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Abstract
Large language models (LLMs) exhibit excep-001
tional performance across a variety of down-002
stream tasks. However, they encounter limita-003
tions due to slow inference speeds stemming004
from their extensive parameters. The early005
exit (EE) approach, involving obtaining results006
from intermediate layers for each token before007
reaching the final layer, offers a promising solu-008
tion for accelerating auto-regressive decoding.009
However, additional output layers and joint op-010
timization used in conventional EE hinder the011
application of EE in LLMs. In this paper, we012
explore the possibility of LLMs EE without013
additional output layers and joint optimization.014
Our findings indicate that EE is a natural ca-015
pability within Transformer-based models not016
only within LLMs. While joint optimization017
is not strictly necessary for EE capability, it018
must be employed to address challenges by 1)019
improving the accuracy of locating the optimal020
EE layer through gating functions and 2) miti-021
gating key-value copy issues. Additionally, our022
study reveals patterns in EE behavior from sub-023
word and part-of-speech perspective based on024
the llama model, and the potential possibility025
for EE based on sub-layers.026

1 Introduction027

Recently, large language models have witnessed028

widespread adoption in Natural Language Process-029

ing (NLP) (Brown et al., 2020; OpenAI, 2023; Tou-030

vron et al., 2023a). Owing to their extensive pa-031

rameter count, LLMs as decoder-only models ex-032

hibit remarkable performance across various down-033

stream tasks, including dialogue, question answer-034

ing (QA), text summarization (TS), and even ma-035

chine translation (MT) (Brown et al., 2020). As the036

online utilization (OpenAI, 2023) and deployment037

of LLMs (Touvron et al., 2023a; Workshop et al.,038

2022; Zhang et al., 2022) become increasingly039

prevalent, the substantial scale gives rise to chal-040

lenges related to unaffordable computation costs041

and latency during the generation process.042

Facing the massive computation cost, inference 043

relies on part of layers in a model known as early 044

exit can make the inference faster and less ex- 045

pensive. The conventional early exit model adds 046

multiple additional output layers, which are often 047

called Internal Classifiers in ResNet, to the back- 048

bone model, as shown in Fig1(a) and (b). Mean- 049

while, the additional output layer requires a careful 050

finetuning stage called joint optimization for good 051

performance (Teerapittayanon et al., 2016). This 052

early exit framework based on joint optimization 053

is widely used in the subsequent studies (Elbayad 054

et al., 2019; Schuster et al., 2021, 2022). 055

However, the aforementioned approach based 056

on the conventional early exit framework is well- 057

suited for relatively smaller models, while notably 058

inadequate for LLMs with billions of parameters 059

attributed to two key challenges: 1) Additional out- 060

put layers significantly increase the model parame- 061

ters. 2) Joint optimization for additional classifiers 062

and the backbone model is computationally expen- 063

sive and may degrade the ability of LLMs learned 064

from the pre-trained stage based on the previous 065

work (Xin et al., 2020, 2021). 066

Facing this challenge, a natural idea is to exit 067

from all layers consistently using the original fi- 068

nal output layer in LLMs and without joint op- 069

timization. We conducted experiments on the 070

LLaMA2 (Touvron et al., 2023b) model with sev- 071

eral test datasets, including WMT22 in machine 072

translation, CNN Daily Mail in summarization, 073

NarrativeQA in question answering. We find that 074

at last 42.38% and maximum 65.56% token could 075

generate the same result as the final output when 076

exiting 10 layers before computing the last layer, 077

as illustrated in Table 1. 078

We also extend this experiment on the 079

Transformer-base and Bert models, yielding the 080

same conclusion. This result proves that the 081

Transformer-based model has the early exit capa- 082

bility inherently with the original final output layer, 083
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Layers WMT22 CNN DM NQA

total 88.96 94.83 96.88

5 59.42 75.72 81.86
10 42.38 59.19 65.56
15 18.96 25.01 24.66
20 6.92 10.70 9.04

Table 1: Percent of tokens that can exit early to the
total tokens during the Llama-2-Chat-7B(with 32 layers)
reference. We note the CNN Daily Mail to CNN DM,
WMT22 to WMT, NarrativeQA to NQA for brevity.

