, stride=2, padding=1 ReLU
(64, 7, 14) Dropout p = 0.5
(64, 7, 14) Convolution depth=128, kernel=4, stride=2, padding=1 ReLU
(128, 3, 7) Flatten
(2688) Linear dim=20, bias = True

Table 13: CBM architecture for MNAdd-EvenOdd
INPUT LAYER TYPE PARAMETER ACTIVATION

(1, 28, 56) Convolution depth=32, kernel=4, stride=2, padding=1 ReLU
(32, 14, 28) Dropout p = 0.5
(32, 14, 28) Convolution depth=64, kernel=4, stride=2, padding=1 ReLU
(64, 7, 14) Dropout p = 0.5
(64, 7, 14) Convolution depth=128, kernel=4, stride=2, padding=1 ReLU
(128, 3, 7) Flatten
(2688) Linear dim=20, bias = True ReLU
(20) Linear dim=19, bias = True

Table 14: NN architecture for MNAdd-EvenOdd
INPUT LAYER TYPE PARAMETER ACTIVATION

(1, 28, 56) Convolution depth=16, kernel=3, stride=1, padding=1 ReLU
(16, 28, 56) MaxPool2d kernel=2, stride=2
(16, 14, 28) Convolution depth=32, kernel=3, stride=1, padding=1 ReLU
(32, 14, 28) MaxPool2d kernel=2, stride=2
(32, 7, 14) Flatten
(3136) Linear dim=128, bias=True ReLU
(128) Linear dim=64, bias=True ReLU
(64) Linear dim=19, bias=True

Table 15: CLIP architecture for MNAdd-EvenOdd
INPUT LAYER TYPE PARAMETER ACTIVATION

(1024, 1) Linear dim=256, bias=True ReLU
(256) Linear dim=64, bias=True ReLU
(64) Linear dim=19, bias=True

un pollo?
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Table 16: DPL and LTN architecture for Kand-Logic
INPUT LAYER TYPE PARAMETER ACTIVATION

(3, 28, 28) Flatten
(2352) Linear dim=256, bias=True ReLU
(256) Linear dim=128, bias=True ReLU
(128) Linear dim=8, bias = True

Table 17: NN architecture for Kand-Logic
INPUT LAYER TYPE PARAMETER ACTIVATION

(3, 64, 192) Convolution depth=16, kernel=3, stride=1, padding=1 ReLU
(16, 64, 192) MaxPool2d kernel=2, stride=2
(16, 32, 96) Convolution depth=32, kernel=3, stride=1, padding=1 ReLU
(32, 32, 96) MaxPool2d kernel=2, stride=2
(32, 16, 48) Convolution depth=64, kernel=3, stride=1, padding=1 ReLU
(64, 16, 48) MaxPool2d kernel=2, stride=2
(64, 8, 24) Convolution depth=128, kernel=3, stride=1, padding=1 ReLU
(128, 8, 24) MaxPool2d kernel=2, stride=2
(128, 4, 12) Convolution depth=256, kernel=3, stride=1, padding=1 ReLU
(256, 4, 12) MaxPool2d kernel=2, stride=2
(256, 2, 6) Flatten
(3072) Linear dim=512, bias=True ReLU
(512) Linear dim=64, bias=True ReLU
(64) Linear dim=1, bias=True

Table 18: CBM architecture for Kand-Logic
INPUT LAYER TYPE PARAMETER ACTIVATION

(3, 28, 28) Flatten
(2352) Linear dim=256, bias=True ReLU
(256) Linear dim=128, bias=True ReLU
(128) Linear dim=8, bias = True
(8) Linear dim=6, bias = True
(6) Linear dim=2, bias = True

Table 19: CLIP architecture for Kand-Logic
INPUT LAYER TYPE PARAMETER ACTIVATION

(1536, 1) Linear dim=256, bias=True ReLU
(256) Linear dim=64, bias=True ReLU
(64) Linear dim=1, bias=True Sigmoid

Table 20: NN architecture for MNLogic
INPUT LAYER TYPE PARAMETER ACTIVATION

(1, 28, 112) Convolution depth=16, kernel=3, padding=1 ReLU
(16, 28, 112) MaxPool2d kernel=2, stride=2
(16, 14, 56) Convolution depth=32, kernel=3, padding=1 ReLU
(32, 14, 56) MaxPool2d kernel=2, stride=2
(32, 7, 28) Convolution depth=64, kernel=3, padding=1 ReLU
(64, 7, 28) Flatten
(12544) Linear dim=128, bias=True ReLU
(128) Linear dim=64, bias=True ReLU
(64) Linear dim=2, bias=True

Table 21: CBM and DPL architecture for MNLogic
INPUT LAYER TYPE PARAMETER ACTIVATION

