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Abstract

The integration of machine learning (ML) techniques for addressing intricate
physics problems is increasingly recognized as a promising avenue for expediting
simulations. However, assessing ML-derived physical models poses a significant
challenge for their adoption within industrial contexts. This competition is designed
to promote the development of innovative ML approaches for tackling physical
challenges, leveraging our recently introduced unified evaluation framework known
as Learning Industrial Physical Simulations (LIPS). Building upon the preliminary
edition held from November 2023 to March 20241, this iteration centers on a task
fundamental to a well-established physical application: airfoil design simulation,
utilizing our proposed AirfRANS dataset. The competition evaluates solutions
based on various criteria encompassing ML accuracy, computational efficiency,
Out-Of-Distribution performance, and adherence to physical principles. Notably,
this competition represents a pioneering effort in exploring ML-driven surrogate
methods aimed at optimizing the trade-off between computational efficiency and ac-
curacy in physical simulations. Hosted on the Codabench platform, the competition
offers online training and evaluation for all participating solutions.
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1 Competition description

1.1 Background and impact

Nowadays, numerical simulation has become indispensable for designing and managing intricate
physical systems due to its cost-effectiveness compared to real-world experiments. While classical
numerical methods often offer accurate predictions of system behavior, they typically come with
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a high computational cost, limiting their applicability in complex industrial settings. Machine
learning (ML) approaches, proven successful in diverse domains like computer vision, natural
language processing, and speech recognition, are increasingly gaining traction. Recently, they gain
a particular attention in physical domains where traditional numerical methods face challenges or
involve expensive and imprecise computations.

Deep Learning (DL) techniques, in particular, have garnered attention for their ability to tackle
complex tasks, showing promising results across various physical domains (see e.g.,[1, 2, 3, 4]).
These approaches facilitate significant acceleration of simulations by replacing certain computational
components with data-driven models. The primary goal of the presented challenge is to foster the
development of novel ML solutions for solving physical problems. To achieve this, we propose
focusing on a well-established Computational Fluid Dynamics (CFD) use case: airfoil design. Our
aim is to establish an efficient benchmarking framework for evaluating submitted solutions.

In addition to traditional machine learning metrics assessing accuracy and speedup, we aim to
incorporate other essential criteria crucial for validating ML-based physical models in industrial
settings. These include Out-of-Distribution (OOD) generalization and physics compliance. To
facilitate this evaluation, we introduce our recently developed benchmarking platform, LIPS (Learning
Industrial Physical Simulation)[5], which is briefly outlined in the following paragraph.

LIPS Framework The LIPS Framework [5] serves as a unified and extensible platform designed
for benchmarking ML-based physical simulations in a uniform yet adaptable manner. It facilitates
the evaluation of various ML-based physical simulators through four key modules: data management,
benchmark configurator, augmented simulator, and evaluation (Figure 1).

Figure 1: Learning Industrial Physical Simulation (LIPS) framework

Primarily, the LIPS framework is utilized to establish generic and comprehensive evaluation criteria
for ranking submitted solutions. This evaluation process encompasses multiple aspects to address
industrial requirements and expectations. The following categories outline the evaluation criteria
considered:

• ML-related performance: we focus on assessing the trade-offs between typical model
accuracy metrics like Mean Squared Error (MSE) and computation time.

• Out-of-Distribution (OOD) generalization: given the necessity in industrial physical
simulation to extrapolate over minor variations in problem geometry or physical parameters,
we incorporate OOD geometry evaluation, such as unseen airfoil mesh variations.

• Physics compliance: ensuring adherence to physical laws is crucial when simulation results
influence real-world decisions. Depending on the benchmark’s criticality, this category of
criteria aims to specify the types and quantity of physical laws that must be satisfied.

Note that the Airfoil design task being considered for this competition has already been implemented
within the LIPS framework and was successfully utilized during the preliminary edition of this
competition.

