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Abstract
Data from neural recordings suggest that mammalian brains represent physical and abstract
task-relevant variables through low-dimensional neural manifolds. In a recent electrophys-
iological study (Nieh et al., 2021), mice performed an evidence accumulation task while
moving along a virtual track. Nonlinear dimensionality reduction of the population activ-
ity revealed that task-relevant variables were jointly mapped in an orderly manner in the
low-dimensional space. Here we trained deep reinforcement learning (RL) agents on the
same evidence accumulation task and found that their neural activity can be described with
a low-dimensional manifold spanned by task-relevant variables. These results provide fur-
ther insight into similarities and di↵erences between neural dynamics in mammals and deep
RL agents. Furthermore, we showed that manifold learning can be used to characterize the
representational space of the RL agents with the potential to improve the interpretability
of decision-making in RL.
Keywords: Evidence accumulation, Low-dimensional embedding, Manifold learning, Pop-
ulation analysis

1. Introduction

A number of neuroscience studies have proposed that the hippocampus encodes a cognitive
map as a low-dimensional manifold spanned by task-relevant variables (Nieh et al., 2021;
Keefe and Nadel, 1978; Low et al., 2018; Aronov et al., 2017; Knudsen and Wallis, 2021).
At any moment, the activity of a population of neurons can be characterized as a point in a
high-dimensional space where each dimension represents the firing rate of a single neuron.
For low-dimensional manifold representation to emerge, the network properties need to
confine the high-dimensional neural trajectories into a low-dimensional subspace.

A recent study by Nieh et al. (2021) demonstrated that neurons in the hippocampus in-
tegrate neural representations of cognitive and physical variables, forming a low-dimensional
manifold. Nieh et al. (2021) trained mice on the “accumulating towers task” that combines
navigation with decision-making such that mice had to accumulate evidence as they nav-
igated through the environment. As mice moved along a virtual track, objects (referred
to as “towers”) appeared on both sides of the track. When they arrived at the end of
the track, to earn a reward, mice had to choose the left- or right-hand side, depending on
which side had more towers (see also Morcos and Harvey (2016), Pinto et al. (2018) and
Engelhard et al. (2019) all of which used the same experimental paradigm). The di↵erence
in the number of towers is an abstract latent variable that corresponds to the amount of
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evidence for either of the two options, connecting this task with a large body of literature
in cognitive science and neuroscience that aims to advance the understanding of evidence
accumulation and decision-making (see, e.g., Brody and Hanks (2016); Gold and Shadlen
(2007); Dayan and Daw (2008)). Nieh et al. (2021) recorded the activity of hundreds of
individual neurons from the dorsal CA1 sub-region of mice hippocampus while they per-
formed the accumulating towers task. The results indicated the existence of cells tuned
to a particular di↵erence in the number of towers, such that a population of neurons tiled
the entire evidence axis. Furthermore, nonlinear dimensionality reduction suggested that
the activity was constrained to a task-specific low-dimensional manifold that contained a
geometric representation of learned knowledge. When projected into 3D space, physical
and abstract variables were jointly mapped in an orderly manner such that the position of
the animal along the track and the amount of evidence appeared organized as gradients.
The trajectory of the neural state typically progressed along a position direction over the
course of a trial, while splitting along the evidence direction. This result provided valuable
insight into how biological neural networks represent abstract and physical variables.

Deep RL agents have shown remarkable success in learning a variety of tasks at a level
similar to or exceeding humans (Mnih et al., 2013, 2015; Silver et al., 2017). A number of
studies have compared neural activity in artificial agents to the neural activity in mammalian
brains, finding remarkable similarities (Banino et al., 2018; Lin and Richards, 2021; Deverett
et al., 2019). Furthermore, a substantial e↵ort has been invested in understanding neural
representations in deep RL agents (Greydanus et al., 2018; Iyer et al., 2018; Heuillet et al.,
2021; Wells and Bednarz, 2021; Mott et al., 2019). A better understanding of how these
agents represent information and make decisions can help advance both AI and cognitive
neuroscience (Bengio et al., 2021; Hassabis et al., 2017; Ullman, 2019).