(1, 28, 28) Convolution depth=32, kernel=3, padding=1, stride=1 ReLU
(32, 28, 28) MaxPool2d kernel=2, stride=2
(32, 14, 14) Convolution depth=64, kernel=3, padding=1, stride=1 ReLU
(64, 14, 14) MaxPool2d kernel=2, stride=2
(64, 7, 7) Flatten
(3136) Linear dim=128, bias=True ReLU
(128) Linear dim=2, bias=True
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Table 22: NN architecture for MNMath
INPUT LAYER TYPE PARAMETER ACTIVATION

(1, 28, 224) Convolution depth=16, kernel=3, padding=1 ReLU
(16, 28, 224) MaxPool2d kernel=2, stride=2
(16, 14, 112) Convolution depth=32, kernel=3, padding=1 ReLU
(32, 14, 112) MaxPool2d kernel=2, stride=2
(32, 7, 56) Convolution depth=64, kernel=3, padding=1 ReLU
(64, 7, 56) Flatten
(25088) Linear dim=128, bias=True ReLU
(128) Linear dim=64, bias=True ReLU
(64) Linear dim=2, bias=True
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C Code, Data Sets and Generators

In the following, we discuss: 1) code and data licensing Appendix C.1, 2) how the data was collected
and organised Appendix C.4, 3) what kind of information it contains Appendix C.5, 4) how it should
be used ethically and responsibly Appendix C.2, 5) how it will be made available and maintained
Appendix C.3. All data, generators, metadata, and experimental code for reproducing the results are
available at: https://unitn-sml.github.io/rsbench.

Detailed statistics for each data set using the default configuration are reported in Table 23.

Table 23: Detailed statistics about the default data sets in rsbench. For generators, the number of
concepts k is configurable; in CLE4EVR, n and m are the minimum and maximum number of objects.

TASK INFO x INFO c INFO y TRAIN VAL TEST OOD

MNMath 28k × 28 k digits, 10 values each cat multilabel custom custom custom custom
MNAdd-Half 56× 28 2 digits, 10 values each cat (19 values) 2, 940 840 420 1, 080

MNAdd-EvenOdd 56× 28 2 digits, 10 values each cat (19 values) 6, 720 1, 920 960 5, 040
MNLogic 28k × 28 k digits, 2 values each binary custom custom custom custom

Kand-Logic 3× 192× 64
3 objects per image

3 shapes
3 colors

binary 4, 000 1, 000 1, 000 –

CLE4EVR 320× 240

n to m objects per image
10 shapes
10 colors

2 materials
3 sizes

binary custom custom custom custom

BDD-OIA 1280× 720 21 binary concepts bin multilabel, 4 labels 16, 082 2, 270 4, 572 –
SDD-OIA 469× 387 21 binary concepts bin multilabel, 4 labels 6, 820 1, 464 1, 464 1, 000

C.1 Licensing

Code. Most of our code is available under the BSD 3-Clause license. The CLE4EVR and SDD-OIA
generators are derived from the CLEVR code base, which is available under the BSD license. The
Kand-Logic generator is derived from the Kandinsky-patterns code base, which is available
under the GPL-3.0 license, and so is our generator.

Data. MNMath, MNAdd-Half, MNAdd-EvenOdd and MNLogic are derived from MNIST [63], which is
distributed under CC-BY-SA 3.0, and so are our data sets and generated data. BDD-OIA is derived
from BDD-100k [108], which is distributed under a BSD 3-Clause license, and so is our data set.
Data sets and generated data for Kand-Logic and SDD-OIA are available under a CC-BY-SA 4.0
license.

C.2 Ethical Statement

rsbench is a collection of datasets aimed at exploring challenges related to concept quality, par-
ticularly focusing on identifying reasoning shortcuts. It also includes a formal verification tool to
assess how often these shortcuts occur in specific configurations. Essentially, rsbench aims to help
investigating concept quality in neural, neuro-symbolic and foundation models. Although this is
not its intended purpose, such a benchmark may inadvertently used to improve models designed for
harmful applications. However, to our knowledge, our work does not directly threaten individuals or
society. Additionally, since most datasets are synthetically generated, they do not cause harm during
creation. BDD-OIA, just like BDD-100k, could in principle be used to train models that aim to cause
harm. We expressly disapprove of this usage.

C.3 Hosting and Maintenance Plan

The data is openly available on Zenodo at https://zenodo.org/doi/10.5281/zenodo.
11612555. The data set generators are freely available on Github. The repository is linked in
our website: https://github.com/unitn-sml/rsbench.
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C.4 Data Collection

rsbench makes uses of two pre-existing data collections, namely MNIST and BDD-OIA. In this
section, we briefly describe this data and how it is collected.