1.2 Novelty

The integration of machine learning (ML) with physics represents an expanding area of research,
with a multitude of industrial applications. A considerable portion of this research capitalizes on the
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latest advancements in ML to address challenges encountered in the physical sciences, as exemplified
by the recent Machine Learning and the Physical Sciences workshop [6]. Only a limited selection of
competitions focus on specific industrial use cases within the physical domain, such as molecular
simulations (Open Catalyst Challenge [7]), particle physics [8], and robotics [9]. Conversely, certain
scholarly endeavors, including the ICLR 2023 Workshop on Physics for Machine Learning [10],
along with studies cited in [11, 12], attempt to harness the inherent structures of physical systems and
the accumulated body of physics knowledge to forge novel ML methodologies, thereby enhancing
our comprehension of these disciplines.
What sets this challenge apart is its objective to develop ML strategies specifically designed to tackle
physical problems as defined by a particular dataset, the airfoil design task using the AirFrans dataset.
We held a trial run of this competition in 2023. The competition facilitated the exploration of
novel approaches, including Physics-Informed Neural Networks (PINNs), Graph Neural Networks,
Transformers, and combinations with classical ML techniques. The winning strategies, particularly
the first-place solution, underscored the potential of combining classical ML with advanced mesh
graph treatments [13].
Launching a new edition in the scope of NeurIPS will enables the refinement of evaluation criteria
to better assess the practical applicability and industrial relevance of solutions, encourages the
development of more sophisticated ML models that can address the limitations identified in the
previous contest, and strengthens the community by fostering collaboration and knowledge exchange.
Moreover, by focusing again on airfoil design but with updated baseline solutions from the preliminary
edition (see table 2), the competition aims to push the boundaries of what’s achievable, promoting
innovations that could lead to significant advancements in the efficiency and accuracy of physical
simulations. To do so, we refine the score computation to make it more challenging, including the
consideration of new physical criteria and the assessment of robustness to additive noise. Besides,
submissions will be trained and evaluated on GPU servers provided by NVIDIA as it was the case
for the preliminary competition hosted on Codabench. Having dedicated GPU resources for the
challenge allows us to establish a unified process for all participants, ensuring fair evaluation and
enabling those without GPU resources to participate.

1.3 Data

As mentioned above, the AirfRANS dataset generated for the purpose of the competition is based on
specific physical solver that represents the ground truth: OpenFoam (see table 1). For more details
about the datasets, the reader could refer to [14]. For the needs of this challenge, the datasets will be
slightly adapted, without any major changes. Each simulation is given as a point cloud defined via
the nodes of the simulation mesh, that is to say a discretization of the 2D domain considered. Inputs
and outputs variables for each task are listed in table 1. For the challenge, we consider three datasets
each comprised of several samples to be used in the ML tasks, such as training and testing. Note that
each sample in these datasets is associated to a CFD 2D simulation using OpenFoam.

• Training set: 103 samples, AirfRANS ’scarce’ task, training split, filtered to keep the
simulation where the number of reynolds is between 3e6 and 5e6

• Test set : 200 samples, AirfRANS ’full’ task, testing split
• OOD test Set : 496 samples, AirfRANS reynolds task, testing split

The decision to employ a limited training split in our approach is driven by a crucial consideration:
the high cost associated with acquiring real-world data for tackling industrial challenges. Obtaining
authentic samples demands significant investments of time and resources. By incorporating this
scarcity into the training set, we aim to closely mirror the constraints faced in practical industrial
scenarios. This strategy ensures that the models are trained under conditions that faithfully represent
the challenges of real-world deployment, ultimately leading to more effective solutions tailored to
industrial needs.

Table 1: Reference data for the task and its related input/output variables.
Task Reference physical simulator Dataset description Input variables Output variables

Airfoil design OpenFoam [15] AirfRANS [14] Positions Velocity (ūx, ūy)
Documentation [16] Inlet velocity Pressure divided by the specific mass (p̄s)
GitHub [17] Distance to the airfoil Turbulent kinematic viscosity (ν̄t)

Normals
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1.4 Tasks and application scenarios

This competition will address the challenge of improving baseline solutions for the airfoil design
problem by building ML-based surrogate models. The overall aim is to reduce the physical simulation
cost while preserving acceptable precision for the outputs. Furthermore, we encourage solutions that
can be generalized to solve other scenarios of the airfoils usecase through the OOD generalization
dataset.

(a) Input (b) Output

Figure 2: (a) Airfoil mesh. (b) x-velocity field.

