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Abstract

Large language models (LLMs) exhibit excep-
tional performance across a variety of down-
stream tasks. However, they encounter limita-
tions due to slow inference speeds stemming
from their extensive parameters. The early
exit (EE) approach, involving obtaining results
from intermediate layers for each token before
reaching the final layer, offers a promising solu-
tion for accelerating auto-regressive decoding.
However, additional output layers and joint op-
timization used in conventional EE hinder the
application of EE in LLMs. In this paper, we
explore the possibility of LLMs EE without
additional output layers and joint optimization.
Our findings indicate that EE is a natural ca-
pability within Transformer-based models not
only within LLMs. While joint optimization
is not strictly necessary for EE capability, it
must be employed to address challenges by 1)
improving the accuracy of locating the optimal
EE layer through gating functions and 2) miti-
gating key-value copy issues. Additionally, our
study reveals patterns in EE behavior from sub-
word and part-of-speech perspective based on
the llama model, and the potential possibility
for EE based on sub-layers.

1 Introduction

Recently, large language models have witnessed
widespread adoption in Natural Language Process-
ing (NLP) (Brown et al., 2020; OpenAl, 2023; Tou-
vron et al., 2023a). Owing to their extensive pa-
rameter count, LL.Ms as decoder-only models ex-
hibit remarkable performance across various down-
stream tasks, including dialogue, question answer-
ing (QA), text summarization (TS), and even ma-
chine translation (MT) (Brown et al., 2020). As the
online utilization (OpenAl, 2023) and deployment
of LLMs (Touvron et al., 2023a; Workshop et al.,
2022; Zhang et al., 2022) become increasingly
prevalent, the substantial scale gives rise to chal-
lenges related to unaffordable computation costs
and latency during the generation process.

Facing the massive computation cost, inference
relies on part of layers in a model known as early
exit can make the inference faster and less ex-
pensive. The conventional early exit model adds
multiple additional output layers, which are often
called Internal Classifiers in ResNet, to the back-
bone model, as shown in Figl(a) and (b). Mean-
while, the additional output layer requires a careful
finetuning stage called joint optimization for good
performance (Teerapittayanon et al., 2016). This
early exit framework based on joint optimization
is widely used in the subsequent studies (Elbayad
et al., 2019; Schuster et al., 2021, 2022).

However, the aforementioned approach based
on the conventional early exit framework is well-
suited for relatively smaller models, while notably
inadequate for LLMs with billions of parameters
attributed to two key challenges: 1) Additional out-
put layers significantly increase the model parame-
ters. 2) Joint optimization for additional classifiers
and the backbone model is computationally expen-
sive and may degrade the ability of LLMs learned
from the pre-trained stage based on the previous
work (Xin et al., 2020, 2021).

Facing this challenge, a natural idea is to exit
from all layers consistently using the original fi-
nal output layer in LLMs and without joint op-
timization. We conducted experiments on the
LLaMAZ2 (Touvron et al., 2023b) model with sev-
eral test datasets, including WMT?22 in machine
translation, CNN Daily Mail in summarization,
NarrativeQA in question answering. We find that
at last 42.38% and maximum 65.56% token could
generate the same result as the final output when
exiting 10 layers before computing the last layer,
as illustrated in Table 1.

We also extend this experiment on the
Transformer-base and Bert models, yielding the
same conclusion. This result proves that the
Transformer-based model has the early exit capa-
bility inherently with the original final output layer,



Layers | WMT22 | CNN DM | NQA

total | 88.96 | 9483 |96.88
5 59.42 7572 | 81.86
10 42.38 59.19 | 65.56
15 18.96 2501 | 24.66
20 6.92 10.70 | 9.04

Table 1: Percent of tokens that can exit early to the
total tokens during the Llama-2-Chat-7B(with 32 layers)
reference. We note the CNN Daily Mail to CNN DM,
WMT22 to WMT, NarrativeQA to NQA for brevity.

and this capability does not rely on joint optimiza-
tion. However joint optimization is a critical factor
for early exit application, we observed that early
exit performs better with joint optimization, as it
reduces the difficulty for the gating function to find
the optimal early exit layer by improving the simi-
larity of distribution from each layer.

Additionally, we observed that early exit proves
to be challenging in LLMs due to the lack of lo-
calized attention information under auto-regressive
decoding. The conventional copy key-value opera-
tion helps alleviate error propagation during infer-
ence to some extent in relatively short sentences
but faces challenges for the long sentence inference
in LLMs.

our main contributions are listed as follows:

* We first propose that the early exit capability
is inherent in the Transformer-based model
and does not rely on joint optimization based
on extensive experiments.

* We investigated the impact of joint optimiza-
tion in early exit and noted that it contributes
to the gating function by enhancing the simi-
larity between the hidden states. Without joint
optimization, the early exit capability has not
disappeared, but an approximate early exit
layer is hard to find. Nevertheless, identifying
the early exit layer remains a challenging task
even with joint optimization.

» Early exit can be easily applicable in the
GLUE benchmark, but difficult in generation
tasks that rely on auto-regressive decoding.
Conventional copy key-value operation per-
forms well in short sentences but exhibits lim-
itations in LLMs in long sentence scenarios.