MNIST: The MNIST [63] dataset is a well known collection of handwritten digits, consisting of 60, 000
training images and 10, 000 test images. Each image is a 28 × 28 grayscale image of a numerical
digit ranging from 0 to 9. The dataset was created by Yann LeCun, Corinna Cortes and Christopher
J.C. Burges. MNAdd-EvenOdd and MNAdd-Half build on the MNIST dataset [20, 25]. MNLogic and
MNMath, two datasets that can be generated from rsbench, make use of MNIST images.

BDD-OIA: BDD-OIA [19] is a dataset based on BDD-100K [108] dataset. BDD-100K is a large collection
consisting of driving video data, developed by researchers at the University of California, Berkeley.
The dataset is suitable for multitask learning, ranging from object detection to semantic segmentation
and object tracking. It contains 100, 000 videos and images, collected under diverse driving conditions,
times of day, and geographic locations. The data is annotated with labels including bounding boxes,
lane marking, and drivable area segmentation. For further information, please refer to the original
paper [108].

C.5 Data Generators

Each rsbench data generator comprises two Python components: the generator proper samples
new data, and the associated parser reads the configuration from a YAML file. The latter also validates
the configuration, i.e., check for required fields and ensure the logical formulas work as intended.
Users can also configure the generators through the command line. Generated images are stored in
PNG format, and ground-truth annotations as JOBLIB metadata.

Shared configuration options. All generators support a set of basic command line settings: config:
path to the YAML configuration file; output_dir: path to the output directory; n_samples: number
of samples to be generated; log_level: verbosity level; seed: RNG seed, for reproducibility;

They all comply with the following YAML settings: symbols: names of the logic symbols (con-
cepts) that appear in the knowledge; the order is managed internally by rsbench; logic: formal
specification of the knowledge as a sympy formula, used for computing the ground truth labels;
prop_in_distribution: proportion of examples to put in the in-distribution sets (train, validation,
and test), up to 100%; combinations_in_distribution: what combinations of concept values
should be included in the in-distribution sets. val_prop: proportion of examples to put in the
validation set; test_prop: proportion of examples to put in the test set;

Non-Blender generators: MNMath, MNLogic, and Kand-Logic. The generator first parses the YAML
configuration file, then proceeds to randomly sample the required number of examples. It generates a
series of label and concept assignments that comply with the combinations combinations specified by
the config file, if any. The ground-truth label is computed using the knowledge K. For MNMath, which
is multi-class and multi-label, this involves splitting the configurations between classes or random
sampling. Before the generation of the dataset, rsbench automatically checks whether the sampled
configurations produce labels that are either all false or all true, and returns an error to the user if
such a condition is found.

If the prop_in_distribution flag is set, the specified ratio is assigned to the in-distribution datasets
(training, validation, and test), while the remaining settings are allocated to the out-of-distribution
datasets. An equal number of examples are then assigned to both positive and negative configurations
chosen for training, testing, and validation. This is achieved by sampling configurations alternately
from positive and negative sides, with replacement. Depending on the dataset, examples are generated,
and information such as labels and concepts are stored as JOBLIB metadata.

Finally, rsbench provides the option to specify a compression type (e.g., zip) for storing the dataset,
ensuring efficient storage and easy distribution.

Blender-based generators. Generating 3D images involves running scripts from within Blender,
which requires a different setup. These scripts read all configuration from the command line
and specified configuration files. Options include the positions of shapes (shape_dir) and
materials (material_dir), the output directories (output_image_dir for the examples and
output_scene_dir for metadata), the image resolution (width, height), and details bout the ren-
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dering step (like render_tile_size, render_num_samples, camera_jitter, light_jitter).
The rendering engine used for CLE4EVR is CYCLES, while SDD-OIA uses the EEVEE rendering engine
to speed up rendering, although this can be easily changed by the user.

The generators build on the implementation of [65]. The images are stored as PNGs, while the
metadata, in JSON format, contains information about concepts, ground truth labels, object bounding
boxes, object positions, and relationships between objects (e.g., that one object is behind another).
Unlike the synthetic data generation case, these scripts currently do not offer an option to compress
the dataset, though this is a future contribution under consideration.

C.6 Example usage

rsbench provides functionality for loading, training, and evaluating both the data and models
discussed in this paper. This ready-to-use toolkit is available at https://github.com/unitn-sml/
rsbench-code/tree/main/rsseval. Alternatively, the data from rsbench can be loaded with
minimal code, as demonstrated in the following example:

Listing 1 Code snippet showcasing the training of a neural network on MNLogic using the default
configuration.

1 from rss.datasets.xor import MNLOGIC
2

3 class required_args:
4 def __init__(self):
5 self.c_sup = 0 # specifies % supervision available on concepts
6 self.which_c = -1 # specifies which concepts to supervise, -1=all
7 self.batch_size = 64 # batch size of the loaders
8

9 args = required_args()
10

11 dataset = MNLOGIC(args)
12 train_loader, val_loader, test_loader = dataset.get_loaders()
13

14 model = #define your model here
15 optimizer = #define optimizer here
16 criterion = #define loss function here
17

18 for epoch in range(30):
19 for images, labels, concepts in train_loader:
20 optimizer.zero_grad()
21 outputs = model(images)
22 loss = criterion(outputs, labels, concepts)
23 loss.backward()
24 optimizer.step()

Listing 1 illustrates a typical procedure for training a neural network on MNLogic, following standard
PyTorch practices and default configurations.

