
MLE-Dojo: Interactive Environments for Empowering
LLM Agents in Machine Learning Engineering

Rushi Qiang†∗, Yuchen Zhuang†∗, Yinghao Li†,
Dingu Sagar V K†, Rongzhi Zhang†, Changhao Li†, Ian Shu-Hei Wong†,

Sherry Yang§, Percy Liang§, Chao Zhang†, Bo Dai†
†Georgia Institute of Technology §Stanford University

Abstract

We introduce MLE-Dojo, a Gym-style framework for systematically reinforcement
learning, evaluating, and improving autonomous large language model (LLM)
agents in iterative machine learning engineering (MLE) workflows. Unlike existing
benchmarks that primarily rely on static datasets or single-attempt evaluations,
MLE-Dojo provides an interactive environment enabling agents to iteratively exper-
iment, debug, and refine solutions through structured feedback loops. Built upon
200+ real-world Kaggle challenges, MLE-Dojo covers diverse, open-ended MLE
tasks carefully curated to reflect realistic engineering scenarios such as data pro-
cessing, architecture search, hyperparameter tuning, and code debugging. Its fully
executable environment supports comprehensive agent training via both supervised
fine-tuning and reinforcement learning, facilitating iterative experimentation, real-
istic data sampling, and real-time outcome verification. Extensive evaluations of
eight frontier LLMs reveal that while current models achieve meaningful iterative
improvements, they still exhibit significant limitations in autonomously generat-
ing long-horizon solutions and efficiently resolving complex errors. Furthermore,
MLE-Dojo’s flexible and extensible architecture seamlessly integrates diverse data
sources, tools, and evaluation protocols, uniquely enabling model-based agent tun-
ing and promoting interoperability, scalability, and reproducibility. We open-source
our framework and benchmarks to foster community-driven innovation towards
next-generation MLE agents: https://github.com/MLE-Dojo/MLE-Dojo.

1 Introduction

0 150 300 450 600 750 900 1050 1200

GPT-4o-mini

GPT-4o

Gemini-2.0-Flash

DeepSeek-V3

Gemini-2.0-Pro

o3-mini

DeepSeek-R1

Gemini-2.5-Pro

Overall Elo Ratings

Figure 1: Benchmark evaluations of eight frontiers
LLMs across 50 evaluation tasks in MLE-Dojo.

Large language models (LLMs) have demon-
strated remarkable capabilities across diverse
coding tasks, including code generation, debug-
ging, and refactoring [3, 14, 1, 23]. Despite
these advances, machine learning engineering
(MLE) tasks remain uniquely challenging due
to their inherent complexity, specialized domain
knowledge, and the extensive iterative experi-
mentation required for developing and optimiz-
ing ML algorithms [17, 26, 2]. LLM-based
agents hold significant promise for revolutioniz-
ing MLE by automating repetitive steps, gener-
ating boilerplate code, suggesting suitable algo-
rithms, debugging implementations, and iteratively refining models. Ultimately, advanced LLM-based

∗Equal contribution.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Track on Datasets and Benchmarks.

https://github.com/MLE-Dojo/MLE-Dojo

Table 1: Summary of existing benchmarks of MLE agents with data resources and sample sizes.

Datasets Interactive
Gym

Executable
Environment

Training
Facilities

Extensible
Tasks

Flexible
Scaffolds Tabular CV NLP # Training # Eval

AutoKaggle [24] % % % % % " % % 0 8
MLAgentBench [17] % % % % % " " " 0 13
DSBench [21] % % % % % " " " 0 74
DSEval [36] % " % % % " " " 0 31
MLEBench [2] % " % % " " " " 0 75
MLGym [26] " " % % % " " " 0 13
MLE-Dojo " " " " " " " " 150 50

MLE agents could autonomously perform tasks such as literature search, hypothesis generation,
experimental design, method implementation, result analysis, and even scientific dissemination.
However, developing robust and autonomous MLE agents remains in its infancy, largely due
to the absence of comprehensive benchmarks, interactive and executable training environments,
and standardized evaluation frameworks capable of supporting rigorous, iterative experimentation.
Several recent benchmarks have emerged to assess and facilitate progress in LLM-based coding
agents [22, 34, 37, 17, 21, 26, 29]. However, most existing efforts focus mainly on isolated tasks such
as data analysis or visualization, or competitions with narrow, non-interactive scenarios [22, 34, 37].
Such compartmentalized benchmarks fail to capture the inherent complexity and iterative nature of
real-world MLE workflows, which require continuous experimentation, iterative debugging, struc-
tured feedback incorporation, and efficient resource management. Although broader benchmarks such
as MLE-Bench [17] and DSBench [21] provide more diverse MLE tasks, they still lack interactive
environments that support iterative experimentation and training paradigms such as fine-tuning or re-
inforcement learning. Moreover, in contrast to structured software engineering (SWE) tasks [20, 35],
which only require a structured environment for code-based problem-solving and can be readily
sourced from general web resources such as GitHub issues, typical MLE tasks necessitate systemati-
cally curated datasets and standardized training data, elements currently unavailable in existing MLE
benchmarks or gym-style frameworks [2, 26]. This complexity not only increases storage and compu-
tational requirements, but also creates significant challenges when scaling to more comprehensive
and diverse problem sets.

In this study, we introduce MLE-Dojo, an interactive, large-scale Gym-style environment explicitly
designed for developing and benchmarking autonomous LLM agents on real-world MLE workflows.
Built upon 200+ real-world Kaggle competitions across critical ML domains, including tabular data
analysis, computer vision, natural language processing, and time series forecasting, etc.. MLE-Dojo
provides carefully curated, executable tasks that closely replicate real-world engineering challenges.
Among these, 150 tasks constitute the initial training dataset for MLE agents and are integrated into
an interactive environment, enabling training trajectory sampling for both supervised fine-tuning and
reinforcement learning. Moreover, MLE-Dojo incorporates pre-installed dependencies, standardized
evaluation scripts, and real-time outcome verification, thus simplifying iterative experimentation and
debugging processes. We conduct extensive empirical evaluations involving eight LLMs and multiple
agent scaffolds. All evaluation results are publicly accessible via a continuously updated leaderboard,
promoting transparent comparison, reproducibility, and collaborative research in this emerging
field. Additionally, MLE-Dojo features a modular architecture that decouples agent capabilities from
the underlying environment, facilitating seamless integration with diverse tools and data sources,
enhancing interoperability, scalability, and supporting a robust ecosystem for developing generalizable
MLE agents. Our main contributions are summarized as follows:

• Comprehensive Framework and Benchmark: We establish MLE-Dojo as a comprehensive and
large-scale benchmark consisting of over 200 Kaggle MLE competitions, enabling systematic
and rigorous evaluations of autonomous LLM agents.

• Interactive and Executable Environment: MLE-Dojo provides an interactive and fully exe-
cutable Gym-style environment that facilitates iterative experimentation, including comprehen-
sive training trajectories sampling for supervised fine-tuning and reinforcement learning.

• Advanced Functionalities and Scalability Supports: MLE-Dojo uniquely facilitates outcome
verification, MLE agent tuning and seamless integration of diverse datasets and tools, significantly
accelerating the development of robust, generalizable, and scalable MLE agents.

2

• Extensive Empirical Evaluation and Public Leaderboard: We conduct large-scale evalua-
tions across multiple state-of-the-art LLMs and agent scaffolds, with results publicly available
through an actively maintained long-term real-time leaderboard to foster community-driven
innovation.

In the remainder of the paper, we discuss the related work in section 2 and thoroughly describe
MLE-Dojo in section 3. We present the experimental setup and results of LLMs as MLE agents in
section 4 and conclude the paper in section 5.

2 Related Works

X-Agent. LLM-based coding agents have significantly advanced automated software development,
with impactful applications across two primary domains: SWE and MLE. SWE agents [33, 8, 32]
excel at code generation, debugging, and refactoring for improved maintainability and performance.
For example, SWE-agent [33] operates within a constrained agent-computer interface to facilitate
file creation, repository navigation, and code testing; Magentic-One [8] expands the capability
of SWE agents with web navigation features, further enhancing their practicality and usability.
OpenHands [32] introduces an SWE agent with sandboxed environments to ensure safe command
execution and verifiable web browsing, facilitating standardized benchmarking. MLE agents [15,
13, 24, 12, 16, 4, 19, 31], on the other hand, specialize in constructing, optimizing, and deploying
comprehensive ML pipelines, including automatic architecture selection and hyperparameter tuning
tailored to specific data characteristics. Early contributions focused on automating individual steps
in ML engineering pipelines; for instance, CAAFE [15] leverages LLMs to iteratively generate
semantically meaningful features for tabular data based on dataset description. More recent works
have progressively expanded automation from single steps to encompass end-to-end ML workflows.
For example, DS-Agent [13] integrates a case-based reasoning approach to retrieve, reuse, evaluate,
and refine solutions based on historical experiences. AutoKaggle [24] develops iterative code
execution, debugging, and comprehensive unit testing to ensure code correctness and logic consistency.
Agent K v1.0 [12] provides an end-to-end autonomous data science agent designed to optimize
workflows across diverse data science scenarios, while DataInterpreter [16] employs hierarchical
graph modeling for complex problem decomposition and programmable node generation that refines
and verifies subproblems via code generation. Advanced search and optimization approaches have
further enhanced the capabilities of MLE agents. SELA [4] employs Monte Carlo Tree Search to
enhance strategic planning during automated ML task-solving. AIDE [19] frames MLE as a code
optimization problem, formulating trial-and-error as a tree search in the space of potential solutions.
Here, we focus on evaluating and improving MLE agents.

X-Bench. Benchmarks for MLE agents not only provide foundational baselines but also inaugurate
public leaderboards. As illustrated in Table 1, early benchmarks primarily targeted isolated actions,
such as data visualization and simple data manipulation [22, 34, 37]. Recent benchmarks expand
the scope of evaluations to encompass broader project-level tasks, often sourced from real-world
Kaggle competitions. For example, AutoKaggle [24] assesses static LLM workflows across 8 tabular
Kaggle competitions. MLAgentBench [17] incorporates 13 tasks from Kaggle and bespoke ML
challenges, providing baseline solutions and evaluating how often agents can achieve at least 10%
improvement over these baselines. However, such benchmarks often exhibit limitations in both
task breadth and complexity. Benchmarks such as MLE-Bench [2] and DSBench [21] significantly
broaden task diversity to 75 and 74 competitions, respectively, aiming to closely simulate real-world
MLE scenarios. However, these platforms still lack robust interactive environments that support
iterative experimentation, agent fine-tuning, and realistic training scenarios, critical components for
effective development and evaluation of MLE agents. In contrast, MLE-Dojo combines comprehensive
MLE task coverage with a fully interactive execution environment, offering unparalleled opportunities
for developing, benchmarking, and refining advanced MLE agents.

X-Gym (Dojo). Interactive environments are crucial for evaluating and refining LLM-based agents.
SWE-Gym [28] introduces an interactive environment specifically tailored for software engineering
tasks, enabling extensive iterative training and validation. BrowserGym [7] facilitates the evaluation of
web-based navigation and interaction tasks, capturing complex real-world knowledge work scenarios.
Similarly, Collaborative-Gym [30] expands agent capabilities by enabling asynchronous, tripartite
interaction among agents, humans, and task environments. The most recent and relevant work,
ML-Gym [26], further integrates diverse ML research tasks into an interactive gym framework,

3

MLE-Agent Environment

Actions

Observations, Rewards

MLE-Dojo

MLE-AgentRequest
Info

Execute Code
Import Dependencies
import xgboost as xgb
from sklearn.model_selection \

import train_test_split
…
Train model
model = xgb.XGBRegressor(

n_estimators=100,
learning_rate=0.1,
max_depth=3

)
model.fit(X_train, y_train)
…

Evaluate
Code

ActionsRequest
Info

Execute
Code

Evaluate
Code

Get
History Reset

ObservationsData
Info

Metrics
Score

Code
Result

Error
Message History

Reward
1
2
3
4
5

RPG
Score

Environment
Description
This competition presents a
unique twist on the classic
decoder ring puzzle by encrypting
parts of the well-known 20
Newsgroups dataset

Submission File
The file should contain a header
and have the following format:
Id,Predicted
ID_e93d1d4c6,0 ...

Metric
Calculator

Data
File

Code
Interpreter

History Prompt

Figure 2: Overview of MLE-Dojo. The framework bridges MLE-Agents with MLE task environments
through standardized interfaces for observation and action spaces.

providing an environment that supports reinforcement learning and iterative experimentation across
open-ended research tasks. MLE-Dojo significantly extends both the quantity and complexity of tasks,
offering 200+ competitions with an additional dedicated training set of 150 tasks. MLE-Dojo provides
a concise and unified task format and interface to facilitate seamless task expansion, along with
a flexible and user-friendly environment interface to support interactions between various agents
and environments. It also offers meaningful and precise reward feedback, which enables effective
trajectory sampling for supervised fine-tuning and reinforcement learning, thereby setting a new
standard for comprehensive evaluation and training of MLE agents.

3 MLE-Dojo

We propose MLE-Dojo, a Gym-like framework that provides a standardized environment to evaluate
MLE agents interacting with task-specific environments. As depicted in Figure 2, MLE-Dojo pro-
vides a unified interface for MLE agents, i.e., LLM-based assistants that can write code to handle
project-level ML tasks, such as completing data science competitions. Each task environment con-
tains essential information, including datasets, evaluation metrics, analysis results, code execution
outcomes, error messages, and interaction history, facilitating comprehensive agent-environment
interactions. The agent usually takes actions to solve the task, such as requesting task information,
writing and validating code, evaluating code, retrieving past history and so on.

From an agent’s perspective, the environment is typically centered on a sampled MLE problem
p ∈ P , where P is the task space. Each interaction between the environment and the agent can be
formalized as a Partially Observable Markov Decision Process (POMDP), where at the time step t,
the environment provides the current observation ot ∈ O and the reward rt ∈ R. Depending on the
specific agent and environment design, the agent generates the next action at+1 ∈ A at step t + 1
based on the history of prior interactions. Here, O, A, andR represent the observation space, action
space, and reward space, respectively. The resulting interaction loop2 is shown in Figure 3.