and this capability does not rely on joint optimiza-084

tion. However joint optimization is a critical factor085

for early exit application, we observed that early086

exit performs better with joint optimization, as it087

reduces the difficulty for the gating function to find088

the optimal early exit layer by improving the simi-089

larity of distribution from each layer.090

Additionally, we observed that early exit proves091

to be challenging in LLMs due to the lack of lo-092

calized attention information under auto-regressive093

decoding. The conventional copy key-value opera-094

tion helps alleviate error propagation during infer-095

ence to some extent in relatively short sentences096

but faces challenges for the long sentence inference097

in LLMs.098

our main contributions are listed as follows:099

• We first propose that the early exit capability100

is inherent in the Transformer-based model101

and does not rely on joint optimization based102

on extensive experiments.103

• We investigated the impact of joint optimiza-104

tion in early exit and noted that it contributes105

to the gating function by enhancing the simi-106

larity between the hidden states. Without joint107

optimization, the early exit capability has not108

disappeared, but an approximate early exit109

layer is hard to find. Nevertheless, identifying110

the early exit layer remains a challenging task111

even with joint optimization.112

• Early exit can be easily applicable in the113

GLUE benchmark, but difficult in generation114

tasks that rely on auto-regressive decoding.115

Conventional copy key-value operation per-116

forms well in short sentences but exhibits lim-117

itations in LLMs in long sentence scenarios.118

2 Related Work 119

Early Exit : Early exit (EE) is motivated by a 120

hypothesis that certain samples are easier to predict 121

and require less computation costs (Panda et al., 122

2016; Schwartz et al., 2020; Elbayad et al., 2019). 123

Implemented within the framework of joint opti- 124

mization (Teerapittayanon et al., 2016), early exit 125

is applied to both Bert (Xin et al., 2020; Schwartz 126

et al., 2020) and Transformer (Elbayad et al., 2019) 127

models with a learnable depth estimator or esti- 128

mate the required depths in advance (Liu et al., 129

2021). Although joint optimization leads a multi- 130

exit model(or called Once-for-All model (Cai et al., 131

2019)), two notable weaknesses of this framework 132

are frequently addressed: 1) Joint optimization is 133

challenging, as the loss from early classifiers may 134

interfere with later classifiers. Some researchers 135

adapt dense connectivity (Huang et al., 2017) or 136

two-stage fine-tuning (Xin et al., 2020, 2021) to 137

fix this problem. 2) Early additional classifiers 138

may not output a good enough result. Facing this 139

problem, Liao et al. (2021) propose to combine 140

both the past and future states from early and fu- 141

ture layers to enhance current layer performance. 142

Zhou et al. (2020) determining exit layer by addi- 143

tional classifiers continuous output the same result 144

n times. Sun et al. (2021) boost performance 145

through ensemble methods involving multiple addi- 146

tional classifiers. Except for the impact of joint op- 147

timization, estimating the exit layer by comparing 148

confidence scores from the classifier and a hyperpa- 149

rameter threshold may not always yield satisfactory 150

results with additional classifiers. To overcome 151

this, Schuster et al. (2021, 2022) propose to em- 152

ploy conformal prediction for tuning the threshold 153

to achieve well-calibrated predictions. (Gao et al., 154

2023) (Sun et al., 2022) 155

In the context of early exit research based on 156

LLMs, Kavehzadeh et al. (2023) proposes to re- 157

place the standard supervised fine-tuning in joint 158

optimization with sorted fine-tuning lead to a 159

more flexible LLaMa2 model based on the Sort- 160

edNet (Valipour et al., 2023). In the token-level 161

early exit scenario, where the previous token ex- 162

its earlier when generating the current token, a 163

copied Key-Value caching must be used for self- 164

attention for the current token(detail in 3.2). To 165

avoid copying Key-Value caching and effectively 166

use batched inference, Del Corro et al. (2023) pro- 167

poses to skip the early layer and exit only after the 168

final layer. Additionally, Bae et al. (2023) real- 169
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izes a fast and robust early exit model by parallel170