Aircraft design requires a rigorous study of the surrounding aerodynamic fields that could be measured
experimentally. However, experiments are extremely costly, time-consuming, and may considerably
hinder the time to market new concepts, e.g. to match the stringent constraints on fuel consumption
imposed by the energy transition. Moreover, prototypes may not be feasible for highly complex
configurations. To circumvent that, one of the solutions is virtual testing, which enables coping with
complex constraints and test configurations in a more time-efficient and cheap way. Hence, numerical
simulation is crucial for modeling such physical phenomena that are governed by Partial Differential
Equations (PDEs) and widely used in Computational Fluid Dynamics (CFD) to solve Navier-Stokes
equations (NS). NS-PDEs are highly nonlinear and their analytical resolution is out of reach. They
are numerically solved with the help of discretization methods such as finite differences, finite
elements, or finite volume methods. At high Reynolds number (beyond a certain threshold), NS-PDEs
involve a complex energy transfer process that cascades from large nearly inviscid length scales to
small dissipative ones (Kolmogorov microscales), which makes their direct resolution challenging
and expensive (thousands of CPU hours). Following this complexity and the related challenges,
several strategies are adopted in traditional CFD solvers to solve these equations over different scales,
including Direct Numerical Simulation (DNS) of all scales, which is prohibitively expensive at high
Reynolds, Large Eddy Simulation (LES) that models the smaller scales of turbulence and resolves
the largest, and Reynolds-Averaged Navier-Stokes (RANS) that solves mean field equations while
modeling all scales of turbulence.

Despite the efficiency of these methods, NS-PDEs are still computationally expensive and may take
several hours to converge to an accurate solution w.r.t the granularity of meshes. For that reason,
we argue that Deep Learning (DL) could be a potential surrogate model to cover several CFD tasks
including design exploration, design optimization, inverse problem, and real-time control, as well
as super-resolution. DL enjoys several advantages: (i) can represent a large family of functions,
(ii) can lead to mesh-free models, (iii) trades-off accuracy and complexity, and (iv) enables fast
inference once the model is trained. Regarding the aforementioned challenges and the potential of
surrogate models, a benchmarking aerodynamic dataset called AirfRANS [14] was introduced to
study the capabilities of DL in approximating the functional space of NS-PDEs (in this case, RANS
supplemented with the well-known k-ω SST turbulence model). This dataset is a model for real-world
applications in aerodynamics, and the numerical solutions can be validated against experimental data
available on the NASA Turbulence Modeling Resource (TMR) of the Langley Research Center [18].
The simulations are run with OpenFoam [19, 15]. From a design standpoint, the challenges are: (1)
simulations come in the form of unstructured mesh with millions of nodes, (2) High Reynolds leading
to sharp signals, (3) Difficulty at encoding the geometry and boundary conditions w.r.t complex
topological and physical variations including Angle of Attacks (AOA). In this challenge, we propose
to study the AirFoil design problem by considering a scarce data regime [14]. The task consists in
predicting the incompressible steady-state two-dimensional fields and the force acting over airfoils in
a subsonic regime. The goal is to find the airfoil that maximizes the lift-over-drag ratio and predict the

4



velocity and pressure fields around it accurately. To physically evaluate the DL models, only surface
and volume fields are regressed. Then, force coefficients are computed as post-treatments to stick
with typical postprocessing of the RANS equations. Therefore, the trained DL model is said to be
physically consistent only if the predicted fields and the derived quantities predictions are consistent.
Figure 2 illustrates an example of the input/outputs of CFD solvers and DL models.

1.5 Metrics

We propose an homogeneous evaluation of submitted solutions to learn the airfoil design task using the
LIPS platform. The evaluation is performed using 3 categories mentioned in Section 1.1: ML-Related,
Physics compliance & OOD generalization.

For each category, specific criteria related to the airfoils design task are defined. The global score is
computed based on linear combination of the scores related to three evaluation criteria categories:

Score = αML × ScoreML + αOOD × ScoreOOD + αPH × ScorePhysics, (1)
where αML, αOOD and αPH are the coefficients to calibrate the relative importance of ML-Related,
Application-based OOD, and Physics Compliance categories respectively.