3.1 Modular and User-Friendly Interface

The MLE-Dojo framework is designed with a strong emphasis on modularity, flexibility, and extensi-
bility. Each component within the environment operates both independently and collaboratively and
is fully decoupled, allowing seamless integration and extension through unified register mechanism.
Specifically, we define the following core modules, each of which encapsulates a distinct aspect of
the environment:

Error: It encodes a comprehensive hierarchy of error types, enabling fine-grained debugging and
facilitating informative feedback from the environment to the user; Interface: It governs the execu-

2For clarity and visual appeal, we present the core logic of the code in an intuitive manner. For detailed
implementation, please refer to our code repository.

4

tion and interaction logic of native environment actions, serving as the backbone of agent-environment
communication; Feedback: It translates interaction outcomes into structured, interpretable feedback
to guide agent behavior; Metric: It defines a general metric base class, which can be subclassed to
implement competition-specific evaluation metrics in a standardized and reusable manner.

MLE-Agent Environment

Actions 𝑎!"#

environment creation
env = KaggleEnvironment.load("aerial-cactus-identification")

agent creation
agent = KaggleAgent(scaffold="AIDE", LLM_config="gpt-4o")

interaction loop
obs, info = env.reset()
for i in range(max_steps):

action = agent(obs) # agent reasoning for next action
obs, reward, terminated, truncated, info = env.step(action)
if terminated or truncated: breakObservations 𝑜!, Rewards 𝑟!

MLE-Dojo 𝒕-th Interaction

Figure 3: Interaction loop in MLE-Dojo with theoretical model
(left) and concrete Python API (right).

Users can interact with the en-
vironment either by developing
custom modules via the pro-
vided APIs or by directly us-
ing the pre-designed environ-
ment for seamless experimen-
tation, requiring only a single
call to env.step(action_type,
action_args). The minimal
and intuitive interaction logic sig-
nificantly lowers the barrier for agent customization and development. We have also integrated agents
of several scaffolds into MLE-Dojo, as detailed in the Appendix K. This design not only ensures clear
separation of concerns, but also supports the easy incorporation of new functionalities, promoting
both research reproducibility and rapid prototyping across diverse evaluation settings.

3.2 Extensible Task Space P

Description
This competition presents a
unique twist on the classic
decoder ring puzzle by encrypting
parts of the well-known 20
Newsgroups dataset

Submission File
The file should contain a header
and have the following format:
Id,Predicted
ID_e93d1d4c6,0 ...

Metric
Calculator

Data
File

Leaderboard

Competition

Agent

Generate
Code

Execute
Code

Debug
Code

Create
Submission

Submission.csvAccuracy: 65.9%,
Pos Score: 0.6/0.4

Figure 4: Overview of data structure in MLE-Dojo.

MLE-Dojo comprises more than 200
carefully selected tasks spanning di-
verse ML domains (Figure 11), in-
cluding tabular data analysis, com-
puter vision, natural language pro-
cessing, etc. Each primary category
further encompasses multiple specific
task types—for instance, image clas-
sification within computer vision and
sentiment analysis within natural lan-
guage processing—yielding various
distinct task types. The majority of
these tasks represent complex, practi-
cal MLE challenges essential for developing robust LLM-based autonomous agents, sourced from
real-world Kaggle3competitions.

We aggregate tasks from multiple sources, including 68 competitions from MLE-Bench [2] (exclud-
ing 7 tasks that are unavailable, excessively large, or tightly coupled with specific packages), 74
from DSBench [21], and 75 additionally downloaded through Kaggle’s official API and carefully
prepared. After removing duplicate entries across sources, we obtain a diverse collection of over 200
unique tasks. Following MLE-Bench [2], each task is standardized into a consistent data structure
(Figure 4 and 10) to create a unified interface suitable for MLE-Dojo environment and LLM agents.

We partition MLE-Dojo into training and evaluation subsets with a 150 : 50 split. The evaluation set
prioritizes tasks commonly referenced in prior benchmarks [2, 21], supplemented by strategically
selected additional competitions to ensure domain diversity and representativeness. The larger
training set provides extensive interactive experiences for LLM agents, facilitating robust agent
training through both supervised fine-tuning and reinforcement learning. 4

MLE-Dojo provides a standardized data interface and detailed instruction, simplify extending
MLE-Dojo with new tasks (in a plug-and-play manner). A unified competition format is main-
tained for each task, including (1) Basic information: competition description and sample submission,
(2) Well-structured datasets: well-split datasets through a general prepare.py script (most compe-
titions do not originally provide labeled test data), and (3) Leaderboards: both public and private
leaderboards assessed using competition-specific evaluation metrics. Following this standardized

3Kaggle is a widely used online platform that hosts competitive ML tasks. Typically, a competition requires
the submission of a prediction file, evaluated with a specific metric to compute the corresponding score.

4We are continuing to extend our dataset to include more diverse, challenging and new tasks.

5

https://www.kaggle.com/

data format, users can easily incorporate their own competitions for testing purposes. Comprehensive
format definitions and detailed guidance are available in Appendix C.

3.3 Observation Space O

MLE-Dojo provides a rich observation space with five main components, enabling comprehensive,
clear, and structured feedback during Gym-like interaction:

Task Information. For each competition, MLE-Dojo supplies comprehensive information required
to solve tasks, including Competition background, Goal description, Sample submission and Data
structure. This provides all necessary information a Machine Learning Engineer requires to solve the
task, while avoiding the introduction of additional assistance.

Code Execution Results. Agents generate code as solutions for MLE tasks. MLE-Dojo provides
detailed code execution results in a concise feedback format. Execution Results may include detailed
error messages to facilitate the agent in identifying issues and performing debugging; they may also
contain code execution outputs, which serve as an important source of information for the agent to
deeply explore and analyze the data, gain insights of designed algorithm, etc.

Evaluation Metric Scores. For each task, MLE-Dojo implements well-defined evaluation functions,
providing description-aligned criteria and metrics to validate submission format, compute specific
metric scores and evaluate method performance. Performance is reported as both raw scores and
HumanRank score (discussed in Section 3.5), offering absolute and relative performance insights.

Interaction History. In MLE-Dojo, MLE agents can access interaction histories in two ways: (1)
Conversation history: Obtained from the agent side, including all LLM generations and environment
observations, and (2) Environment records: Obtained from the environment side, objectively recording
every agent action and environment observation. This dual approach accommodates different LLM
agents and MLE task implementations, improving compatibility with both dialog-based LLMs and
coding-focused agents. For reasoning models, conversation history effectively records extended
reasoning procedures, while environment records better suit coding LLMs that may not support
natural language interaction.

3.4 Expandable Action Space A

The fundamental action space of MLE-Dojo consists of executable Python code. Agents can call
request_info to query task descriptions and dataset details, then generate Python code to solve
specific MLE tasks using four core functions: validate_code, execute_code, get_history and
reset. Agents can utilize validate_code to test code or capture useful information from code
outputs in a light-weight manner. Through execute_code, agent execute complete code includ-
ing submission generation, metric evaluation and reward feedback. Agents must explicitly use
"execute_code" command to generate valid submission files and get scores; submissions are not
automated. Additionally, agents can leverage the get_history function to retrieve past interactions
between the environment and themselves. MLE-Dojo also provides a user-defined action portal, offer-
ing an extensible action space for researchers to register additional actions. As long as new actions
are registered through the portal and provided to the agent in context, the agent can learn to leverage
these new actions to solve problems. We provide the details of our action space in Appendix E.

3.5 Reward Space and Environmental Feedback

MLE-Dojo introduces a reward mechanism specifically designed to reflect the quality of solutions. This
mechanism utilizes quantitative metrics provided by each competition, such as accuracy, F1-score,
etc. However, since competitions differ in evaluation metrics and score ranges, directly using absolute
performance to evaluate LLM-based agents’ generated code is not precise. To provide continuous and
fine-grained feedback that rewards incremental improvements and innovative solutions, we propose
using the relative position of the human leaderboard as reward instead of the coarse-grained medals
used in existing benchmarks [2].

HumanRank Score. We calculate the relative position score of the current submission on the
leaderboard of human competitors. Suppose that the submission ranks at position p among a total
of N submissions on the leaderboard. Then, the position score is computed as: s = 1 − p

N .

6

Table 2: Main experiments of LLMs as MLE Agents on MLE tasks in MLE-Dojo.

Task Categories (→) MLE-Lite Tabular NLP CV

Models (↓) AUP↑ H-Rank (%)↑ Elo↑ AUP↑ H-Rank (%)↑ Elo↑ AUP↑ H-Rank (%)↑ Elo↑ AUP↑ H-Rank (%)↑ Elo↑

gpt-4o-mini [18] 1.492 21.21 753 0.724 15.37 839 0.837 13.14 758 1.172 10.17 754
gpt-4o [18] 1.448 27.85 830 0.691 18.97 861 0.842 29.97 903 1.418 18.76 761
o3-mini [27] 1.895 56.48 1108 0.739 32.65 1019 0.992 37.46 1056 1.892 35.02 1207

DeepSeek-v3 [25] 1.825 44.26 1004 0.727 37.85 1015 0.977 28.41 1028 1.784 26.75 1067
DeepSeek-r1 [6] 1.852 58.43 1137 0.678 38.13 1053 0.988 28.48 1103 1.844 34.26 1083

Gemini-2.0-Flash [9] 1.696 33.50 847 0.689 30.36 923 0.884 28.39 860 1.607 20.35 978
Gemini-2.0-Pro [10] 1.796 48.61 1064 0.787 37.46 1139 0.970 30.93 1028 1.651 23.07 973
Gemini-2.5-Pro [11] 1.919 61.95 1257 0.798 42.64 1150 0.998 38.45 1266 1.915 42.83 1177

The HumanRank score indicates the percentage of human competitors the agent surpasses on the
leaderboard for a given competition. A higher score reflects stronger performance relative to human
participants. To prevent bias between public and private leaderboards, we compute the relative scores
on each leaderboard independently and then use their average as the final reward.

We adopt the HumanRank Score as the reward in our environment. It is fully aligned with the original
performance metrics-achieving a higher original score is strictly positively correlated with obtaining
a higher HumanRank Score, regardless of the specific metric used. Moreover, HumanRank is a
normalized score within the [0, 1] range, which resolves the issue of varying score magnitudes across
different tasks and enables it to serve as a unified and informative reward.

4 LLMs as MLE Agents in MLE-Dojo

4.1 Experiment Setups

Backbone LLMs. We consider different backbones to test the effectiveness of MLE-Dojo in
the evaluation and improvement of LLMs as MLE Agents. MLE Agent leverages native ac-
tions and interacts with the environment through a straightforward logic. See implementation
and prompt details in Appendix I and Appendix K.1. Specifically, we consider gpt-4o-mini
(2024-07-18) [18], gpt-4o (2024-11-20) [18], o3-mini (2025-01-31) [27] from OpenAI,
Gemini-2.0-Flash [9], Gemini-2.0-Pro (exp) [10], and Gemini-2.5-Pro (exp-3-25) [11]
from Google, and DeepSeek-v3 (2025-03-24) [25] and DeepSeek-r1 [6] from DeepSeek as evalu-
ation backbone LLMs. For non-reasoning models, we set temperature=0.0 and top-p = 1.0 to ensure
reproducible evaluations. We take the best performance of two runs per task per model.

Evaluation Metrics. To ensure a comprehensive evaluation, we consider Area Under the Perfor-
mance Profile (AUP) [26], HumanRank Score (H-Rank, %), and Elo ranking [5] together as metrics.
Additional implementation details are available in appendix F.

Environment Configurations. Prompt, history, time, and memory configurations are designed to
rigorously evaluate LLMs’ capabilities in long-context handling, instruction-following, reasoning,
and coding under resource-constrained conditions, closely mirroring realistic Machine Learning
Engineering scenarios. We do not restrict the number of submission attempts to enable continuous
improvement. See Appendix G for detailed configurations.

4.2 Main Results

Table 2 presents a comprehensive evaluation of eight LLMs as MLE Agents across 50 evaluation
tasks. Reasoning models such as o3-mini, DeepSeek-r1, and Gemini-2.5-Pro consistently achieve
high rankings across all metrics, demonstrating strong adaptability and effectiveness as MLE Agents.
Additionally, Figure 6 further illustrates the Performance Profiles along with the corresponding AUP
curves. Models like Gemini-2.0-Pro exhibit balanced performance profiles, achieving moderate
but consistently reliable results across various tasks. This comprehensive comparative perspective
highlights the strengths and limitations of each model, offering practical insights into their suitability
for different MLE scenarios. Specifically, the HumanRank Score provides an absolute measure of
performance incorporating human benchmarks, the Elo Score clarifies competitive relationships

7

through pairwise analyses, and the Performance Profiles with AUP scores assess robustness and
consistency across performance variations. Together, these evaluation approaches in MLE-Dojo
form a robust, multifaceted perspective on the capabilities and limitations of LLMs as MLE agents,
enhancing the overall interpretation and reliability of our experimental conclusions.

Competition
0

20

40

60

80

100

H
um

an
R

an
k

MLE-Lite Tabular NLP CV

Figure 5: Task difficulty sorted by average HumanRank score.

Furthermore, we define the difficulty level of different tasks with the average performance of different
models in comparison with the human leaderboard. Figure 5 illustrates the average performance
distribution across 8 frontier models on the tasks. As shown in the figure, CV tasks are the most
challenging-none of them have an average HumanRank score above 60, and more than half fall below
30. For MLE-Lite tasks, the average HumanRank scores mostly exceed 30. Difficulty levels of tasks
in other domains are more evenly distributed.

GPT-4o-mini
GPT-4o

Gemini-2.0-Flash
DeepSeek-V3

Gemini-2.0-Pro
o3-mini

DeepSeek-R1
Gemini-2.5-Pro

0 0.5 1.0 1.5 2.0
0

0.2

0.5

0.8

1.0

(
)

Overall

0 0.5 1.0 1.5 2.0

MLE-Lite

0 0.2 0.5 0.8

Tabular

0 0.5 1.0

NLP

0 0.5 1.0 1.5 2.0

CV

Figure 6: Performance profiles and corresponding AUP curves for evaluating the robustness of LLMs
across four ML tasks. The x-axis represents the performance ratio threshold τ , while the y-axis
indicates the fraction of tasks for which a model achieves performance within a factor τ of the
best-performing model.