Inspired by neuroscience research, here we investigated whether deep RL agents repre-
sent task-relevant variables in the form of low-dimensional manifolds. We trained agents
on the accumulating towers task (similar to Lee et al. (2022) and using a more realistic en-
vironment and more complex agents than in our previous work (Mochizuki-Freeman et al.,
2023)) and applied neuroscience analysis methods to the neural activity in artificial agents.
Specifically, we examined the activity of neurons as a function of evidence, position, and
luminance and applied the same dimensionality reduction technique as Nieh et al. (2021)
called MIND (Low et al., 2018). MIND constructs a set of latent variables with a specific em-
phasis on incorporating temporal dynamics, and it has been argued to be particularly suited
to finding low-dimensional representations in data with sequential activity. We used linear
and non-linear decoding techniques to compare how task-relevant (evidence and position)
and task-irrelevant (luminance) variables were represented in the original high-dimensional
space and in the low-dimensional space learned with the MIND algorithm.

2. Methods

2.1. Accumulating towers task

We designed the accumulating towers task environment within the PyBullet physics engine
(Coumans and Bai, 2021) based on the virtual reality environment used in mice recordings
described in Nieh et al. (2021) and Pinto et al. (2018). The environment receives actions
(forward, left, or right) and outputs pixel observations (Fig. 1). It has two 10.5 cm-wide
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Figure 1: The accumulating towers task. In each trial, the agent moves down a narrow
corridor and observes “towers” (white objects) on the left- and right-hand sides
of the wall. To obtain the reward, the agent needs to turn left or right at the end
of the corridor, depending on which side has more towers. Similar to the task
performed by mice, the towers only become visible as the agent approaches them
and then disappear shortly after. The walls of the environment have a textured
pattern to provide optic flow to the agent.

a b

Figure 2: a Schematic of the accumulating towers environment showing two inserts that
illustrate the agent’s visual input. b Agent performance on the accumulating
towers task. Each gray line represents the performance of a single agent over the
course of training. The red line represents the mean performance of the 5 agents.
The maximum mean reward was 10.

arms at the end of a 200cm long straight track (Fig. 2). The agent must go through a
confined path that is bounded by walls that are 10 cm apart. At the end of the track, the
agent selects one of the two arms. Di↵erent numbers of towers are placed along each of the
two sides with a minimum gap of 7 cm between any two towers. At each trial, the number
of towers on each side is chosen randomly, between 1 and 15. The towers only appear when
they are within 5 cm of the agent and disappear as the agent passes them. The towers have
a 1 cm width, while the entire track has a 6 cm height. The forward action moves the agent
down the track at a fixed speed of 1cm/step. The left and right actions change the agent’s
alignment in 7.5� increments to a max of ±15� along the straight portion of the maze and
without a bound in the arms. Once the agent reaches the end of the track, it receives a
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Figure 3: Agent architecture. Pixel inputs are fed into a CNN encoder followed by a GRU-
based recurrent layer. The output of the recurrent layer is fed into an A2C-based
RL agent.

Figure 4: Trajectory of a left- and right-choice trial in MIND embedding space of the recur-
rent layer for one of the agents. The start and end of the trajectory are marked
with S and E.

reward of either 10 if it made a correct choice or 0 otherwise. It also receives a reward of
�0.1 for attempting to turn beyond 15� in either direction when in the main track or for
making contact with the back wall.

2.2. Agent architecture and training

We constructed deep RL agents based on the A2C architecture (Mnih et al., 2016; Sutton
and Barto, 2018) (Fig. 3). The agents consisted of three main modules: a convolutional
encoder to reduce an input image to a latent vector, a recurrent network to encode a series
of latent vectors over time, and actor and critic networks to generate action and value
predictions.

At each time step, the agents received as input 60⇥ 60 grayscale pixel values from the
environment. Those images were fed into three successive convolutional layers: 64 kernels
of size 8⇥ 8 (stride 2), 32 kernels of size 2⇥ 2 (stride 1), and 64 kernels of size 3⇥ 3 (stride
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2). This reduced the input to tensors of size 27 ⇥ 27 ⇥ 64, then 26 ⇥ 26 ⇥ 32, and then
12 ⇥ 12 ⇥ 64, respectively. The resulting tensor was flattened into a 9216-element vector
and passed through a fully connected layer, which reduced the 9216 intermediate units to
180 output features. All layers in the encoder had ReLU activation functions.