We explain in the following subsections how each of the three sub-scores were calculated in the
preliminary edition. As mentioned in section 1.2, the evaluation criteria will slightly evolve during
the new edition for a better consideration of industrial applicability.

ML-related Category score calculation This sub-score is calculated based on a linear combination
of 2 sub-criteria: accuracy and speedup.

ScoreML = αA × ScoreAccuracy + αS × ScoreSpeedup, (2)
where αA and αS are the coefficients to calibrate the relative importance of accuracy and speedup
respectively. For each quantity of interest, the accuracy sub-score is calculated based on two
thresholds that are calibrated to indicate if the metric evaluated on the given quantity provides
unacceptable/acceptable/great result. It corresponds to a score of 0 point / 1 point / 2 points,
respectively. Within the sub-category, let: • Nr, the number of unacceptable results overall; • No,
the number of acceptable results overall; • Ng, the number of great results overall. Let also N , given
by N = Nr + No +Ng. The score expression is given by

ScoreAccuracy =
1

2N
(2×Ng + 1×No+ 0×Nr) (3)

A perfect score is obtained if all the given quantities provides great results. Indeed, we would have
N = Ng and Nr = No = 0 which implies ScoreAccuracy = 1.

For the speed-up criteria, we calibrate the score using the log10 function by using an adequate
threshold of maximum speed-up to be reached for the task, meaning

ScoreSpeedup = min

((
log10(SpeedUp)

log10(SpeedUpMax)

)
, 1

)
, (4)

where

• SpeedUp is given by

SpeedUp =
timePhysicalSolver

timeInference
, (5)

• SpeedUpMax is the maximal speedup allowed for the airfoil use case
• timeClassicalSolver: the elapsed time to solve the physical problem using the classical solver
• timeInference: the inference time.

In particular, there is no advantage in providing a solution whose speed exceeds SpeedUpMax,
as one would get the same perfect score ScoreSpeedup = 1 for a solution such that SpeedUp =
SpeedUpMax.

Note that, while only the inference time appears explicitly in the score computation, the training time
is considered via a fixed threshold: if the training time overcomes 72 hours on a single GPU, the
proposed solution will be rejected. Thus, its global score is equal to zero.
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Physical compliance category score calculation While the machine learning metrics are relatively
standard, the physical metrics are closely related to the underlying use case and physical problem.
There are two physical quantities considered in this challenge namely: the drag and lift coefficients.
For each of them, we compute two coefficients between the observations and predictions: • The
spearman correlation, a nonparametric measure of the monotonicity of the relationship between two
datasets (Spearman-correlation-drag : ρD and Spearman-correlation-lift : ρL); • The mean relative
error (Mean-relative-drag : CD and Mean-relative-lift : CL).

For the Physics compliance sub-score, we evaluate the relative errors of physical variables. For
each criteria, the score is also calibrated based on 2 thresholds and gives 0 /1 / 2 points, similarly to
scoreAccuracy, depending on the result provided by the metric considered.

OOD generalization score calculation This sub-score will evaluate the capability on the learned
model to predict OOD dataset. In the OOD testset, the input data are from a different distribution
than those used for training. the computation of this sub-score is similar to scoreML and is also
based on two sub-criteria: accuracy and speed-up. To compute accuracy we consider the criteria used
to compute the accuracy in scoreML in addition to those considered in physical compliance.

Score Calculation Example To demonstrate the calculation of the everall score, we utilize the
notation established in the preceding section. We provide in table 2 several examples for the
score calculation, including the top 5 solutions of the preliminary competition. We illustrate in
the following how to calculate the score of the baseline (Fully connected) based on the parameters
used in the preliminary edition: αML = 0.4, αOOD = 0.3, αPH = 0.3, αA = 0.75, αS = 0.25,
SpeedUpMax = 10000.

• ScoreML = 0.75×( 2×1+1×1+0×3
2×5 ) + 0.25× log10(750)

log10(10000)
≈ 0.405

• ScoreOOD = 0.75×( 2×1+1×1+0×7
2×9 ) + 0.25× log10(750)

log10(10000)
≈ 0.305

• ScorePhysics = ( 2×1
2×4 ) = 0.25

For accuracy scores, the detailed results with their corresponding points are reported in Appendix B.
Speed-up scores are calculated using the equation 5 as follows:

• timePhysicalSolver = 1500s, timeInference-ML = 2s , timeInference-OOD = 2s

• ScoreSpeedupML = ScoreSpeedupOOD = 1500
2 = 750

Then, by combining them, the global score is ScoreFC = 0.4× 0.405+0.3× 0.305+0.3× 0.25 =
0.3285, therefore 32.85%.