4.3 Cost Analysis

Figure 7 illustrates the cost-performance relationship across different LLMs and task categories.
Reasoning models (e.g., DeepSeek-r1) typically incur higher costs due to their premium pricing
structures and longer solution outputs. Even reasoning models with comparatively lower pricing,
such as o3-mini, tend to produce longer outputs due to more complex reasoning processes. Notably,
tasks involving computer vision and deep neural network training pipelines consistently generate
longer codes compared to classical ML tasks (e.g., tabular analysis) executed on CPUs. While
cost generally correlates with solution complexity and token consumption, some models, such
as DeepSeek-r1, achieve competitive performance with significantly fewer tokens, highlighting
potential cost-efficiency opportunities. We further investigate both history length and solution length
of different models in Appendix H.2.

4.4 Step-wise Performance Dynamics

Figure 8 presents step-wise performance dynamics across different models. Among reasoning models,
o3-mini consistently achieves high performance within the initial steps (typically within the first five)
and maintains stable scores in subsequent steps. Conversely, DeepSeek-r1 and Gemini-2.5-Pro
exhibit gradual improvements, achieving comparable or superior performance in intermediate to later
steps. Non-reasoning models occasionally outperform reasoning models at early or intermediate
steps but generally show limited improvement as steps progress, resulting in lower final scores.

8

GPT-4o-mini
GPT-4o

Gemini-2.0-Flash
DeepSeek-V3

Gemini-2.0-Pro
o3-mini

DeepSeek-R1
Gemini-2.5-Pro

0.0 0.1 0.2
Cost ($)

0.2

0.3

0.4

0.5

(
)

Overall

0.0 0.1 0.2 0.3
Cost ($)

0.2

0.3

0.4

0.5

0.6
MLE-Lite

0.00 0.05 0.10 0.15
Cost ($)

0.2

0.3

0.4

Tabular

0.0 0.1 0.2
Cost ($)

0.2

0.3

NLP

0.0 0.1 0.2 0.3
Cost ($)

0.1

0.2

0.3

0.4
CV

Figure 7: Relationship between average computational cost and performance across evaluated LLMs
and task categories. Each point represents the average cost per task, with specific attention given to
reasoning vs. non-reasoning model cost dynamics. Note that Gemini-2.0-Pro and Gemini-2.5-Pro
are excluded from cost analysis (only for performance reference) due to current free usage.

GPT-4o-mini
GPT-4o

Gemini-2.0-Flash
DeepSeek-V3

Gemini-2.0-Pro
o3-mini

DeepSeek-R1
Gemini-2.5-Pro

1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

Overall

1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6
MLE-Lite

1 2 3 4 5 6 7 8 9 10
Step

0.0

0.1

0.2

0.3

0.4
Tabular

1 2 3 4 5 6 7 8 9 10
0.0

0.1

0.2

0.3

0.4 NLP

1 2 3 4 5 6 7 8 9 10
0.0

0.1

0.2

0.3

0.4
CV

Figure 8: Step-wise HumanRank performance comparisons between reasoning and non-reasoning
models, considering only code execution and validation steps. Information requests are excluded.

4.5 Error Analysis

GPT-4o-mini
GPT-4o

Gemini-2.0-Flash
DeepSeek-V3

Gemini-2.0-Pro
o3-mini

DeepSeek-R1
Gemini-2.5-Pro

0

10

20

30

40

50

60

33.2

25.1

15.2

32.0

22.5

28.6

42.7

14.4

Validation Failures(%)

8.7

2.3

15.0 16.2 17.6 19.1

47.4

12.2

Execution Failures(%)

27.2

18.8
15.1

21.9
19.3 19.7

46.0

12.8

Overall Failures(%)

Figure 9: Average failure rates across tasks.

Figure 9 shows the average fail-
ure rates across tasks, highlight-
ing validation, execution, and
overall errors. Gemini-2.5-Pro
maintains the lowest overall fail-
ure rate, aligning with its con-
sistently high performance. In
contrast, DeepSeek-r1, despite
achieving strong performance,
experiences relatively high fail-
ure rates in both execution and
validation categories. gpt-4o
and gpt-4o-mini, due to their conservative strategies, achieve low execution failure rates but
face comparatively high validation failures. Conversely, Gemini-2.0-Flash successfully balances
aggressive execution with one of the lowest overall failure rates, second only to Gemini-2.5-Pro.
We further investigate excution error types in Appendix H.3.

5 Conclusion

We introduced MLE-Dojo, a Gym-style framework designed for training, evaluating, and benchmark-
ing autonomous MLE agents. By providing an interactive and realistic environment built upon a
large-scale collection of real-world Kaggle competitions, MLE-Dojo enables systematic experimenta-
tion, rigorous outcome verification, and iterative feedback crucial for advancing LLM-driven MLE
workflows. Our extensive empirical evaluations established foundational baselines and highlighted
both capabilities and critical limitations of current state-of-the-art models and agent architectures. We
publicly release our framework, benchmarks, and leaderboard to encourage transparent comparison,
reproducible research, and community-driven progress toward next-generation of fully autonomous
MLE agents. Future work includes expanding MLE-Dojo to incorporate domain-specific deep research
and support for multi-agent collaborative scenarios.

9

Acknowledgments and Disclosure of Funding

We thank the anonymous reviewers and area chairs for their valuable feedback. This work was
supported in part by ONR (N000142512173), NSF ECCS (2401391), and NSF IIS (2403240).

References
[1] J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, C. Cai, M. Terry,

Q. Le, et al. Program synthesis with large language models. arXiv preprint arXiv:2108.07732,
2021.

[2] J. S. Chan, N. Chowdhury, O. Jaffe, J. Aung, D. Sherburn, E. Mays, G. Starace, K. Liu,
L. Maksin, T. Patwardhan, et al. Mle-bench: Evaluating machine learning agents on machine
learning engineering. arXiv preprint arXiv:2410.07095, 2024.

[3] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. D. O. Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, et al. Evaluating large language models trained on code. arXiv
preprint arXiv:2107.03374, 2021.

[4] Y. Chi, Y. Lin, S. Hong, D. Pan, Y. Fei, G. Mei, B. Liu, T. Pang, J. Kwok, C. Zhang,
et al. Sela: Tree-search enhanced llm agents for automated machine learning. arXiv preprint
arXiv:2410.17238, 2024.

[5] W.-L. Chiang, L. Zheng, Y. Sheng, A. N. Angelopoulos, T. Li, D. Li, B. Zhu, H. Zhang,
M. Jordan, J. E. Gonzalez, et al. Chatbot arena: An open platform for evaluating llms by human
preference. In Forty-first International Conference on Machine Learning, 2024.

[6] DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning, 2025.

[7] A. Drouin, M. Gasse, M. Caccia, I. H. Laradji, M. D. Verme, T. Marty, D. Vazquez, N. Chapados,
and A. Lacoste. Workarena: How capable are web agents at solving common knowledge work
tasks? In Forty-first International Conference on Machine Learning, 2024.

[8] A. Fourney, G. Bansal, H. Mozannar, C. Tan, E. Salinas, F. Niedtner, G. Proebsting, G. Bassman,
J. Gerrits, J. Alber, et al. Magentic-one: A generalist multi-agent system for solving complex
tasks. arXiv preprint arXiv:2411.04468, 2024.

[9] Google. Gemini 2.0 flash: Our powerful workhorse model with low latency and enhanced
performance, built to power agentic experiences. Google DeepMind Blog, 2025.

[10] Google. Gemini 2.0 pro: Our best model yet for coding performance and complex prompts.
Google DeepMind Blog, 2025.

[11] Google. Gemini 2.5: Our most intelligent ai model. Google Blog, 2025.

[12] A. Grosnit, A. Maraval, J. Doran, G. Paolo, A. Thomas, R. S. H. N. Beevi, J. Gonzalez,
K. Khandelwal, I. Iacobacci, A. Benechehab, et al. Large language models orchestrating
structured reasoning achieve kaggle grandmaster level. arXiv preprint arXiv:2411.03562, 2024.

[13] S. Guo, C. Deng, Y. Wen, H. Chen, Y. Chang, and J. Wang. DS-agent: Automated data science
by empowering large language models with case-based reasoning. In Forty-first International
Conference on Machine Learning, 2024.

[14] D. Hendrycks, S. Basart, S. Kadavath, M. Mazeika, A. Arora, E. Guo, C. Burns, S. Puranik,
H. He, D. Song, and J. Steinhardt. Measuring coding challenge competence with APPS. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021.

[15] N. Hollmann, S. Müller, and F. Hutter. Large language models for automated data science: Intro-
ducing caafe for context-aware automated feature engineering. Advances in Neural Information
Processing Systems, 36, 2024.

10

[16] S. Hong, Y. Lin, B. Liu, B. Liu, B. Wu, C. Zhang, C. Wei, D. Li, J. Chen, J. Zhang, et al. Data
interpreter: An llm agent for data science. arXiv preprint arXiv:2402.18679, 2024.

[17] Q. Huang, J. Vora, P. Liang, and J. Leskovec. MLAgentbench: Evaluating language agents
on machine learning experimentation. In Forty-first International Conference on Machine
Learning, 2024.

[18] A. Hurst, A. Lerer, A. P. Goucher, A. Perelman, A. Ramesh, A. Clark, A. Ostrow, A. Welihinda,
A. Hayes, A. Radford, et al. Gpt-4o system card. arXiv preprint arXiv:2410.21276, 2024.

[19] Z. Jiang, D. Schmidt, D. Srikanth, D. Xu, I. Kaplan, D. Jacenko, and Y. Wu. Aide: Ai-driven
exploration in the space of code. arXiv preprint arXiv:2502.13138, 2025.

[20] C. E. Jimenez, J. Yang, A. Wettig, S. Yao, K. Pei, O. Press, and K. Narasimhan. Swe-bench:
Can language models resolve real-world github issues? arXiv preprint arXiv:2310.06770, 2023.

[21] L. Jing, Z. Huang, X. Wang, W. Yao, W. Yu, K. Ma, H. Zhang, X. Du, and D. Yu. DSBench:
How far are data science agents from becoming data science experts? In The Thirteenth
International Conference on Learning Representations, 2025.

[22] Y. Lai, C. Li, Y. Wang, T. Zhang, R. Zhong, L. Zettlemoyer, W.-t. Yih, D. Fried, S. Wang,
and T. Yu. Ds-1000: A natural and reliable benchmark for data science code generation. In
International Conference on Machine Learning, pages 18319–18345. PMLR, 2023.

[23] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond, T. Eccles, J. Keeling,
F. Gimeno, A. Dal Lago, et al. Competition-level code generation with alphacode. Science,
378(6624):1092–1097, 2022.

[24] Z. Li, Q. Zang, D. Ma, J. Guo, T. Zheng, M. Liu, X. Niu, Y. Wang, J. Yang, J. Liu, et al.
Autokaggle: A multi-agent framework for autonomous data science competitions. arXiv
preprint arXiv:2410.20424, 2024.

[25] A. Liu, B. Feng, B. Xue, B. Wang, B. Wu, C. Lu, C. Zhao, C. Deng, C. Zhang, C. Ruan, et al.
Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437, 2024.

[26] D. Nathani, L. Madaan, N. Roberts, N. Bashlykov, A. Menon, V. Moens, A. Budhiraja,
D. Magka, V. Vorotilov, G. Chaurasia, D. Hupkes, R. S. Cabral, T. Shavrina, J. Foerster,
Y. Bachrach, W. Y. Wang, and R. Raileanu. Mlgym: A new framework and benchmark for
advancing ai research agents, 2025.

[27] OpenAI. Openai o3-mini: Pushing the frontier of cost-effective reasoning. OpenAI Blog, 2025.

[28] J. Pan, X. Wang, G. Neubig, N. Jaitly, H. Ji, A. Suhr, and Y. Zhang. Training software
engineering agents and verifiers with swe-gym. arXiv preprint arXiv:2412.21139, 2024.

[29] S. Schmidgall and M. Moor. Agentrxiv: Towards collaborative autonomous research. arXiv
preprint arXiv:2503.18102, 2025.

[30] Y. Shao, V. Samuel, Y. Jiang, J. Yang, and D. Yang. Collaborative gym: A framework for
enabling and evaluating human-agent collaboration. arXiv preprint arXiv:2412.15701, 2024.

[31] P. Trirat, W. Jeong, and S. J. Hwang. Automl-agent: A multi-agent llm framework for full-
pipeline automl. arXiv preprint arXiv:2410.02958, 2024.

[32] X. Wang, B. Li, Y. Song, F. F. Xu, X. Tang, M. Zhuge, J. Pan, Y. Song, B. Li, J. Singh, et al.
Openhands: An open platform for ai software developers as generalist agents. arXiv preprint
arXiv:2407.16741, 2024.

[33] J. Yang, C. E. Jimenez, A. Wettig, K. Lieret, S. Yao, K. R. Narasimhan, and O. Press. Swe-agent:
Agent-computer interfaces enable automated software engineering. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

11

[34] P. Yin, W.-D. Li, K. Xiao, A. Rao, Y. Wen, K. Shi, J. Howland, P. Bailey, M. Catasta,
H. Michalewski, et al. Natural language to code generation in interactive data science notebooks.
In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 126–173, 2023.

[35] D. Zan, Z. Huang, W. Liu, H. Chen, L. Zhang, S. Xin, L. Chen, Q. Liu, X. Zhong, A. Li,
et al. Multi-swe-bench: A multilingual benchmark for issue resolving. arXiv preprint
arXiv:2504.02605, 2025.

[36] Y. Zhang, Q. Jiang, X. Han, N. Chen, Y. Yang, and K. Ren. Benchmarking data science agents.
arXiv preprint arXiv:2402.17168, 2024.

[37] Y. Zhang, Y. Pan, Y. Wang, and J. Cai. Pybench: Evaluating llm agent on various real-world
coding tasks. arXiv preprint arXiv:2407.16732, 2024.

12

A Limitations and Broader Impacts

A.1 Limitations

Resource Limitations. While MLE-Dojo provides a rich, interactive environment to train and evaluate
LLM agents, it also imposes computational and storage demands. Executing full MLE pipelines-
including data preprocessing, model training, and debugging-across hundreds of competition tasks
requires potential API credits, CPU/GPU resources and large-scale disk storage. Although we provide
competitions of varying difficulty levels and data sizes–organized in ascending order of size for user
clarity–comprehensively training or evaluating MLE agents still demands substantial computational
and storage resources.

