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Abstract: Grasping in cluttered scenes remains highly challenging for dexterous
hands due to the scarcity of data. To address this problem, we present a large-
scale synthetic benchmark, encompassing 1319 objects, 8270 scenes, and 427 mil-
lion grasps. Beyond benchmarking, we also propose a novel two-stage grasping
method that learns efficiently from data by using a diffusion model that conditions
on local geometry. Our proposed generative method outperforms all baselines
in simulation experiments. Furthermore, with the aid of test-time-depth restora-
tion, our method demonstrates zero-shot sim-to-real transfer, attaining 90.7% real-
world dexterous grasping success rate in cluttered scenes.
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Figure 1: Overview. Simulation Dataset: DexGraspNet 2.0 contains 427M grasps (4 random
grasps are visualized in each scene here for clarity). Real-world Execution: first row are model-
generated grasps conditioned on real-world single-view depth point clouds, second row are top-
ranked grasps, and third row are real-world executions.
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1 Introduction
Recent years have witnessed significant advancements in dexterous grasping datasets [1, 2, 3] and
algorithms [4, 5] for single objects. However, extending these advancements to cluttered scenes
poses a formidable challenge due to data scarcity. Existing datasets are either too small [6], contain
loosely placed objects [6, 7], or rely on naive search methods [6, 8], hindering algorithm develop-
ment. Furthermore, this slow progress in dataset research obscures the scale requirements of scenes,
grasps, and objects needed for effective generalization.

In this study, we present DexGraspNet 2.0, a large-scale synthetic benchmark for robotic dexterous
grasping in cluttered scenes. The dataset comprises 8270 scenes and 427 million grasp labels for
the LEAP hand [9]. All grasps are synthesized via an optimization process aimed at achieving force
closure [10, 1] to ensure diversity and quality.

In addition to data, learning grasping in cluttered scenes presents its own challenges. Firstly, the
intricate scene landscapes contribute to a highly complicated distribution of valid grasps, potentially
confusing networks. Previous regression methods [8] that directly regress grasp parameters often
converge to a mean or median pose in such complex distributions, causing penetration or inaccurate
contacts. Secondly, the observation variation of cluttered scenes greatly surpasses that for grasping
single objects, demanding higher generalization efficiency. Typical grasping approaches for single
objects [11, 12] use the global feature vector to predict grasps, necessitating extensive object-level
variations to grasp novel objects. Their direct application in cluttered scenarios could significantly
impede generalization to new scenes.

To address these challenges, we propose a method that leverages a generative model conditioned
on local features to predict grasp pose distribution. Firstly, employing a generative model allows
our method to handle the multimodality of grasp distributions more effectively, enhancing output
quality. Secondly, by conditioning on local features, our method better exploits the dataset’s diverse
variations in local geometries, boosting generalization to new objects and scenes.

To comprehensively evaluate our method, we perform simulation experiments on DexGraspNet 2.0,
where our model outperforms all baselines. Additionally, we scale down the dataset to identify the
turning point for generalization. Finally, with the aid of test-time depth restoration [13], our model
achieves a 90.7% success rate in cluttered dexterous grasping in real-world scenarios, confirming
the practicality of our model, which trains on fully synthetic data.

We summarize our contributions as follows: (1) we present DexGraspNet 2.0, a large-scale syn-
thetic dexterous grasping benchmark in cluttered scenes, encompassing 1319 objects, 8270 scenes,
and 427 million grasps, (2) we propose a two-stage grasping method that learns efficiently from
data by using a diffusion model that conditions on local point features, (3) we conduct systematic
analysis and simulation ablations to justify our main design choices, and comprehensive simulation
benchmarks along with a 90.7% real-world success rate prove the efficacy of our solution.

2 Related Work
2.1 Gripper Grasping
Grasping with grippers has been extensively studied, fueled by advances in datasets and sim-to-
real techniques. Several works [14, 15, 16] have synthesized large-scale grasping datasets through
sampling and filtering. However, these datasets often suffer from visual sim-to-real gaps [15, 16] or
require labor-intensive real-world data collection [14]. To address these issues, some works [17, 13]
use depth restoration techniques to mitigate visual sim-to-real gaps for point-cloud-based methods.

With these advances, data-driven gripper grasping has achieved significant success. Works such
as [14, 18] employ sampling and ranking to predict grasps but face challenges when extending to
dexterous hands due to the increased dimensionality. Other approaches [19, 20, 21, 22] directly
regress grasp parameters; however, these methods often converge to the mean or median of the data
distribution, making them ill-suited for the complex distributions of dexterous grasping. Addition-
ally, while [16, 23] have explored generative gripper grasping, their designs are tailored for grippers.
In contrast, our generative method that can be applied to both grippers and dexterous hands.
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Figure 2: DexGraspNet 2.0 Benchmark includes 7600 training scenes and an average of 50k+
grasps per scene, totaling 400M+ grasp labels. The images at the same position in the first and
second row correspond to the same scene. Each colored point in the second row represents the
palm position of a grasp label, with different colors indicating grasp poses on different objects. For
simplicity, grasp labels in each scene are downsampled to 1000.

2.2 Dexterous Grasping Datasets

Creating dexterous grasping datasets is more challenging than developing gripper grasping datasets
due to higher control dimensions and more complex contact interactions. One line of research [24]
employs teleoperation systems to collect such datasets, but struggles with efficiency and scalabil-
ity. Sampling-based methods [25, 6, 8] can significantly scale up data generation but tend to overly
simplify the search space, resulting in limited diversity. Recent works [26, 1, 10, 27, 2] have shifted
towards optimization-based methods, which can synthesize stable and diverse grasping poses effi-
ciently by optimizing a designed energy function.

Using these methods, prior studies have generated large grasping datasets for single objects [1, 2].
However, current datasets for cluttered scenes are either too small [6] or too simplistic [7, 8]. Our
work introduces the first comprehensive benchmark for dexterous grasping in synthetic cluttered
scenes, utilizing optimization-based methods to efficiently generate diverse and high-quality grasps.

2.3 Data-driven Dexterous Grasping Methods

Data-driven methods leverage synthetic datasets to learn dexterous grasping from point clouds or
depth images. Similar to gripper grasping, research in this area can be categorized into three
approaches: sampling/ranking-based, regression-based, and generation-based. Sampling/ranking-
based methods [7] often require simplifications and test-time optimizations, which compromise
both accuracy and efficiency. Regression-based methods [5, 8, 28] struggle with multi-modal grasp
distributions as training data scales up and scenes become more complex. In contrast, generation-
based methods, which utilize generative models, effectively learn the complex distribution of diverse
grasping poses. Previous works [11, 12] have explored incorporating generative models into dexter-
ous grasping, but not in an end-to-end fashion, and typically focus on single-object scenarios. Our
approach uses a diffusion model to learn dexterous grasping in cluttered scenes end-to-end.

Additionally, some studies [29, 4, 30] have explored using reinforcement learning in simulators to
train policies for closed-loop dexterous grasping. However, our study focuses primarily on open-
loop methods, where a grasping pose is predicted first and then executed.
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3 DexGraspNet 2.0 Benchmark

We present a comprehensive dexterous grasping benchmark as illustrated in Fig. 2, which is a com-
bination of 1319 diverse objects, 8270 cluttered scenes, and 427M grasps in all scenes.