2 Related Work

Early Exit : Early exit (EE) is motivated by a
hypothesis that certain samples are easier to predict
and require less computation costs (Panda et al.,
2016; Schwartz et al., 2020; Elbayad et al., 2019).
Implemented within the framework of joint opti-
mization (Teerapittayanon et al., 2016), early exit
is applied to both Bert (Xin et al., 2020; Schwartz
et al., 2020) and Transformer (Elbayad et al., 2019)
models with a learnable depth estimator or esti-
mate the required depths in advance (Liu et al.,
2021). Although joint optimization leads a multi-
exit model(or called Once-for-All model (Cai et al.,
2019)), two notable weaknesses of this framework
are frequently addressed: 1) Joint optimization is
challenging, as the loss from early classifiers may
interfere with later classifiers. Some researchers
adapt dense connectivity (Huang et al., 2017) or
two-stage fine-tuning (Xin et al., 2020, 2021) to
fix this problem. 2) Early additional classifiers
may not output a good enough result. Facing this
problem, Liao et al. (2021) propose to combine
both the past and future states from early and fu-
ture layers to enhance current layer performance.
Zhou et al. (2020) determining exit layer by addi-
tional classifiers continuous output the same result
n times. Sun et al. (2021) boost performance
through ensemble methods involving multiple addi-
tional classifiers. Except for the impact of joint op-
timization, estimating the exit layer by comparing
confidence scores from the classifier and a hyperpa-
rameter threshold may not always yield satisfactory
results with additional classifiers. To overcome
this, Schuster et al. (2021, 2022) propose to em-
ploy conformal prediction for tuning the threshold
to achieve well-calibrated predictions. (Gao et al.,
2023) (Sun et al., 2022)

In the context of early exit research based on
LLMs, Kavehzadeh et al. (2023) proposes to re-
place the standard supervised fine-tuning in joint
optimization with sorted fine-tuning lead to a
more flexible LLaMa2 model based on the Sort-
edNet (Valipour et al., 2023). In the token-level
early exit scenario, where the previous token ex-
its earlier when generating the current token, a
copied Key-Value caching must be used for self-
attention for the current token(detail in 3.2). To
avoid copying Key-Value caching and effectively
use batched inference, Del Corro et al. (2023) pro-
poses to skip the early layer and exit only after the
final layer. Additionally, Bae et al. (2023) real-



izes a fast and robust early exit model by parallel
decoding (Leviathan et al., 2023) to avoid the KV
caching problem.

Saturation Events : Recently, a phenomenon
called saturation events has provided strong support
for early exit research, which the final output pre-
diction is consistently in the top-ranked prediction
launched by the Feed-Forward Networks (FFN)
in hidden layers and with increasing rank (Geva
et al., 2020). This implies that as the model uses
more layers, it gains more confidence, meanwhile
the correct output has already been predicted by
earlier layers, this phenomenon has motivated the
CALM (Schuster et al., 2022). Moreover, it raises
the possibility that the similarity between hidden
states or distributions from each layer could be
helpful for generating predictions (Chuang et al.,
2023). The saturation events have further motivated
us research on early exit, but it is worth noting
that we obtain the output after residual connection
not the FFN update (Geva et al., 2020), and we
found similar saturation events in various tasks and
transformer-based model. Additionally, we pay
more attention on could we find the early exit layer
under saturation events and do we need the joint
optimization.

3 Background

3.1 Large Language Models

Large language model constructed based on
Transformer decoder architecture with N
blocks (Vaswani et al., 2017), each block consists
of three sub-layers multi-head self-attention(attn),
feedforward network(ffn) and layer normalization,
which commonly based on the pre-norm archi-
tecture. The final hidden state of model can be
represented by hﬁna]iv = LNﬁna](hffniV ), in which:

hawnt = ATTN (gt 1) + bt ™' (D)
hffnf-i_1 = FFN(hatmf) + hattnfv 14 eN

Where, hffanrl is the /-th block output at the
t-th token, h{ is the output of block ¢ for token
t, for brevity we omitted all layer normalization
in model. Based on the hév , model will give a
prediction by an output layer called language model
head(Impeaq):

p(yfv ) = Softmax(W]T\,hﬁnaliV ) )

3.2 Early Exit

Training : The implementation of early exit
involves the attaching multiple additional classi-
fiers to the backbone model, commonly referred
to as the output layer in the Transformer model
or the language model head in LLMs. Then the
new model will be optimized by joint optimiza-
tion, wherein the sum of all loss functions is used
to collectively optimize both the additional out-
put layer and the backbone model, represented as
Loss = ZZ]\L 1 Loss;. However, this pipeline often
results in undesirable parameter growth and poses
challenges in the optimization process.

Inference : To obtain the ideal exit layer for each
token during the inference stage, most works de-
cide the exit layer by comparing a value derived
from the output layer with a threshold 7, which is
sensitive to the distribution output from each layer
and an additional fine-tuning stage.

* Confidence-based (Liao et al., 2021): Exit at
layer i when max p(y}) > 7.

* Entropy-based (Xin et al., 2020): Exit at layer
i when entropy(p(yi)) > 7.

e Patience-based (Zhou et al.,
2020): Exit at layer ¢ when
V{max p(y}), ..., maxp(y; ")} is the same
token(take Top-1 sampling for example).

During the inference stage, the model computes
layer by layer, and upon reaching the target exit
layer i, the model outputs the result p(y?) through
an additional output layer Impeag;.

Copying the KV Cache : While this flexible
strategy enhances potential decoding efficiency,
it introduces a significant challenge for auto-
regressive decoding. When we predict p(y!), self-
attention operation requires access to all Ki<_tl and
VZI. Unfortunately, a likely scenario arises where
some token s, s < t may exit at layer j(j <7 — 1),
implying that obtaining K%~ can only be based on
K;’ = K} or K;7 = ATTN(hg,?). This scenario
poses a challenge as it limits the availability of in-
formation for the auto-regressive decoding process.