The convolutional encoder was followed by a GRU layer consisting of 180 hidden units.
The output of the recurrent layer was passed to an actor network and a critic network,
which respectively produced action logits and state value estimates. The actor and the
critic network each consisted of two-layers: a fully connected layer of 180 neurons followed
by a fully connected output layer of 3 (actor head) or 1 (critic head) neurons.

During training, we explored five di↵erent learning rates (0.001, 0.0005, 0.0001, 0.00005,
and 0.00001) for the Adam optimizer, and three di↵erent entropy bonus coe�cients (0.0,
0.001, and 0.0001) to encourage exploration by the agents. We ran each agent configuration
five times for 20 million environment steps. For each training step, we fed into the agent
5120 total environment steps, collected from 20 environments running in parallel for 256
time steps each, and then performed a backpropagation pass and stepped the optimizer.
Agents with a learning rate of 0.00005 and an entropy coe�cient of 0.0 obtained the highest
average reward, and they were used in the subsequent analyses.

2.3. Dimensionality reduction

We applied a dimensionality reduction technique called Manifold Inference from Neural
Dynamics (MIND), which was introduced in Low et al. (2018). MIND takes as input a high-
dimensional neural representation where each neuron corresponds to a unique coordinate
axis. In our case, the input was the activity of the 180 recurrent neurons. MIND aims to
describe the population activity using a small number of coordinates under the assumption
that the high-dimensional space is intrinsically low-dimensional.

To perform the dimensionality reduction, MIND learns transition probabilities between
states using an algorithm based on a randomized ensemble of decision trees. Each tree
adaptively partitions the neural state space into local neighborhoods, with a continuous
probability distribution over future states for each neighborhood. After combining estimates
across trees, transition probabilities are used to construct a distance metric between states,
which defines their proximity on the manifold. Distances have the property that they are
smaller for pairs of states that transitioned to each other with higher probability through
a smaller number of intermediate states. Intrinsic manifold coordinates representing the
network trajectory are obtained by embedding states into a low-dimensional Euclidean
space such that distances are approximately preserved.

3. Results

3.1. Performance of deep RL agents

We trained and evaluated deep RL agents on the accumulating towers task. After 20 million
environment steps, agents were able to reach near-perfect performance (Fig. 2b). This is
further illustrated using psychometric curves and confusion matrices that show performance
before and after the training (Fig. S1 and Fig. S2). The y-axis on psychometric curves
represents the probability of turning right. For an agent that performs perfectly, that
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Figure 5: Three-dimensional embedding of the neural activity in the encoder layer for each
of the five deep RL agents. The embedding was computed using MIND and it is
color-coded by (a) amount of evidence, (b) position, and (c) luminance.

probability would be 0 for the trials with a negative amount of evidence (i.e., more towers
on the left-hand side) and 1 for trials with a positive amount of evidence (i.e., more towers
on the right-hand side). Similar to animal behavior, when agents made mistakes, they were
made in the most di�cult trials when the evidence was close to 0. Confusion matrices
confirmed that the mistakes were not specific to a particular number of towers on either
side.

3.2. Geometry of the neural manifold

For each of the five agents, we constructed a 7-dimensional embedding using MIND. The
embedding was constructed for the 180 neurons from the encoder layer and for the 180
neurons from the recurrent layer. Fig. 5 and Fig. 6 show the first three dimensions of
the 7-dimensional embedding for the encoder and recurrent layer, respectively, with the
color coding indicating evidence, position, and luminance. For each agent, we used 50000
time steps, and each embedding was constructed using 37500 time steps per agent. The
remaining 12500 points were held out for testing the properties of the manifold (we used a
75/25 train/test split).