decoding (Leviathan et al., 2023) to avoid the KV171

caching problem.172

Saturation Events : Recently, a phenomenon173

called saturation events has provided strong support174

for early exit research, which the final output pre-175

diction is consistently in the top-ranked prediction176

launched by the Feed-Forward Networks (FFN)177

in hidden layers and with increasing rank (Geva178

et al., 2020). This implies that as the model uses179

more layers, it gains more confidence, meanwhile180

the correct output has already been predicted by181

earlier layers, this phenomenon has motivated the182

CALM (Schuster et al., 2022). Moreover, it raises183

the possibility that the similarity between hidden184

states or distributions from each layer could be185

helpful for generating predictions (Chuang et al.,186

2023). The saturation events have further motivated187

us research on early exit, but it is worth noting188

that we obtain the output after residual connection189

not the FFN update (Geva et al., 2020), and we190

found similar saturation events in various tasks and191

transformer-based model. Additionally, we pay192

more attention on could we find the early exit layer193

under saturation events and do we need the joint194

optimization.195

3 Background196

3.1 Large Language Models197

Large language model constructed based on198

Transformer decoder architecture with N199

blocks (Vaswani et al., 2017), each block consists200

of three sub-layers multi-head self-attention(attn),201

feedforward network(ffn) and layer normalization,202

which commonly based on the pre-norm archi-203

tecture. The final hidden state of model can be204

represented by hfinal
N
t = LNfinal(hffn

N
t ), in which:205

hattn
ℓ
t = ATTN(hffn

ℓ−1
t ) + hffn

ℓ−1
t (1)206

hffn
ℓ+1
t = FFN(hattn

ℓ
t) + hattn

ℓ
t, ℓ ∈ N207

Where, hffn
ℓ+1
t is the ℓ-th block output at the208

t-th token, hℓ
t is the output of block ℓ for token209

t, for brevity we omitted all layer normalization210

in model. Based on the hN
t , model will give a211

prediction by an output layer called language model212

head(lmhead):213

p(yNt ) = Softmax(W⊺
Nhfinal

N
t ) (2)214

3.2 Early Exit 215

Training : The implementation of early exit 216

involves the attaching multiple additional classi- 217

fiers to the backbone model, commonly referred 218

to as the output layer in the Transformer model 219

or the language model head in LLMs. Then the 220

new model will be optimized by joint optimiza- 221

tion, wherein the sum of all loss functions is used 222

to collectively optimize both the additional out- 223

put layer and the backbone model, represented as 224

Loss =
∑N

i=1 Lossi. However, this pipeline often 225

results in undesirable parameter growth and poses 226

challenges in the optimization process. 227

Inference : To obtain the ideal exit layer for each 228

token during the inference stage, most works de- 229

cide the exit layer by comparing a value derived 230

from the output layer with a threshold τ , which is 231

sensitive to the distribution output from each layer 232

and an additional fine-tuning stage. 233

• Confidence-based (Liao et al., 2021): Exit at 234

layer i when max p(yit) > τ . 235

• Entropy-based (Xin et al., 2020): Exit at layer 236

i when entropy(p(yit)) > τ . 237

• Patience-based (Zhou et al., 238

2020): Exit at layer i when 239

∀{max p(yit), . . . ,max p(yi−τ
t )} is the same 240

token(take Top-1 sampling for example). 241

During the inference stage, the model computes 242

layer by layer, and upon reaching the target exit 243

layer i, the model outputs the result p(yit) through 244

an additional output layer lmheadi. 245

Copying the KV Cache : While this flexible 246

strategy enhances potential decoding efficiency, 247

it introduces a significant challenge for auto- 248

regressive decoding. When we predict p(yit), self- 249

attention operation requires access to all Ki−1
<t and 250

Vi−1
<t . Unfortunately, a likely scenario arises where 251

some token s, s < t may exit at layer j(j < i− 1), 252

implying that obtaining Ki−1
s can only be based on 253

K>j
s = Kj

s or K>j
s = ATTN(hffn

j
s). This scenario 254

poses a challenge as it limits the availability of in- 255

formation for the auto-regressive decoding process. 256

3.3 Experimental Setup 257

We experiment on three types of Transformer-based 258

model, including the BERT and RoBERTa(encoder- 259

only) model, the Transformer-base(encoder- 260

decoder) model, and the Llama2(decoder-only) 261
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Block1

Block2

Block3

...

Block40

lmhead

(a) Llama

Block1

Block2

Block3

...

Block40

lmhead

lmhead1

lmhead2

lmhead3

(b) - with conventional EE

Block1

Block2

Block3

...

Block40

lmhead
40: _fields _areas _discipl _domains _inter
39: _fields _areas _discipl _inter fields
38: _fields _areas _discipl _field fields

...
21: _fields _areas _domains _discipl _major
20: _fields _areas _aspects _major _categories
19: _areas _fields _aspects _topics _categories

...
3: _kinds iation _types _sorts _forms
2: _kinds iation _types _forms _sorts
1: _kinds _forms ly _sorts _types

· ·
·

Top-5 hypothesis
in each Block

(c) - with shared final output layer

Figure 1: block saturation event based on the Llama-2-Chat-13B when doing translation task on WMT22-zh2en test
set, we found that the top-1 hypothesis is same with the final top-1 output far away from the final layer. Each token
is selected by greedy search based on the final layer output(Block40 in Figure) while showing the Top-5 output from
each block.

model. All experiments were conducted using262

the Transformers and Fairseq toolkit based on the263

GeForce RTX 3090 * 8, and A800 80GB * 4 only264

for Llama2 fine-tuning.265

Dataset We select GLUE benchmark for bert-266

like model and use toolkit glue_compute_metrics267

for Acc/F1. For Transformer-base model we do268

experiment on WMT14 DE2EN translation tasks269

and compute BLEU and COMET following (Wang270

et al., 2019; Zheng et al., 2023). For Llama model271

we do experiment on three generation tasks in-272

cluding WMT22 translation tasks, CNN_DM, and273

NarrativeQA, and we select COMET (Rei et al.,274

2020) with Unbabel/wmt22-comet-da and275

ROUGE-L (Lin, 2004) as the metrics separately.276

Model We verify the early exit capability on the277

pre-trained backbone model and the pre-trained278

model with joint optimization separately. The279

backbone model training stage we follow the work280

which is widely accepted1 (Wang et al., 2019; El-281

bayad et al., 2019). For joint optimization stage282

we following (Teerapittayanon et al., 2016; Taori283

et al., 2023) without additional output layer which284

means we obtain output from each layer all based285

on the final output layer. During decoding stage,286

the prompt we used in LLMs is listed in A.2 and287

select Top-k sampling for all generation tasks.288

1https://github.com/huggingface/transformers/tree/v4.37.2
/examples/pytorch/text-classification

4 Early Exit in LLMs 289

Adding multiple internal output layers is a conven- 290

tional approach to implement an early exit model. 291

However, this approach is often hindered by sub- 292

stantial computation costs caused by joint optimiza- 293

tion and redundancy in model parameters, which 294

scale linearly with the vocabulary size and number 295

of layers in LLMs. Using the final output layer at 296

every exit position directly becomes a reasonable 297

alternative (Del Corro et al., 2023). Additionally, 298

early exit often involve constraining the number of 299

internal output layers (Kavehzadeh et al., 2023) or 300

setting a fixed exit points through methods such 301

as parallel decoding (Bae et al., 2023) in LLMs. 302

This challenge has motivated our interest in investi- 303

gating the compatibility of early exit with shared 304

and pre-trained final output layers without any fine- 305

tuning stage. Accordingly, we aim to find the op- 306

timal early exit layer, which represents the upper 307

boundary of early exit in LLMs. 308

Optimal Early Exit Layer To figure out 309

the early exit behavior and not interfer- 310

ence from other factors during decoding 311

stage. We use the Llama-2-7b-chat2 and 312

Llama-2-13b-chat3 model in ten language 313

pairs in WMT22 machine translation tests, Narra- 314

tiveQA in question answering, and CNN/DailyMail 315

2https://huggingface.co/meta-llama/Llama-2-7b-chat
3https://huggingface.co/meta-llama/Llama-2-13b-chat
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in summarization tasks. under the following condi-316