3.1 Object Collection and Scene Synthesis

For training, we generate 7600 synthetic cluttered scenes using all 60 training objects from [14].
Then we collect 1259 unseen objects from [14, 31] and create 670 testing scenes with all 1319
objects. In each scene, 1 to 11 objects are piled within an approximately 30 by 50 cm area, and
depth images are rendered from 256 different views. Among the 7600 training scenes, 100 are
directly adopted from [14], which are densely packed (containing 8 to 11 objects each). The other
7500 training scenes have a random number of objects. For further details, please refer to our
supplementary materials.

3.2 Dexterous Grasp Annotation

We employ a two-stage pipeline to annotate dexterous grasp labels within cluttered training scenes.
We first synthesize grasp labels for single objects using our modified implementation of [10, 1] and
then leverage the IsaacGym simulator [32] to filter out unstable ones (with friction set to 0.2). Then
for each scene, we gather grasps from all objects and retain the collision-free ones. We synthesize
approximately 1.9M stable grasps for each object (190M in total), resulting in about 56K collision-
free grasps for each scene (427M in total). For more details regarding our modifications to [10, 1],
please refer to our supplementary materials.

3.3 Dexterous Grasp Evaluation in Simulation

We evaluate various models by their success rates in the IsaacGym [32] simulator. For each test
scene, a model receives a single-view depth point cloud and produces a grasp pose. If capable of
generating multiple grasps, the model must select the best proposal. A grasp is deemed successful
if it can lift an object within the simulator. The friction coefficient is set to 0.2, consistent with
the dataset’s filtering procedure. We design six test groups consisting of densely, randomly, and
loosely packed scenes with objects from GraspNet-1Billion [14], as well as these three types of
packed scenes with 1231 objects from ShapeNet [31]. For further information, please consult the
supplementary materials.

4 Generative Dexterous Grasping in Cluttered Scenes
We design a two-stage method to generate dexterous grasp poses in cluttered scenes: (1) a seed point
proposal module that identifies graspable regions and extracts point-wise local features, and (2) a
grasp pose generation module that models grasp pose distributions conditioned on local features.
The combination of the generative model with local conditioning enables our network to learn from
numerous local geometry variations in the dataset, which greatly enhances generalization efficiency.
We will first introduce the inference process in Sec. 4.1 and Sec. 4.2, and then explain the training
process in Sec. 4.3. The entire architecture is demonstrated in Fig. 3.

4.1 Seed Point Proposal

Inspired by [18], the seed point proposal module extracts point-wise features f from a single-view
depth point cloud P and identifies graspable regions by generating object segmentation score O and
graspness score GS for each point. Based on these, we select a subset of high-scoring points, termed
seed points, whose local features are fed into the subsequent grasp generation module, achieving
more efficient generalization than conditioning on global features [11, 12].

Ground-truth Graspness Definition. For each training scene, we define the graspness score GS
for every point p on the surface of objects, indicating the level of graspability in its surrounding area.
In essence, this score is computed by allowing each grasp label to “vote” for nearby points within
reach of the palm, following a heuristic rule. Subsequently, GSp is defined as the logarithm of the
sum of all voted values. Empirically, GSp reflects the abundance of valid grasps in its vicinity. And
these definition details can be found in the supp.
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Figure 3: Method architecture. Our method leverages a generative model conditioned on local fea-
tures and models the distribution of grasp poses (T ,R,θ) in a decomposed way. Inference: The model
receives a single-view depth point cloud and generates multiple grasps (only one is visualized). Train-
ing: The model takes the depth point cloud and ground-truth annotations to learn data distribution.

Graspness Prediction and Seed Point Sampling. To extract local features and predict point-wise
graspness, we utilize the same graspness network as described in [18]. Given the scene point cloud
P ∈ RN×3, we employ a ResUNet14 built upon MinkowskiEngine to extract a feature vector fp
for each point p ∈ R3. This feature is then fed into an MLP to predict p’s graspness score GSp and
object segmentation score Op, which classifies whether p belongs to an object or the table. Finally,
object points that rank top 1% in GS are selected and downsampled to M = 1024 points via FPS
(farthest point sampling). These points, denoted as S = {s}, are termed seed points. Their feature
vectors {fs} and graspness scores {GSs} are used for subsequent grasp pose generation.

4.2 Grasp Pose Generation
The grasp pose generation module takes a seed point’s feature vector fs, and generates diverse
dexterous grasp poses relative to that seed point using a generative model. These grasp poses are
then ranked based on their estimated log-likelihoods and the graspness GSs of the seed point.

Notations and Assumptions. A dexterous grasp pose relative to a seed point is denoted as gr =
(T,R, θ), where T ∈ R3 and R ∈ SO(3) represent the wrist pose relative to the seed point, and
θ ∈ RDoF signifies joint angles of the hand (DoF = 16 for LEAP hand [33]). Given a seed point
s from a scene point cloud P , all valid grasps near s form a conditional probability distribution
p(T,R, θ|fs), where fs is the predicted visual feature of point s. We assume that the distribution
of (T,R) conditioned on fs is multi-modal and complicated, while the distribution of θ conditioned
on fs and (T,R) is single-moded. Therefore, we use a conditional generative model to predict the
conditional distribution p(T,R|fs), and a deterministic model to predict θ from fs and (T,R).

Predicting Conditional Pose Distribution via Diffusion. We adopt the denoising diffusion proba-
bilistic model [34], a powerful class of probabilistic models widely used in the Euclidean space, to
approximate p(T,R|fs). To embed p(T,R|fs) into the Euclidean space, we flatten the rotation ma-
trix R and concatenate it with the translation T to get the 12D vector representation gE of a grasp’s
wrist pose. Then we learn a conditional denoising model vΘ to denoise a random 12D Gaussian
noise vector ĝ1E into a valid wrist pose vector gE = ĝ0E through an iterative process. Specifically,
at each diffusion timestep t ∈ [0, 1], we feed t, feature vector fs, and the current noisy sample ĝtE
to an MLP vΘ, which then predicts the velocity [35] of the diffusion process. Using the predicted
velocity, we denoise ĝtE into ĝt−dt

E by solving an ODE illustrated in [36]. After the last step, the
denoised gE = ĝ0E ∈ R12 is projected back to SE(3) by applying SVD [37] to the rotation channels.
Moreover, we estimate the sample’s probability p(gE |fs) by solving a PDE introduced in [38, 36],
and then empirically rank the sample with a linear combination of log p(gE |fs) and GSs.