Table 2: Scoring table for Airfoil design task under 3 categories of evaluation criteria. The perfor-
mances are reported using three colors computed on the basis of two thresholds. Colors meaning:
Unacceptable (0 point) Acceptable (1 point) Great (2 points). Reported results: Baseline
solution (Fully Connected NN), OpenFOAM (Ground Truth), and the 5 winning solutions from the
preliminary edition of the Competition. MM-GP : Mesh morphing Gaussian Process. GGN-FC:
a combined Graph Neural network (GNN) and FC appraoch. MINR: Multiscale Implici Neural
Representations. Bi-Trans : Subsampled bi-transformer. NeurEco : NeurEco based MLP.

Criteria category
ML-related (40%) Physics (30%) OOD generalization (30%) Global Score (%)

Method Accuracy(75%) Speed-up(25%) Physical Criteria OOD Accuracy(42%) OOD Physics(33%) Speed-up(25%)
ux uy p νt ps CD CL ρD ρL ux uy p νt ps CD CL ρD ρL

OpenFOAM 1 1 82.5
Baseline(FC) 750 750 32.85

Rank Preliminary Edition : Top 5 solutions

1 MMGP [13] 27.40 28.08 81.29
2 GNN-FC 570.77 572.3 66.81
3 MINR 518.58 519.21 58.37
4 Bi-Trans 552.97 556.46 51.24
5 NeurEco 44.93 44.78 50.72
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1.6 Baselines, code, and material provided

The provided starting kit2 comprises a series of Jupyter notebooks designed to assist participants in
getting started with the airfoil simulation and how to contribute to the competition. It also features a
fully documented implementation of the baseline solution, aiding participants in replicating baseline
results. This starting kit was utilized in the preliminary edition of the competition and has been
continuously enhanced. The list of available notebooks is outlined in Appendix A.

Furthermore, the code for the top 5 solutions from the preliminary edition will be accessible in a
dedicated repository prior to the commencement of this competition.

1.7 Website, tutorial and documentation

The competition website will be based on the one used for the preliminary iteration 3. It aims to serve
as a central hub for all essential information, including: (i) General details (ii) Organization, rules, and
regulations (iii) Links and instructions for the submission platform (Codabench) (iv) Announcements
and recordings of webinars (v) Tutorial section with links to relevant parts of the starting kit repository
(vi) Contact information for the organizers

Interactive webinars will also be conducted and recorded to offer insights into the competition, airfoil
design simulation, and submission process on Codabench. Additionally, we have set up a dedicated
email address and Discord channel to facilitate open communication with all participants (or potential
participants). During the preliminary edition of the challenge, assistance and information were
provided via Discord, and we remained available to help all participants.

2 Organizational aspects

2.1 Protocol

The competition will be run on the Codabench platform [20]. The link will be provided on the
competition website. Participants will have to: 1) create an account; 2) download a starting kit
to prepare their submission; 3) upload on the Codabench platform some code compliant with the
described interfaces. Then, the submissions will be trained on the dedicated GPU cluster and the
LIPS framework will be used to evaluate the submissions and compute the global score. The score
will be published on the Codabench competition page and the participants will also have access to
an additional page with the detailed metrics. In order to prevent overfitting, the submissions will be
evaluated also on other test sets that are different from ones provided in the dataset.

2.2 Rules and Engagement

This challenge starts on 10 June 2024 and ends on 17th October 2024.