3.3 Experimental Setup

We experiment on three types of Transformer-based
model, including the BERT and RoBERTa(encoder-
only) model, the Transformer-base(encoder-
decoder) model, and the Llama2(decoder-only)
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Figure 1: block saturation event based on the Llama-2-Chat-13B when doing translation task on WMT22-zh2en test
set, we found that the top-1 hypothesis is same with the final top-1 output far away from the final layer. Each token
is selected by greedy search based on the final layer output(Block,o in Figure) while showing the Top-5 output from

each block.

model. All experiments were conducted using
the Transformers and Fairseq toolkit based on the
GeForce RTX 3090 * 8, and A800 80GB * 4 only
for Llama?2 fine-tuning.

Dataset We select GLUE benchmark for bert-
like model and use toolkit glue_compute_metrics
for Acc/F1. For Transformer-base model we do
experiment on WMT14 DE2EN translation tasks
and compute BLEU and COMET following (Wang
et al., 2019; Zheng et al., 2023). For Llama model
we do experiment on three generation tasks in-
cluding WMT?22 translation tasks, CNN_DM, and
NarrativeQA, and we select COMET (Rei et al.,
2020) with Unbabel /wmt22-comet—-da and
ROUGE-L (Lin, 2004) as the metrics separately.

Model We verify the early exit capability on the
pre-trained backbone model and the pre-trained
model with joint optimization separately. The
backbone model training stage we follow the work
which is widely accepted! (Wang et al., 2019; El-
bayad et al., 2019). For joint optimization stage
we following (Teerapittayanon et al., 2016; Taori
et al., 2023) without additional output layer which
means we obtain output from each layer all based
on the final output layer. During decoding stage,
the prompt we used in LLMs is listed in A.2 and
select Top-k sampling for all generation tasks.

"https://github.com/huggingface/transformers/tree/v4.37.2
/examples/pytorch/text-classification

4 Early Exit in LLMs

Adding multiple internal output layers is a conven-
tional approach to implement an early exit model.
However, this approach is often hindered by sub-
stantial computation costs caused by joint optimiza-
tion and redundancy in model parameters, which
scale linearly with the vocabulary size and number
of layers in LLMs. Using the final output layer at
every exit position directly becomes a reasonable
alternative (Del Corro et al., 2023). Additionally,
early exit often involve constraining the number of
internal output layers (Kavehzadeh et al., 2023) or
setting a fixed exit points through methods such
as parallel decoding (Bae et al., 2023) in LLMs.
This challenge has motivated our interest in investi-
gating the compatibility of early exit with shared
and pre-trained final output layers without any fine-
tuning stage. Accordingly, we aim to find the op-
timal early exit layer, which represents the upper
boundary of early exit in LLMs.

Optimal Early Exit Layer To figure out
the early exit behavior and not interfer-
ence from other factors during decoding
stage. We use the Llama-2-7b-chat? and
Llama-2-13b-chat? model in ten language
pairs in WMT22 machine translation tests, Narra-
tiveQA in question answering, and CNN/DailyMail

“https://huggingface.co/meta-llama/Llama-2-7b-chat
3https://huggingface.co/meta-llama/Llama-2-13b-chat



in summarization tasks. under the following condi-
tions. We obtained outputs from all hidden layers
using Top-1 sampling after employing the shared
and pre-trained final output layer, and without joint
optimization. Meanwhile, we generate next token
based on the final layer output in each decoding
step, denoted as F(y} 1|0,y ). We naturally did
not copy KV Cache to future layers to prevent the
error propagation during auto-regressive decoding.
The optimal early exit layer was recognized when
the current layer output matched the final layer
output.

Results Remarkably, our experiments demon-
strate that the output of intermediate layers starts
to match the oracle final output before reaching the
final layer at last ten layers across various tasks2.
This matching is not limited to just top-1 hypothe-
ses, as illustrated by an example from the wmt22-
ZH2EN test shown in figurel (c). This observation
underscores the potential for early exit in LLMs
based on the shared final output layer without the
need for joint optimization.

4.1 Early Exit Capability in Various
Transformer-based Model

Our experiment reveals a vast and not utilized early
exit space to accelerate the decoding stage, particu-
larly for expensive auto-regressive generation tasks
based on the widely used Top-1 sampling in LLMs.
Motivate by this phenomenon, a nature question is
whether the phenomenon is universal or only occur
in decoder-only model like LL.Ms?

Experiment We investigate this universalization
based on multiple models and tasks which the
models have an entirely different structures. In-
cluding the Transformer-base model employed
in the WMT14-DE2EN machine translation task,
RoBERTa in the General Language Understanding
Evaluation (GLUE) benchmark.

Results We found the average early exit
layer(avg) and the token percentage that can early
exit(perc) based on the shared and pre-trained final
output layer is very stable across different models
and tasks, as shown in Table 3 and 9. This sug-
gests that the capability for early exit is a natural
feature inherent in pre-trained models and is not
exclusive to LLMs but also extends to Bert-like
models and Transformer models. Furthermore, the
phenomenon illustrated in Figurel (c), where the
final-right token consistently ranks up not only in

the Top-10 hypothetical list in each block but also
repeatedly at the Top-1 rank in many internal lay-
ers, appears to represent a stronger saturation phe-
nomenon(referred to as block saturation).
Which suggests a stronger consistency in the results
produced by each hidden layer that can be lever-
aged by distribution-sensitive gating functions.