Data Privacy and Licensing. MLE-Dojo is constructed atop real-world Kaggle competitions, each of
which may be governed by different data usage licenses and privacy policies. Although the framework
does not redistribute any proprietary data directly, it facilitates automated downloading and usage
of datasets via the official Kaggle API. Users are solely responsible for reviewing, understanding,
and adhering to the license agreements associated with each dataset. To assist in compliance, we
provide direct links to the license terms and competition rules for all included tasks in https:
//github.com/MLE-Dojo/MLE-Dojo/blob/main/prepare/licenses.json.

A.2 Broader Impacts

Potential Positive Societal Impacts. MLE-Dojo aims to advance the development of intelligent,
autonomous agents capable of supporting and accelerating the machine learning engineering process.
By enabling automation of repetitive and error-prone engineering tasks, the framework may help
reduce the barrier to entry for ML practitioners, democratize access to model development tools, and
empower domain experts (e.g., in healthcare, education, and scientific research) to more effectively
apply machine learning solutions without requiring deep expertise in engineering workflows. Further-
more, the open-source nature of MLE-Dojo fosters reproducibility, transparency, and community-led
innovation in the design and evaluation of LLM agents for real-world MLE tasks.

Potential Negative Societal Impacts. Agents developed using MLE-Dojo could inadvertently learn
and amplify biases from training datasets (such as the Kaggle challenges used), leading to unfair or
discriminatory model outcomes if deployed without careful auditing. The autonomous generation
of complex MLE code by these agents may also introduce security vulnerabilities if not subjected
to rigorous review. Additionally, the powerful capabilities for automating model development, if
not responsibly governed, could be misused for creating harmful or privacy-invasive applications, or
could lower the barrier for actors to develop such systems. Mitigation strategies should include incor-
porating fairness metrics, robustness checks, and security evaluations within the MLE-Dojo framework
itself, promoting ethical guidelines and best practices for agent development and deployment, en-
suring mechanisms for robust human oversight, and fostering research into privacy-preserving and
explainable agent behaviors.

A.3 Ethical Statements

Data Usage and Consent. MLE-Dojo does not host or redistribute any proprietary datasets. All tasks
are built upon publicly available Kaggle competitions, and datasets are accessed via the official Kaggle
API in compliance with their respective licenses. We ensure that no personal or sensitive information
is retained within the framework. Users are explicitly informed that it is their responsibility to read
and adhere to the terms of use and data handling policies provided by each competition. Where
applicable, competitions selected for inclusion in the benchmark are reviewed to ensure they do not
contain personally identifiable or ethically sensitive data.

Fair Use and Responsible Deployment. MLE-Dojo is intended solely for academic research, edu-
cational purposes, and the responsible development of AI systems. We discourage the use of this
framework for automating competition participation without appropriate attribution or for circumvent-
ing fair use policies. We also emphasize the importance of transparent model development practices
when using MLE-Dojo, particularly in scenarios where LLM agents are intended for downstream
deployment or integration into critical systems.

13

https://github.com/MLE-Dojo/MLE-Dojo/blob/main/prepare/licenses.json
https://github.com/MLE-Dojo/MLE-Dojo/blob/main/prepare/licenses.json

Bias and Representational Fairness. While MLE-Dojo includes a broad spectrum of tasks across
multiple ML domains, the selection of tasks is constrained by the availability of open competitions
and may not fully represent all application domains or demographic contexts. Moreover, since LLM
agents can inherit and amplify biases present in training data or model pretraining corpora, it is
crucial that users critically evaluate outputs, particularly in sensitive contexts (e.g., healthcare, hiring,
or education). Future versions of MLE-Dojo will explore the inclusion of bias detection and mitigation
tools to support ethical agent development.

Open-Source Commitment. We commit to maintaining MLE-Dojo as an open-source project under
a permissive license, enabling transparent inspection, community-driven development, and repro-
ducibility. We welcome contributions that enhance the ethical robustness of the framework, including
the addition of fairness metrics, safety guardrails, and improved documentation on responsible usage.

B Disclaimer

The dataset is made available exclusively for educational and academic research purposes, with the
intention of advancing scholarly investigations in relevant domains. Users of the dataset must adhere
to the following terms and conditions:

• Data Source and Accuracy: Although reasonable efforts have been undertaken to curate and
organize the dataset, the providers do not warrant the accuracy, completeness, or currency of
the information. Users are strongly encouraged to independently verify the data and bear full
responsibility for any analyses, interpretations, or conclusions derived from it.

• Usage Restrictions: This dataset is strictly limited to non-commercial use. Any commercial
exploitation, product development, or profit-oriented application based on this dataset requires
prior explicit written authorization from the dataset providers.

• Privacy and Legal Compliance: Users must ensure that their usage of the dataset complies with
all relevant legal frameworks, particularly those concerning data privacy, protection, and security.
The dataset providers shall not be held accountable for any legal liabilities or consequences
resulting from improper or unauthorized usage.

• Non-Infringement of Rights: The dataset includes pre-processed content derived from external
sources and is distributed solely for non-commercial research purposes. The dataset providers do
not assert ownership over the original data and expressly acknowledge the rights of the original
creators. It is the user’s responsibility to ensure that their use of the dataset does not violate any
copyright or intellectual property laws.

• Disclaimer of Liability: The dataset is provided "as is" without any express or implied war-
ranties. The dataset providers shall not be liable for any direct, indirect, incidental, or consequen-
tial damages arising from the use of the dataset, including but not limited to financial loss, data
misinterpretation, or third-party claims.

C Unified Data Structure

Users can flexibly incorporate new tasks originating from diverse sources, which can be standardized
into a unified competition format with minimal overhead. These personalized competitions can then
be seamlessly integrated into our environment for evaluation, benchmarking and training.

To ensure clarity, modularity, and scalability, each competition is organized under a unified and
minimalistic directory structure. As shown in Figure 10, the root directory is composed of three major
subdirectories: data/, utils/, and an optional info/ folder. The data/ directory is further divided
into private/ and public/ subfolders, corresponding respectively to hidden and accessible phases
of the competition. Each contains standardized files such as test_answer.csv, leaderboard.csv,
and input-output formats (e.g., sample_submission.csv, description.txt), thereby facilitating
consistent evaluation procedures. The utils/ folder encapsulates task-specific scripts for data prepa-
ration and metric evaluation (i.e., prepare.py, metric.py). Lastly, the optional info/ directory
provides supplementary metadata such as web links, original descriptions, and data schema. This
design adheres to a uniform organizational paradigm that simplifies integration, supports automation,
and improves the transparency of competition configurations.

14

competition/
data/

private/
test_answer.csv
private_leaderboard.csv (Optional)
public_leaderboard.csv (Optional)

public/
(train/test data)
description.txt
sample_submission.csv
data_structure.txt (Optional)

utils/
prepare.py
metric.py

info (Optional)/
description.txt
raw_description.txt
web_url.txt
data_structure.txt

Figure 10: Standardized directory structure for each competition.

Time Series Classification
the-icml-2013-whale-challenge
mlsp-2013-birds
liverpool-ion-switching
Time Series Forecasting
covid19-global-forecasting-week
demand-forecasting-kernels-only
playground-series*
tabular-playground-series**
Time Series Regression
bike-sharing-demand
ventilator-pressure-prediction
playground-series*
Medical Image Classification
histopathologic-cancer-detection
ranzcr-clip-catheter-line-classification
Image Denoising
denoising-dirty-documents
Image Classification
aerial-cactus-identification
aptos2019-blindness-detection
dog-breed-identification
dogs-vs-cats-redux-kernels-edition
leaf-classification
plant-pathology-2020-fgvc7
siim-isic-melanoma-classification
playground-series*

Tabular Binary Classification
cat-in-the-dat-(i, ii)
conways-reverse-game-of-life-2020
don’t-overfit-(i, ii)
instant-gratification
stumbleupontitanic
Customer Information Prediction
santander-customer-transaction-prediction
santander-customer-satisfaction
customer-churn-prediction
Outlier Detection
microsoft-malware-prediction
fraud-detection

Tabular Multi-Class Classification
porto-seguro-safe-driver-prediction
spaceship-titanic

Tabular Regression
linking-writing-processes-to-writing-quality
new-york-city-taxi-fare-prediction
nomad2018-predict-transparent-conductors
santander-value-prediction-challenge
see-click-predict-fix
tmdb-box-office-prediction

Document Reconstruction
AI-for-code
Span Extraction
tweet-sentiment-extraction
Word Imputation
billion-word-imputation

Text Regression
commonlitreadabilityprize
feedback-prize-english-language-learning
learning-agency-lab-automated-essay-scoring

Question Answering
google-quest-challenge
kaggle-llm-science-exam
Text Classification
20-newsgroups-ciphertext-challenge
detecting-insults-in-social-commentary
jigsaw-toxic-comment-classification-challenge
llm-detect-ai-generated-text
nlp-getting-started
quora-insincere-questions-classification
random-acts-of-pizza
spooky-author-identification

Text Normalization
text-normalization-challenge-english
text-normalization-challenge-russian

Text Preference Prediction
lmsys-chatbot-arena

Semantic Similarity Scoring
us-patent-phrase-to-phrase-matching
quora-question-pairs

Figure 11: Overview of task diversity in MLE-Dojo, highlighting representative examples from four
major domains: time series, computer vision, tabular data, and natural language processing.

D Data Details

To establish a unified and flexible framework capable of accommodating diverse and emerging tasks,
we develop customized data preparation scripts for each competition. These scripts systematically
structure datasets, generate representative example submissions, and enable efficient local testing and
evaluation. Given that most Kaggle competitions lack publicly available labels for test datasets, our
scripts carefully split the original training data into new, clearly defined training and test subsets. We
further implement tailored evaluation metrics specific to each competition, derived from a common
base metric class. We begin with an initial set of around 600 Kaggle competitions. We’ve already
manually reviewed them to confirm their suitability based on clarity of descriptions, data availability,
and relevance of evaluation metrics, while excluding tasks with excessively large or unwieldy datasets.
Our final collection balances challenge complexity with computational feasibility, yielding a practical,

15

scalable, and user-friendly benchmark of 200 competitions as our first release. We plan progressive
releases of processed datasets to support ongoing benchmarking efforts.

Table 3 presents all competitions included in our first release, sorted in ascending order by data size.
The associated tags provide information on each task’s metric, category, modality, or domain. Users
are encouraged to flexibly select tasks based on specific needs.

Table 3: Kaggle Competition Data Overview

Competition Name Size Tags

playground-series-s3e12 25.56 kB Beginner, Tabular, Binary Classification, Custom Metric
titanic 93.08 kB Binary Classification, Tabular, Beginner, Categorization

Accuracy
playground-series-s3e5 225.6 kB Beginner, Tabular, Cohen Kappa Score
playground-series-s3e13 284.43 kB Beginner, Tabular, Multiclass Classification, Health Condi-

tions, MAP{K}
mercedes-benz-greener-
manufacturing

351.45 kB Automobiles and Vehicles, Regression, Tabular, R2 score
(coefficient of determination)

icr-identify-age-related-
conditions

356.88 kB Tabular, Binary Classification, Health, Weighted Multi-
class Loss

kaggle-llm-science-exam 364.21 kB Physics, NLP, MAP{K}
playground-series-s3e22 386.6 kB Beginner, Tabular, Multiclass Classification, Animals,

Health, F1 Score
playground-series-s3e3 455.63 kB Tabular, Beginner, Binary Classification, Business, Area

Under Receiver Operating Characteristic Curve
playground-series-s3e9 485.23 kB Beginner, Tabular, Regression, Root Mean Squared Error
kobe-bryant-shot-selection 708.3 kB Basketball, Binary Classification, Tabular, Log Loss
tabular-playground-series-
jul-2021

826.96 kB Tabular, Pollution, Time Series Analysis, Mean Column-
wise Root Mean Squared Logarithmic Error

bike-sharing-demand 1.12 MB Cycling, Tabular, Time Series Analysis, Root Mean
Squared Logarithmic Error

home-data-for-ml-course 1.15 MB Mean Absolute Error
spaceship-titanic 1.24 MB Beginner, Tabular, Binary Classification, Categorization

Accuracy
covid19-global-forecasting-
week-2

1.26 MB Coronavirus, Tabular, Mean Columnwise Root Mean
Squared Logarithmic Error

covid19-global-forecasting-
week-3

1.41 MB Tabular, Coronavirus, Mean Columnwise Root Mean
Squared Logarithmic Error

nlp-getting-started 1.43 MB Text, Binary Classification, NLP, Custom Metric
covid19-global-forecasting-
week-1

1.63 MB Coronavirus, Tabular, Mean Columnwise Root Mean
Squared Logarithmic Error

tabular-playground-series-
jan-2022

1.73 MB Tabular, Time Series Analysis, SMAPE

playground-series-s3e2 1.88 MB Binary Classification, Tabular, Health Conditions, Begin-
ner, Area Under Receiver Operating Characteristic Curve

spooky-author-
identification

1.9 MB Multiclass Classification, Literature, Linguistics, Multi-
class Loss

covid19-global-forecasting-
week-4

1.95 MB Tabular, Coronavirus, Mean Columnwise Root Mean
Squared Logarithmic Error

liberty-mutual-group-
property-inspection-
prediction

2 MB Housing, Normalized Gini Index

playground-series-s3e25 2.11 MB Beginner, Tabular, Regression, Earth Science, Median
Absolute Error

us-patent-phrase-to-phrase-
matching

2.14 MB NLP, Text, PearsonCorrelationCoefficient

movie-review-sentiment-
analysis-kernels-only

2.44 MB Text, Multiclass Classification, Categorization Accuracy

playground-series-s3e6 2.7 MB Beginner, Tabular, Housing, Root Mean Squared Error
commonlitreadabilityprize 2.93 MB Text, Regression, Root Mean Squared Error
playground-series-s3e14 2.99 MB Beginner, Tabular, Regression, Mean Absolute Error
detecting-insults-in-social-
commentary

3.02 MB Area Under Receiver Operating Characteristic Curve

Continued on next page

16

Table 3: Kaggle Competition Data Overview (continued)