To quantify how well the 7-dimensional manifold captured the variability of the 180-
dimensional input, we computed a reconstruction index and reconstruction error (Fig. 7).
The reconstruction index was computed as the correlation coe�cient between the predicted
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Figure 6: Three-dimensional embedding of the neural activity in the recurrent layer for each
of the five deep RL agents. The embedding was computed using MIND and it is
color-coded by (a) amount of evidence, (b) position, and (c) luminance.

and true neural activity in held-out data. The reconstruction error was the Mean Squared
Error (MSE) between the predicted and true neural activity in held-out data. The results
indicated that adding additional dimensions after the first 2 to 3 dimensions led to only
minor improvement. This is consistent with the neuroscience data and suggests that the
neural activity in this task can be well captured using a low-dimensional manifold.

Visual inspection of the 3-dimensional space constructed for the recurrent layer (Fig. 6)
reveals that position and evidence gradually changed along the first two dimensions. This
ordinal organization and gradients that follow evidence and position were also reported in
Nieh et al. (2021). The position has a gradient from the beginning of the track to the end.
When the agent is around the start of the track, the evidence is around 0 and increases,
either in a positive or negative direction, as the agent moves toward the end. This is
captured by dark blue and bright yellow colors ending up on the opposite parts of the
manifold. Importantly, the two gradients point in directions that appear perpendicular and
consistent with the biological data. The trajectory progresses along the position from low
(blue) to high (yellow) and then splits up or down depending on the amount of evidence
(see Fig. 4 for illustrations of the trajectories in the 3-dimensional space).

Further visual inspection of Fig. 5 and Fig. 6 suggests that evidence (task-relevant
variable) was part of low-dimensional embedding in the recurrent layer but not in the
encoder layer. On the other hand, luminance (not task-relevant variable) was part of low-
dimensional embedding in the encoder layer but not in the recurrent layer.
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Figure 7: Evaluation of low-dimensional MIND embeddings using (a,b) reconstruction in-
dex, and (c,d) Mean Squared Error. Circles represent results from individual
agents, and bars provide the mean value.

In addition to MIND, we also performed dimensionality reduction using t-SNE (Van der
Maaten and Hinton, 2008) (Fig. S3 and Fig. S4), but unlike MIND, t-SNE did not reveal a
structured representation of task-relevant variables.

3.3. Reconstruction from embeddings

To quantify the results of the above visual inspection, we computed the decoding index
from d-dimensional embeddings of the manifold using Gaussian Process Regression (GPR)
and linear regression (Fig. 8). The decoding index is the correlation coe�cient between the
predicted and true values of evidence, position, and luminance computed using the held-out
portion of the dataset. The decoding results confirmed that the low-dimensional embedding
of the encoder layer contained information primarily about luminance and position, with
little information about evidence (Fig. 8a,c) – this is expected since the encoder has no
memory that could accumulate evidence. In contrast, the low-dimensional embedding of
the recurrent layer contained information primarily about position and evidence with much
less information about luminance (Fig. 8b,d), indicating that the low-dimensional manifold
was spanned by the task-relevant variables.
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Figure 8: Decoding of evidence, position, and luminance using GPR and linear regression
from low-dimensional MIND embeddings (panels a - d) and from original 180-
dimensional space (panels e - h). Circles represent results from individual agents,
and bars provide the mean value.

To showcase that these findings were critically dependent on the ability to learn the low-
dimensional embedding of the neural representation, we performed decoding in the original
180-dimensional space (Fig. 8e-h). In the encoder layer, information decoded from the 180-
dimensional space was similar to the information decoded from the low-dimensional space,
with position and luminance being decoded better than evidence. However, decoding from
the 180-dimensional space of the recurrent layer was able to decode evidence and position as
well as luminance. Therefore, the information about the luminance remained present in the
neural activity, but its contribution to the low-dimensional embedding was much smaller
than the contribution from evidence and position.
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3.4. Neural activity in deep RL agents

To better understand how learning shapes neural activity, we visualized the activity of
neurons in the encoder (Fig. S5 and Fig. S6) and recurrent layers (Fig. S7 and Fig. S8)
before and after the training as a function of evidence, position and luminance. While Nieh
et al. (2021) reported that many neurons tuned to a particular magnitude of evidence and a
particular position, we observed that the majority of neurons in the recurrent layer changed
their activity monotonically (growing or decaying) as a function of evidence and position.
In particular, we observed that negative and positive evidence were encoded by two distinct
populations of neurons whose firing rate increased as a function of the amount of evidence.