Additionally, various models and datasets can be employed by providing a script with the appropriate
arguments, as shown below:

python main.py --dataset mnmathdpl --model mnmathnn --n_epochs 5 --lr 0.001 --seed 8
--batch_size=64 --exp_decay=1 --c_sup 0 --task mnmath

Customization of the data and splits is supported, allowing users to explore different experimental
settings and corner cases. This customization involves modifying a short JSON or YAML file. Further
details and examples can be found in Appendix C.

For formal verification of RSs, rsbench offers a dedicated code base available at https://github.
com/unitn-sml/rsbench-code/tree/main/rsscount.

To generate a DIMACS encoding for counting tasks, use the command:

python gen-rss-count.py
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This script supports computing the exact number of RSs for smaller tasks (e.g., XOR with 3 variables)
by specifying the -e and partial supervision can be specifyied with the -d flag. Additionally, random
CNFs and custom tasks in DIMACS format are supported. For help with arguments, the -h flag is
available.

Once the problem encoding is generated, RS counts can be approximated with pyapproxmc using:

python count-amc.py PATH --epsilon E --delta D

Exact solvers, such as pyeda and pysdd, can also be employed.

C.7 MNMath Data Generator

Additional YAML config for MNMath are the number of digits per image (num_digits) and the subset
of candidate digits (digit_values). The code expects num_digits names for symbols: the first
one is assigned to the first digit, the second symbol to the second digit, and so on. With logic,
the user can provide the system of equations. With combinations_in_distribution, the user
can have fine-grained control over the in-distribution data (e.g., specifying "0234" means that the
in-distribution data contains ).

Table 24: Example of MNMath data

YAML config JOBLIB metadata PNG data

num_digits: 2
symbols:

- a
- b

logic:
- 2*a + b
- a + b

{
'label': [6, 7],
'meta': {

'concepts': [
[2, 2],
[3, 4]

]
}

}

C.8 MNLogic Data Generator

The YAML file allows to specify the number of Boolean variables in the formula, as well as the formula
itself. The knowledge defaults to the k-bit XOR. rsbench includes a script for generating random
`-CNF formulas, which can be readily used with MNLogic by setting xor_rule to false and logic
to the target formula. If use_mnist is set, the input images are of size (k · 28)× 28 and obtained by
concatenating k MNIST digits, one per bit. Otherwise, the code defaults to the setup of [20], where
the inputs are encoded as k × 1 black-and-white images, one pixel per bit.

You can filter what types of data appear in-distribution with combinations_in_distribution
(e.g., specifying 0101 means the in-distribution data contains ).

C.9 Kand-Logic Data Generator

The YAML file allows specifying: n_shapes, the number of primitives per figure; n_figures: the
number of figures per input image; colors, a subset of {red, yellow, blue}; shapes: a subset
of {square, circle, triangle}. The first two symbols are associated to the first primitive in
the first image, and refer to its shape and color, respectively; the next two to the second primitive,
and so on for all primitives and figures in the input. logic applies to each individual figure. The
ground-truth label of an image (consisting of multiple figures) is specified by aggregator_symbols
and aggregator_logic. These give names to the variables holding the truth value for each figure,
and how these values are aggregated to yield the ground-truth label, respectively.
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Table 25: Example of MNLogic data

YAML config JOBLIB metadata PNG data

n_digits: 3
xor_rule: False
symbols:

- a
- b
- c

logic:
Or(And(a, b), Not(c))

use_mnist: True

{
'label': True,
'meta': {

'concepts': [
True,
False,
False

]
}

}

The user can specify which data combination to generate in-distribution by setting
combinations_in_distribution (e.g., specifying • "red, square" • "blue, square" • "blue,
square" means the in-distribution data contains an image made of a red square and two blue squares).