tions. We obtained outputs from all hidden layers317

using Top-1 sampling after employing the shared318

and pre-trained final output layer, and without joint319

optimization. Meanwhile, we generate next token320

based on the final layer output in each decoding321

step, denoted as F(ylt+1|θ, yNt ). We naturally did322

not copy KV Cache to future layers to prevent the323

error propagation during auto-regressive decoding.324

The optimal early exit layer was recognized when325

the current layer output matched the final layer326

output.327

Results Remarkably, our experiments demon-328

strate that the output of intermediate layers starts329

to match the oracle final output before reaching the330

final layer at last ten layers across various tasks2.331

This matching is not limited to just top-1 hypothe-332

ses, as illustrated by an example from the wmt22-333

ZH2EN test shown in figure1 (c). This observation334

underscores the potential for early exit in LLMs335

based on the shared final output layer without the336

need for joint optimization.337

4.1 Early Exit Capability in Various338

Transformer-based Model339

Our experiment reveals a vast and not utilized early340

exit space to accelerate the decoding stage, particu-341

larly for expensive auto-regressive generation tasks342

based on the widely used Top-1 sampling in LLMs.343

Motivate by this phenomenon, a nature question is344

whether the phenomenon is universal or only occur345

in decoder-only model like LLMs?346

Experiment We investigate this universalization347

based on multiple models and tasks which the348

models have an entirely different structures. In-349

cluding the Transformer-base model employed350

in the WMT14-DE2EN machine translation task,351

RoBERTa in the General Language Understanding352

Evaluation (GLUE) benchmark.353

Results We found the average early exit354

layer(avg) and the token percentage that can early355

exit(perc) based on the shared and pre-trained final356

output layer is very stable across different models357

and tasks, as shown in Table 3 and 9. This sug-358

gests that the capability for early exit is a natural359

feature inherent in pre-trained models and is not360

exclusive to LLMs but also extends to Bert-like361

models and Transformer models. Furthermore, the362

phenomenon illustrated in Figure1 (c), where the363

final-right token consistently ranks up not only in364

the Top-10 hypothetical list in each block but also 365

repeatedly at the Top-1 rank in many internal lay- 366

ers, appears to represent a stronger saturation phe- 367

nomenon(referred to as block saturation). 368

Which suggests a stronger consistency in the results 369

produced by each hidden layer that can be lever- 370

aged by distribution-sensitive gating functions. 371

Model layer WMT22
COMET-22 avg perc

7B 32 79.68\79.71 23.49 88.23%
13B 40 80.65\80.68 25.5 92.43%

Model layer CNN_DM
Rough-1\-2\-L avg perc

7B 32 20.39\8.07\19.76 21.11 94.83%
13B 40 20.45\8.12\19.82 24.29 64.45%

Model layer NarrativeQA
Rough-1\-2\-L avg perc

7B 32 25.16\11.05\23.84 20.67 96.88%
13B 40 24.83\11.05\23.62 23.47 71.72%

Table 2: The optimal early exit layer in Llama-2-Chat-
7B(7B) and Llama-2-Chat-13B(13B). We report the
average result in wmt22 for simple, which avg is the av-
erage optimal early exit layer, and per is the percentage
of token which can early exit in all token. We list the
result in each language pair in detail at A.1.

Task BLEU COMET-22 avg perc layer

WMT 26.75 83.86 4.92 57.25% 6-6
IWSLT 32.18 70.53 4.18 80.01% 6-6

Table 3: The optimal early exit layer for decoder in
Transformer-Base model on WMT14 EN2DE(WMT)
and IWSLT14 DE2EN(IWSLT) based on Top-1 sam-
pling.

5 Can Early Exit Capability Be Used 372

Directly 373

Motivating Based on the early exit capability, a 374

natural question arises: 1) can we take advantage 375

of this capability directly to enhance decoding ef- 376

ficiency, and 2) can the gating function employed 377

in previous works accurately identify the earliest 378

layer. We experiment on GLUE benchmark based 379

on the bert and roberta model in a simpler decod- 380

ing scenario which not involve the kv cache copy 381

operation in auto-regressive decoding. 382

Experiment For fair comparison, we conducted 383

experiments based on the BERT and RoBERTa 384

model in the GLUE benchmark, which involves 385

tasks that do not follow auto-regressive decoding, 386
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Model layer Metric CoLA MRPC QNLI QQP RTE MNLI SST-2

RoBERTa 12
F1/Acc 56.24(Mcc) 91.28/88.23 93.09 91.32/88.50 72.56 87.76 94.26

Avg 3.17 1.32 5.44 5.5 8 7.01 3.83
Perc 81.11% 100% 92.97% 99.82% 77.26% 98.68% 100%

BERT 12
F1/Acc 56.49(Mcc) 87.32/82.60 91.61 91.12/88.07 70.03 84.87 92.88

Avg 3.11 2.88 2.87 2.04 4.34 6.46 4.67
Perc 93.1% 93.68% 99.65% 100% 96.39% 93.4% 99.77%

Table 4: The optimal early exit layer in roberta-base and BERT-base-uncased model.

Model layer Metric CoLA MRPC QNLI QQP RTE MNLI SST-2

RoBERTa 12 Spd-up 2.52× 3.52× 1.8× 1.76× 2.07× 1.48× 2.43×

BERT 12 Spd-up 2.71× 2.77× 2.69× 3.18× 2.69× 1.63× 2.17×

Table 5: The saturation event in encoder-decoder model and encoder-only model.

such as classification tasks. In the case of gen-387

eration tasks, we adapt token-level early exit in388

Transformer-base model and Llama2 model while389

avoiding the key-value copying operation. The390

backbone model was obtained following previous391

works4 (Wang et al., 2019; Elbayad et al., 2019)392

and the model after joint optimization without ad-393

ditional output layer follow the BranchyNet (Teer-394

apittayanon et al., 2016), with the loss defined as395

Loss =
∑N

i=0wi · Lossi. In terms of the gat-396

ing function, we compare three types distribution-397

sensitive gating functions which is not limited by398

the model structure mentioned above.399

Results In an ideal situation, exploiting the early400

exit capability in the BERT-like model is notably401

straightforward. Based on the optimal exit layer,402

approximate 2× speedup can be achieved directly403

on the pre-trained backbone model without any404

modifications and performance degradation, result405

presented in Table 5. However, we find identifying406

the optimal early exit layer precisely is formidable407

challenge. Based on three gating functions at the408

optimal thresholds, we find the distance between409

the early exit layer and the optimal exit layer in410

the pre-trained model is greater than the model411

after joint optimization, and using gating functions412

directly in the pre-trained backbone model seems413

unable to bring acceleration actually, as shown in414

Fig 2.415

4https://github.com/huggingface/transformers/tree/v4.37.2
/examples/pytorch/text-classification
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Figure 2: The average distance and speed-up between
the optimal early exit layer and the exit layer from the
three gating functions in RoBERTa model(more details
in B.1). We constrain the performance of early exit
not less than 98% original model to obtain the optimal
threshold for gating functions.