Joint Angle Prediction. After sampling a wrist pose (T,R) from the diffusion model, we input fs
and (T,R) into an MLP to predict the joint angles θ, together forming gr = (T,R, θ), a generated
dexterous grasp pose relative to seed point s. Additionally, our method seamlessly extends to parallel
grippers by substituting the joint angles θ ∈ R16 with one parameter w ∈ R indicating gripper width.
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Method GraspNet-1Billion ShapeNet
Dense Random Loose Dense Random Loose

Baseline
HGC-Net [8] 46.0 37.8 26.7 46.4 44.8 30.4
GraspTTA†[11] 62.5 54.1 42.8 56.6 57.8 46.4
ISAGrasp† [5] 63.4 60.7 51.4 64.0 56.3 52.7

Ablation

local feature 16.8 10.9 4.8 21.3 17.6 10.9
decomposed model 84.2 80.7 71.3 74.9 72.5 66.4
random scene 90.0 84.1 68.2 78.9 78.8 71.3
Ours 90.6 83.7 73.2 81.0 85.4 74.2

Table 1: Baseline and ablation studies for dexterous grasping. Modified baseline methods are
indicated with †. Ablation studies are conducted on three aspects as shown in the lower half of
the table. Each Dense scene contains 8-11 objects, and each Random scene contains 1-10 objects,
obtained by deleting objects from Dense scenes, and each Loose scene contains 1-2 objects.
4.3 Joint Training and Loss Functions
The seed point proposal module and grasp pose generation module are trained jointly. At each
gradient step, we randomly sample D = 8 scenes from our dataset and select a rendering view for
each scene. The depth point cloud of a scene is denoted as P ∈ RN×3, its corresponding object
point mask is {Ogt

p }N , and the ground truth point-wise graspness scores are {GSgt
p }N . All point

coordinates are represented in the camera frame. We then sample B = 64 random grasp labels {g}B
in this scene. For each grasp label g, we compute its “corresponding point” p following Section 4.1
and represent g as a relative grasp pose (T gt, Rgt, θgt) in the reference frame of p.

First, point cloud P is fed into the seed point proposal module to obtain local features {fp}N , object
segmentation scores {Op,0/1}N , and point-wise graspness scores {GSp}N , after which the object
segmentation loss Lo (Cross-Entropy) and graspness loss Lg (SmoothL1) are computed.

Next, for each grasp gj , we collect the local feature fp of its corresponding point p and pass these
to the grasp generation module. The 12D Euclidean representation of the wrist pose gE undergoes
the diffusion process to obtain a noisy sample ĝtE =

√
αtgE +

√
1− αtϵ and diffusion velocity

vt =
√
αtϵ −

√
1− αtgE at some random time step t. The denoising model vΘ then predicts this

velocity, under the supervision of an MSE loss Ld. The joint angle prediction MLP takes feature fp
and the wrist pose (T gt, Rgt), predicts θ, and is supervised by a joint angle loss Lθ (Smooth L1).

The total loss is a linear combination of all loss terms: L = λoLo + λgLg + λdLd + λθLθ. The
model is trained on a single NVIDIA 3090 for 50k iterations, taking approximately 2 hours.

5 Experiment
We compare our method with several representative approaches and conduct ablation studies on
DexGraspNet 2.0. Additionally, we scale down our dataset and compare the turning point for the
generalization of different models. We also evaluate our method on gripper grasping. Finally, we
conduct real-world experiments to confirm the practicality of our approach.

5.1 Experiments on DexGraspNet 2.0
Baseline comparisons. We compare our method with HGC-Net [8], GraspTTA [11], and IS-
AGrasp [5] on DexGraspNet 2.0, with results in Tab. 1. Note that GraspTTA [11] and ISAGrasp [5]
were originally designed for single-object grasping, so we modify them for the cluttered setting,
denoting these versions as GraspTTA† and ISAGrasp† (details in the supp). Both HGC-Net [8] and
ISAGrasp† [5] use regression approaches, which struggle with complex distributions and yield sub-
par performance. Although GraspTTA†[11] incorporates a CVAE to predict grasp distributions, it
still suffers from low network capacity. In contrast, our method, which utilizes a diffusion model to
better capture complex grasp distributions, significantly outperforms all baseline methods.

Ablation Studies. Our method aims to model the complex distribution of dexterous grasping while
achieving higher generalization efficiency by leveraging a generative model that conditions on local
features. To better analyze the effectiveness of each module, we conduct ablation studies on three
aspects: (1) local feature (2) decomposed pose modeling (3) randomly-packed training scenes. As
shown in Tab. 1, substituting local feature conditioning with global ones yields poor performance.
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To illustrate, global conditioning relies on scene-level variations to generalize, which are limited in
number, whereas point-wise local features derive numerous diverse geometry patches (with paired
grasp labels), greatly enhancing generalization efficiency. Moreover, replacing decomposed pose
modeling with the combined modeling of (R, T, θ) also leads to a perceivable decline in perfor-
mance due to the incompatibility of the Euclidean space with SO(3) space. Finally, our dataset
design that incorporates scenes with random object numbers proves to be effective.

5.2 Scaling the Dataset

Figure 4: Scaling the number of scenes/grasps.

We scale down the training data in two ways:
(1) by decreasing the number of training scenes,
and (2) by reducing the number of grasps in
each scene. The success rate is evaluated across
the two densely packed test groups and aver-
aged, as shown in Fig. 4.

Scenes. We study the impact of scene num-
bers on performance. Our model consistently
improves with more training scenes. Notably,
despite being trained on only 60 objects, it
generalizes well to test scenes containing 1231
novel objects, which suggests that scene diver-
sity matters more than object variety. This find-
ing is encouraging, as it indicates that grasp
labels from individual objects can be reused
to compose new scenes, enabling performance
gains with minimal additional effort.

Grasps. We investigate how generative and re-
gressive methods scale with increased training
grasps. Our model shows significant performance gains as the grasp dataset grows, highlighting its
ability to scale effectively with more grasps. In contrast, the success rate of GraspTTA† increases
only marginally before quickly plateauing, suggesting that regression-based methods struggle to
fully leverage larger grasp datasets due to their inability to handle complex data distributions.

Method AP Seen AP Similar AP Novel
GG-CNN [39] 15.5/16.9 13.3/15.1 5.5/7.4
Chu et al. [40] 16.0/17.6 15.4/17.4 7.6/8.0
GPD [41] 22.9/24.4 21.3/23.2 8.2/9.6
PointGPD [42] 26.0/27.6 22.7/24.4 9.2/10.7
GraspNet1B[14] 27.6/29.9 26.1/27.8 10.6/11.5
GSNet [18] 67.1/63.5 54.8/49.2 24.3/19.8
GSNet [18]* 68.7 59.8 24.6
Ours* 56.0 53.2 23.2
Ours # * 66.6/61.5 61.7/53.3 27.4/23.2
GSNet (render)* 78.4 69.7 36.7
Ours (render) # * 77.4 72.5 39.1

Table 2: Experiment results on GraspNet-1Billion. * means using grasps that scores over ≥ 0.9.
# means using refined poses, and render means using rendered depth images. Statistics in the table
follow a RealSense/Kinect format, where results with a single number use the Realsense setting.