Competition Name Size Tags

walmart-recruiting-store-
sales-forecasting

3.22 MB Time Series Analysis, Weighted Mean Absolute Error

prudential-life-insurance-
assessment

3.4 MB Tabular, QuadraticWeightedKappa

tweet-sentiment-extraction 3.86 MB Text, Internet, Custom Metric
playground-series-s3e7 3.86 MB Beginner, Tabular, Binary Classification, Area Under

Receiver Operating Characteristic Curve
llm-detect-ai-generated-
text

4.43 MB Education, Primary and Secondary Schools, Binary Classi-
fication, Text Generation, Roc Auc Score

unimelb 4.53 MB Area Under Receiver Operating Characteristic Curve
playground-series-s4e2 4.59 MB Beginner, Time Series Analysis, Tabular, Multiclass Classi-

fication, Accuracy Score
playground-series-s4e3 5.49 MB Beginner, Tabular, Multiclass Classification, Binary Clas-

sification, Manufacturing, Mean Columnwise Area Under
Receiver Operating Characteristic Curve

tabular-playground-series-
sep-2022

5.73 MB Tabular, SMAPE

nomad2018-predict-
transparent-conductors

6.24 MB Chemistry, Mean Columnwise Root Mean Squared Loga-
rithmic Error

amazon-employee-access-
challenge

6.39 MB Area Under Receiver Operating Characteristic Curve

playground-series-s3e1 6.48 MB Regression, Tabular, Housing, Beginner, Root Mean
Squared Error

tabular-playground-series-
aug-2022

7.21 MB Tabular, Binary Classification, Area Under Receiver Oper-
ating Characteristic Curve

playground-series-s3e18 7.63 MB Beginner, Tabular, Binary Classification, Multilabel Classi-
fication, Roc Auc Score

poker-rule-induction 8.3 MB Multiclass Classification, Card Games, Tabular, Catego-
rization Accuracy

playground-series-s4e4 8.4 MB Beginner, Tabular, Regression, Mean Squared Log Error
allstate-purchase-
prediction-challenge

8.97 MB Categorization Accuracy

playground-series-s3e16 9.05 MB Beginner, Tabular, Regression, Animals, Mean Absolute
Error

feedback-prize-english-
language-learning

9.3 MB NLP, Education, Primary and Secondary Schools, Custom
Metric

dont-call-me-turkey 11.04 MB Binary Classification, Tabular, Animals, Area Under Re-
ceiver Operating Characteristic Curve

tabular-playground-series-
apr-2021

12.66 MB Beginner, Tabular, Binary Classification, Categorization
Accuracy

playground-series-s3e19 12.79 MB Beginner, Tabular, Time Series Analysis, SMAPE
playground-series-s3e17 12.86 MB Beginner, Tabular, Roc Auc Score
GiveMeSomeCredit 14.47 MB Area Under Receiver Operating Characteristic Curve
google-quest-challenge 14.85 MB Text, NLP, Mean Columnwise Spearman’s r (rank correla-

tion coefficient)
forest-cover-type-kernels-
only

15.38 MB Tabular, Forestry, Categorization Accuracy

playground-series-s4e6 16.2 MB Beginner, Tabular, Education, Accuracy Score
novozymes-enzyme-
stability-prediction

16.39 MB Chemistry, SpearmanR

integer-sequence-learning 17.91 MB Tabular, Categorization Accuracy
random-acts-of-pizza 17.97 MB Binary Classification, Text, Internet, Area Under Receiver

Operating Characteristic Curve
playground-series-s3e23 18.63 MB Beginner, Tabular, Binary Classification, Roc Auc Score
demand-forecasting-
kernels-only

18.7 MB Tabular, SMAPE

playground-series-s3e8 18.96 MB Beginner, Tabular, Regression, Root Mean Squared Error
playground-series-s3e10 20.94 MB Beginner, Tabular, Log Loss
playground-series-s4e1 21.65 MB Beginner, Tabular, Binary Classification, Banking, Roc

Auc Score

Continued on next page

17

Table 3: Kaggle Competition Data Overview (continued)

Competition Name Size Tags

afsis-soil-properties 21.7 MB Mean Columnwise Root Mean Squared Error
sberbank-russian-housing-
market

22.71 MB Banking, Housing, Regression, Tabular, Root Mean
Squared Logarithmic Error

playground-series-s3e24 22.79 MB Beginner, Tabular, Binary Classification, Health, Roc Auc
Score

aerial-cactus-identification 25.4 MB Earth and Nature, Image, Plants, Area Under Receiver
Operating Characteristic Curve

crowdflower-weather-
twitter

25.4 MB Root Mean Squared Error

predicting-red-hat-
business-value

26.74 MB Tabular, Business, Area Under Receiver Operating Charac-
teristic Curve

DontGetKicked 29.52 MB Gini Index
battlefin-s-big-data-
combine-forecasting-
challenge

30.23 MB Mean Absolute Error

bioresponse 31.06 MB Log Loss
tabular-playground-series-
mar-2022

31.4 MB Tabular, Time Series Analysis, Cities and Urban Areas,
Regression, Mean Absolute Error

chaii-hindi-and-tamil-
question-answering

31.8 MB Text, Languages, Custom Metric

nbme-score-clinical-
patient-notes

35.73 MB Text, Medicine, Education, NLP, Custom Metric

leaf-classification 36.05 MB Image, Multiclass Classification, Multiclass Loss
learning-agency-lab-
automated-essay-scoring-2

36.2 MB Education, NLP, Primary and Secondary Schools, Cohen
Kappa Score

20-newsgroups-ciphertext-
challenge

36.97 MB Multiclass Classification, Text, F-Score (Macro)

dont-overfit-ii 38.6 MB Tabular, Binary Classification, Area Under Receiver Oper-
ating Characteristic Curve

rossmann-store-sales 39.85 MB Tabular, Time Series Analysis, Root Mean Square Percent-
age Error

sf-crime 45.24 MB Multiclass Classification, Tabular, Crime, Multiclass Loss
imaterialist-challenge-
furniture-2018

48.59 MB MeanBestErrorAtK

playground-series-s3e11 49.83 MB Beginner, Tabular, Regression, Mean Squared Log Error
word2vec-nlp-tutorial 54.37 MB Text, Binary Classification, Movies and TV Shows, Area

Under Receiver Operating Characteristic Curve
jigsaw-toxic-comment-
classification-challenge

55.18 MB Text, Mean Columnwise Area Under Receiver Operating
Characteristic Curve

see-click-predict-fix 55.75 MB Root Mean Squared Logarithmic Error
denoising-dirty-documents 58.81 MB Image, Root Mean Squared Error
homesite-quote-conversion 65.13 MB Binary Classification, Tabular, Area Under Receiver Oper-

ating Characteristic Curve
airbnb-recruiting-new-user-
bookings

67.85 MB Hotels and Accommodations, Recommender Systems,
Tabular, NDCG{K}

cat-in-the-dat 67.96 MB Tabular, Binary Classification, Area Under Receiver Oper-
ating Characteristic Curve

tmdb-box-office-prediction 70.24 MB Tabular, Movies and TV Shows, Root Mean Squared
Logarithmic Error

home-depot-product-
search-relevance

72.93 MB Tabular, Root Mean Squared Error

facial-keypoints-detection 80.86 MB Image, Root Mean Squared Error
nyc-taxi-trip-duration 89.91 MB Tabular, Regression, Root Mean Squared Logarithmic

Error
text-normalization-
challenge-english-language

95.51 MB Linguistics, Languages, Text, Categorization Accuracy

bnp-paribas-cardif-claims-
management

103.75 MB Banking, Tabular, Binary Classification, Log Loss

playground-series-s4e5 104.17 MB Beginner, Tabular, Logistic Regression, R2 Score

Continued on next page

18

Table 3: Kaggle Competition Data Overview (continued)

Competition Name Size Tags

wsdm-cup-multilingual-
chatbot-arena

113.98 MB Languages, Text Conversation, Accuracy Score

santander-customer-
satisfaction

119.04 MB Tabular, Binary Classification, Banking, Area Under Re-
ceiver Operating Characteristic Curve

playground-series-s3e20 119.66 MB Beginner, Tabular, Time Series Analysis, Root Mean
Squared Error

text-normalization-
challenge-russian-language

125.87 MB Text, Linguistics, Languages, Categorization Accuracy

tabular-playground-series-
mar-2021

131.65 MB Tabular, Logistic Regression, Binary Classification, Area
Under Receiver Operating Characteristic Curve

allstate-claims-severity 142.87 MB Regression, Tabular, Mean Absolute Error
tabular-playground-series-
jan-2021

144.43 MB Tabular, Regression, Root Mean Squared Error

cat-in-the-dat-ii 145.84 MB Binary Classification, Area Under Receiver Operating
Characteristic Curve

liverpool-ion-switching 146.08 MB Biology, F-Score (Macro)
tabular-playground-series-
feb-2021

154.66 MB Regression, Tabular, Root Mean Squared Error

yelp-recsys-2013 179.46 MB Root Mean Squared Error
lmsys-chatbot-arena 184.19 MB Languages, Text Conversation, Log Loss
llm-classification-
finetuning

184.19 MB Languages, Text Conversation, Log Loss

stumbleupon 196.18 MB Text, Tabular, Internet, Area Under Receiver Operating
Characteristic Curve

playground-series-s3e4 198.09 MB Tabular, Binary Classification, Beginner, Area Under
Receiver Operating Characteristic Curve

the-winton-stock-market-
challenge

213.13 MB Finance, Tabular, Weighted Mean Absolute Error

conways-reverse-game-of-
life-2020

251.11 MB Simulations, Board Games, Custom Metric

facebook-recruiting-iv-
human-or-bot

260.68 MB Binary Classification, Tabular, Internet, Area Under Re-
ceiver Operating Characteristic Curve

the-icml-2013-whale-
challenge-right-whale-
redux

293.14 MB Area Under Receiver Operating Characteristic Curve

porto-seguro-safe-driver-
prediction

300.58 MB Tabular, Binary Classification, Normalized Gini Index

statoil-iceberg-classifier-
challenge

302.1 MB Binary Classification, Weather and Climate, Image, Log
Loss

tabular-playground-series-
aug-2021

337.38 MB Tabular, Regression, Banking, Root Mean Squared Error

flavours-of-physics-kernels-
only

436.14 MB Custom Metric

tgs-salt-identification-
challenge

483.07 MB Geology, Image, Custom Metric

linking-writing-processes-
to-writing-quality

485.71 MB Education, NLP, Primary and Secondary Schools, Mean
Squared Error

grupo-bimbo-inventory-
demand

502.44 MB Tabular, Food, Root Mean Squared Logarithmic Error

quora-question-pairs 523.24 MB Text, Tabular, Linguistics, Internet, Log Loss
tabular-playground-series-
may-2022

574.22 MB Tabular, Binary Classification, Area Under Receiver Oper-
ating Characteristic Curve

bigquery-geotab-
intersection-congestion

577.97 MB Tabular, Regression, Cities and Urban Areas, Geospatial
Analysis, Root Mean Squared Error

mlsp-2013-birds 585.1 MB Area Under Receiver Operating Characteristic Curve
santander-customer-
transaction-prediction

606.35 MB Banking, Tabular, Binary Classification, Area Under Re-
ceiver Operating Characteristic Curve

loan-default-prediction 611.66 MB Mean Absolute Error
global-wheat-detection 643.57 MB Image, Plants, Custom Metric

Continued on next page

19

Table 3: Kaggle Competition Data Overview (continued)

Competition Name Size Tags

tabular-playground-series-
dec-2021

693.17 MB Tabular, Multiclass Classification, Categorization Accu-
racy

ventilator-pressure-
prediction

698.79 MB Tabular, Medicine, Biology, Mean Absolute Error

whale-categorization-
playground

726.74 MB Image, Animals, MAP{K}

dog-breed-identification 750.43 MB Multiclass Classification, Animals, Image, Multiclass Loss
plant-pathology-2020-
fgvc7

823.79 MB Image, Agriculture, Mean Columnwise Area Under Re-
ceiver Operating Characteristic Curve

dogs-vs-cats-redux-kernels-
edition

854.51 MB Image, Animals, Binary Classification, Log Loss

benchmark-bond-trade-
price-challenge

910.54 MB Weighted Mean Absolute Error

pubg-finish-placement-
prediction

965.66 MB Video Games, Tabular, Mean Absolute Error

instant-gratification 972.6 MB Tabular, Binary Classification, Area Under Receiver Oper-
ating Characteristic Curve

tabular-playground-series-
nov-2021

1.04 GB Tabular, Binary Classification, Area Under Receiver Oper-
ating Characteristic Curve

petfinder-pawpularity-
score

1.04 GB Image, Root Mean Squared Error

santander-value-prediction-
challenge

1.08 GB Banking, Finance, Root Mean Squared Logarithmic Error

champs-scalar-coupling 1.22 GB Chemistry, Tabular, Regression, Custom Metric
avazu-ctr-prediction 1.28 GB Log Loss
tabular-playground-series-
sep-2021

1.37 GB Tabular, Binary Classification, Area Under Receiver Oper-
ating Characteristic Curve

billion-word-imputation 1.7 GB Text, Linguistics, Levenshtein Mean
plant-seedlings-
classification

1.81 GB Plants, Image, Multiclass Classification, Custom Metric

tabular-playground-series-
feb-2022

1.87 GB Tabular, Multiclass Classification, Categorization Accu-
racy

shopee-product-matching 1.92 GB Image, Text, Retail and Shopping, Custom Metric
AI4Code 2.16 GB NLP, Text, Computer Science, Custom Metric
the-nature-conservancy-
fisheries-monitoring