WMT22
Model | layer COMET-22 [ avg | perc
7B 32 79.68\79.71 23.49 | 83.23%
13B 40 80.65\80.68 255 | 92.43%
CNN_DM
Model | layer Rough-I\-2VL | avg | perc
7B 32 20.39\8.07\19.76 | 21.11 | 94.83%
13B 40 20.45\8.12\19.82 | 24.29 | 64.45%
NarrativeQA
Model | layer Rough-I\-2V-L [ avg | perc
7B 32 25.16\11.05\23.84 | 20.67 | 96.88%
13B 40 | 24.83\11.05\23.62 | 2347 | 71.72%

Table 2: The optimal early exit layer in Llama-2-Chat-
7B(7B) and Llama-2-Chat-13B(13B). We report the
average result in wmt22 for simple, which avg is the av-
erage optimal early exit layer, and per is the percentage
of token which can early exit in all token. We list the
result in each language pair in detail at A.1.

Task | BLEU | COMET-22 | avg | perc | layer
WMT 26.75 83.86 4.92 | 57.25% 6-6
IWSLT | 32.18 70.53 4.18 | 80.01% | 6-6

Table 3: The optimal early exit layer for decoder in
Transformer-Base model on WMT 14 EN2DE(WMT)
and IWSLT14 DE2EN(IWSLT) based on Top-1 sam-

pling.

5 Can Early Exit Capability Be Used
Directly

Motivating Based on the early exit capability, a
natural question arises: 1) can we take advantage
of this capability directly to enhance decoding ef-
ficiency, and 2) can the gating function employed
in previous works accurately identify the earliest
layer. We experiment on GLUE benchmark based
on the bert and roberta model in a simpler decod-
ing scenario which not involve the kv cache copy
operation in auto-regressive decoding.

Experiment For fair comparison, we conducted
experiments based on the BERT and RoBERTa
model in the GLUE benchmark, which involves
tasks that do not follow auto-regressive decoding,



Model | layer | Metric | CoLA | MRPC | QNLI | QQP | RTE | MNLI | SST2
F1/Acc | 56.24(Mcc) | 91.28/88.23 93.09 91.32/88.50 | 72.56 87.76 94.26
RoBERTa 12 Avg 3.17 1.32 5.44 5.5 8 7.01 3.83
Perc 81.11% 100% 92.97% 99.82% 77.26% | 98.68% 100%
F1/Acc | 56.49(Mcc) | 87.32/82.60 91.61 91.12/88.07 70.03 84.87 92.88
BERT 12 Avg 3.11 2.88 2.87 2.04 4.34 6.46 4.67
Perc 93.1% 93.68% 99.65% 100% 96.39% | 93.4% | 99.77%
Table 4: The optimal early exit layer in roberta-base and BERT-base-uncased model.
Model | layer | Metric | CoLA | MRPC | QNLI | QQP | RTE | MNLI | SST-2
RoBERTa | 12 | Spd-up | 2.52x | 3.52x | 1.8x | 1.76x | 2.07x | 1.48x | 2.43x
BERT | 12 | Spd-up | 2.71x | 2.77x | 2.69x | 3.18x | 2.69x | 1.63x | 2.17x
Table 5: The saturation event in encoder-decoder model and encoder-only model.
such as classification tasks. In the case of gen- 5 4 Base (- Jointly
eration tasks, we adapt token-level early exit in = o
Transformer-base model and Llama2 model while 8 b y g X 4 4
avoiding the key-value copying operation. The £ 6 SOpE DX xg o xE opsx
backbone model was obtained following previous A 4 - o= - <l
works* (Wang et al., 2019; Elbayad et al., 2019) 5
and the model after joint optimization without ad-
ditional output layer follow the BranchyNet (Teer- CoLA MRPC QNLI QQP RTE MNLI SST2
GLUE Benchmark

apittayanon et al., 2016), with the loss defined as
Loss = Zfi ow; - Loss;. In terms of the gat-
ing function, we compare three types distribution-
sensitive gating functions which is not limited by
the model structure mentioned above.

Results In an ideal situation, exploiting the early
exit capability in the BERT-like model is notably
straightforward. Based on the optimal exit layer,
approximate 2x speedup can be achieved directly
on the pre-trained backbone model without any
modifications and performance degradation, result
presented in Table 5. However, we find identifying
the optimal early exit layer precisely is formidable
challenge. Based on three gating functions at the
optimal thresholds, we find the distance between
the early exit layer and the optimal exit layer in
the pre-trained model is greater than the model
after joint optimization, and using gating functions
directly in the pre-trained backbone model seems
unable to bring acceleration actually, as shown in
Fig 2.

*https://github.com/huggingface/transformers/tree/v4.37.2
/examples/pytorch/text-classification

Figure 2: The average distance and speed-up between
the optimal early exit layer and the exit layer from the
three gating functions in ROBERTa model(more details
in B.1). We constrain the performance of early exit
not less than 98% original model to obtain the optimal
threshold for gating functions.

5.1 Why is Joint Optimization Helpful for

Early Exit

Motivating While the distance and speed-up be-
tween the optimal early exit layer and the exit layer
from the gating function vary with the threshold,
we found the model with joint optimization always
leads a layer closer to the optimal early exit layer
not only in BERT-like modelB.1 but also in the
Transformer model and the Llama2 modelB.2 with
more experiments. This makes us curious about
why joint optimization is helpful for early exit.