5.3 Simulation Experiments on Gripper Grasping

We evaluate our method’s performance in gripper grasping using the widely adopted benchmark
GraspNet-1Billion [14]. This benchmark categorizes test scenes based on seen/similar/novel objects
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and evaluates methods using the average precision (AP) metric. Additionally, we take three steps
to refine its training data: (1) retain only grasps with scores of ≥ 0.9, (2) refine the grasps, and (3)
use the ground-truth depth instead of real-world depth for training and evaluation (applying depth
restoration [13] for subsequent real-world experiments). These refinements reduce training grasps
from 1B to 4.2M. The results, shown in Tab. 2, indicate that our method performs comparably to
GSNet [18] when trained on the same data. This finding, along with the results in Sec. 5.1, suggests
that our method serves as a unified framework for both dexterous and gripper grasping. Furthermore,
both our method and GSNet [18] achieve higher scores with the refined training data, highlighting
that data quality is more important than quantity for gripper grasping.

Figure 5: Real-world experiment objects.

Figure 6: Real-world experiment scenes.
Method SR (%)
HGCNet 16.4
GraspTTA† 6.0
ISAGrasp† 54.8
Ours 90.7

Method SR (%)
ASGrasp 84.5
Ours 92.5

Table 3: Success Rate (SR) of real-world experi-
ments. Left: dexterous hand. Right: gripper.

5.4 Real-World Experiments

We conduct real-world experiments for both dexterous and gripper grasping. The dexterous grasping
experiments utilize a LEAP hand [33] mounted on a UR-5 robotic arm, while the gripper experi-
ments employ a Franka Panda arm. In both setups, an Intel RealSense D435 camera captures a
single depth map from a top-down perspective. Since depth sensors often struggle with transparent
or specular objects, we apply an off-the-shelf depth restoration method [13] to preprocess the depth
maps before generating the depth point clouds. This restoration step is ablated in the supp.

We collect 32 objects and compose 6 test scenes as illustrated in Fig. 5 and Fig. 6. The grasping
system iteratively removes objects until the table is cleared or until two consecutive failures occur.
The results, presented in Tab. 3, demonstrate that our method achieves a successful grasp rate of
90.7% with the dexterous hand and 92.5% with the gripper, surpassing baseline methods. Addition-
ally, on an NVIDIA 4090 GPU, seed point proposal and grasp generation together take less than 0.5
seconds, with depth restoration adding only 0.2 seconds.

6 Limitations and Conclusion
In this paper, we present DexGraspNet 2.0, a large-scale benchmark for dexterous grasping in clut-
tered scenes. Our proposed method, which leverages a generative model conditioned on local fea-
tures, outperforms all baselines in simulation and achieves a 90.7% success rate in real-world tests.
We believe that our insights into grasping methodologies and dataset construction could offer valu-
able guidance for researchers working on similar tasks.

Nonetheless, our work has several limitations. First, our method is not suitable for dynamic scenes
since the framework is open-looped. Second, following up on the first point, our grasping policy is a
simple heuristical squeeze-and-lift motion. Therefore, it struggles with scenarios that require more
complicated and functional actions, like flipping a thin and low object off the table. Third, because
the system has no tactile feedback, it is difficult to handle scenes with heavy occlusions. Fourth, our
method has trouble picking up very small objects, which may be because the fingers of the LEAP
hand are too thick. We look forward to future works that address these limitations.
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Supplementary Material
This document provides supplementary details, additional experiments, and enhanced visualizations
to complement the main paper. Sec. A outlines the detailed experimental settings discussed in the
main paper. Sec. B presents additional experiments conducted to extend the findings. Sec. C offers
further statistical insights into our DexGraspNet 2.0 benchmark. Sec. D details the methodology
used for generating grasp labels. Sec. E elaborates on the technical aspects involved in constructing
and training our model for dexterous grasping in cluttered scenes. Sec. F highlights specific imple-
mentation details related to applying our model with parallel grippers. Sec. G provides additional
visualizations showcasing our dataset and model.

A Experiment Details

We provide additional details on the experiment settings due to space constraints in the main paper.
Sec. A.1 delineates how we evaluate a grasp in a simulator and enumerates some of the physics
parameters involved. Sec. A.2 elaborates on the three ablation groups in detail. Sec. A.3 outlines
the three baseline methods benchmarked in the main paper.

A.1 Evaluation Metric

We evaluate various grasping models by measuring their simulation success rates in the Isaac Gym
simulator. For each test scene, a model is expected to take a single-view depth point cloud as input
and output one grasp pose Gp. If capable of generating multiple grasps, the model must select the
best proposal, as required in the main paper. Following this, the evaluator determines whether Gp

constitutes a successful grasp. Specifically, a predefined rule is applied to calculate a pregrasp pose,
squeeze pose, and lift pose, thereby establishing a complete action trajectory T . Subsequently, T is
executed within the simulator, and success is determined by its ability to lift an object off the table
without any initial intersection with the table or surrounding objects. Consistency is ensured across
all experiments by maintaining the same trajectory generation rule and physics parameters. Some
of the important physics parameters are listed in Tab. 4.

Parameter Value Parameter Value
friction coeff 0.2 object mass 0.1 kg
joint stiffness 800 joint damping 20

Table 4: Physics Parameters

A.2 Ablation Details

We explain the settings of the three ablation groups from our main paper in detail.

Local Feature. Our grasping method aims to achieve higher generalization efficiency by condi-
tioning on local features. We investigate this design by training a diffusion model that predicts the
distribution of all valid grasps conditioned on the scene’s global feature. This ablated version has
three major differences compared to our original model: (1) it discards the UNet decoder and re-
tains only the encoder; (2) during training, each grasp label corresponds to the global feature vector
of the scene point cloud (output by the encoder) instead of the local feature vector of the grasp’s
corresponding point (one of the point-wise vectors output by the decoder). (3) during inference, the
model does not predict graspness or propose seed points, but only encodes the scene point cloud and
directly generates grasp poses conditioned on its global feature vector.

Decomposed Pose Modeling. Our grasp generation module models the conditional distribution
p(T,R, θ|fs) in a decomposed manner: a conditional generative model predicts the conditional
distribution p(T,R|fs), followed by a deterministic model predicting θ from fs and (T,R). Sur-
prisingly, the above design slightly outperforms a seemingly more elegant approach: using a single
conditional generative model to fit the joint distribution p(T,R, θ|fs) without decomposing the wrist
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pose (T,R) from the joint angles θ. We postulate that this phenomenon results from the distribution
of the training data, rather than an inability to properly tune the second approach. Specifically, our
training dataset primarily consists of power grasps that utilize all fingers, resulting in a single-mode
distribution of θ conditioned on (T,R) and fs. Consequently, the deterministic model regressing
θ is not confused by this data distribution; instead, it potentially becomes more robust to outliers.
Essentially, the outcomes of this ablation group are highly specific to our task and training data. If
we incorporate additional grasping modes into our dataset, such as precision grasps and functional
grasps, it would violate our assumption of a single-mode distribution of θ conditioned on (T,R) and
fs. In such a scenario, jointly modeling p(T,R, θ|fs) with a single conditional generative model
might outperform our current design.

Randomly-Packed Training Scenes. In addition to ablating our network designs, we also conduct
one experiment to ablate our dataset in the main paper. Our training set comprises 100 densely
packed scenes (with 8 to 11 objects) and 7500 randomly packed scenes (with 1 to 10 objects). All
dense scenes are sourced from [14]. However, we observed that training solely on these dense scenes
resulted in the inability to generate valid grasp poses when the table is nearly clear. Therefore, we
incorporated the randomly packed scenes to ensure performance across all density levels.