Table 26: Example of Kand-Logic data

YAML config JOBLIB metadata PNG data

colors:
- red
- yellow
- blue

shapes:
- circle
- square
- triangle

symbols:
- shape_1
- color_1
...
- shape_3
- color_3

logic:
(Eq(color_1, color_2) &
Eq(shape_1, shape_2) &
Ne(shape_1, shape_3)) |
... )
# two equal one diff

aggregator_symbols:
- pattern_1
- pattern_2
- pattern_3

aggregator_logic:
pattern_1 &
pattern_2 &
pattern_3

{
'label': True,
'meta': {

'concepts': [
[6, 2,
5, 1,
6, 2],

[6, 1,
5, 2,
6, 1],

[5, 2,
5, 2,
4, 1]

]
}

}

C.10 CLE4EVR Data Generator

The data generation process for CLE4EVR closely resembles that of previous datasets. To generate
the datasets, the program samples various configurations, specifically the number of objects, shapes,
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colors, and sizes. These configurations are then divided into positive and negative sets based on the
whether they satisfy the knowledge logic. The sets are used to generate images while maintaining a
balanced ratio of positive and negative ground-truth samples.

rsbench allows users to customize various aspects of data generation, including the number of
objects, whether occlusion is permitted, and the dimensions of the image. The occlusion check, which
uses Blender rendering, can be slow for many objects due to rejection sampling.

rsbench by default includes two materials (rubber and metal), nine shapes, and eight predefined
colors, with options to create custom blend files and specify RGB values. Default object sizes are
large, medium, and small, but users can fully customize these settings in a configuration file.

The symbols for each object, are be defined in the following the order: color, shape, material, and
size.

Table 27: Example of CLE4EVR data

YAML config JSON metadata PNG data

symbols:
- color_1
- shape_1
- mat_1
- size_1
- color_2
- shape_2
- mat_2
- size_2

logic: |
And(

Eq(color_1, color_2),
Eq(shape_1, shape_2),
Eq(mat_1, mat_2),
Eq(size_1, size_2)

)

{
"label": 0,
"concepts": [
[

[
0,
1,
0,
0,
0,
0,
0,
0

],
}

C.11 SDD-OIA Data Generator

y c∗ cFG x

(i) Sample label (ii) Sample concepts (iii) Sample objects (iv) Render image

Figure 4: Illustration of the sampling process of SDD-OIA

Regarding SDD-OIA, rsbench allows users to specify parameters such as the number of samples,
number of configurations to be generated, and image size.

For SDD-OIA, the data generation approach differs from other datasets in rsbench and follows a
Bayesian network [109]. The process involves first (i) sampling the actions y from p(y), ensuring
that the overall dataset is balanced in the labels, i.e., p(y) is the uniform distribution. (ii) Second,
we sample the ground-truth concepts c∗ from the conditional p(c∗ | y). Then, (iii) the concepts
c∗ specify a fine-grained distribution of objects in the scene, denoted as cFG, which are sampled
through p(cFG|c∗). Next, the fine-grained objects are used to generate the scene. This step is
deterministic and yields the final image x. The crossroads scene is essentially a grid where objects’
positions are specified by the fine-grained variables cFC . This ensures the concepts c∗ are visible
from the car’s camera. The scene is then rendered with blender. The process is shown in Fig. 4. All
steps in the sampling procedure ensure that all concepts can be retrieved from the image (respecting
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assumption A1 in Appendix A.3) and that labels can be predicted uniquely from concepts c∗

(respecting assumption A2 in Appendix A.3).

A key aspect of SDD-OIA is its customizable data generation process, which involves sampling the
concepts and constructing the scene. This necessitates a hard-coded compositional framework to
correctly position the camera and objects, ensuring visibility from the car’s perspective. This approach
enables the creation of a high-quality synthetic neuro-symbolic dataset, where objects, sample
quantities, and distribution ratios are fully customizable. Like other datasets, SDD-OIA maintains a
balanced distribution across all actions. Users can configure model selection, object dimensions, and
the probabilities for sampling different objects by adjusting the categorical distribution weights or the
hard-coded matrix configuration.

Table 28: Example of SDD-OIA data

JSON metadata PNG data

{
"label": [

0,
1,
0,
1

],
"concepts": {

"red_light": false,
"green_light": true,
"car": false,
"person": false,
"rider": false,
"other_obstacle": false,
"follow": false,
"stop_sign": false,
"left_lane": false,
"left_green_light": true,
"left_follow": false,
"no_left_lane": true,
"left_obstacle": false,
"left_solid_line": false,
"right_lane": true,
"right_green_light": true,
"right_follow": true,
"no_right_lane": false,
"right_obstacle": false,
"right_solid_line": false,
"clear": true

}
}

C.11.1 Assets used in SDD-OIA

All assets are made available under permissive licenses that allow reuse for non-commercial purposes.

• Author: stunts. Speed Limit Signs [3D model]. Retrieved from https://free3d.com/
3d-model/speed-limit-signs-172903.html;

• Author: corrobrocz. Concrete street barrier [3D model]. Retrieved from https://free3d.com/
3d-model/concrete-street-barrier-917223.html;

• Author: paulsendesign. Cartoon low poly trees [3D model]. Retrieved from https://free3d.
com/3d-model/cartoon-low-poly-trees-895299.html;
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• Author: roxas. Low Poly Car [3D model]. Retrieved from https://free3d.com/3d-model/
low-poly-car-14842.html;

• Author: RokoTheAwesome. Traffic Light [3D model]. Retrieved from https://www.
turbosquid.com/3d-models/traffic-light-547022

All the models from free3d are under the Personal Use License, meaning the models are available
for free but only for personal or non-commercial use. In contrast, the models from TurboSquid
are under the Standard 3D Model License, which permits the use of TurboSquid models in various
commercial projects, such as games and movies. This license allows the creation and distribution
of your end-products without reproduction limitations to any target market or audience indefinitely.
However, the license prohibits making the models themselves directly available to end-users, so
rsbench redirects to the asset URL.