Experiment We employ four distinct similarity
measures to assess the likeness of the hidden state
and the output distribution between each layer,
including Kullback-Leibler (KL) divergence and
Jensen-Shannon (JS) divergence for evaluating dis-
tribution similarity, while cosine similarity and
Pearson correlation coefficient are employed to
compute hidden state similarity.



Results Our observations reveal that the similar-
ity in hidden state exhibits no significant trend after
joint optimization. In contrast, there is a notable
and intuitive increase in the similarity of output
distributions across layers, which shown as Fig3.
This reinforcement in distribution similarity en-
hances the consistency of output results, partic-
ularly in classification tasks with fewer category
labels. Meanwhile, this distribution with more sim-
ilarity drives a closer confidence level which more
benefit to finding sufficiently confident outputs by
fixing thresholds, shown as Fig3. This underscores
the dependency of the distribution-sensitive gat-
ing functions on joint optimization. Additionally,
we note a reduction in the average early exit layer
when model with joint optimization.

Backbone model Joint optimization
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Figure 3: Example for cosine similarity of hidden
state(up) and Js divergence of distribution (down) be-
tween each layer on same sentence.
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Figure 4: The average confidence score between each
layer over all sample in the GLUE benchmark based on
the RoBERTa model.

6 Saturation Events for Early Exit in
LLMs

Motivating Although finding the optimal early
exit layer is challenging directly on the pre-trained
transformer-based model, it becomes easier after
joint optimization. Consequently, we explore could
the early exit capacity lead a actual acceleration
effect in the token-level early exit scenario based
on the joint optimization further.

Experiment We fine-tuning the Llama2 model
based on the joint optimization following (Taori
et al., 2023). Following the describe in the sec
3.2, token-level early exit for generation tasks
need copy kv cache. We execute two type of kv
cache including copy kv cache directly (Elbayad
et al., 2019), copy hffnf_1 and recompute K and
V (Schuster et al., 2022).

Results In the token-level early exit scenario, our
observations indicate that early exit based on the
optimal early exit layer is effective for shorter sen-
tences. It successfully yields correct target sen-
tences at notably low exit layers when recomputing
the key-value (kv) cache. However, the direct copy-
ing of the kv cache tends to lead the model into
local optima, even with joint optimization, as il-
lustrated in Table 10. Notably, as the model starts
early exit, the occurrence of local optima becomes
more frequent with the target sentence length in-
creases. Once fall into the local optima, generating
the desired hypothesis becomes challenging, and
the local optima is hard to avoids by existing copy
kv methods11.

6.1 Trend In the Optimal Early Exit Layer

We conducted a statistical analysis of the optimal
early exit layer under varying output lengths, as
illustrated in Fig. 5. Our observations revealed a
gradual decline in the optimal early exit layer with
an increase in the length of the output sequence,
particularly notable in the shorter sentences. This
pattern suggests a potential reduction in the diffi-
culty of generation, consistent with the decreasing
loss presented in (Del Corro et al., 2023). However,
beyond a certain length, the optimal early exit layer
exhibited a slow and more unsteady descent.

To understand the reasons behind the observed
unsteady patterns, we conducted a detailed analysis
from both sub-word and part-of-speech perspec-
tive. A notable trend emerged in the X-to-English
translation direction: Approximately 12% of to-



SRC

Die Ware hat unter 20 Euro gekostet.

hypothesis optimal early exit layer
7B The item cost less than 20 euros.</s> [31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31]
7B-d The item cost less than 20 ew- (31, 31, 31, 31, 6, 28, 17, 16, 20, 31, 20, 30,
phemia.</s> 15]
TB-c The item cost less than 20 euros.</s>  [31, 31, 31, 31, 6, 29, 17, 9, 16, 1, 22, 13]
7B-j The item cost less than 20 euros.</s> [31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31]
7B-j-d  The item cost less than 20,0 - notes, [31, 31, 31, 31, 4, 15, 6, 6, 30, 4, 21, 31, 29,
your chadge, a, and a more, and. . . 31, 31, 30, 31, 18, 8, 31, 15, 9, 31, 31, 15,...]
7B-j-c  The item cost less than 20 euros.</s> (31, 31, 31, 31, 4, 7, 6, 6, 16, 1, 11, 7]

Table 6: Token-level early exit result and exit layer of Llama-2-Chat-7B(7B) with(-J) and without joint optimization
on WMT22-DE2EN test set, under the constraint that early exit only after the 4-th token is generated. For copy kv
operation, we represent directly copy as -d and recompute as -c.
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Figure 5: The relationship between the average early
exit layer and sequence length based on the Llama-2-
Chat-13B model in WMT?22 translation tasks.

kens contribute to forming a complete word in all
decoding tokens, and the first part of a word tends
to exit in deeper layers, while the remaining part
exits earlier, as illustrated in . Concurrently, our
examination identified distinctions among various
part-of-speech categories, as illustrated in . These
result underscores the potential for discerning early
exit layers from a linguistic standpoint.