• This challenge is open to anyone and runs in 3 phases;
• During Phase 1 and Phase 2, the participants can submit their codes and see their results on the

leader board;
• During the warm-up phase, the organizers may adjust the global score formula;
• During phase 1 and 2 the participants can submit their codes and see their scores on the leader

board;
• The organizers may provide additional baseline results during the challenge to stimulate the

competition;
• The participant, and/or the team using a group account, will be limited to 10 submissions per day

and 500 in total per phase;
• The organizers strongly encourage all participants to share their codes and make them accessible in

public submission;
• The final ranking of the participants will be performed using the global score calculated based on

the 3 categories of criteria, and notified to all participants;
• Teams should use a common account, under a group email. Multiple accounts are forbidden;

2https://github.com/IRT-SystemX/ml4physim_startingkit
3https://ml-for-physical-simulation-challenge.irt-systemx.fr/airfoil-challenge-1
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• To receive any price, a team should agree to open-source its code at the end of the competition.
Deadline : 2 weeks before the event at Neurips.

Communication: The organizers will announce each phase (beginning or end) using the challenge
mailing list; a forum (ex. using a Discord channel) will be provided to ensure that participants can
contact the organizers to ask any questions at any time regarding the rules and the overall organization.
Bug reports can be reported as issues on the LIPS & AirfRANS Github pages.

2.3 Schedule and readiness

Detailed timeline The competition will consist of three phases.

Firstly, the warm-up phase allows participants to familiarize themselves with all provided materials
and the competition platform. They can make initial submissions and offer feedback to organizers.
Organizers will use this feedback to adjust and refine the competition setup for the subsequent phase.

In the Development phase, contestants will have the opportunity to test and enhance their models
using the provided validation datasets. Throughout this phase, participants can train and refine their
models using their own resources, leveraging materials from the starting kit. To validate a score,
participants must submit their model on the Codabench platform, where it will be retrained using the
competition resources.

Finally, in the Final phase, organizers will validate the rankings obtained at the end of the development
phase. This validation process involves verifying the code of submitted models and assessing the
robustness of the best solutions through multiple trials. All submitted models will undergo retraining
on our servers and evaluation using a private test dataset similar to the one provided during the
development phase.

The proposed schedule is the following:

• Competition period (July 1st - October 31st) Warm up phase : 5 weeks, Development
phase : 10 weeks , Final phase: 4 weeks.

• Announcement of results: November 10th, 2024.

• Fact sheets and code release by winners due: November 25th, 2024.

• Presentation of results at NeurIPS competition workshop: December 9th 2024.

2.4 Competition promotion and incentives

The challenge will be advertised through different channels: announcements in major conferences
(NeurIPS, ICLR, ICML) and related workshops about ML and Physical Science; mailing lists,
social networks; NVIDIA blog. Monetary awards will be offered to the winners of each task of the
competition: 1st place 4000 EUR, 2nd place 2000 EUR, 3rd place 1000 EUR. Finally, a webinar
presentation of winning solutions will be organized, in which participants will have the opportunity to
present in depth their solution. They will also be invited to write a joint paper about the competition
results.

3 Resources
3.1 Resources provided by organizers

In order to evaluate contestant submissions, a dozen of GPUs A6000 will be sponsored by NVIDIA
and made them available through Exaion Infrastructure in Paris-Saclay France to power compute
workers connected to Codabench. This connection is already available and has served to train &
evaluate the submissions received for the preliminary edition of the competition (between November
2023 & March 2024).

3.2 Support requested

We would be very grateful if we could beneficiate from the support of the NeurIPS 2023 Competition
Track organizers in particular in promoting our challenge via their own channels.
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David Danan (Baseline method provider, Evaluator) is a research engineer at IRT
SystemX in the scientific calculation and optimization team. He received a Ph.D. in
applied mathematics to contact mechanics from UPVD in France in 2016. His current
research topics includes topology optimization, solid mechanics and hybridization

between PDE solver-based approaches and machine learning techniques.

Milad Leyli-abadi (LIPS platform administrator, Evaluator) received a Ph.D. in
machine learning and applied mathematics from Paris-Est Créteil University (UPEC)
in 2019. He is currently research engineer at IRT SystemX in France and is working
on problems related to hybridization of physical simulation and AI. His research inter-
ests include time series modeling, forecasting models, machine learning and big data
analytics.

Jocelyn Ahmed Mazari (Data provider, Baseline method provider, Evaluator) is
a senior deep learning researcher at SimAI team, Ansys Inc, working on deep learning
models for computational fluid dynamics. His research interests include geometric
deep learning, multi-scale modeling, partial differential equations, and statistical signal
processing. He received a Ph.D. in deep learning and computer vision from Sorbonne

Université (Campus Pierre et Marie Curie) in 2020.