A.3 Baseline Details

We outline the three baselines compared in the main paper and detail how we adapted two of them
from their original setting of single-object grasping to our cluttered scenarios.

HGC-Net [8]. HGC-Net is a two-stage method for grasping in cluttered scenes. Initially, a segmen-
tation model divides the scene point cloud into graspable points and ungraspable points. Following
this, a deterministic model predicts a grasp pose near each graspable point. Given that this method
already focuses on cluttered scenes, minimal modifications were required. The only change made
was switching their end effector from the HIT-DLR II hand to the LEAP hand.

ISAGrasp [5]. ISAGrasp is a regressive method designed for grasping single objects. It employs a
PointNet++ encoder [43] to encode the object point cloud into a global feature vector. Subsequently,
an MLP is utilized to predict the wrist translation, wrist quaternions, and joint angles. We extensively
modified this method to adapt it for cluttered scenes: (1) We replaced their PointNet++ encoder with
a ResUNet14 encoder-decoder and incorporated a seed point proposal module based on point-wise
graspness prediction, similar to our method. (2) During inference, this modified model predicts
the grasp parameters from the local feature vector of the proposed seed point, instead of the global
feature vector obtained from their original point cloud encoder. (3) During training, each grasp label
is associated with its corresponding point rather than its target object. We designate the modified
model as ISAGrasp†. It is worth noting that this adaptation already rectifies a major suboptimal
aspect of their original baseline by integrating one of our key designs: replacing global conditioning
with local conditioning. Consequently, the adapted method differs from our model solely in the use
of a regressive model to predict the wrist pose, whereas we employ a conditional generative model.

GraspTTA [11]. GraspTTA utilizes a CVAE for grasping single objects. It leverages PointNet [44]
to encode the object point cloud into a global feature vector, which serves as conditioning for the
CVAE to predict the distribution of the wrist translation, wrist axis angles, and joint angles. We
adapt it for cluttered scenes using the same approach as ISAGrasp†, and denote the adapted version
as GraspTTA†. Furthermore, we discard the test-time optimization of the original method because
it relies on the full point cloud, which is an invalid assumption in our task settings.

B Additional Experiments

B.1 Ablate Rotation Representation

Our method employs the rotation matrix to represent wrist rotation and applies SVD [37] to orthog-
onalize network predictions. We compared this design against several alternatives: Euler Angle
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Method GraspNet-1Billion ShapeNet
Dense Random Loose Dense Random Loose

Ablation

Euler Angle 87.6 82.0 73.0 78.0 76.4 75.2
Axis Angle 86.4 81.7 70.5 79.0 76.4 74.1
Quaternion 87.9 81.5 72.0 78.6 77.0 72.9
6D 88.2 81.5 71.9 80.2 79.0 73.0
Ours 90.6 83.7 73.2 81.0 85.4 74.2

Table 5: Ablation studies for representations of rotation. Euler Angle represents rotation as 3D
Euler angle; Axis Angle represents rotation in 3D as the angle of rotation multiplies the rotation
axis; Quaternion represents rotation as 4D quaternion; 6D represents rotation with the first two
rows of the rotation matrix. Ours represents the rotation as the rotation matrix.

Method GraspNet-1Billion ShapeNet
Dense Random Loose Dense Random Loose

Ablation

Graspness 81.8 76.6 68.0 73.7 71.3 64.4
Log Probability 78.1 78.4 75.1 72.4 71.6 74.6
Random 65.1 62.0 57.2 61.7 58.9 56.4
Ours 90.6 83.7 73.2 81.0 85.4 74.2

Table 6: Ablation studies for sampling strategy. Graspness ranks samples by graspness score
only; Log Probability ranks samples by log probability only; Random randomly draws from sam-
pled poses; Ours ranks samples by combination of graspness scores and log probabilities.

(representing rotation as 3D Euler angles), Axis Angle (rotation represented by the angle of rota-
tion multiplied by the rotation axis), Quaternion (represented as a 4D quaternion), and 6D (using
the first two rows of the rotation matrix). The results in Tab. 5 demonstrate that our choice out-
performs all other methods across the evaluated task. As discussed in [37], rotation representations
in Euclidean space with fewer than five dimensions, such as Euler angles, axis-angle, and quater-
nions, are inherently discontinuous. Although the 6D representation circumvents this issue, it is
coordinate-dependent. Introducing small noises in different directions to the rotation in a 6D rep-
resentation results in changes of varying magnitudes. In contrast, our 9D representation is both
continuous and coordinate-independent, thereby outperforming other rotation representations.

B.2 Ablate Ranking Strategy

During inference, we rank all predicted samples to identify the best one using a linear combination
of the graspness scores of the seed points and the estimated log probabilities of the wrist poses. We
ablate this ranking strategy by removing the graspness score, the log probability, or both. Tab. 6
presents the results. Our method (Ours), which ranks samples based on a combination of grasp-
ness scores and log probabilities, consistently outperforms the other strategies. Ranking solely by
graspness scores (Graspness) or log probabilities (Log Probability) yields moderate performances,
while selecting samples randomly (Random) results in the lowest success rates. These findings un-
derscore the efficacy of our proposed ranking strategy in identifying optimal grasp poses.

Interestingly, despite the theoretical challenges in defining a probability density function p(T,R|fs)
on a 6-dimensional data manifold embedded within a higher-dimensional parameter space (12D),
experiments demonstrate that our estimated log probabilities consistently enhance the performance
of our ranking strategy. Nevertheless, we acknowledge this theoretical inelegance and defer the
solution to future studies, such as exploring the use of normalizing flows on SE(3) or employing
manifold diffusion methods.

B.3 Scaling the Dataset for Grippers

We scale down the training data of the parallel gripper by (1) reducing the number of grasps in each
scene, and (2) decreasing the number of training scenes. We evaluate the AP metric in simulation
for each setting and success rate in the real world.
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Figure 7: AP metric evaluated on models trained with downscaled dataset. Top: downscaling the
number of grasp labels in each scene. Bottom: downscaling number of scenes trained on

Fraction of Grasps Success Rate
1/100(42k) 81.3

1(4.2M) 92.4
Table 7: Success Rate of real-world experiment on Ours model trained over downscaled
dataset. We train Ours model with random 1/100 fraction of grasp labels and the entire grasp
pose dataset, amounting 42k and 4.2M labels, respectively.

As shown in Fig. 7, although under the full-data setting our generative model only slightly outper-
forms GSNet by +1.4 AP, the AP metric of GSNet drops by a significant amount of 35.4 as we
downscale the number of grasps by 100, whereas our generative pipeline drops by only 2.2. This
suggests that our generative pipeline is significantly more sample-efficient than GSNet. Both meth-
ods are robust to downscaling of number of training scenes at the scope of our experiment, with only
a slightly dropped AP.
The resulting statistics in terms of AP are much to our surprise, as being trained with 1/100 total
grasp labels, namely only 42k grasp labels, our generative model seems to still retain strong perfor-
mance. In order to validate this counter-intuitive result, we carry out real-robot experiments with
Ours models trained with a downscaled number of grasps and report success rate in Tab. 7. With 42k
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Depth Restoration Diffuse Trans Hybrid
With 94.1 80.0 90.7

Without 94.1 50.0 86.4
Table 8: Real-world cluttered scene dexterous grasping with/without depth restoration. Diffuse
includes only diffuse objects, Trans comprises only transparent or specular objects, and Hybrid
includes scenes used in the main paper, consisting of a mixture of diffuse, transparent, and specular
objects for comparison.