5.1 Why is Joint Optimization Helpful for 416

Early Exit 417

Motivating While the distance and speed-up be- 418

tween the optimal early exit layer and the exit layer 419

from the gating function vary with the threshold, 420

we found the model with joint optimization always 421

leads a layer closer to the optimal early exit layer 422

not only in BERT-like modelB.1 but also in the 423

Transformer model and the Llama2 modelB.2 with 424

more experiments. This makes us curious about 425

why joint optimization is helpful for early exit. 426

Experiment We employ four distinct similarity 427

measures to assess the likeness of the hidden state 428

and the output distribution between each layer, 429

including Kullback-Leibler (KL) divergence and 430

Jensen-Shannon (JS) divergence for evaluating dis- 431

tribution similarity, while cosine similarity and 432

Pearson correlation coefficient are employed to 433

compute hidden state similarity. 434
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Results Our observations reveal that the similar-435

ity in hidden state exhibits no significant trend after436

joint optimization. In contrast, there is a notable437

and intuitive increase in the similarity of output438

distributions across layers, which shown as Fig3.439

This reinforcement in distribution similarity en-440

hances the consistency of output results, partic-441

ularly in classification tasks with fewer category442

labels. Meanwhile, this distribution with more sim-443

ilarity drives a closer confidence level which more444

benefit to finding sufficiently confident outputs by445

fixing thresholds, shown as Fig3. This underscores446

the dependency of the distribution-sensitive gat-447

ing functions on joint optimization. Additionally,448

we note a reduction in the average early exit layer449

when model with joint optimization.450

Figure 3: Example for cosine similarity of hidden
state(up) and Js divergence of distribution (down) be-
tween each layer on same sentence.
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Figure 4: The average confidence score between each
layer over all sample in the GLUE benchmark based on
the RoBERTa model.

6 Saturation Events for Early Exit in 451

LLMs 452

Motivating Although finding the optimal early 453

exit layer is challenging directly on the pre-trained 454

transformer-based model, it becomes easier after 455

joint optimization. Consequently, we explore could 456

the early exit capacity lead a actual acceleration 457

effect in the token-level early exit scenario based 458

on the joint optimization further. 459

Experiment We fine-tuning the Llama2 model 460

based on the joint optimization following (Taori 461

et al., 2023). Following the describe in the sec 462

3.2, token-level early exit for generation tasks 463

need copy kv cache. We execute two type of kv 464

cache including copy kv cache directly (Elbayad 465

et al., 2019), copy hffn
ℓ−1
t and recompute K and 466

V (Schuster et al., 2022). 467

Results In the token-level early exit scenario, our 468

observations indicate that early exit based on the 469

optimal early exit layer is effective for shorter sen- 470

tences. It successfully yields correct target sen- 471

tences at notably low exit layers when recomputing 472

the key-value (kv) cache. However, the direct copy- 473

ing of the kv cache tends to lead the model into 474

local optima, even with joint optimization, as il- 475

lustrated in Table 10. Notably, as the model starts 476

early exit, the occurrence of local optima becomes 477

more frequent with the target sentence length in- 478

creases. Once fall into the local optima, generating 479

the desired hypothesis becomes challenging, and 480

the local optima is hard to avoids by existing copy 481

kv methods11. 482

6.1 Trend In the Optimal Early Exit Layer 483

We conducted a statistical analysis of the optimal 484

early exit layer under varying output lengths, as 485

illustrated in Fig. 5. Our observations revealed a 486

gradual decline in the optimal early exit layer with 487

an increase in the length of the output sequence, 488

particularly notable in the shorter sentences. This 489

pattern suggests a potential reduction in the diffi- 490

culty of generation, consistent with the decreasing 491

loss presented in (Del Corro et al., 2023). However, 492

beyond a certain length, the optimal early exit layer 493

exhibited a slow and more unsteady descent. 494

To understand the reasons behind the observed 495

unsteady patterns, we conducted a detailed analysis 496

from both sub-word and part-of-speech perspec- 497

tive. A notable trend emerged in the X-to-English 498

translation direction: Approximately 12% of to- 499

7



SRC Die Ware hat unter 20 Euro gekostet.

hypothesis optimal early exit layer

7B The item cost less than 20 euros.</s> [31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31]
7B-d The item cost less than 20 eu-

phemia.</s>
[31, 31, 31, 31, 6, 28, 17, 16, 20, 31, 20, 30,
15]

7B-c The item cost less than 20 euros.</s> [31, 31, 31, 31, 6, 29, 17, 9, 16, 1, 22, 13]

7B-j The item cost less than 20 euros.</s> [31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31]
7B-j-d The item cost less than 20,0 - notes,

your chadge, a, and a more, and. . .
[31, 31, 31, 31, 4, 15, 6, 6, 30, 4, 21, 31, 29,
31, 31, 30, 31, 18, 8, 31, 15, 9, 31, 31, 15,. . .]