2.27 GB Image, Multiclass Classification, Multiclass Loss

jigsaw-unintended-bias-in-
toxicity-classification

2.38 GB Text, NLP, Custom Metric

uw-madison-gi-tract-
image-segmentation

2.47 GB Image, Medicine, Dice3DHausdorff

ashrae-energy-prediction 2.61 GB Tabular, Energy, Root Mean Squared Logarithmic Error
stanford-covid-vaccine 2.68 GB Biology, Biotechnology, Coronavirus, Public Health, Cus-

tom Metric
acquire-valued-shoppers-
challenge

3.07 GB Area Under Receiver Operating Characteristic Curve

facebook-recruiting-iii-
keyword-extraction

3.19 GB Custom Metric

invasive-species-
monitoring

3.35 GB Image, Plants, Area Under Receiver Operating Characteris-
tic Curve

tabular-playground-series-
oct-2021

3.49 GB Tabular, Binary Classification, Area Under Receiver Oper-
ating Characteristic Curve

kuzushiji-recognition 4.51 GB Image, Multiclass Classification, History, Japan, Custom
Metric

nfl-player-contact-
detection

5.01 GB Health, Football, Video, Tabular, Matthews correlation
coefficient

bengaliai-cv19 5.18 GB Image, Multiclass Classification, Weighted Categorization
Accuracy

new-york-city-taxi-fare-
prediction

5.7 GB Regression, Tabular, Root Mean Squared Error

Continued on next page

20

Table 3: Kaggle Competition Data Overview (continued)

Competition Name Size Tags

cassava-leaf-disease-
classification

6.19 GB Image, Multiclass Classification, Plants, Categorization
Accuracy

quora-insincere-questions-
classification

6.56 GB Text, Binary Classification, Custom Metric

histopathologic-cancer-
detection

7.76 GB Cancer, Medicine, Research, Area Under Receiver Operat-
ing Characteristic Curve

microsoft-malware-
prediction

8.47 GB Area Under Receiver Operating Characteristic Curve

bms-molecular-translation 8.87 GB Chemistry, Image, Levenshtein Mean
aptos2019-blindness-
detection

10.22 GB Image, Multiclass Classification, Medicine, Healthcare,
QuadraticWeightedKappa

ranzcr-clip-catheter-line-
classification

13.13 GB Image, Multilabel Classification, Mean Columnwise Area
Under Receiver Operating Characteristic Curve

plant-pathology-2021-
fgvc8

16.1 GB Image, Plants, Custom Metric

smartphone-decimeter-
2022

22.9 GB Geospatial Analysis, Signal Processing, Research, Tabular,
Mobile and Wireless, Custom Metric

multi-modal-gesture-
recognition

23.23 GB Custom Metric

osic-pulmonary-fibrosis-
progression

23.99 GB Image, Healthcare, Laplace Log Likelihood

freesound-audio-tagging-
2019

26.15 GB Audio, Weighted Label Ranking Average Precision

hms-harmful-brain-activity-
classification

26.4 GB Tabular, Research, Signal Processing, Healthcare, Kull-
back Leibler Divergence

hotel-id-2021-fgvc8 26.65 GB Image, Public Safety, MAP{K}
imet-2020-fgvc7 29.46 GB F-Score Beta (Micro)
predict-volcanic-eruptions-
ingv-oe

31.25 GB Signal Processing, Geology, Physics, Mean Absolute Error

airbus-ship-detection 31.41 GB Image, IntersectionOverUnionObjectSegmentationBeta
alaska2-image-steganalysis 32.27 GB Custom Metric
hubmap-kidney-
segmentation

32.97 GB Image, Health, Biology, Dice

h-and-m-personalized-
fashion-recommendations

34.56 GB Recommender Systems, Retail and Shopping, MAP{K}

draper-satellite-image-
chronology

36.07 GB Image, MASpearmanR

vesuvius-challenge-ink-
detection

37.02 GB Image Segmentation, History, Image Text Recognition,
DiceFBeta

iwildcam-2019-fgvc6 46.68 GB Image, Multiclass Classification, F-Score (Macro)
herbarium-2020-fgvc7 63.16 GB Image, Plants, F-Score (Macro)
cdiscount-image-
classification-challenge

78.12 GB Multiclass Classification, Categorization Accuracy

inaturalist-2019-fgvc6 87.76 GB MeanBestErrorAtK
icecube-neutrinos-in-deep-
ice

117.18 GB Tabular, Astronomy, Physics, MeanAngularError

iwildcam-2020-fgvc7 118.59 GB Multiclass Classification, Biology, Categorization Accu-
racy

siim-covid19-detection 128.51 GB Image, Multilabel Classification, Custom Metric
rsna-miccai-brain-tumor-
radiogenomic-classification

136.85 GB Image, Binary Classification, Healthcare, Area Under
Receiver Operating Characteristic Curve

seti-breakthrough-listen 156.02 GB Astronomy, Signal Processing, Science and Technology,
Area Under Receiver Operating Characteristic Curve

herbarium-2021-fgvc8 161.9 GB Image, Plants, F-Score (Macro)
herbarium-2022-fgvc9 163.17 GB Plants, Image, F-Score (Macro)
vinbigdata-chest-xray-
abnormalities-detection

205.96 GB Image, Healthcare, Custom Metric

Table 4 presents 50 competitions used for evaluation in our benchmark, encompassing four categories
of tasks: MLE-Lite, Tabular, NLP, and CV.

21

Table 4: Competitions for Evaluation

Competition Name Size Tags

MLE-Lite Competitions

spooky-author-
identification

1.9 MB Multiclass Classification, Literature, Linguistics, Multi-
class Loss

detecting-insults-in-social-
commentary

3.02 MB Area Under Receiver Operating Characteristic Curve

nomad2018-predict-
transparent-conductors

6.24 MB Chemistry, Mean Columnwise Root Mean Squared Loga-
rithmic Error

random-acts-of-pizza 17.97 MB Binary Classification, Text, Internet, Area Under Receiver
Operating Characteristic Curve

aerial-cactus-identification 25.4 MB Earth and Nature, Image, Plants, Area Under Receiver
Operating Characteristic Curve

leaf-classification 36.05 MB Image, Multiclass Classification, Multiclass Loss
jigsaw-toxic-comment-
classification-challenge

55.18 MB Text, Mean Columnwise Area Under Receiver Operating
Characteristic Curve

denoising-dirty-documents 58.81 MB Image, Root Mean Squared Error
text-normalization-
challenge-english-language

95.51 MB Linguistics, Languages, Text, Categorization Accuracy

text-normalization-
challenge-russian-language

125.87 MB Text, Linguistics, Languages, Categorization Accuracy

the-icml-2013-whale-
challenge-right-whale-
redux

293.14 MB Area Under Receiver Operating Characteristic Curve

tabular-playground-series-
may-2022

574.22 MB Tabular, Binary Classification, Area Under Receiver Oper-
ating Characteristic Curve

mlsp-2013-birds 585.1 MB Area Under Receiver Operating Characteristic Curve
tabular-playground-series-
dec-2021

693.17 MB Tabular, Multiclass Classification, Categorization Accu-
racy

dog-breed-identification 750.43 MB Multiclass Classification, Animals, Image, Multiclass Loss
plant-pathology-2020-
fgvc7

823.79 MB Image, Agriculture, Mean Columnwise Area Under Re-
ceiver Operating Characteristic Curve

dogs-vs-cats-redux-kernels-
edition

854.51 MB Image, Animals, Binary Classification, Log Loss

new-york-city-taxi-fare-
prediction

5.7 GB Regression, Tabular, Root Mean Squared Error

histopathologic-cancer-
detection

7.76 GB Cancer, Medicine, Research, Area Under Receiver Operat-
ing Characteristic Curve

aptos2019-blindness-
detection

10.22 GB Image, Multiclass Classification, Medicine, Healthcare,
QuadraticWeightedKappa

ranzcr-clip-catheter-line-
classification

13.13 GB Image, Multilabel Classification, Mean Columnwise Area
Under Receiver Operating Characteristic Curve

NLP Competitions

kaggle-llm-science-exam 364.21 kB Physics, NLP, MAP@K
llm-detect-ai-generated-
text

4.43 MB Education, Primary and Secondary Schools, Binary Classi-
fication, Text Generation, Roc Auc Score

20-newsgroups-ciphertext-
challenge

36.97 MB Multiclass Classification, Text, F-Score (Macro)

lmsys-chatbot-arena 184.19 MB Languages, Text Conversation, Log Loss
stumbleupon 196.18 MB Text, Tabular, Internet, Area Under Receiver Operating

Characteristic Curve
linking-writing-processes-
to-writing-quality

485.71 MB Education, NLP, Primary and Secondary Schools, Mean
Squared Error

quora-question-pairs 523.24 MB Text, Tabular, Linguistics, Internet, Log Loss
AI4Code 2.16 GB NLP, Text, Computer Science, Custom Metric
quora-insincere-questions-
classification

6.56 GB Text, Binary Classification, Custom Metric

CV Competitions

facial-keypoints-detection 80.86 MB Image, Root Mean Squared Error

Continued on next page

22

Competition Name Size Tags

whale-categorization-
playground

726.74 MB Image, Animals, MAP@K

petfinder-pawpularity-
score

1.04 GB Image, Root Mean Squared Error

bengaliai-cv19 5.18 GB Image, Multiclass Classification, Weighted Categorization
Accuracy

cassava-leaf-disease-
classification

6.19 GB Image, Multiclass Classification, Plants, Categorization
Accuracy

bms-molecular-translation 8.87 GB Chemistry, Image, Levenshtein Mean
imet-2020-fgvc7 29.46 GB F-Score Beta (Micro)
airbus-ship-detection 31.41 GB Image, IntersectionOverUnionObjectSegmentationBeta
alaska2-image-steganalysis 32.27 GB Custom Metric
draper-satellite-image-
chronology

36.07 GB Image, MASpearmanR

Tabular Competitions

demand-forecasting-
kernels-only

18.7 MB Tabular, SMAPE

dont-overfit-ii 38.6 MB Tabular, Binary Classification, Area Under Receiver Oper-
ating Characteristic Curve

santander-customer-
satisfaction

119.04 MB Tabular, Binary Classification, Banking, Area Under Re-
ceiver Operating Characteristic Curve

liverpool-ion-switching 146.08 MB Biology, F-Score (Macro)
conways-reverse-game-of-
life-2020

251.11 MB Simulations, Board Games, Custom Metric

porto-seguro-safe-driver-
prediction

300.58 MB Tabular, Binary Classification, Normalized Gini Index

santander-customer-
transaction-prediction

606.35 MB Banking, Tabular, Binary Classification, Area Under Re-
ceiver Operating Characteristic Curve

ventilator-pressure-
prediction

698.79 MB Tabular, Medicine, Biology, Mean Absolute Error

instant-gratification 972.6 MB Tabular, Binary Classification, Area Under Receiver Oper-
ating Characteristic Curve

santander-value-prediction-
challenge

1.08 GB Banking, Finance, Root Mean Squared Logarithmic Error

We ranked the difficulty of competitions based on the average HumanRank scores achieved by all
models across each competition. Table D presents all competitions for evaluation ranked by difficulty
from easiest to hardest. This difficulty ranking provides a partial indication of which competitions
MLE Agents perform relatively better in comparison to human competitors. However, due to potential
biases introduced by factors such as dataset splits, the ranking should be interpreted as a reference
rather than a definitive measure.

Table 5: Competition Difficulty

Competition Avg. HumanRank Category

tabular-playground-series-dec-2021 1.000000 MLE-Lite
detecting-insults-in-social-commentary 0.995000 MLE-Lite
llm-detect-ai-generated-text 0.808599 NLP
santander-customer-satisfaction 0.777327 Tabular
20-newsgroups-ciphertext-challenge 0.741197 NLP
plant-pathology-2020-fgvc7 0.706198 MLE-Lite
dogs-vs-cats-redux-kernels-edition 0.704814 MLE-Lite
histopathologic-cancer-detection 0.635389 MLE-Lite
aerial-cactus-identification 0.625717 MLE-Lite
airbus-ship-detection 0.578445 CV
demand-forecasting-kernels-only 0.576934 Tabular
nomad2018-predict-transparent-conductors 0.560720 MLE-Lite
dont-overfit-ii 0.532964 Tabular
random-acts-of-pizza 0.506494 MLE-Lite

23

Competition Avg. HumanRank Category

aptos2019-blindness-detection 0.474492 MLE-Lite
draper-satellite-image-chronology 0.472431 CV
jigsaw-toxic-comment-classification-challenge 0.437596 MLE-Lite
the-icml-2013-whale-challenge-right-whale-
redux

0.423450 MLE-Lite

spooky-author-identification 0.405318 MLE-Lite
facial-keypoints-detection 0.393214 CV
porto-seguro-safe-driver-prediction 0.359001 Tabular
santander-value-prediction-challenge 0.337203 Tabular
tabular-playground-series-may-2022 0.336664 MLE-Lite
leaf-classification 0.324687 MLE-Lite
text-normalization-challenge-english-language 0.315865 MLE-Lite
lmsys-chatbot-arena 0.311389 NLP
dog-breed-identification 0.300586 MLE-Lite
petfinder-pawpularity-score 0.283909 CV
quora-question-pairs 0.283346 NLP
alaska2-image-steganalysis 0.257705 CV
cassava-leaf-disease-classification 0.223718 CV
conways-reverse-game-of-life-2020 0.223404 Tabular
denoising-dirty-documents 0.204969 MLE-Lite
stumbleupon 0.182091 NLP
imet-2020-fgvc7 0.179036 CV
whale-categorization-playground 0.166983 CV
mlsp-2013-birds 0.154272 MLE-Lite
liverpool-ion-switching 0.152072 Tabular
ventilator-pressure-prediction 0.136828 Tabular
kaggle-llm-science-exam 0.135041 NLP
text-normalization-challenge-russian-language 0.098380 MLE-Lite
linking-writing-processes-to-writing-quality 0.089086 NLP
instant-gratification 0.071988 Tabular
quora-insincere-questions-classification 0.070380 NLP
bms-molecular-translation 0.066147 CV
ranzcr-clip-catheter-line-classification 0.036199 MLE-Lite
AI4Code 0.025269 NLP
bengaliai-cv19 0.018395 CV
new-york-city-taxi-fare-prediction 0.000843 MLE-Lite
santander-customer-transaction-prediction 0.000000 Tabular

E Action Space

request_info. When an LLM agent requires necessary information to solve an MLE problem, it
can call the request_info function to access task descriptions, sample submissions, data directories,
output directories, and data structures. The response includes all necessary competition information
without further analysis or information pruning.

validate_code. The validate_code action performs basic syntax checking and runtime validation.
It provides a compilation trial of the code and returns detailed syntax or execution error messages.
It also serves as a critical interface for running data analysis code and extracting deeper insights
from the resulting outputs. This action is more lightweight than execute_code without submission
requirements, which may serve as a debugging or information printing tool.

execute_code. Unlike validate_code, the execute_code action performs complete code execu-
tion, submission verification and evaluation. Only through this action can the generated submission of
the code be validated and evaluated using the corresponding metric. Each use of the execute_code
action corresponds to a full competition submission. Restriction on invocations of this action allow
for different and flexible methodological and experimental design needs. Only through the invocation
of this action can the generated submission be validated and evaluated using the corresponding metric.