C.12 BDD-OIA Data

Data for BDD-OIA are those previously published in [19]. BDD-OIA images are se-
lected from BDD-100k only including franes with complicated scenes where multiple actions
{forward, stop, left, right} are possible. This includes situations with multiple objects present.
Following [19], all images are manually annotated for ground-truth actions and 21 associated binary
concepts. The dataset contains 16k frames for training, (with annotated labels and concepts); 2k
frames for validation, and 4.5k frames for testing. The table below reports the overall proportion of
labels and concepts.

Concept classes in BDD-OIA
Action Category Concepts Count

move_forward
green_light 7805
follow 3489
road_clear 4838

stop

red_light 5381
traffic_sign 1539
car 233
person 163
rider 5255
other_obstacle 455

turn_left

left_lane 154
left_green_light 885
left_follow 365
no_left_lane 150
left_obstacle 666
letf_solid_line 316

turn_right

right_lane 6081
right_green_light 4022
right_follow 2161
no_right_lane 4503
right_obstacle 4514
right_solid_line 3660
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D Additional Results

Here, we report additional tables for TCAV evaluation complementing the results reported in the main
text. All results indicate that TCAV at different layers always attain low F1-scores. We also report the
Cls(C) and mAccC .

Table 29: Concept metrics for each NN layer using TCAV on MNAdd-EvenOdd
LAYER NUM AccC F1(C) Cls(C)

conv1 1 0.11 ± 0.03 0.10 ± 0.03 0.00 ± 0.00
conv2 2 0.12 ± 0.03 0.10 ± 0.04 0.01 ± 0.02
fc1 3 0.12 ± 0.04 0.09 ± 0.05 0.24 ± 0.30
fc2 4 0.11 ± 0.02 0.07 ± 0.03 0.29 ± 0.34

Table 30: Concept metrics for each NN layer using TCAV on Kand-Logic
LAYER NUM AccC F1(C) Cls(C)

conv1 1 0.35 ± 0.01 0.34 ± 0.01 0.00 ± 0.01
conv2 2 0.35 ± 0.01 0.34 ± 0.01 0.00 ± 0.01
conv3 3 0.34 ± 0.01 0.34 ± 0.01 0.00 ± 0.01
conv4 4 0.35 ± 0.01 0.34 ± 0.01 0.00 ± 0.01
conv5 5 0.35 ± 0.01 0.34 ± 0.01 0.00 ± 0.01
fc1 6 0.33 ± 0.01 0.32 ± 0.01 0.00 ± 0.01
fc2 7 0.33 ± 0.01 0.31 ± 0.01 0.00 ± 0.01

Table 31: Concept metrics for each NN layer using TCAV on SDD-OIA
LAYER NUM mAccC mF1(C) Cls(C)

conv1 1 0.48 ± 0.02 0.44 ± 0.01 0.19 ± 0.05
conv2 2 0.49 ± 0.02 0.45 ± 0.02 0.20 ± 0.06
conv3 3 0.49 ± 0.03 0.45 ± 0.03 0.21 ± 0.09
conv4 4 0.48 ± 0.02 0.44 ± 0.01 0.23 ± 0.15
conv5 5 0.48 ± 0.02 0.44 ± 0.02 0.30 ± 0.26
conv6 6 0.46 ± 0.02 0.43 ± 0.02 0.34 ± 0.33
fc1 7 0.50 ± 0.02 0.45 ± 0.03 0.38 ± 0.31
fc2 8 0.49 ± 0.02 0.44 ± 0.02 0.43 ± 0.28

Table 32: Concept metrics for each NN layer using TCAV on SDD-OIA with synthetic images.
LAYER NUM mAccC mF1(C) Cls(C)

conv1 1 0.47 ± 0.02 0.43 ± 0.02 0.18 ± 0.03
conv2 2 0.48 ± 0.02 0.44 ± 0.02 0.18 ± 0.03
conv3 3 0.49 ± 0.01 0.45 ± 0.01 0.23 ± 0.12
conv4 4 0.48 ± 0.03 0.44 ± 0.03 0.23 ± 0.14
conv5 5 0.48 ± 0.02 0.44 ± 0.02 0.29 ± 0.25
conv6 6 0.48 ± 0.04 0.45 ± 0.04 0.34 ± 0.32
fc1 7 0.51 ± 0.03 0.45 ± 0.03 0.38 ± 0.31
fc2 8 0.74 ± 0.01 0.42 ± 0.01 0.99 ± 0.01
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E Dataset Documentation: Datasheets for Datasets

Here, we answer the questions posed in the datasheets for datasets paper by Gebru et al [110].