7B-j-c The item cost less than 20 euros.</s> [31, 31, 31, 31, 4, 7, 6, 6, 16, 1, 11, 7]

Table 6: Token-level early exit result and exit layer of Llama-2-Chat-7B(7B) with(-J) and without joint optimization
on WMT22-DE2EN test set, under the constraint that early exit only after the 4-th token is generated. For copy kv
operation, we represent directly copy as -d and recompute as -c.
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Figure 5: The relationship between the average early
exit layer and sequence length based on the Llama-2-
Chat-13B model in WMT22 translation tasks.

kens contribute to forming a complete word in all500

decoding tokens, and the first part of a word tends501

to exit in deeper layers, while the remaining part502

exits earlier, as illustrated in . Concurrently, our503

examination identified distinctions among various504

part-of-speech categories, as illustrated in . These505

result underscores the potential for discerning early506

exit layers from a linguistic standpoint.507

6.2 Early Exit and Sub-layer508

We also attempt to extract the output from sub-509

layers, ffn module and the attn module, inspired510

by relevant literature (Geva et al., 2022). Our find-511

ings indicate that both the confidence score and512

the output token within top-10 hypotheses from513

skip connection is stable. Conversely, the top-10514

hypotheses from module consistently demonstrate515

substantial variations and notably smaller confi-516

dence scores compared to the skip connection, as517

depicted in Fig 6(An example in C.3). This can518

be approximated as the primary hypotheses being519

preserved in the skip connect, while the residual520

branch incrementally incorporates the most confi-521

dent hypotheses into the primary branch layer by522

layer according to (Geva et al., 2022), while we523

4 8 12 16 20 24 28 32

0.20

0.40

0.60

0.80

Layer

M
ax

C
on

fid
en

ce

ATTN(hffn
ℓ−1
t )

hffn
ℓ−1
t

FFN(hattn
ℓ
t)

hattn
ℓ
t

hffn
ℓ+1
t

Figure 6: the Top-10 hypothesis launched by sub-layer
in WMT22DE2EN.

must omit the Softmax operation. 524

W⊺
Nhℓ

t = W⊺
NF(hℓ−1

t ) +W⊺
Nhℓ−1

t (3) 525

Further, we decode the same token and keep the 526

decoding process exactly same with Figure 1 (c), 527

and enumerated all top-10 hypotheses from each 528

layer, as shown in Table 10. We find the consistent 529

top-1 hypothesis not only within the block output 530

but also across the skip connection. 531

7 Conclusion 532

Based on previous experiments, we found 1) the 533

early exit is a natural capacity within Transformer- 534

based models. However, leveraging this capability 535

directly proves challenging. 2) The joint optimiza- 536

tion approach reduces the optimal early exit layer 537

searching difficulty by improving the hidden sim- 538

ilarity. 3) While copy kv operations demonstrate 539

efficacy in short sentences, their performance sig- 540

nificantly diminishes when confronted with longer 541

sentences. 4) Early exit based on the sub-word and 542

sub-layer has the potential work will in the LLMs. 543
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8 Limitations544

While we do extensive experimentation with the545

Llama model, our research is currently constrained546

by the limitations of our available equipment,547

which has restricted us to a finite set of models. We548

look forward to expanding our experiment across a549

broader range of models in more resource scenar-550

ios, ensuring that our findings can be generalized551

to a wider array of environments.552
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A Detailed Experimental731

A.1 LLaMa2 Translation Result in WMT22732

Testset733

We list the LLaMa2 translation result on the734

WMT22 test set in detail based on the template735

8, shown as Table 7736

Model Llama7B Llama13B

Total layer 32 40

DE→EN
acc 86.53 \ 87.2 87.16 \ 87.85
avg 22.44 22.62
perc 92.97 96.5

DE→FR
acc 76.62 79.31
avg 24.67 26.74
perc 88.62 93.04

EN→DE
acc 79.97 \ 79.86 81.86 \ 81.57
avg 24.47 26.96
perc 88.46 92.42

EN→JA
acc 74.56 73.69
avg 23.34 25.39
perc 85.44 89.6

EN→RU
acc 77.65 77.24
avg 24.35 26.81
perc 85.1 89.64

EN→ZH
acc 77.47 \ 78.48 77.11 \ 78.15
avg 23.12 26.57
perc 85.16 87.64

FR→DE
acc 77.31 80.57
avg 24.42 26.71
perc 89.36 92.75

JA→EN
acc 80.31 81.49
avg 22.75 25.05
perc 91.65 93.95

RU→EN
acc 85.81 86.51
avg 22.6 23.73
perc 92.06 95.19

ZH→EN
acc 80.54 \ 79.28 81.59 \ 80.42
avg 22.8 24.45
perc 90.83 94.29

Table 7: Detailed result in WMT22 translation task,
acc is the accuracy of predicting compared with ref.A
\ref.B, and we use comet as evaluation metric based on
the Unbabel/wmt22-comet-da. avg and perc
present the average minimal early exit layer per token
and the percent of all decoding tokens which arise sat-
uration event. We note Llama-2-Chat-7B as Llama7B,
Llama-2-Chat-13B as Llama13B, Bigtranslation as big-
trans for simple.