6.2 Early Exit and Sub-layer

We also attempt to extract the output from sub-
layers, ffn module and the attn module, inspired
by relevant literature (Geva et al., 2022). Our find-
ings indicate that both the confidence score and
the output token within top-10 hypotheses from
skip connection is stable. Conversely, the top-10
hypotheses from module consistently demonstrate
substantial variations and notably smaller confi-
dence scores compared to the skip connection, as
depicted in Fig 6(An example in C.3). This can
be approximated as the primary hypotheses being
preserved in the skip connect, while the residual
branch incrementally incorporates the most confi-
dent hypotheses into the primary branch layer by
layer according to (Geva et al., 2022), while we

[ [ [ I
0.80 ATTN(hgp 1)
£2—1
hep
[ £
§ 0.60 FFN(hauny )
ﬁ - hannf
241
8 hffnt+
O 0.40
®
<
=
0.20

4 8 12 16 20 24 28 32
Layer

Figure 6: the Top-10 hypothesis launched by sub-layer
in WMT22DE2EN.

must omit the Softmax operation.
Wihi = WUF(hy™!) + Wihi' (3)

Further, we decode the same token and keep the
decoding process exactly same with Figure 1 (c),
and enumerated all top-10 hypotheses from each
layer, as shown in Table 10. We find the consistent
top-1 hypothesis not only within the block output
but also across the skip connection.

7 Conclusion

Based on previous experiments, we found 1) the
early exit is a natural capacity within Transformer-
based models. However, leveraging this capability
directly proves challenging. 2) The joint optimiza-
tion approach reduces the optimal early exit layer
searching difficulty by improving the hidden sim-
ilarity. 3) While copy kv operations demonstrate
efficacy in short sentences, their performance sig-
nificantly diminishes when confronted with longer
sentences. 4) Early exit based on the sub-word and
sub-layer has the potential work will in the LLM:s.



8 Limitations

While we do extensive experimentation with the
Llama model, our research is currently constrained
by the limitations of our available equipment,
which has restricted us to a finite set of models. We
look forward to expanding our experiment across a
broader range of models in more resource scenar-
ios, ensuring that our findings can be generalized
to a wider array of environments.
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A Detailed Experimental

A.1 LLaMa2 Translation Result in WMT22
Testset

We list the LLaMa2 translation result on the
WMT?22 test set in detail based on the template
8, shown as Table 7

Model | Llama7B | Llamal3B
Total layer | 32 | 40
acc 86.53\87.2 | 87.16\87.85
DE—EN | avg 22.44 22.62
perc 92.97 96.5
acc 76.62 79.31
DE—FR | avg 24.67 26.74
perc 88.62 93.04
acc | 79.97\79.86 | 81.86\81.57
EN—DE | avg 24.47 26.96
perc 88.46 92.42
acc 74.56 73.69
EN—JA | avg 23.34 25.39
perc 85.44 89.6
acc 77.65 77.24
EN—RU | avg 24.35 26.81
perc 85.1 89.64
acc | 77.47\78.48 | 77.11\78.15
EN—ZH | avg 23.12 26.57
perc 85.16 87.64
acc 77.31 80.57
FR—DE | avg 24.42 26.71
perc 89.36 92.75
acc 80.31 81.49
JA—EN | avg 22.75 25.05
perc 91.65 93.95
acc 85.81 86.51
RU—EN | avg 22.6 23.73
perc 92.06 95.19
acc | 80.54\79.28 | 81.59\80.42
ZH—EN | avg 22.8 24.45
perc 90.83 94.29

Table 7: Detailed result in WMT?22 translation task,
acc is the accuracy of predicting compared with ref. A
\ref.B, and we use comet as evaluation metric based on
the Unbabel/wmt22-comet—-da. avg and perc
present the average minimal early exit layer per token
and the percent of all decoding tokens which arise sat-
uration event. We note Llama-2-Chat-7B as Llama7B,
Llama-2-Chat-13B as Llamal3B, Bigtranslation as big-
trans for simple.

A.2 Template For LLaMa2 Inference

We use the template list in Tabel 8. To verify our de-
coding experiment we try the ALMA style prompt
and keep all other setting, and we got the same
result with the LLaMA-2-7B(zero-shot) reported

11

in paper (Xu et al., 2023), and we obtain the same
result with the paper. In our experiment, we only
change the demonstration in our prompt and not
change other hypoparameters.

B Result Of Gating Function on the
Backbone model

B.1 BERT And RoBERTa Model

we shown the distance and speed-up between the
optimal early exit layer and the exit layer in detail,
the threshold chosen to constrain the performance
of early exit not less than 98% of the original model,
is illustrated in Fig 7 and 8. Across almost all tasks,
joint optimization significant enhances the accuracy
of the gating function by improving the similarity
of distribution output from each layer. While the
gap is relatively small in the patience-based gating
function, this can be attributed to the gating func-
tion exiting only at n-th continuous layer, which
yields the same result, leading to a deeper exit layer
and a more accurate result normally. Additionally,
a noteworthy observation is the decline in the aver-
age optimal early exit layer across most tasks after
joint optimization, signifying an improvement in
the upper bound of early exit.

B.2 Transformer And LLaMa2 Model

We performed the same experiment on Transformer
and LLaMa2 model described as B.1.

C Trend In The Optimal Early Exit Layer

C.1 Sub-word
C.2 Part-of-speech
C.3 Top-10 Hypotheses From Sub-layer And

Module

We decode the same token and keep the decoding
process exactly same with Figure 1 (¢), and enumer-
ated all top-10 hypotheses from each layer which
consistently producing the same top-1 output as
the final layer, as shown in Table 10. We find the
consistent top-1 hypothesis from 20-th layer to 40-
th layer, not only within the block output but also
across the skip connection. However, the final out-
put _fields rarely surfaced in the top-10 hypotheses
from the module output, but it appear occasionally
and improve the rank of final output in the top-10
hypotheses like the _fields in FEN (hy2?).