Florent Bonnet (Data provider, Baseline method provider) is a second-year Ph.D.
student at Sorbonne Université (MLIA team within ISIR laboratory) and SimAI team,
Ansys Inc. He is co-advised by Professor Patrick Gallinari (thesis director and head of
the MLIA team) and Jocelyn Ahmed Mazari (industrial advisor at SimAI team, Ansys
Inc). His research focuses on understanding and building physically constrained deep
learning models to solve partial differential equations. He holds a Master degree from

École normale supérieure Paris-Saclay (ENS Paris-Saclay) in machine learning (Master MVA).
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Jean-Patrick Brunet (Codabnch Platform administrator, Evaluator) Jean-Patrick
is a software architect at the Technological Research Institute SystemX. Holding two
masters in mechanical and petroleum engineering from the Ecole Centrale Nantes and
Penn State University (2013). His research interest are high performance computing
and collaborative engineering solutions.

Maroua Gmati (Competition website and LIPS developer) is a software engineer
at IRT SystemX, specializes in crafting software solutions. Her expertise spans both
front-end and back-end development, allowing her to play a pivotal role in creating
comprehensive solutions. She completed her Master of Science in Informatics from
Université Grenoble Alpes, following her earlier achievement of an engineering degree
in computer science.

Asma Farjallah (Infrastructure provider, evaluator) is senior solutions architect at
NVIDIA, helping customers in the energy industry accelerate their HPC and deep learn-
ing workloads using GPUs. Prior to joining NVIDIA, Asma worked as an application
engineer at Intel where she helped optimize scientific workloads on Intel’s technolo-
gies. She holds a PhD in computational science from the University of Versailles

Saint-Quentin en Yvelines.

Paola Cinnella (Scientific Advisor) is a Professor of Fluid Dynamics at Sorbonne
University in Paris. Her research covers several facets of Computational Fluid
Dynamics (CFD), including high-order methods, data-driven and machine-learning
assisted approaches for turbulent flow modeling, shape optimization, uncertainty
quantification, and applications of CFD to the analysis and design of flows. She is
editor-in-chief of the international journal Computers & Fluids, associate editor of the

International Journal of Heat and Fluid Flow, and editorial board member of Flow, Turbulence
and Combustion. She is also a member of the Aerodynamics Panel of the French Association of
Aeronautics and Astronautics and the scientific coordinator of the scientific interest group in Machine
Learning for Fluid Dynamics for the European Research Community on Flow, Turbulence and
Combustion (ERCOFTAC).

Patrick Gallinari (Scientific Advisor) is a professor in Computer Science at Sorbonne
University in Paris. His research focuses on statistical learning with applications
in different fields such as semantic data analysis and complex data modeling. He
discovered the ML domain in the mid 80es when he started to work on Neural Networks,

an emerging field at that time. He has been one of the pionneers of this research domain in France/
Europe and worked on NN and on other ML models since that. He investigated different application
domains like Information Retrieval, Social Data analysis, User Modeling. Today his main focus is on
Physics Aware Deep Learning and on some aspects of Natural Language Processing. He has been
leading the Machine Learning team MLIA for some years. He has been director of the computer
science lab. at Sorbonne University (LIP6) for 9 years (2005 to 2013) and vice director for 6 years
before, He also acted as vice director of the scientific committee of the faculty of engineering at
UPMC (2010 to 2021).

Marc Schoenauer (Scientific Advisor) is Principal Senior Researcher (DR0) with IN-
RIA, that he joined in 2001 after 20 years with CNRS, at CMAP of Ecole Polytechnique.
He founded the TAO team at INRIA Saclay together with Michèle Sebag in 2003. He
has been working at the border between Evolutionary Computation (EC) and Machine
Learning (ML), author of more than 150 papers, (co-)advisor of 35 PhD students. He

has been Chair of ACM-SIGEVO (2015-2019), was the founding president (1995-2002) of Evolution
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Artificielle, and president of AFIA (2002-2004). He has been Editor in Chief of Evolutionary Com-
putation Journal (2002-2009, now on the Advisory Board), is or has been in the Editorial Board of
the most prestigious journals in EC, and since 2013 is Action Editor of JMLR. He seconded Cédric
Villani in writing his report on the French Strategy for AI delivered to Pdt Macron in March 2018,
and is currently Deputy Research Director in charge of AI at INRIA.
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A Starting kit description

• 0-Basic_Competition_Information: This notebook contains general information con-
cerning the competition organization, phases, deadlines and terms. The content is the same
as the one shared in the competition Codabench page.