A.2 Template For LLaMa2 Inference737

We use the template list in Tabel 8. To verify our de-738

coding experiment we try the ALMA style prompt739

and keep all other setting, and we got the same740

result with the LLaMA-2-7B(zero-shot) reported741

in paper (Xu et al., 2023), and we obtain the same 742

result with the paper. In our experiment, we only 743

change the demonstration in our prompt and not 744

change other hypoparameters. 745

B Result Of Gating Function on the 746

Backbone model 747

B.1 BERT And RoBERTa Model 748

we shown the distance and speed-up between the 749

optimal early exit layer and the exit layer in detail, 750

the threshold chosen to constrain the performance 751

of early exit not less than 98% of the original model, 752

is illustrated in Fig 7 and 8. Across almost all tasks, 753

joint optimization significant enhances the accuracy 754

of the gating function by improving the similarity 755

of distribution output from each layer. While the 756

gap is relatively small in the patience-based gating 757

function, this can be attributed to the gating func- 758

tion exiting only at n-th continuous layer, which 759

yields the same result, leading to a deeper exit layer 760

and a more accurate result normally. Additionally, 761

a noteworthy observation is the decline in the aver- 762

age optimal early exit layer across most tasks after 763

joint optimization, signifying an improvement in 764

the upper bound of early exit. 765

B.2 Transformer And LLaMa2 Model 766

We performed the same experiment on Transformer 767

and LLaMa2 model described as B.1. 768

C Trend In The Optimal Early Exit Layer 769

C.1 Sub-word 770

C.2 Part-of-speech 771

C.3 Top-10 Hypotheses From Sub-layer And 772

Module 773

We decode the same token and keep the decoding 774

process exactly same with Figure 1 (c), and enumer- 775

ated all top-10 hypotheses from each layer which 776

consistently producing the same top-1 output as 777

the final layer, as shown in Table 10. We find the 778

consistent top-1 hypothesis from 20-th layer to 40- 779

th layer, not only within the block output but also 780

across the skip connection. However, the final out- 781

put _fields rarely surfaced in the top-10 hypotheses 782

from the module output, but it appear occasionally 783

and improve the rank of final output in the top-10 784

hypotheses like the _fields in FFN(hattn
23
t ). 785

D Copy KV Cache In longer sentence 786
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Tasks System Prompt

Translation

### Instruction:
Translate src to tgt:

### Input:
real input

### Response:

Summarization

### Instruction:
Summarize the following article to a sentence:

### Input:
real input

### Response:

Question Answering

### Instruction: I will provide a context and a question to you. You need
to answer me the question based on the context.

### Context: The context

### Question: Question

### Answer:

Table 8: Prompts for generation task. For translation tasks, src and tgt is select from {English, Chinese, German,
Russian, French, Japanese}, and the real input is the sentence to be translated
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Figure 7: Roberta model.
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Figure 8: Bert model.
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Model RoBERTa(12) BERT(12)

Metric Avg Perc Avg Perc

CoLA 3.17 -> 2.26 81.11% -> 99.90% 3.11 -> 2.40 93.10% -> 99.90%
MRPC 1.32 -> 2.94 100.0% -> 99.88% 2.88 -> 2.21 93.68% -> 99.83%
QNLI 5.44 -> 2.27 92.97% -> 99.96% 2.87 -> 1.93 99.65% -> 99.80%
QQP 5.50 -> 1.83 99.82% -> 99.99% 2.04 -> 1.62 100.0% -> 99.95%
RTE 8.00 -> 3.92 77.26% -> 99.64% 3.60 -> 1.62 96.39% -> 99.28%
MNLI 7.01 -> 2.75 98.68% -> 99.96% 6.46 -> 2.35 93.40% -> 99.84%
SST-2 3.83 -> 2.34 100.0% -> 99.77% 4.67 -> 1.58 99.77% -> 100.0%

Table 9: The optimal early exit layer in roberta-base and BERT-base-uncased after joint optimization.
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Figure 9: Transformer-base model follow DLCL (Wang et al., 2019) on the WMT14-EN2DE and DAT (Elbayad
et al., 2019) on the IWSLT14-DE2EN.
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Figure 10: LLaMa2 model on the WMT22 test set.

DE2EN DE2FR EN2DE EN2RU FR2DE JA2EN RU2EN ZH2EN

4

8

12

16

20

24

28

32

36

WMT22 General Machine Translation Task

L
ay

er
&

Pe
rc

en
t

Prefix Suffixes Percent

Figure 11: Translation result of LLaMa2 model on the WMT22 test set. We use prefix to represent the initial segment
of a word and suffixes for the remaining part. Percent indicates the percentage of this phenomenon occurrences in
relation to all tokens.
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Exit position Top-10 hypotheses

hffn
40
t _fields, _areas, _discipl, _domains, _inter, fields, _field, _subjects, _major, _indust

hattn
40
t _fields, _areas, _discipl, _inter, _field, fields, _major, _se, _domains, _subjects

FFN(hattn
40
t ) <s>, _edific, textt, _departamento, metros, _religios, _communes, , _interfaces, Portail

hffn
39
t _fields, _areas, _discipl, _inter, fields, _field, _domains, _major, _subjects, _se

ATTN(hffn
39
t ) <0x0A>, „ _, -, ., _and, _(, _the, _in, _C

hffn
39
t _fields, _areas, _discipl, _inter, fields, _field, _domains, _major, _subjects, _se

hattn
39
t _fields, _areas, _discipl, _field, fields, _domains, _inter, _subjects, _major, _maj

FFN(hattn
39
t ) _, _A, _(, _C, <0x0A>, _R, _just, _in, _g, _G

hffn
38
t _fields, _areas, _discipl, _field, fields, _domains, _inter, _subjects, _major, _maj

ATTN(hffn
38
t ) _. . . , _..., _., _, _covering, _cover, „ _and, _coverage, _..