D Copy KV Cache In longer sentence



Tasks System Prompt

### Instruction:
Translate src to tgt:

Translation ### Input:
real input

### Response:

### Instruction:
Summarize the following article to a sentence:

Summarization ### Input:
real input

### Response:

### Instruction: I will provide a context and a question to you. You need
to answer me the question based on the context.

. . ### Context: The context
Question Answering

### Question: Question

### Answer:

Table 8: Prompts for generation task. For translation tasks, src and tgt is select from {English, Chinese, German,
Russian, French, Japanese}, and the real input is the sentence to be translated

Base Jointly
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8 6 xZ 27 8 86 ~— x- = & @ 3 6 “pigs Bs-R-
£ DX XX T X T £ TUxxx T x xXT £ N BN =
Z - 8 I8p2s & zZ L5l sgpgs8l sz -
A 4 a S ZeanSs R o4 N D A=
2 2 2
> L O R > D > L O R > D > L O R 3 <D
o é@g Q@/ F qs(o §@\z %%«Q oM ﬁ\qg Qé\) F qs?z V&\/ %%& e ﬁ\qg Qé\z F qs(o §@\/ %‘5&
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Figure 7: Roberta model.
Base Jointly
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Figure 8: Bert model.
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Model | RoBERTa(12) | BERT(12)

Perc Perc

Metric | Avg Avg

CoLA | 3.17->2.26 | 81.11% ->99.90% | 3.11->2.40 | 93.10% -> 99.90%
MRPC | 1.32->294 | 100.0% ->99.88% | 2.88 ->2.21 | 93.68% -> 99.83%
QNLI | 5.44->2.27 | 92.97% ->99.96% | 2.87 ->1.93 | 99.65% -> 99.80%
QQP 5.50->1.83 | 99.82% ->99.99% | 2.04 ->1.62 | 100.0% -> 99.95%
RTE 8.00->3.92 | 77.26% ->99.64% | 3.60 ->1.62 | 96.39% ->99.28%
MNLI | 7.01 ->2.75 | 98.68% ->99.96% | 6.46 ->2.35 | 93.40% -> 99.84%
SST-2 | 3.83->2.34 | 100.0% ->99.77% | 4.67 ->1.58 | 99.77% -> 100.0%

Table 9: The optimal early exit layer in roberta-base and BERT-base-uncased after joint optimization.

Base Jointly
x x %
= © Q
- - X X
1.5 X 1.5 X 1.5 x g S
8 = 8 = 8 s - -
=] =] =] -
g 1.0 g 1.0 N g 1.0
a 5 s a 2 g a
< v 2
0.5 " “ 0.5 " 0.5
WMT IWSLT WMT IWSLT WMT IWSLT
Confidence-based gating function Confidence-based gating function Confidence-based gating function

Figure 9: Transformer-base model follow DLCL (Wang et al., 2019) on the WMT14-EN2DE and DAT (Elbayad
et al., 2019) on the IWSLT14-DE2EN.
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Confidence-based gating function Confidence-based gating function Confidence-based gating function
Figure 10: LLaMa2 model on the WMT22 test set.
Prefix Suffixes Percent
36
32
28
= 24
8
B 20
“
z
212
8
4
DE2EN DE2FR EN2DE EN2RU FR2DE JA2EN RU2EN ZH2EN

WMT?22 General Machine Translation Task

Figure 11: Translation result of LLaMa2 model on the WMT22 test set. We use prefix to represent the initial segment
of a word and suffixes for the remaining part. Percent indicates the percentage of this phenomenon occurrences in

relation to all tokens.
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Exit position ~ Top-10 hypotheses

hffnfo _fields, _areas, _discipl, _domains, _inter, fields, _field, _subjects, _major, _indust
han?® _fields, _areas, _discipl, _inter, _field, fields, _major, _se, _domains, _subjects
FFN(ha[me) <s>, _edific, textt, _departamento, metros, _religios, _communes, , _interfaces, Portail
hg, 50 _fields, _areas, _discipl, _inter, fields, _field, _domains, _major, _subjects, _se

ATTN(hg5°)  <0x0A>, ,, _, -, ., _and, _(, _the, _in, _C

hi, 50 _fields, _areas, _discipl, _inter, fields, _field, _domains, _major, _subjects, _se

han?? _fields, _areas, _discipl, _field, fields, _domains, _inter, _subjects, _major, _maj
FFN(han??) A, _(, _C,<0x0A>, R, just, in, g, G

hffnf’8 _fields, _areas, _discipl, _field, fields, _domains, _inter, _subjects, _major, _maj
ATTN(h¢,3%) ..., _.., _.,_, _covering, _cover,,, _and, _coverage, _..

hyp, 73 _fields, _areas, _field, _discipl, _categories, fields, _dici, _domains, _subjects, _topics
halmf?’ _fields, _areas, _field, _categories, _discipl, _domains, fields, Fields, _topics, _dici
FFN (hyn:?) _subject, aban, _rising, _fields, engo, enten, gew, chten, _nich, _branches

hym?? _areas, _fields, _discipl, _categories, _domains, _area, _topics, _aspects, _dici, _major

ATTN(hffnfz) _field, _fields, _Field, Field, fields, field, Fields, _research, _, _campo

hg, 2° _fields, _areas, _aspects, _major, _categories, _topics, _discipl, _types, _subjects, _area
hin?? _areas, _fields, _aspects, _topics, _subjects, _categories, _major, _discipl, _types, _area
FFN(ha[me) yl, _natural, _str, _kind, _pure, _proven, _un, _extreme, _underlying, _flav

h? _areas, _fields, _aspects, _topics, _categories, _subjects, _types, _major, _discipl, _area