24

get_history. Since memory is a crucial component in agent design, MLE-Dojo provides the
get_history function to access past experiences and enable learning from memory. This flexi-
ble design accommodates different agent architectures and scaffolding approaches.

reset. MLE-Dojo offers a reset function to reset the entire environment and restart from scratch.
This action serves as the default mechanism designed to accommodate a wide range of use cases.

F Implementation Details

F.1 Evaluation Metrics Details

We include additional details of evaluation metrics design as follows:

AUP Score. We use the AUP score to systematically evaluate and compare multiple methods across
diverse tasks. A performance profile captures the proportion of tasks where a given method performs
within a certain factor of the best-performing method. Lower performance ratios indicate better
results, though we invert this ratio for metrics like accuracy or R2, where higher values represent
better performance. If a method fails to produce a valid solution (infeasible), we assign it a penalty
relative to the worst feasible performance. Integrating these performance profiles provides the AUP
score, offering a single robust measure of each method’s overall effectiveness across the benchmark.

We adopt the performance profile and AUP score from ML-Gym [26] and to compare the effectiveness
of different methods across a set of benchmark tasks. We make a few minor modifications to better
align with our framework. For each backbone model m ∈M and task t ∈ T , the performance ratio
is defined as

rt,m =
`t,m

min
m′∈M

`t,m′
, (1)

where `t,m denotes the performance metric of backbone model m on task t, andM is the set of
all evaluated methods. This formulation assumes that lower metric values correspond to better
performance.

The performance profile curve of backbone model m is then defined as the cumulative distribution of
the log-scaled performance ratio:

ρm(τ) =
1

|T |
|{t ∈ T | log10 rt,m ≤ τ}| . (2)

This function quantifies the proportion of tasks for which backbone model m performs within a τ -log
distance of the best backbone model on that task.

To aggregate performance into a single scalar score, we compute the Area Under the Profile (AUP)
curve:

AUPm =

∫ τmax

1

ρm(τ) dτ, (3)

where τmax is the smallest value such that ρm(τmax) = 1 for all m ∈M.

For metrics where higher values indicate better performance (e.g., Accuracy, R2), we invert the ratio
computation:

rt,m =
max
m′∈M

`t,m′

`t,m
. (4)

If a backbone model fails to obtain a valid score for a task t, its ratio is defined relative to the lowest
valid score across all backbone models mbottom as:

rt,m = (1 + ε) · rt,mbottom , with ε = 1.0. (5)

This is a relatively reasonable design choice that appropriately penalizes the performance of backbone
models that fail to produce valid scores. Additionally, we impose an upper bound of 100 on the value
of rt,m to mitigate the risk of biased results caused by extremely large ratios.

HumanRank Score. The HumanRank score (Eq. F.1) measures the relative ranking of a submission
within the competition leaderboard. Submissions receive higher scores if they achieve a better

25

rank among all participants. Suppose that the submission ranks at position p among a total of N
submissions on the leaderboard. Then, the position score is computed as: s = 1− p

N . To prevent
bias between public and private leaderboards, we compute the relative scores on each leaderboard
independently and then use their average as the final score.

Elo ranking. We adopt the Elo ranking calculation algorithm from Chatbot Arena [5]. We utilize
Elo ratings to perform systematic pairwise comparisons of methods across competitions. Two
complementary Elo calculation methods ensure stability and reliability: an online linear update
with a low K-factor, providing stable incremental ratings, and a Bradley-Terry model using logistic
regression, directly fitting ratings to all comparisons for robust estimates. Additionally, we apply
bootstrapping techniques to compute confidence intervals, offering clear measures of uncertainty and
confidence in the resulting ratings.

Each competition can be viewed as a battle, in which two backbone models are pitted against each
other. Their respective performance scores on the competition determine the outcome-win, loss, or
tie-between the two. Based on these pairwise outcomes, we calculate their Elo rankings. In our
setting, we assume that the large language models (LLMs) under evaluation are static, allowing us
to estimate a stable skill rating using the Bradley–Terry model. Specifically, we reformulate the
pairwise win-loss outcomes between models as a logistic regression problem. LetM denote the set
of all models with cardinality |M| = p, and let ri denote the (logit-transformed) latent skill rating
of model i. For every observed battle between model i and model j, we construct a pair of training
samples (xij , yij) and (xji, yji) such that:

xij = logB · (ei − ej), yij = 1, xji = logB · (ej − ei), yji = 0,

where B is the base of the logistic function (default B = 10), and ei is a p-dimensional one-hot
vector indicating model i. The number of duplicate entries per pair is determined by the total number
of battles (wins, losses, and ties), with each entry weighted accordingly. The logistic regression is
then solved as

r̂ = argmin
r

n∑
k=1

wk · log
(
1 + exp(−yk · x>k r)

)
,

where wk is the sample weight for the k-th comparison. The final Elo score for each model i is
computed as si = S · r̂i+R0, where S is a scaling factor (default S = 400), and R0 is the initial Elo
offset (default R0 = 1000). To estimate confidence intervals, we apply a non-parametric bootstrap
procedure. Given the original battle datasetD, we resample with replacement to generateD1, . . . ,DR,
and re-estimate Elo scores as s(1), . . . , s(R). The final Elo score for each model is reported as the
pointwise median across bootstrap samples. All results in our study are reported using R = 100
bootstrap rounds with fixed random seed.

G Experiment Configurations.

The total number of steps is set to 15, with agents having full access to their interaction histories. A
unified, concise prompt with clear instructions is provided, without additional extraneous information.
The maximum runtime per session is 12 hours, and GPU memory is limited to 32 GB. The maximum
input token length is set at 50,000, while each output round is capped at 8,192 tokens. Experiment
settings of prompt, history, time, and memory configurations are designed to rigorously evaluate
LLMs’ capabilities in long-context handling, instruction-following, reasoning, and coding under
resource-constrained conditions, closely mirroring realistic Machine Learning Engineering scenarios.
We do not restrict the number of submission attempts to enable continuous improvement. To
generate valid submission files and scores, agents must explicitly use the "execute_code" command;
submissions are not automated. See Appendix for detailed configurations. We pre-install commonly
used Python packages, though agents may install additional packages within their generated code as
needed.

H Additional Experimental Analysis

H.1 Additional Analysis of Evaluation Metrics

We identify several key observations supported by analytical reasoning regarding the evaluation
metrics utilized: HumanRank Score, Elo Score, and Performance Profiles with the AUP score.

26

HumanRank Scores Reflect Comprehensive Absolute Performance. The HumanRank Score (%)
converts raw, task-specific metrics into relative rankings against human performance, yielding scores
ranging from 0 (lowest) to 1 (highest). A high HumanRank score thus indicates superior perfor-
mance relative to human benchmarks across tasks of diverse difficulty. This uniform normalization
allows for comprehensive comparison and mitigates inconsistencies from heterogeneous raw scores.
Our main experimental results illustrate that stronger models (e.g., o3-mini, DeepSeek-r1, and
Gemini-2.5-Pro) consistently exhibit profiles enclosing those of less capable models, confirming
their overall superior performance. Nonetheless, by equally weighting tasks irrespective of complex-
ity, the averaging process may mask task-specific strengths or weaknesses and obscure the direct
competitive relationships between individual models.

Elo Scores Highlight Pairwise Relative Performance. The Elo Score provides rankings based on
explicit win-loss relationships determined through pairwise comparisons on each task. Utilizing the
standard Elo rating system, these scores intuitively represent the relative ordering of models based on
their competitive outcomes. Elo scores generally reflect a pattern where superior models encompass
weaker ones, yet variations may arise. Notably, models with comparatively lower absolute average
performance scores may still achieve higher Elo scores in certain task categories due to advantageous
win-loss records. Elo scores thus effectively reveal relative model strengths and weaknesses but do
not quantify the absolute magnitude of performance gaps.

Performance Profiles and AUP Scores Demonstrate Robustness. Performance Profiles and AUP
scores accumulate performance ratios, which are relative values of raw scores, over varying thresholds.
These metrics illustrate model robustness and consistency across multiple evaluation conditions.
While these integrated scores offer insightful perspectives into relative performance dynamics,
disparities in raw score scales across tasks can lead to comparability challenges. Despite potential
biases due to varying raw scales, these metrics successfully capture nuanced relative performances,
reflecting the models’ adaptability across different performance thresholds.

MLE

Tabular

NLP

CV

Overall

1 2 3 4 5

History Length (104 tokens)

MLE

Tabular

NLP

CV

Overall

0 5 101520253035

Best Solution Length (102 tokens)

GPT-4o-mini
GPT-4o

Gemini-2.0-Flash
DeepSeek-V3

Gemini-2.0-Pro
o3-mini

DeepSeek-R1
Gemini-2.5-Pro

Figure 12: Total chat history length (left) and best solution length (right).

H.2 History Length and Solution Length

Figure 12 shows both the total chat history length, including all interaction prompts, actions, and
generated codes, and the length of the best solution generated by each model. The total chat history
length closely aligns with the best solution length, where both metrics positively correlate with overall
model performance. Reasoning models typically generate notably longer solutions compared to
non-reasoning models. Moreover, stronger-performing models frequently produce more extended
solutions, which often correspond to higher performance scores. Although increased solution length
does not inherently ensure superior outcomes, it generally indicates a model’s capability to explore
more intricate and sophisticated solution strategies, a hallmark predominantly observed in more
capable reasoning models.

27

4o-mini 4o Gem2.0-F DS-V3 Gem2.0-P o3-mini DS-R1 Gem2.5-P0

20

40

60

80

100

E
rr

or
 P

er
ce

nt
ag

e
(%

)

47.6

4.8

47.6

33.3

66.7

43.7

39.8

16.5

79.0

1.6

19.4

74.3

1.4

24.3

81.4

1.0

17.5

91.0

3.0
6.0

73.1

13.5

13.5

Execution Failed
Submission Not Created
Submission Invalid

Figure 13: Execution error types.

H.3 Error Type

Execution Error Types. To further analyze the nature of execution errors, we categorized failures
into "Execution Failed", "Submission Not Created", and "Submission Invalid" (Figure 13). Stronger
models, generating longer, more complex code, are more susceptible to "Execution Failed" errors.
However, successful executions from these models frequently yield valid submissions and high
performance. Models employing conservative validation strategies (e.g., gpt-4o-mini, gpt-4o)
significantly reduce "Execution Failed" errors but continue to encounter issues related to submission
creation and validity, indicating limitations in the validation approach.

I Prompt Details

We design our prompts to be concise while containing all the information necessary for the LLM to
perform the task. In doing so, we avoid providing extra assistance beyond what is required, while
also ensuring that no essential information is omitted. This careful balance allows our benchmark to
serve as a fair and comprehensive evaluation of LLMs as MLE Agents.

Below, we present the prompts used for the MLE Agents, which consist of four components. The
System Instruction is an overall directive provided at the beginning of the task, detailing the task
setting, the available actions, the expected output format, and an overview of the environment. During
task execution, Error and Reflection as dynamic prompts are supplied to guide the LLM toward
the next step, based on the current state: a concise prompt is used in the event of an error, while an
informative prompt is used upon success, both incorporating feedback from the environment. In cases
where the LLM produces outputs in an incorrect format, Parse Error prompt is triggered to prompt
the LLM to correct its output. The detailed prompts are as follows:

System Instruction

You are a top-ranked Kaggle grandmaster with extensive competition experience.
Your objective is to solve a Kaggle competition, with the goal of maximizing
the Position Score (Your rank in the leaderboard) in limited steps.
You must use Machine Learning/Deep Learning/Computer Vision/NLP/etc.
methods to solve the problem, the score of random guess or without any ML/DL/CV/NLP
methods will be cancelled finally.
You are likely to train models according to specific competition requirements.
You have access to a GPU and several CPUs for training DL/ML models.
Use cuda and PyTorch for faster training whenever needed.

You have a total of {num_actions} actions available.
You have a total of {time_left} seconds, including code execution time.

You have access to exactly three actions with params, and receive corresponding
feedback after each action:
1. request_info: Retrieve specific competition information

- params: info_type (str), must be one of: "overview", "sample_submission",
"data_structure", "data_path", "output_path"

28

- feedback: information you requested
2. validate_code: Test (partial) code execution for debugging purposes or

"print" information in the output
- params: code (str)
- feedback: execution result (success or failure), error message if failed,
code output if success

3. execute_code: Run completed code, generate submission and get evaluation
- params: code (str)
- feedback: execution result, submission status, evaluation score

Code requirements:
- Request all information needed first
- Read all data files from data_dir
- Save all submissions to output_dir, should match test_data length
- Don't add, delete, or modify any files in data_dir
- Use "print" or other functions to output information in the feedback
- No plotting or visualization is allowed
- Refer to Sample Submission for the output format
- Code should be self-contained and not rely on any variables or state outside
- Code for submission should be completely runnable, otherwise it will be

considered as failed
- Optimize your Model/Parameters/Data Processing/Algorithm for continuous improvement

Only if "execute_code" action taken, code successfully executed and valid submission
generated, you'll be able to get a Position Score (Your rank in the leaderboard) for
this competition.

Response format requirements, strictly one of the following:
{{

"action": "request_info",
"params": {{

"info_type": "<info_type>"
}}

}}
or
{{

"action": "validate_code",
"params": {{

"code": "<code>"
}}

}}
or
{{

"action": "execute_code",
"params": {{

"code": "<code>"
}}

}}
- Must be valid JSON format
- No additional text or formatting allowed

Error
Execution failed, details below:

Error Start
{observation}
Error End

You still have {num_actions} actions available.
You still have {time_left} seconds left.

Output your next action strictly following Response format requirements.

29

Reflection
The results of your previous action:

Results Start
{observation}
Results End

You still have {num_actions} actions available.
You still have {time_left} seconds left.
Optimize your Model/Parameters/Data Processing/Algorithm for continuous improvement.

Output your next action strictly following Response format requirements.