4. Discussion

To solve the accumulating towers task, the agents had to keep track of the amount of
evidence, which was the di↵erence in the number of towers on the left- and the right-hand
side of the environment. The agents also had to learn to identify the end of the track,
where they had to turn in the direction with more evidence to receive a reward. The
visualization and decoding analysis of the low-dimensional embedding of the neural activity
in the recurrent layer revealed a manifold spanned by evidence and position dimensions
(Fig. 6 and Fig. 8). Critically, luminance, which was not a task-relevant variable, was not
well encoded in the low-dimensional space, even though information about luminance was
present in the high-dimensional space. This indicates that the low-dimensional structure
reveals the variables that the agent used to solve the task, providing a tool for improving
the interpretability of deep RL agents.

The neural activity of the recurrent units was characterized by a monotonic increase
as a function of evidence, with di↵erent populations of neurons showing selectivity for
positive and negative evidence (Fig. S8a). The rates of increase also di↵ered across neurons.
Nieh et al. (2021) did not observe such monotonic changes and reported sequential neural
activity, suggesting that the artificial agents might converge to a di↵erent coding scheme
despite using a low-dimensional representation. Earlier computational neuroscience work
on evidence accumulation has suggested a connection between neural activity that changes
monotonically with a spectrum of rate constants across neurons and a sequential neural
activity (Howard et al., 2018). That work suggested that sequential activity could be
generated through a simple linear transformation of the monotonic activity.

Our analyses paralleled those from Nieh et al. (2021), providing an example of how the
same tools can be used to examine biological and artificial agents. The results indicated
that artificial agents can learn tasks that include abstract variables, and that the underly-
ing neural representation relies on a low-dimensional manifold. Studying neural dynamics
from a manifold perspective has been increasingly relevant in neuroscience (Langdon et al.,
2023; Ebitz and Hayden, 2021; Gallego et al., 2017), providing an opportunity to better
understand similarities and di↵erences between biological and artificial systems. The fact
that MIND was able to tease apart task-relevant and task-irrelevant variables shows po-
tential for using manifold learning techniques to advance understanding of learning and
decision-making in artificial agents.
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Supplemental Information

a

b

Figure S1: Performance of the agents on the accumulating towers task after training, cap-
tured through: (a) Psychometric curves. (b) Confusion matrix.

a

b

Figure S2: Performance of the agents on the accumulating towers task before training, cap-
tured through: (a) Psychometric curves. (b) Confusion matrix.



Mochizuki-Freeman Kabir Gulecha Tiganj

a

b

c

Figure S3: Three-dimensional embedding of the neural activity in the encoder layer for each
of the five deep RL agents. The embedding was computed using t-SNE and it
is color-coded by (a) amount of evidence, (b) position, and (c) luminance.
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Figure S4: Three-dimensional embedding of the neural activity in the recurrent layer for
each of the five deep RL agents. The embedding was computed using t-SNE and
it is color-coded by (a) amount of evidence, (b) position, and (c) luminance.
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Figure S5: Activity of the neurons in the encoder layer before training for each of the five
agents as a function of (a) evidence, (b) position, and (c) luminance. Neurons
are sorted by their peak activity which is rescaled to a 0�1 range.
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Figure S6: Activity of the neurons in the encoder layer after training for each of the five
agents as a function of (a) evidence, (b) position, and (c) luminance. Neurons
are sorted by their peak activity which is rescaled to a 0�1 range.
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Figure S7: Activity of the neurons in the recurrent layer before training for each of the five
agents as a function of (a) evidence, (b) position, and (c) luminance. Neurons
are sorted by their peak activity which is rescaled to a 0�1 range..
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Figure S8: Activity of the neurons in the recurrent layer after training for each of the five
agents as a function of (a) evidence, (b) position, and (c) luminance. Neurons
are sorted by their peak activity which is rescaled to a 0�1 range.
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