ATTN(hf(n% 9) _territ, _fields, _field, cipl, _sector, _discipline, _territory, sci, _domains, _indust

Table 10: Top-10 hypotheses from block output hffnf+1, ffn module FFN(hatmf), attn module ATTN(hffnffl) and
skip connect hatmf, hffnf_1 based on the final output layer.
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SRC

Denn falls tatséichlich etwas passieren sollte wie ein Brand, Einbruch,
Erdbeben, Alieninvasion etc. wiire es tatsichlich zu viel Verantwor-
tung fiir K1, sich um K2 zu kiimmern.

hypothesis optimal early exit layer
7B-d If something were to happen likea (31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31,
fire, burglary, earthquake, or alien 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31,
invasion, it would be too much re- 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31,
sponsibility for K1 to take care of 31, 31, 31]
K2.</s>
7B-d If something were to happen likea [31, 31, 31, 31, 5, 16, 26, 21, 16, 30, 31, 29,
fire, a break-in, an earthquake, an 28, 19, 29, 16, 14, 18, 26, 26, 26, 31, 30, 29,
aldeorrde2-20220-20086; a pre-lift- 31, 30, 30, 30, 28, 29, 31, 29, 31, 31, 30, 29,
de-20086; a pre-lift-de-41 M-de-41 29, 31, 29, 31, 29, 31, 31, 26, 28, 31, 31, 30,
M-de-41 M-de-41 M-de-41, by 4 M- 29, 18, 14, 27, 16, 31, 22, 30, 27, 12, 17, 12,
de-m-lam-lam-lam-lam-lam-lam- 30, 31, 29, 30, 29, 12, 29, 31, 28, 26, 29, 15,
lam-lam-m-m-m-m-m-m-m-m- 28, 28, 28, 17, 28, 12, 28, 28, 28, 17, 28, 11,
28, 19, 31, 30, 31, 30, 29, 29, 29, 14, 29, 30,
30, 31, 31, 30, 30, 15, 31, 29, 31, 29, 31, 29,
31, 14, 31, 13, 29, 27, 28, 13, 28, 17, 28, 1o,
26, 15, 28, 17, 28, 17, 28, 17]
7B-c If something were to happen likea [31, 31, 31, 31, 5, 16, 26, 16, 16, 31, 10, 22,
fire, theft, earthquake, or alien inva- 16, 15, 19, 31, 18, 24, 0, 1le6, 30, 17, 13, 22,
sion, it would be too much for Klelo 15, 1, 30, 19, 17, 30, 30, 30, 29, 0, 24, 24, 1e,
to take care of K2 inoculation.i</s> 30, 31, 29, 29, 31, 27]
7B-j If something were to happen likea [31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31,
fire, break-in, earthquake, or alien 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31,
invasion, it would be too much re- 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31,
sponsibility for K1 to take care of 31, 31, 31]
K2.</s>
7B-j-d  If something were to happen likea [31, 31, 31, 31, 5, 12, 7, 31, 29, 31, 26, 31,
"bright" - a Br. in-turn-in-k-bene 7, 30, 30, 31, 20, 27, 18, 20, 7, 24, 30, 31, 31,
2166 (m bu bu 11/tre bu bu-d bu-/M. 24, 22, 31, 15, 31, 31, 27, 31, 30, 22, 7, 31,
(M. (M. (as (c. (M. (c. (c. (c. (c. (c. 27, 29, 29, 29, 31, 29, 31, 9, 31, 27, 31, 23,
(c.(caccaccccacacacaca 27, 30, 7, 19, 7, 7, 31, 31, 31, 31, 7, 30, 7,
cacacacacacacagluntherat. 6, 11, 7, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
Theraat. at. 6, 7, 6, 6, 31, 28, 31, 29, 31, 27, 28, 28, 28,
31, 6, 31, 6, 31, 6, 31, 6, 31, 6, 31, 6, 31, o,
31, 6, 31, 6, 31, 6, 31, 6, 10, 31, 31, 31, 31,
29, 31, 31, 31, 27, 29, 31, 31, 29, 30]
7B-j-c  If something were to happen like (31, 31, 31, 31, 5, 16, 7, 10, 7, 7, 31, 31, 8,
a fire, a (catastrophic) alien inva- 2, 2, 8, 31, o, 7, 7, 15, 23, 5, 30, 30, 30, 13,
sion, (a)n (alien) invasion, (a)nd (al 7, 15, 7, 6, 6, 4, 24, 7, 8, 31, 12, 15, 29, 30,
(alien), (al (al), (al (al), (al (al), (al 12, 31, 9, 31, 6, 12, 17, 9, 7, 6, 12, 7, 9, 17,
(al), (al (al), (al (al), (al (al), (al (al), 6, 2112, 7, 9, 7, 6, 11, 7, 9, 7, 6, 11, 7, 9, 7,
(al (al), (al (al).</s> 6, 11, 7, 9, 7, 6, 11, 7, 9, 7, 6, 11, 7, 9, 17,
6, 11, 7, 9, 27, 7]
Table 11: Token-level early exit result and exit layer of Llama-2-Chat-7B(7B) with(-J) and without joint optimization

on WMT22-DE2EN test set, under the constraint that early exit only after the 4-th token is generated. For copy kv
operation, we represent directly copy as -d and recompute as -c.
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