...
...

hffn
23
t _fields, _areas, _field, _discipl, _categories, fields, _dici, _domains, _subjects, _topics

hattn
23
t _fields, _areas, _field, _categories, _discipl, _domains, fields, Fields, _topics, _dici

FFN(hattn
23
t ) _subject, aban, _rising, _fields, engo, enten, gew, chten, _nich, _branches

hffn
22
t _areas, _fields, _discipl, _categories, _domains, _area, _topics, _aspects, _dici, _major

ATTN(hffn
22
t ) _field, _fields, _Field, Field, fields, field, Fields, _research, _, _campo

...
...

hffn
20
t _fields, _areas, _aspects, _major, _categories, _topics, _discipl, _types, _subjects, _area

hattn
20
t _areas, _fields, _aspects, _topics, _subjects, _categories, _major, _discipl, _types, _area

FFN(hattn
20
t ) yl, _natural, _str, _kind, _pure, _proven, _un, _extreme, _underlying, _flav

hffn
19
t _areas, _fields, _aspects, _topics, _categories, _subjects, _types, _major, _discipl, _area

ATTN(hffn
19
t ) _territ, _fields, _field, cipl, _sector, _discipline, _territory, sci, _domains, _indust

Table 10: Top-10 hypotheses from block output hffn
ℓ+1
t , ffn module FFN(hattn

ℓ
t), attn module ATTN(hffn

ℓ−1
t ) and

skip connect hattn
ℓ
t,hffn

ℓ−1
t based on the final output layer.
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SRC Denn falls tatsächlich etwas passieren sollte wie ein Brand, Einbruch,
Erdbeben, Alieninvasion etc. wäre es tatsächlich zu viel Verantwor-
tung für K1, sich um K2 zu kümmern.

hypothesis optimal early exit layer

7B-d If something were to happen like a
fire, burglary, earthquake, or alien
invasion, it would be too much re-
sponsibility for K1 to take care of
K2.</s>

[31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31,
31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31,
31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31,
31, 31, 31]

7B-d If something were to happen like a
fire, a break-in, an earthquake, an
aldeorrde2-20220-20086; a pre-lift-
de-20086; a pre-lift-de-41 M-de-41
M-de-41 M-de-41 M-de-41, by 4 M-
de-m-lam-lam-lam-lam-lam-lam-
lam-lam-m-m-m-m-m-m-m-m-

[31, 31, 31, 31, 5, 16, 26, 21, 16, 30, 31, 29,
28, 19, 29, 16, 14, 18, 26, 26, 26, 31, 30, 29,
31, 30, 30, 30, 28, 29, 31, 29, 31, 31, 30, 29,
29, 31, 29, 31, 29, 31, 31, 26, 28, 31, 31, 30,
29, 18, 14, 27, 16, 31, 22, 30, 27, 12, 17, 12,
30, 31, 29, 30, 29, 12, 29, 31, 28, 26, 29, 15,
28, 28, 28, 17, 28, 12, 28, 28, 28, 17, 28, 11,
28, 19, 31, 30, 31, 30, 29, 29, 29, 14, 29, 30,
30, 31, 31, 30, 30, 15, 31, 29, 31, 29, 31, 29,
31, 14, 31, 13, 29, 27, 28, 13, 28, 17, 28, 16,
26, 15, 28, 17, 28, 17, 28, 17]

7B-c If something were to happen like a
fire, theft, earthquake, or alien inva-
sion, it would be too much for K1elo
to take care of K2 inoculation.i</s>

[31, 31, 31, 31, 5, 16, 26, 16, 16, 31, 10, 22,
16, 15, 19, 31, 18, 24, 0, 16, 30, 17, 13, 22,
15, 1, 30, 19, 17, 30, 30, 30, 29, 0, 24, 24, 16,
30, 31, 29, 29, 31, 27]

7B-j If something were to happen like a
fire, break-in, earthquake, or alien
invasion, it would be too much re-
sponsibility for K1 to take care of
K2.</s>

[31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31,
31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31,
31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31,
31, 31, 31]

7B-j-d If something were to happen like a
"bright" - a Br. in-turn-in-k-bene
2166 (m bu bu 11/tre bu bu-d bu-/M.
(M. (M. (as (c. (M. (c. (c. (c. (c. (c.
(c. (c a c-c a c c c c a c a c a c a c a
c a c a c a c a c a c a c a glun the ra t.
The ra a t. a t.

[31, 31, 31, 31, 5, 12, 7, 31, 29, 31, 26, 31,
7, 30, 30, 31, 20, 27, 18, 20, 7, 24, 30, 31, 31,
24, 22, 31, 15, 31, 31, 27, 31, 30, 22, 7, 31,
27, 29, 29, 29, 31, 29, 31, 9, 31, 27, 31, 23,
27, 30, 7, 19, 7, 7, 31, 31, 31, 31, 7, 30, 7,
6, 11, 7, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 7, 6, 6, 31, 28, 31, 29, 31, 27, 28, 28, 28,
31, 6, 31, 6, 31, 6, 31, 6, 31, 6, 31, 6, 31, 6,
31, 6, 31, 6, 31, 6, 31, 6, 10, 31, 31, 31, 31,
29, 31, 31, 31, 27, 29, 31, 31, 29, 30]

7B-j-c If something were to happen like
a fire, a (catastrophic) alien inva-
sion, (a)n (alien) invasion, (a)nd (al
(alien), (al (al), (al (al), (al (al), (al
(al), (al (al), (al (al), (al (al), (al (al),
(al (al), (al (al).</s>

[31, 31, 31, 31, 5, 16, 7, 10, 7, 7, 31, 31, 8,
2, 2, 8, 31, 0, 7, 7, 15, 23, 5, 30, 30, 30, 13,
7, 15, 7, 6, 6, 4, 24, 7, 8, 31, 12, 15, 29, 30,
12, 31, 9, 31, 6, 12, 17, 9, 7, 6, 12, 7, 9, 7,
6, 11, 7, 9, 7, 6, 11, 7, 9, 7, 6, 11, 7, 9, 7,
6, 11, 7, 9, 7, 6, 11, 7, 9, 7, 6, 11, 7, 9, 7,
6, 11, 7, 9, 27, 7]

Table 11: Token-level early exit result and exit layer of Llama-2-Chat-7B(7B) with(-J) and without joint optimization
on WMT22-DE2EN test set, under the constraint that early exit only after the 4-th token is generated. For copy kv
operation, we represent directly copy as -d and recompute as -c.
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