E.1 Motivation

For what purpose was the dataset created? rsbench was created to study the phenomenon of
reasoning shortcuts (RSs) and concept quality in neuro-symbolic and neural architectures. rsbench
offers several datasets where RSs occur, as well as a formal verification tool that enables users to
verify how many RSs appear in the desired settings.

Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g.,
company, institution, organisation)? The datasets have been created by the “Structured Machine
Learning” research group at the department of Information Engineering and Computer Science of
the University of Trento in collaboration with the april Lab at School of Informatics, University of
Edinburgh.

Who funded the creation of the dataset? The datasets have been created for research purposes.
Funded by the European Union. The views and opinions expressed are however those of the author(s)
only and do not necessarily reflect those of the European Union, the European Health and Digital
Executive Agency (HaDEA) or the European Research Executive Agency. Neither the European
Union nor the granting authority can be held responsible for them. Grant Agreement no. 101120763 -
TANGO. PM is supported by the MSCA project GA nř101110960 Probabilistic Formal Verification
for Provably Trustworthy AI - PFV-4-PTAI. AV is supported by the “UNREAL: Unified Reasoning
Layer for Trustworthy ML” project (EP/Y023838/1) selected by the ERC and funded by UKRI
EPSRC. Emile van Krieken was funded by ELIAI (The Edinburgh Laboratory for Integrated Artificial
Intelligence), EPSRC (grant no. EP/W002876/1).

E.2 Composition

What do the instances that comprise the dataset represent (e.g., documents, photos, people,
countries)? All datasets contain annotations regarding concepts and labels. SDD-OIA comprises
synthetically generated images depicting autonomous driving scenarios, such that if they were
captured from a car’s dashcam, and includes additional information about the scene structure, such as
bounding boxes, 2D and 3D coordinates, and spatial relationships among objects. MNMath, MNAdd-
Half, MNAdd-EvenOdd and MNLogic contain synthetic images of handwritten digits, derived from
the MNIST dataset. Kand-Logic consists of synthetic data showcasing patterns of geometric shapes
with various colors. CLE4EVR features synthetically generated images representing 3D objects of
different shapes, colors, materials, and dimensions; similar to SDD-OIA, they include additional scene
information. BDD-OIA is a real-world, high-stakes dataset comprising images captured from a car’s
dashcam. For a comprehensive description, please refer to [19].

How many instances are there in total (of each type, if appropriate)? Please refer to Table 23.

Does the dataset contain all possible instances or is it a sample (not necessarily random) of
instances from a larger set? The datasets represent samples from configurations that can be
randomly generated according to a grammar. Using the generators, one can filter through various
combinations and determine the level of exhaustiveness for generating examples. For a comprehensive
overview of each dataset generation process, please consult Appendix C.5 and subsequent sections.

What data does each instance consist of? Alongside the images, each dataset sample is annotated
with concepts and labels. However, for SDD-OIA and CLE4EVR, detailed scene information is included,
encompassing individual 2D and 3D coordinates, bounding boxes, and spatial relationships between
objects. For an complete overview refer to Table 23.

Is there a label or target associated with each instance? Yes, the concept annotations are derived
from the data generation process, while the labels are symbolically derived from the knowledge
provided to the dataset.
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Is any information missing from individual instances? No.

Are relationships between individual instances made explicit (e.g., users’ movie ratings, social
network links)? No, there are no connections between different instances.

Are there recommended data splits (e.g., training, development/validation, testing)? Informa-
tion about the data splits we employed is reported in Appendix B. The user has the freedom to choose
the data splits they prefer during the data generation process.

Are there any errors, sources of noise, or redundancies in the dataset? No.

Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)? Some of our data sets build on top of established and stable data,
namely MNIST and (the last frames provided by) BDD-100k, for which we provide download links.
SDD-OIA makes use of external assets, listed in Appendix C.11.1. The ready-made SDD-OIA data set
does not require these assets, but in order to use the generator these have to be obtained separately.

Does the dataset contain data that might be considered confidential (e.g., data that is pro-
tected by legal privilege or by doctor-patient confidentiality, data that includes the content of
individuals’ non-public communications)? No.

Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening,
or might otherwise cause anxiety? No.

Does the dataset relate to people? If not, you may skip the remaining questions in this section.
BDD-OIA contains images depicting pedestrians and bicycle riders. Identifiable information in these
images, including anonymization, rights, and risks, is managed by the original BDD-100k authors.

Does the dataset identify any subpopulations (e.g., by age, gender)? Please refer to E.2.