• 1-Airfoil_design_basic_simulation: This notebook aims to familiarize the partici-
pants with the use case and to facilitate their comprehension. It allows the visualization of
some simulation results.

• 2-Import_Airfoil_design_Dataset: Shows how the challenge datasets could be down-
loaded and imported using proper functions. These data will be used in the following
notebook to train and evaluate an augmented simulator.

• 3-Reproduce_baseline_results: This notebook shows how the baseline results could
be reproduced. It includes the whole pipeline of training, evaluation and score calculation of
an augmented simulator using LIPS platform.

• 3b-Reproduce_baseline_results_Advanced_Configuration: This notebook shows
how another baseline results could be reproduced. It also includes the whole pipeline of
training, evaluation and score calculation of an augmented simulator using LIPS platform.

• 4-How_to_Contribute: This notebook shows 3 ways of contribution for beginner, inter-
mediate and advanced users. The submissions should respect one of these forms to be valid
and also to enable their proper evaluation through the LIPS platform which will be used for
the final evaluation of the results.

– Beginner Contributor: You only have to calibrate the parameters of existing aug-
mented simulators

– Intermediate Contributor: You can implement an augmented simulator respecting a
given template (provided by the LIPS platform)

– Advanced Contributor: you can implement your architecture independently from
LIPS platform and use only the evaluation part of the framework to assess your
model performance.

• 4a-How_to_Contribute_Tensorflow: This notebook shows how to contribute using the
existing augmented simulators based on Tensorflow library. The procedure to customize the
architecture is fairly the same as pytorch (shown in Notebook 4).

• 5-Scoring: This notebook shows firstly how the score is computed by describing its
different components. Next, it provides a script which can be used locally by the participants
to obtain a score for their contributions. We encourage participants to evaluate their solutions
via codabench (which uses the same scoring module as the one described in this notebook).

• 6-Submission: This notebook presents the composition of a submission bundle for Cod-
abench and usable parameters.

• 7-Submission_examples: This notebook shows how to submit on Codabench and
examples of submissions bundles.
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B Detailed results of the baseline solution (fully connected Neural Network)
Table 3: Accuracy scores calculation of the FC solution.

Category Criteria obtained results Thresholds min/max obtained score

ML-Related

ux 0.208965 T1=0.1 / T2 =0.2 min 0 point
uy 0.144508 T1=0.1 / T2=0.2 min 1 point
p 0.193066 T1=0.02 / T2=0.1 min 0 point
νt 0.277285 T1=0.5 / T2=1.0 min 2 points
ps 0.425576 T1=0.08 / T2 =0.2 min 0 point

N = 5, Nr = 3, No = 1, Ng = 1.

Physical compliance

CD 16.345740 T1=1 / T2 =10 min 0 point
CL 0.365903 T1=0.2 / T2 =0.5 min 1 point
ρD -0.043079 T1=0.5 / T2 =0.8 max 0 point
ρL 0.957070 T1=0.94 / T2 =0.98 max 1 point

N = 4, Nr = 2, No = 2, Ng = 1.

OOD Generalization

ux 0.322766 T1=0.1 / T2 =0.2 min 0 point
uy 0.199635 T1=0.1 / T2=0.2 min 1 point
p 0.333169 T1=0.02 / T2=0.1 min 0 point
νt 0.431288 T1=0.5 / T2=1.0 min 2 points
ps 0.805426 T1=0.08 / T2 =0.2 min 0 point
CD 21.793367 T1=1 / T2 =10 min 0 point
CL 0.711271 T1=0.2 / T2 =0.5 min 0 point
ρD -0.043979 T1=0.5 / T2 =0.8 max 0 point
ρL 0.917206 T1=0.94 / T2 =0.98 max 0 point

N = 9, Nr = 7, No = 1, Ng = 1.
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