End Effector Normal Large
Parallel Gripper 92.4 0.0
Dexterous Hand 81.5 100.0

Table 9: Comparison of real-world grasping performance using a parallel gripper or a dexterous
hand across different scene types. The five Normal scenes consist of typical cluttered environments,
while the Large scene includes 4 large objects.

training labels, our generative model achieves an 81.5% success rate in real-world cluttered scenes
as shown in Fig. 8, which is affirmative to the AP statistics.

In summary, the experiments in this section give strong evidence that the distribution of valid grasp
poses does exist and the amount of data required to simulate at least a valid support of such a
distribution may prove to be much smaller than previously been conjectured.

B.4 Using Raw Depth in the Real World

In our real-world experiments, we integrated depth restoration techniques [13] to facilitate grasping
transparent and specular objects amidst cluttered scenes. Here, we conduct additional experiments
to demonstrate that our method do not rely on depth restoration when grasping diffuse objects.
We constructed four additional cluttered scenes in the real world: two scenes (Diffuse, as shown in
Fig. 8) consisting solely of diffuse objects and two scenes (Trans, as shown in Fig. 9) containing only
transparent and specular objects. The original five test scenes from the main paper, which include
a mixture of objects, are denoted as Hybrid. We then evaluated our model on all test groups both
with and without the application of depth restoration techniques. The results in Tab. 8 demonstrate
two key findings: firstly, our model’s effectiveness in real-world grasping is independent of depth
restoration for Diffuse scenes; secondly, our model exhibits enhanced robustness to object texture,
particularly transparent and specular surfaces when depth restoration is applied.

Figure 8: Two Diffuse scenes in real world.

B.5 Discussion on Dexterous Hands vs Parallel Grippers

While grasping systems utilizing parallel grippers have already achieved impressive robustness in
the real world [18, 45], we advocate that dexterous hands can further enhance performance. In
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Figure 9: Two Trans scenes in real world.

Figure 10: Five Normal test scenes for gripper in the main paper.

addition to the 5 test scenes (Normal, as shown in Fig. 10) demonstrated in the main paper, we
also construct an additional scene (Large) consisting of 4 large objects, as shown in the main paper.
Real-world experiment results in Tab. 9 indicate that the dexterous hand can grasp each object in
this scene, whereas the parallel gripper cannot grasp any object. This is because the dexterous hand
possesses strong envelopment capabilities, allowing it to grasp larger objects effectively.

C Benckmark Specifications

This Section presents further details about the DexGraspNet 2.0 benchmark proposed by this work.
Sec. C.1 provides statistics of the DexGraspNet 2.0 benchmark, including both the Training Set
that contains ground truth grasp pose annotations and the Test Set with no ground truth provided.
Sec. C.2 identifies the objects used to generate our benchmark. Sec. C.3 presents the pipeline used
to generate training scenes with selected objects. Sec. C.4 elaborates on the protocol of generating
test scenes and how we divide them into different splits.

C.1 Benchmark Statistics
Splits number of objects number of scenes
Training 60(GraspNet1B) 100(seminal)+7500(augmented)
Test 88(GraspNet1B) + 1231(ShapeNet) 670
Total 88(GraspNet1B) + 1231(ShapeNet) 8270

Table 10: Statistics of the DexGraspNet 2.0 Benchmark

Tab.10 illustrates the overall statistics. The entire benchmark encompasses two components: a
Training Set used to train our models and a Test Set to evaluate dexterous grasping pose generation
models on. Note that ground truth grasp pose annotations are only provided for the training set. In
total, the benchmark contains 8270 scenes, 1319 objects, and 426.6M grasp pose annotations.

Training Set contains 7600 scenes and 60 objects in total. all training objects are from the GraspNet-
1Billion [14] dataset
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Test Set contains 670 scenes and 1319 objects in total. the 88 objects from the GraspNet-
1Billion [14] dataset are used to compose 450 of the test scenes and 1231 objects picked from
ShapeNet [31] are used to compose the remaining 220 test scenes

C.2 Object Selection

The 60 objects in the Training Set are those that appeared in GraspNet-1Billion [14] scenes 0000-
0099. The Test Set contains 1319 objects, 88 of them are all the objects in GraspNet-1Billion [14],
and the remaining 1231 objects are picked from ShapeNetSem [31].

C.3 Training Scenes Specification

In the 7600 training scenes, 100 are called seminal scenes, which corresponds to the Scenes 0000-
0099 in the GraspNet-1Billion [14] dataset composed and rendered using their official meshes and
annotations. We augment each seminal scene 75 times by randomly deleting objects in the scene.
In each augmented scene, the number of objects deleted is uniformly sampled from [1,k-1], where k
is the number of objects in the original scene. In total, we generate 7500 augmented training scenes
with 100 seminal scenes, totaling 7600 scenes in the entire training set.

C.4 Test Set Scenes Specification

As shown in Tab. 1 of the main paper, the Test Set is divided into 6 splits. In the following, we
specify each of these splits.

GraspNet-1Billion Dense composes of 90 scenes that correspond to the Scenes 0100-0189 in the
GraspNet-1Billion [14] dataset. Each scene contains 8-11 objects.

GraspNet-1Billion Random composes of 180 scenes. This split is generated by augmenting each
GraspNet-1Billion Dense split scene twice with the process as described in Sec.C.3

GraspNet-1Billion Loose composed of 180 scenes by augmenting each GraspNet-1Billion Dense
split scenes twice with the process as described in Sec.C.3, with only 1-2 random objects remaining
in the scene.

The three ShapeNet splits are generated by dropping objects on a 30cm×50cm tabletop. In specific,
we follow the scene generation process of DREDS [46] with the material randomization function
disabled. We run the scene generation process in PyBullet [47] and filter physically stable ones in
IsaacGym [32]. The Dense/Random/Loose splits are divided according to the number of objects
appearing in each scene.

ShapeNet Dense composes of 100 scenes, each containing 8-11 objects

ShapeNet Random composes of 90 scenes, each containing 5-9 objects

ShapeNet Loose composes of 30 scenes, each containing 1-2 objects

D Grasp Label Generation

This section elaborates on our pipeline for generating dexterous grasping poses on single objects.
First, we define initial hand poses by retargeting GraspNet-1Billion [14] annotations to dexterous
hands. Then we run physics-based optimization to generate stable grasps. To maximally diversify
the produced data, we adopt two different methods, [10] which targets Grasp Wrench Space (GWS)
optimality, and [1] which targets force-closure, as optimization algorithms, each generating half of
the dataset. Lastly, we filter stable and collision-free grasps via simulation in the IsaacGym [32]
simulator. As shown in Fig. 11, in total we generated 44.9M stable grasp poses for 88 objects from
280M initial poses. Even in the face of our very strict friction coefficient µ=0.2, our method still
maintains an overall success rate of 16.07%. In the following subsections, we detail each of these
components.
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D.1 Hand Pose Initialization

As discovered in [1], the success rate of dexterous grasp generation is very sensitive to the initial
hand pose. Moreover, we aim to cover valid grasp modes for each object as comprehensively as
possible. Therefore, we initialize dexterous hand poses by retargeting the exhaustive GraspNet-
1Billion [14] gripper annotations.