Is it possible to identify individuals (i.e., one or more natural persons), either directly or
indirectly (i.e., in combination with other data) from the dataset? Please refer to E.2.

Does the dataset contain data that might be considered sensitive in any way (e.g., data that
reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or
union memberships, or locations; financial or health data; biometric or genetic data; forms
of government identification, such as social security numbers; criminal history)? Please refer
to E.2.

E.3 Collection Process

How was the data associated with each instance acquired? MNIST and BDD-100k have been
obtained from their official repositories, http://yann.lecun.com/exdb/mnist/ and https:
//dl.cv.ethz.ch/bdd100k/data/, respectively. All other data is synthetically generated.

What mechanisms or procedures were used to collect the data (e.g., hardware apparatus
or sensor, manual human curation, software program, software API)? Details about data
generations and software programs are discussed in Appendix B.

If the dataset is a sample from a larger set, what was the sampling strategy (e.g., determin-
istic, probabilistic with specific sampling probabilities)? Please refer to the similar question
in Appendix E.2.

Who was involved in the data collection process (e.g., students, crowdworkers, contractors)
and how were they compensated (e.g., how much were crowdworkers paid)? The authors were
involved in the process of generating these datasets.
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Over what timeframe was the data collected? The datasets were generated over a span of several
days.

Were any ethical review processes conducted (e.g., by an institutional review board)? No.

Does the dataset relate to people? If not, you may skip the remainder of the questions in this
section. BDD-OIA is the only dataset relating to people, please refer to Appendix E.2.

E.4 Preprocessing/Cleaning/Labeling

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing,
tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, processing
of missing values)? No, the datasets were generated along with labels and concept annotations.

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support
unanticipated future uses)? NA

Is the software used to preprocess/clean/label the instances available? NA

E.5 Uses

Has the dataset been used for any tasks already? In the paper, we demonstrate and benchmark
the intended use of these datasets for evaluating concept quality and exploring RSs. MNAdd-EvenOdd,
MNAdd-Half, and CLE4EVR have been utilized in previous studies [25, 20, 17] to investigate RSs and
concept quality.

Is there a repository that links to any or all papers or systems that use the dataset? Yes,
https://unitn-sml.github.io/rsbench/.

What (other) tasks could the dataset be used for? SDD-OIA and CLE4EVR offer additional
information regarding the scene, including the 3D and 2D coordinates of objects, their bounding
boxes, and the relationships between objects within the scene. This spatial data enables various
applications such as object discovery, object detection, and reasoning over the scene’s structure.

Is there anything about the composition of the dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future uses No.

Are there tasks for which the dataset should not be used? These datasets are meant for research
purposes only.

E.6 Distribution

Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset was created? No.

How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? The datasets,
data generators, and related evaluation code are available on the website, enabling users to generate,
download, and test their model on the data. Each dataset is provided in zip format and can be
downloaded from the Zenodo link on the website.

When will the dataset be distributed? The datasets employed in the paper are available now on
the website.

Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)? Please refer to Appendix C.1.
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Have any third parties imposed IP-based or other restrictions on the data associated with the
instances? SDD-OIA makes use of assets taken from https://free3d.com and https://www.
turbosquid.com. See Appendix C.11.1 for the full list and associated licenses. Other instances of
datasets themselves do not have IP-based restrictions.

Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances? Not that we are are of.

E.7 Maintenance

Who is supporting/hosting/maintaining the dataset? The datasets are supported by the authors
and will be actively maintained by the “Structured Machine Learning” research group in the future.
For the hosting and maintenance plan, please refer to Appendix C.3.

How can the owner/curator/manager of the dataset be contacted (e.g., email address)? The
authors of rsbench can be contacted via their email addresses: samuele.bortolotti@unitn.it,
emanuele.marconato@unitn.it.

Is there an erratum? If errors are found, an erratum will be added to the website.

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)?
Any potential future updates or extensions will be communicated via the website. The datasets will
be versioned.

If the dataset relates to people, are there applicable limits on the retention of the data associated
with the instances (e.g., were individuals in question told that their data would be retained for a
fixed period of time and then deleted)? The only dataset involving people is BDD-OIA, plase refer
to Appendix E.2.

Will older versions of the dataset continue to be supported/hosted/maintained? We plan to
continue hosting older versions of the dataset.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for
them to do so? Yes, the dataset generation code is available on our website.

E.8 Other Questions

Is your dataset free of biases? Our data sets are designed to induce a particular type of bias,
namely reasoning shortcuts, in models, for the purpose of studying them. The data itself however is
not biased towards human factors such as gender, ethnicity, age, etc.

Can you guarantee compliance to GDPR? No, we are unable to comment on legal matters.

E.9 Author Statement of Responsibility

The authors assume full responsibility for any rights violations and confirm the license associated
with the datasets and their images.
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