Parse Error
The response can't be parsed as valid JSON.
Fix the error following the response format requirements.
First, only fix the JSON format error, don't change the contents of the response.
Then make sure the <code> is in completely runnable format for "python3 str(<code>)".
Only focus on the format, don't change the meaningful contents.

Response Start
{response}
Response End

Error Start
{error}
Error End

Response format requirements, strictly one of the following:
{{

"action": "request_info",
"params": {{

"info_type": "<info_type>"
}}

}}
or
{{

"action": "validate_code",
"params": {{

"code": "<code>"
}}

}}
or
{{

"action": "execute_code",
"params": {{

"code": "<code>"
}}

}}
- Must be valid JSON format
- No additional text or formatting allowed

J Code Analysis

For the same competition, different models exhibit a rich diversity in the solutions or code they
generate; for different competitions, even the same model is capable of producing specific and
targeted solutions tailored to each task. We present the following analyses to illustrate how different
models formulate their solutions when interacting with various competitions in MLE-Dojo.

30

J.1 Solution diversity of models

When faced with the same competition, different models often produce diverse solutions and code
implementations, leading to great diversity of solutions. This diversity arises from variations in the
choice of Python packages, the selection of computational devices (CPU or GPU), data preprocessing
strategies, and model architectures.

Code 1 is a code snippet extracted from one of the step actions by Gemini-2.5-Pro on the
20-newsgroups-ciphertext-challenge competition. In this step, the model utilizes sklearn as
main python package, CPU as device, employs classical feature engineering techniques, and applies
a Logistic Regression model to address the task. Code 2 is a code snippet extracted from one of the
step actions by DeepSeek-r1 on the same competition. In contrast to previous approach, it prioritizes
the use of GPU devices, adopts PyTorch as the core framework, and designs and trains the model
in a more deep learning-oriented manner. This highlights the diverse actions and solution strategies
adopted by different models when addressing the same problem.

import pandas as pd
import os
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
train_df = pd.read_csv(os.path.join(data_dir, 'train.csv'))
test_df = pd.read_csv(os.path.join(data_dir, 'test.csv'))
sample_submission = pd.read_csv(os.path.join(data_dir, 'sample_submission.csv'))
Define features (X) and target (y)
X_train = train_df['ciphertext']
y_train = train_df['target']
X_test = test_df['ciphertext']
Increased max_features and C again for the final attempt
pipeline = Pipeline([
('tfidf', TfidfVectorizer(analyzer='char', ngram_range=(2, 6), max_features=2000)),
('clf', OneVsRestClassifier(LogisticRegression(solver='liblinear', random_state=42,

C=70.0)))
])
Train the model
pipeline.fit(X_train, y_train)
predictions = pipeline.predict(X_test)
submission_df = pd.DataFrame({'Id': test_df['Id'], 'Predicted': predictions})

Code Listing 1: Code snippet of Gemini-2.5-Pro on 20-newsgroups-ciphertext-challenge

import pandas as pd
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from sklearn.preprocessing import LabelEncoder
from pathlib import Path
import math

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
...
class CharDataset(Dataset):

def __init__(self, texts, labels=None):
self.texts = texts
self.labels = labels

def __len__(self):
return len(self.texts)

def __getitem__(self, idx):
text = self.texts[idx][:max_length].ljust(max_length, ' ')
encoded = [char_to_idx.get(c, 0) for c in text]
tensor = torch.tensor(encoded, dtype=torch.long)

if self.labels is not None:
label = torch.tensor(self.labels[idx], dtype=torch.long)
return tensor, label

else:
return tensor

31

...
class CipherTransformer(nn.Module):

def __init__(self, vocab_size=len(chars)+1, d_model=512, nhead=16, num_layers=8,
num_classes=20):
super().__init__()
self.embed = nn.Embedding(vocab_size, d_model)
self.pos_encoder = PositionalEncoding(d_model)
encoder_layer = nn.TransformerEncoderLayer(

d_model=d_model,
nhead=nhead,
dim_feedforward=2048,
dropout=0.1,
batch_first=True

)
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers)
self.classifier = nn.Sequential(

nn.Linear(d_model, 1024),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(1024, num_classes)

)

def forward(self, x):
x = self.embed(x)
x = self.pos_encoder(x)
x = self.transformer(x)
x = x.mean(dim=1)
return self.classifier(x)

...

Code Listing 2: Code snippet of DeepSeek-R1 on 20-newsgroups-ciphertext-challenge

J.2 Solution diversity of competitions

A single model may adopt highly tailored solutions across competitions of varying nature. A
comparison between Code 1 and Code 3 demonstrates that Gemini-2.5-Pro utilizes markedly distinct
approaches in response to the specific demands of each task. This highlights the diverse actions and
solution strategies adopted addressing different problems. MLE-Dojo offers a broad and flexible space
that enables various models or agent scaffolds to fully leverage their respective capabilities without
limitation.

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from PIL import Image
import torchvision.transforms as transforms

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class CactusDataset(Dataset):

def __init__(self, df, img_dir, transform=None, is_test=False, tta_transform=None):
self.df = df
self.img_dir = img_dir
self.transform = transform # Base transform (ToTensor, Normalize)
self.tta_transform = tta_transform # Augmentation transform for TTA
self.is_test = is_test
self.image_files = df['id'].values
if not self.is_test:

self.labels = df['has_cactus'].values

def __len__(self):
return len(self.df)

def __getitem__(self, idx):
img_name = os.path.join(self.img_dir, self.image_files[idx])
image = Image.open(img_name).convert('RGB')

if self.is_test and self.tta_transform:

32

Apply TTA transforms
images = [self.transform(self.tta_transform(image, step)) for step in

range(TTA_STEPS)]
image_stack = torch.stack(images)
return image_stack, self.image_files[idx]

elif self.transform: # Standard transform for training or non-TTA test
image = self.transform(image)

if self.is_test:
return image, self.image_files[idx]

else:
label = torch.tensor(float(self.labels[idx]))
return image, label

...
class SimpleCNN(nn.Module):

def __init__(self):
super(SimpleCNN, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
self.relu1 = nn.ReLU()
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.relu2 = nn.ReLU()
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.relu3 = nn.ReLU()
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(128 * 4 * 4, 512)
self.relu4 = nn.ReLU()
self.dropout = nn.Dropout(0.5)
self.fc2 = nn.Linear(512, 1)

def forward(self, x):
x = self.pool1(self.relu1(self.conv1(x)))
x = self.pool2(self.relu2(self.conv2(x)))
x = self.pool3(self.relu3(self.conv3(x)))
x = x.view(x.size(0), -1)
x = self.relu4(self.fc1(x))
x = self.dropout(x)
x = self.fc2(x)
return x

model = SimpleCNN().to(device)

Code Listing 3: Code snippet of Gemini-2.5-Pro on aerial-cactus-identification

J.3 Statistics of Method Diversity

We further investigate the distribution of model types implemented by different Large Language
Models (LLMs) in Figure 14. To facilitate this analysis, the implemented models were systematically
categorized based on their architectural complexity and type, utilizing the following mapping for
brevity:

• Adv-NN: Advanced Neural Networks, encompassing contemporary and complex architec-
tures such as Transformers (e.g., BERT, RoBERTa), EfficientNets, and LSTMs.

• Cls-NN: Classic Neural Networks, referring to well-established architectures like Convolu-
tional Neural Networks (CNNs), ResNet variants, and DenseNets.

• SD-NN: Self-defined Neural Networks, indicating implementations involving custom-
designed network structures or significant modifications to standard architectures, often
specified within the solution code itself.

• Sim-LN: Simple Linear Models, comprising fundamental algorithms like Logistic Regres-
sion, Linear Regression, Support Vector Machines (with linear kernels), and Naive Bayes
classifiers.

• Tree: Tree-based Ensemble Models, including algorithms such as Random Forest, Gradient
Boosting Machines (GBM), XGBoost, LightGBM, and CatBoost.

33

• N/A: Not Applicable, denoting instances where the LLM did not generate a specific modeling
solution or where the generated code did not contain an identifiable primary model.

Analysis of the model distribution across the evaluated LLMs and competition tasks reveals several
pertinent observations. Firstly, a considerable degree of heterogeneity exists in the model choices
preferred by different LLMs for identical tasks. Secondly, the selection of model type strongly
correlates with the nature of the competition data; Tree and Sim-LN models are predominantly
employed for tabular datasets, reflecting their established effectiveness in such domains, whereas
Cls-NN, Adv-NN, and SD-NN are the favored choices for image and natural language processing
tasks. Thirdly, certain LLMs exhibit discernible tendencies: for example, some models appear more
frequently to propose SD-NN solutions, potentially indicating a higher propensity for generating
novel or customized architectures, while others might more commonly default to simpler baselines
(Sim-LN, Tree) or yield N/A results. The frequent occurrence of N/A across various LLM-task
combinations also suggests variability in the LLMs’ capabilities to successfully generate relevant
and complete modeling code for diverse problem specifications. This distribution underscores the
varying strategies and potential biases inherent in different LLMs when approaching machine learning
problem-solving via code generation.

4o-mini 4o Gem2.0-F DS-V3 Gem2.0-P o3-mini DS-R1 Gem2.5-P

A
dv

-N
N

C
ls

-N
N

S
D

-N
N

S
im

-L
N

Tr
ee

N
/A

0.0 2.0 2.0 2.0 0.0 20.0 14.0 4.0

8.0 10.0 4.0 8.0 14.0 16.0 4.0 6.0

6.0 10.0 8.0 22.0 6.0 46.0 38.0 42.0

16.0 10.0 22.0 16.0 22.0 4.0 4.0 10.0

32.0 52.0 18.0 38.0 34.0 10.0 30.0 32.0

38.0 16.0 46.0 14.0 24.0 4.0 10.0 6.0

Distribution of Model Types Used by Different LLMs

0

10

20

30

40

50

P
er

ce
nt

ag
e

(%
)

Figure 14: Statistics of method implementation across 50 evaluation tasks of eight frontiers LLM.

K Agent Scaffolds

K.1 MLE Agent

In MLE-Dojo, the agent scaffold for benchmarking is referred to as the MLE Agent. It leverages
the environment’s natively supported action space and adopts a minimalistic yet effective design
logic. LLMs are provided with a comprehensive and detailed initial instruction at the beginning of
each task. This instruction includes the task description, output format, objectives, available actions,
and resource constraints. Subsequently, the agent interacts with the environment through concise
prompts that guide the LLM to take new actions based on feedback, in order to iteratively improve
its performance. The MLE Agent maintains a fixed-length interaction history window and utilizes
structured, formatted outputs as both actions and their corresponding contents. The MLE Agent
serves as a lightweight yet representative scaffold that supplies essential guidance without offering
additional hints or assistance. It enables systematic benchmarking and evaluation of an LLM’s overall
capabilities in the MLE-Dojo environment, including context understanding, analytical reasoning,
instruction following, and code generation.

34

K.2 AIDE

AIDE [19] adopts a problem-solving paradigm inspired by how human data scientists approach
challenges-through iterative refinement based on performance feedback. Central to its methodology
is a technique termed Solution Space Tree Search, which enables systematic exploration and opti-
mization over the space of candidate solutions. This framework comprises three core components:
(1) a Solution Generator, which proposes new candidate solutions either by drafting from scratch or
by modifying existing ones (e.g., fixing bugs or introducing improvements); (2) an Evaluator, which
runs each candidate and quantitatively assesses its performance against the task objective; and (3) a
Solution Selector, which identifies the most promising solution to seed the next iteration. Through
repeated application of this feedback-driven cycle, AIDE efficiently navigates the solution space
and converges towards optimal or near-optimal solutions. This iterative, adaptive process combines
algorithmic rigor with human-like creativity, enabling AIDE to solve complex data science problems
with remarkable effectiveness.

Implementation. We seamlessly integrate AIDE as the agent scaffold within MLE-Dojo, enabling
its interaction with the environment through a single line of core code. The original score feedback
mechanism in AIDE can be effortlessly replaced with either the HumanRank score or the actual raw
competition score provided by MLE-Dojo. The interaction process can be fully executed by a sin-
gle call to agent.step(exec_callback=exec_callback), ensuring compatibility without altering
AIDE’s core logic. Specifically, we make the following modifications: (1) We revise the prompting
strategy to emphasize the requirement of generating a correctly formatted submission.csv file at
the designated location. (2) The feedback mechanism and the criterion for selecting candidate nodes
are modified to rely on the true raw score and HumanRank score provided by MLE-Dojo, instead of
using the model’s own validation performance.

35

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Both our abstract and the end of the introduction clearly present our contri-
butions, and our environment, code, and experimental results are well aligned with our
claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation in Section A.1 in Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

36

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We open-source all the code for data-preparation and running experiments; we
also clearly present details of experiment settings in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

37

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We open-souce all the code and present the link in the abstract.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all the experimental settings/details in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We benchmark 8 models on 50 tasks and take the best performance of 3 trials
on each task.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

38

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We include the Experiments compute resources in the Experiment Configura-
tions part in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss both potential positive societal impacts and negative societal
impacts of the work in Appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

39

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We discuss the data usage in Appendix, regarding the licenses of Kaggle data.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the license and terms are mentioned for each kaggle task. And all the code
we utilized or adapted is properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

40

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: All new assets introduced in the paper are well documented together in the
Github repository mentioned in the abstract.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

41

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.

42

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Works
	MLE-Dojo
	Modular and User-Friendly Interface
	Extensible Task Space P
	Observation Space O
	Expandable Action Space A
	Reward Space and Environmental Feedback

	LLMs as MLE Agents in MLE-Dojo
	Experiment Setups
	Main Results
	Cost Analysis
	Step-wise Performance Dynamics
	Error Analysis

	Conclusion
	Limitations and Broader Impacts
	Limitations
	Broader Impacts
	Ethical Statements

	Disclaimer
	Unified Data Structure
	Data Details
	Action Space
	Implementation Details
	Evaluation Metrics Details

	Experiment Configurations.
	Additional Experimental Analysis
	Additional Analysis of Evaluation Metrics
	History Length and Solution Length
	Error Type

	Prompt Details
	Code Analysis
	Solution diversity of models
	Solution diversity of competitions
	Statistics of Method Diversity

	Agent Scaffolds
	MLE Agent
	AIDE