In specific, we filter points where stable gripper grasp poses are annotated in [14] as grasp points.
As shown in Fig. 13, for each grasp point, we align the +y axis (pointing forward out of the palm)
of dexterous hand with the +x axis of gripper pose annotation, retreat the center of palm a fixed
distance from grasp point in the approaching direction, initialize hand joint qpos with a set of prede-
fined values and exhaustively apply transformations corresponding to 256 approaching directions, 4
depths and 12 in-plane angles as defined in [14].

D.2 Grasp Pose Optimization

D.2.1 GWS-based optimization (adapted version of [10])

We reimplement [10] on the CuRobo [48] framework for better computation parallelism. We set the
target Task Wrench Space (TWS) as a unit sphere in 6D wrench space such that the task objective is
identical to forming a force-closure grasp and running 600 iterations with naive gradient descent.

D.2.2 force-closure-based optimization (adapted version of [1])

We adopt [1] with modification in its definition of force-closure energy, and reimplement the modi-
fied algorithm on the CuRobo [48] framework as well.

We observe that the force-closure energy used in [1] assumes unit contact force is applied to each
contact point, whereas humans naturally adjust contact forces applied to different contact points in
order to maintain a firm grasp. The above assumption limits the objective of optimization in [1] onto
a submanifold of the space of all valid grasp poses, hurting the quality and diversity of generated
data. Following the notations in [1], we relax the unit-contact force assumption by reformulating the
force closure energy as the following bilevel form:

• At each timestep, given the current hand pose, we solve the optimal contact forces applied to
current contact points such that the total wrench imposed on the object is minimized. We formulate
this intuition into the following linear program:

Pt =min
λt

∥G(λt ⊙ c)∥2

s.t.max
i

(λt)i = 1

(λt)i ≥ 0, i = 1, 2, ..., n

Where Pt has the physical meaning as the total wrench applied to the object when the combination
of contact force magnitude, λt, is applied to the contact points. ⊙ means element-wise product. Note
this linear program admits a closed-form solution and therefore imposes a neglectable computation
burden.

• Across timesteps, we optimize the differentiable force-closure metric in awareness of the plausi-
bility of the current hand pose:

EFC =

{
∥G(λt ⊙ c)∥2, if Pt < τFC ,min

i
(λt)i ≥ τλ, and B = 1

∥Gc∥2, otherwise

Where τFC , τλ are predefined thresholds, and B is a binary random variable with P (B = 1) = 0.9.

If the current hand pose is already capable of forming a force-closure grasp on the object, mathemat-
ically defined as Pt < τFC (total wrench acceptably small) and min

i
(λt)i ≥ τλ (a minimum contact
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force is applied to each contact point), then we decide the current pose is good enough in terms of
force-closure property. In this case, we scale the force closure energy to prevent overoptimization.
In effect, the force closure energy now works as a regularization term. Otherwise, if the current hand
pose is not stable enough, we keep searching for more stable poses by optimizing the force closure
metric with the original energy term. In addition, even for the former case, we stochastically use the
original energy term with probability 0.1 to encourage forming more robust grasp poses.

Note in the above formulation, the global minimum set of hand poses for EFC are the poses for
which there exists a non-trivial contact force combination such that the total wrench executed to
the object is zero. This global minimum set exactly corresponds to the original definition of force
closure in [49].

D.3 Filtering Stable and Collision-Free grasps

We perform grasp filtering in the IsaacGym simulator. First, we check for each grasp pose if the
penetration between the hand mesh and object mesh is below 2 mm. For all collision-free grasps, we
execute the grasp with a predefined heuristic and simulate for 60 timesteps at 60Hz. The grasp pose
is validated as stable if it can deny gravity in all 6 axis-aligned directions. The friction coefficient µ
for both hands and objects are set to 0.2, making the filtering process very strict.

Fig. 11 shows the Valid Rate for each object, which is defined as the portion of generated grasps
that are both collision-free and stable. The overall success rate is 16.07%, as we generated in total
44.9M valid grasp poses out of 280M grasp pose initializations. The method-specific valid rate for
[10] and [1] are 7.91% and 24.19% respectively.

E Implementation Details for Dexterous Hands

In this section, we elaborate on the data organization (Sec. E.1) and model architecture (Sec. E.2) of
our method for dexterous grasping.

E.1 Data

Data Reblancing In each training scene, the number of grasp labels on graspable objects may be
uneven. Randomly sampling grasp labels uniformly across all valid ones in each scene could slow
down the learning of grasping objects that have fewer labels. To address this, we implement a two-
stage sampling approach to rebalance the training process: first, we randomly sample a graspable
object, and then we randomly sample one of its labels.

Data Augmentation. We implement data augmentation by rotating the scene point cloud and grasp-
ing labels around the camera axis with a random angle uniformly sampled from the interval [0, 2π).
No further augmentations are needed.

Ground-truth Graspness Definition. For each training scene, we define a graspness score for the
surface points of each object to represent its graspability. This score is determined by identifying a
seed point and then assigning graspness to the nearby points. For an object o in this scene, we denote
all valid grasp labels that target o as Go = {gio}, and the surface points of o as Po = {pjo}. We then
define a grasp cone with c being the apex, vector cm being the axis and an aperture of 60◦, as shown
in Fig. 14. Subsequently, we compute the projected distance of vector cpjo along cm, denoted as
d, and the spanning angle θ between cpjo and cm. Using these quantities, the value of f(gio, p

j
o) is

defined in Eq. 1. Numerically, this function is designed to attenuate exponentially with response to
θ and d, halving at 10◦ or 1.5 cm. Then the seed point is defined as the point with the largest f as
shown in Eq. 2.

Finally, the seed point assigns graspness to nearby points with exponential decay and the grasp-
ness score of pjo is computed as the logarithm of the sum of all contributed graspness, as in Eq. 4.
Empirically, this score reflects the number of valid grasp labels near pjo.
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From another perspective, this correspondence implicitly defines a grasp distribution conditioned
on a point within a scene. Although articulating this distribution in precise mathematical terms is
difficult, we contend that it objectively exists. This distribution represents the target distribution that
the grasp generation module approximates.

Figure 14: Grasp cone for the
graspness definition.

f(gio, p
j
o) =

{
0 pjo /∈ this cone
exp(− ln 2

10
180
π θ − ln 2

0.015d) pjo ∈ this cone
(1)

seed point(gio) = argmax
pj
o∈Po

f(gio, p
j
o) (2)

h(gio, p
j
o) = 10−150||seed point(gi

o)−pj
o||2 (3)

graspness score(pjo) = ln

0.001 +
∑

gi
o∈Go

h(gio, p
j
o)

 (4)

E.2 Model

Network Structure. In the following paragraph, we elaborate on the network structures of our
feature extractor, denoising model, graspness MLP, and joint MLP. First, our feature extractor em-
ploys the ResUNet14 architecture implemented with MinkowskiEngine [50] to derive point-wise
feature vectors fp ∈ R512 from a scene point cloud P , which is quantized into sparse voxels. This
network resembles the one utilized in GSNet [18]. Second, our denoising model vΘ(ĝtE , fs, t) is
implemented as an MLP with layer sizes (524, 512, 256, 12) and Mish activations [51]. This model
embeds t into R512 using sinusoidal position embedding, adds this embedding with fs, concatenates
the resulting sum with ĝtE , and feeds this concatenation into the MLP to predict the velocity. Third,
our graspness MLP comprises a single-layer linear transformation, which maps fp to three values.
The first two are interpreted as binary classification logits indicating whether this point is an object
point, while the third value represents the predicted graspness score GPp. Fourth, our joint MLP is
a 6-layered MLP with ReLU activations and residual block designs following [52].

Detailed Diffusion Dynamics. The forward and backward processes of the diffusion each consist
of Ttrain and Tinference time steps, respectively, evenly distributed within the interval [0, 1]. Addi-
tionally, the number of time steps of the backward process is required to be a divisor of that of the
forward process. We denote the interval between two neighboring time steps of the backward pro-
cess as dt = 1/Tinference. The DDPM [34] scheduler is employed to schedule the forward process
variances βt for each time step t = i/Ttrain, i = 1, 2, . . . , Ttrain:

βt = βmin +
i− 1

Ttrain − 1
(βmax − βmin) (5)

where βmin, βmax are hyper-parameters. Then we define αt = 1− βt and its cumulative product as
αt =

∏i
j=1 αj/Ttrain

. At each training step, αt is utilized to determine the magnitude of noise to
be added to the sample, as detailed in the main paper. At each inference step, we denoise a noisy
sample ĝtE into a less noisy sample ĝt−dt

E by solving the following ODE with t from 1 to 0:

ĝtE − ĝt−dt
E = dĝtE =

Ttrainβt

√
αt

2
√
1− αt

vΘ(ĝ
t
E , fs, t)dt (6)

Moreover, [38, 36] introduce a PDE to estimate the probability p(gE |fs):
∂ log p(ĝtE |fs)

∂t
= −Tr

(
∂v̄t
∂ĝtE

)
, where v̄t =

Ttrainβt

√
αt

2
√
1− αt

vΘ(ĝ
t
E , fs, t) (7)

Based on the above equation, we can approximate a sample’s probability p(gE |fs) with numerical
integration during the backward process. We rank each output g of the grasp generation module us-
ing a linear combination of the estimated probability p(gE |fs) of the wrist pose gE and the predicted
graspness GSs of the seed point s:

rank(g) = p(gE |fs) + ηGSs (8)
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Hyper-parameter Value Hyper-parameter Value Hyper-parameter Value
Scene in each Batch 8 Grasp in each Scene 64 Init LR 1e-3

LR Scheduler Cosine Iter 50000 Point Num 40000
Voxel side length 0.005 m ktrans 25 Ttrain 1000

Tinference 200 βmin 0.0001 βmin 0.02
λo 1 λg 1 λd 10
λθ 1 η 10

Table 11: Hyper-parameter Setup

Inference Speed and Memory Cost. Our model efficiently processes a scene point cloud com-
prising 40,000 points, generating 128 grasp poses and ranking them all within 0.5 seconds. The
maximum memory usage during this inference is approximately 3 GB. These evaluations were con-
ducted on an NVIDIA 4090 graphics card.

F Implementation Details for Parallel Grippers

F.1 Data Filtering and Refinement

As our generative model considers all grasping poses from the dataset as successful, and since the
original GraspNet-1Billion dataset [14] includes some imperfect poses, we introduce a data filtering
and refinement process before training. We retain only the grasping poses with a score of ≥ 0.9 to
ensure that all can successfully grasp the object with a friction coefficient of 0.2. To simplify motion
planning, we assume that all grasps can be achieved by moving along the approaching vector and
filtering out poses that would result in collisions during this movement. We also fix the depth to 4
cm and adjust the translation accordingly.

To handle poses that collide with the object and the table, we calculate the upper (u) and lower (l)
bounds of the distance between the fingers along the original approaching vector. If the distance
between any finger and the object is u − l < 1.5 cm, we discard the pose. We then uniformly
sample new finger positions from the adjusted lower bound l′ = l+ s and the adjusted upper bound
u′ = l′ +min(0.01, (u− l− 0.01)− 2s), where s = min(0.01, u−l−0.01

2 ). This ensures the fingers
maintain a safe distance from the object without being too far. Finally, we calculate the intersection
point of the object mesh and the new approaching vector, setting it as the seed point. Poses without
a valid seed point are filtered out.

F.2 Graspness Definition for Gripper

For parallel grippers, after we define the intersection point as the seed point, we assign the graspness
to nearby points with Eq. 3 and compute the total graspness for each point with Eq. 4, same as the
dexterous hand experiments.

F.3 Sampling Poses from Prediction

Given the variability in graspness among different objects, we developed a new sampling strategy to
maintain diversity and select high-quality grasping poses. First, we identify all seed points within
the top 1% for graspability. For each of these seed points, we collect all points within a 2 cm radius.
We then select the top 10% of these points based on graspability as new seed points and calculate
grasping poses with them.

F.4 Real-World Experiments

As a lot of the objects in the LEAP Hand’s experiment are too large for our parallel gripper, we use
different scenes in those two experiments as shown in Fig. 10.
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G Additional Visualizations

In Fig. 15 we present more scenes with the predictions of our network. All point clouds are colored
with a heatmap of model predicted graspness, with lighter color meaning higher graspness. Each
scene is also dubbed with the predicted grasping pose corresponding to the highest rank.

In Fig. 16 we show some renderings of test scenes composed of objects from ShapeNet [31].
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Figure 11: Number of per-object initial grasp poses. The proportion corresponding to valid grasps
after optimization is colored green.
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Figure 12: Valid Rate of single object grasp synthesis in sorted order. Yellow and Blue curves
present per-object valid rates for our force-closure-based optimization method (Sec.D.2.2) and
GWS-based optimization method (Sec.D.2.1), respectively. Averaged success rates are drawn in
dotted lines, with values 24.19% and 7.91% respectively.

Figure 13: Initial dexterous hand pose superimposed with gripper grasp label at the same grasp
point. We retarget gripper annotation in GraspNet-1Billion [14] to the initial 6D wrist pose of the
dexterous hand and use a predefined set of joint qpos for initialization.
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Figure 15: Gallery visualization of test scenes in our benchmark, corresponding to scenes 0100-
0159 in GraspNet-1Billion [14]. All point clouds are colored with a heatmap of model predicted
graspness, with lighter color meaning higher graspness. Each scene is also dubbed with the predicted
grasping pose corresponding to the highest rank.
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Figure 16: Test scenes composed of objects from ShapeNet [31].
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